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ABSTRACT

Molecular docking that predicts the bound structures of small molecules (ligands)
to their protein targets, plays a vital role in drug discovery. However, exist-
ing docking methods often face limitations: they either overlook crucial struc-
tural changes by assuming protein rigidity or suffer from low computational ef-
ficiency due to their reliance on generative models for structure sampling. To
address these challenges, we propose FABFlex, a fast and accurate regression-
based multi-task learning model designed for realistic blind flexible docking sce-
narios, where proteins exhibit flexibility and binding pocket sites are unknown
(blind). Specifically, FABFlex’s architecture comprises three specialized modules
working in concert: (1) A pocket prediction module that identifies potential bind-
ing sites, addressing the challenges inherent in blind docking scenarios. (2) A
ligand docking module that predicts the bound (holo) structures of ligands from
their unbound (apo) states. (3) A pocket docking module that forecasts the holo
structures of protein pockets from their apo conformations. Notably, FABFlex
incorporates an iterative update mechanism that serves as a conduit between the
ligand and pocket docking modules, enabling continuous structural refinements.
This approach effectively integrates the three subtasks of blind flexible dock-
ing—pocket identification, ligand conformation prediction, and protein flexibility
modeling—into a unified, coherent framework. Extensive experiments on public
benchmark datasets demonstrate that FABFlex not only achieves superior effec-
tiveness in predicting accurate binding modes but also exhibits a significant speed
advantage (208×) compared to existing state-of-the-art methods. Our code is re-
leased at https://anonymous.4open.science/r/FABFlex-7007.

1 INTRODUCTION

Molecular docking is a pivotal technology in drug discovery, aiming at predicting the binding struc-
tures of ligand-protein complexes to elucidate how drug-like small molecules (ligands) interact with
target proteins (Morris et al., 1996; Morris & Lim-Wilby, 2008; Agarwal & Mehrotra, 2016). Over
the past decades, the development of molecular docking has seen continuous breakthroughs, evolv-
ing from traditional simulation software grounded in the principles of physics and chemistry to
recent deep learning-based methods (Crampon et al., 2022). Traditional methods typically utilize
empirical energy scoring functions to rank numerous searched conformations (Trott & Olson, 2010;
Friesner et al., 2004; McNutt et al., 2021; Koes et al., 2013), often resulting in excessive processing
times and heavy computational burdens.

The shift towards deep learning-based docking approaches represents a significant transformation
in the field, offering an alternative pathway for exploring protein-molecule interactions. Despite
technological advances, a substantial number of these methods (Lu et al., 2022; Zhang et al., 2023;
Stärk et al., 2022; Zhou et al.; Pei et al., 2024; Gao et al., 2024; Corso et al., 2023) rely on the rigid
docking paradigm, which assumes that proteins are rigid and remain static during the docking pro-
cess. This simplification contradicts the physiological reality of molecular docking, where proteins
exhibit significant flexibility and dynamic behavior (Henzler-Wildman & Kern, 2007; Lane, 2023;
Popovych et al., 2006), thereby restricting the practical applicability of these methods in real-world
scenarios. Consequently, it is imperative to explore and develop flexible docking methods that more
faithfully reflect the realistic docking process (Sahu et al., 2024).

The advent of AlphaFold series (Senior et al., 2020; Jumper et al., 2021; Abramson et al., 2024) has
revolutionized the technology of protein structure prediction, enabling precise 3D protein structure
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Figure 1: The two cases illustrate our motivation. These two cases, involving PDB 6HHJ and PDB
6OIM, highlight the structural discrepancy between apo proteins (AlphaFold2) and holo proteins.
In the two cases, existing rigid docking method FABind (Pei et al., 2024) yields incorrect molecular
docking results when apo proteins are inputted as direct substitutes for the original holo proteins.

predictions without relying on laborious methods such as X-ray crystallography (Ilari & Savino,
2008), or cryo-electron microscopy (Bonomi & Vendruscolo, 2019). Yet, integrating AlphaFold-
predicted apo structures into existing docking workflows remains challenging. For instance, as
two cases shown in Fig. 1, a notable discrepancy often exists between the AlphaFold2-predicted
apo structures (Jumper et al., 2021) and the actual docked holo structure. Moreover, existing rigid
docking methods (Lu et al., 2022; Pei et al., 2024) often yield wrong docking results when the
AlphaFold2-predicted apo proteins are used as direct substitutes for previously used holo protein.

Recent flexible docking methods (Lu et al., 2024; Huang et al.; Zhang et al., 2024; Qiao et al., 2024)
predominantly rely on diffusion models and sampling strategy (Yang et al., 2023) due to the strong
distribution modeling capability of generative models. For example, DynamicBind (Lu et al., 2024)
utilizes equivariant geometric diffusion networks with multiple sampling iterations to reconstruct
holo protein structures from AlphaFold2-based conformations. Though effective, the step-by-step
diffusion process and extensive sampling requirements inherently reduce computational efficiency.
In contrast, regression-based methods (Lu et al., 2022; Zhang et al., 2023; Stärk et al., 2022), offer
a faster alternative by directly predicting the bound structures of protein-ligand complexes using
well-designed neural networks. Notably, regression-based approaches have not yet been explored
for flexible docking scenarios. Within this category, the FABind series (Pei et al., 2024; Gao et al.,
2024) is committed to balance docking accuracy with computational efficiency through a multi-
task model. However, the FABind series still adheres to the rigid protein assumption, limiting its
efficacy in realistic flexible docking scenario. Consequently, the challenge of developing a method
that combines both accuracy and speed for blind flexible docking remains largely unexplored.

In this study, we propose FABFlex, a regression-based multi-task learning model crafted to achieve
both Fast and Accurate Blind Flexible docking. Specifically, FABFlex consists of three designed
modules, each targeting a subtask decomposed from the process of blind flexible docking: (1) a
pocket prediction module that identifies binding pocket sites; (2) a ligand docking module that pre-
dicts the structure of holo ligand; (3) a pocket docking module that predicts the structure of holo
pocket. Each module is built using an E(3)-equivariant graph neural network layer, called “FABind
layer” (Pei et al., 2024), which is tailored to handle the ligand-protein heterogeneous graph. The
operational pipeline of FABFlex begins with the pocket prediction module, which determines the
protein residues constituting the binding pocket, effectively navigating the challenge of the blind
setting. Subsequently, the ligand and pocket docking modules leverage the predicted pocket in-
formation to predict the holo structures of the ligand and pocket, respectively. An iterative update
mechanism facilitates the exchange of structural predictions between the ligand and pocket docking
modules, allowing for further coordinate refinements. Collectively, these three modules function in
a seamless end-to-end process, allowing FABFlex to simultaneously predict the holo structures of
both the ligand and pocket in a single operation, thus ensuring faster computation.

We conduct experiments on public docking benchmark PDBBind to evaluate our FABFlex against
a variety of docking methods. Compared to the baselines, FABFlex effectively increases the per-
centage of ligand RMSD below 2Å to 40.59% and reduces the pocket RMSD to 1.10Å. Notably,
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FABFlex significantly accelerates the computational speed, approximately 208 times faster than the
recent state-of-the-art flexible docking method, DynamicBind (Lu et al., 2024).

2 RELATED WORK

Molecular docking. As a cornerstone of drug discovery, molecular docking, often synonoymous
with ligand-protein docking, focuses on the interactions between ligands and proteins. Traditional
methods like Vina (Trott & Olson, 2010), Smina (Koes et al., 2013), Glide (Friesner et al., 2004),
Gnina (McNutt et al., 2021) and Gold (Jones et al., 1997), use physics-based scores to analyze
these interaction, which, though effective, tend to be computationally intensive. Recent progress
in geometric deep learning has sparked the development of deep learning-based docking strate-
gies (Crampon et al., 2022), which can be broadly categorized into regression-based and sampling-
based methods. Regression-based methods like EquiBind (Stärk et al., 2022), TankBind (Lu et al.,
2022), E3Bind (Zhang et al., 2023) and FABind (Pei et al., 2024) leverage various geometric neu-
ral networks to directly predict binding structures. Conversely, sampling-based methods like Diff-
Dock (Corso et al., 2023), manipulate the rotation, translation and torsion of ligands using diffusion
models. These methods generally simplify the problem by assuming protein rigidity, neglecting the
dynamic nature of protein in realistic docking scenarios.

Flexible molecular docking. Recent methods in flexible docking, such as DynamicBind (Lu et al.,
2024), ReDock (Huang et al.), PackDock (Zhang et al., 2024) and NeuralPLexer (Qiao et al., 2024),
are primarily based on diffusion models with sampling strategy. For example, DynamicBind (Lu
et al., 2024) uses equivariant geometric diffusion networks to reconstruct the holo structures of both
ligand and protein from their apo states. ReDock (Huang et al.) adopts the neural diffusion bridge
model that employs energy-to-geometry mapping on geometric manifolds to predict protein-ligand
binding structures. While these methods effectively enhance the docking performance, they suf-
fer from the typical flaws associated with diffusion models and multi-round sampling strategy, i.e.,
low computational efficiency. This limitation impedes the scalability of these methods in assessing
extensive volumes of potential, unknown molecule-protein interactions, which are crucial for ad-
vancing drug discovery. In this paper, we attempt to provide a regression-based solution aimed at
achieving both fast inference and high docking accuracy.

3 METHODOLOGY

3.1 PROBLEM STATEMENT AND PRELIMINARY

Notations. Each ligand-protein complex is denoted as a heterogeneous graph G = {V :=
(V l,Vp), E := (E l, Ep, E lp)}, where V and E denote the sets of nodes and edges, respectively.
Specifically, in the ligand subgraph Gl = {V l, E l}, each node vi = (hi,xi) ∈ V l corresponds
an atom of ligand, with hi ∈ Rdl

representing the pre-extrated feature by TorchDrug (Zhu et al.,
2022) and xi ∈ R3 specifying its spatial coordinate. The edge set E l encompasses the chemical
bonds within the ligand. In the protein subgraph Gp = {Vp, Ep}, each node vj = (hj ,xj) ∈ Vp

represents a residues, with hj ∈ Rdp

derived from ESM-2 (Lin et al., 2022) as the pretrained
feature, and xj ∈ R3 indicating the coordinate of the Cα atom in the residue. The edge set
Ep connects residues that are within an 8Å distance. Additionally, the set of external interface
edges, denoted as E lp, comprises edges that connect nodes from the ligand set V l to the pro-
tein set Vp when they are spatially within 10Å of each other. When specifically focusing on
the true pocket region, the ligand-pocket complex is depicted as a reduced heterogeneous graph
G∗ = {V∗ := (V l,Vp∗), E∗ := (E l, Ep∗, E lp∗)}, where Vp∗, Ep∗ and E lp∗ are derived from the
subsets of the protein that constitutes the pocket. Similarly, a hat is used in the notation to represent
the predicted pocket, Ĝ∗ = {V̂∗ := (V l, V̂p∗), Ê∗ := (E l, Êp∗, Ê lp∗)}.
Blind Flexible Docking. Given an unbounded pair of conformations: an apo ligand randomly ini-
tialized by RDKit (Landrum et al., 2013) and an apo protein predicted by AlphaFold2 (Jumper et al.,
2021), the aim of blind flexible molecular docking is to predict the bound structure of ligand-pocket
complex, i.e., holo ligand and holo pocket, denoted as x̂ = {{x̂i}1≤i≤nl , {x̂j}1≤j≤np∗}, where
nl = |V l| and np∗ = |Vp∗| indicate the number of ligand atoms and pocket residues respectively.
Unlike most existing studies that assume protein rigidity (Pei et al., 2024) or rely on pre-known
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Figure 2: The overview of proposed FABFlex model, which consists of a pocket prediction module,
a ligand docking module, and a pocket docking module. The pocket prediction module identifies
pocket residues within the protein. Based on the predicted binding pocket sites, the ligand docking
module and pocket docking module predict the holo structures of the ligand and pocket, respectively.
An iterative update mechanism facilitates the exchange of predictions between the ligand and pocket
docking modules, enabling further coordinate refinements. These modules work together within a
unified end-to-end model for the blind flexible docking scenario, i.e., “(apo protein, apo ligand)→
(holo pocket, holo ligand)”.

pocket sites (Zhang et al., 2024), the blind flexible setting reflects the challenges encountered in
real-world molecular docking scenarios.

Fundamental Component: FABind Layer. FABind (Pei et al., 2024) and its enhanced version,
FABind+ (Gao et al., 2024), establish an end-to-end deep learning framework that simultaneously
predicts binding pocket sites and holo ligand structure under rigid setting. The fundamental ge-
ometric graph neural network used in both two approaches is called “FABind layer”, denoted as
F(·), which is an improved E(3)-equivariant graph neural networks (EGNN) (Satorras et al., 2021)
tailored for ligand-protein complex graph. The l-th FABind layer is denoted as follows:

h
(l+1)
i ,h

(l+1)
j ,x

(l+1)
i ,x

(l+1)
j ,p

(l+1)
ij = F(h

(l)
i ,h

(l)
j ,x

(l)
i ,x

(l)
j ,p

(l)
ij ), (1)

where pij ∈ Rd is the pair embedding of the ligand-protein node pair (vi, vj) ∈ V l × Vp, and
d is the hidden size. Similarly to general graph neural networks (Wu et al., 2020), we can stack
multiple FABind layers to extract deeper features and capture high-order information within the
graph. Inspired by the fast inference of the FABind series methods, we employ the FABind layer as
our fundamental component in constructing each module of our FABFlex.

3.2 FABFLEX

3.2.1 DESIGN PHILOSOPHY

The design philosophy of FABFlex centers on achieving both high efficiency and accuracy in blind
flexible docking task, which can be decomposed into three key subtasks: identifying pocket sites,
predicting the bound holo structure of ligand, and predicting the bound holo structure of pocket.
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Specifically, the first subtask can be modelled as a binary classification problem to determine which
protein residues form the docking pocket, while the other two subtasks are 3D coordinate regression
problems. To pursue faster docking computation, the FABFlex model is designed to predict the
docking results in a single-pass operation, without requirements of extensive sampling and repetitive
computations. Additionally, FABFlex aims to operate without relying on external tools that could
add extra computational overhead, such as the pocket detection tool P2Rank (Krivák & Hoksza,
2018), which is used in existing studies (Lu et al., 2022; Zhang et al., 2023) to detect candidate
pocket sites. According to above philosophy, the FABFlex model builds on an end-to-end multi-task
learning framework tailored for blind flexible docking.

3.2.2 ARCHITECTURE OF FABFLEX

An overview of the proposed FABFlex model is illustrated in Fig. 2. Designed to tackle the intricacy
of blind flexible docking, FABFlex employs a collaborative architecture consisting of three special-
ized modules: (1) a pocket prediction module, denoted as MS(·); (2) a ligand docking module,
denoted asML(·); (3) a pocket docking module, denoted asMP (·). All modules are implemented
using stacked FABind layers, while each tailored to a specific subtask decomposed from blind flex-
ible docking. Specifically, the pocket prediction module is responsible for identifying the residues
that form the pocket, addressing the “blind” issue, as formulated below:

{ŷj}1≤j≤np =MS(G, {hi,xi}1≤i≤nl , {hj ,xj}1≤j≤np),

{vj}1≤j≤n̂p∗ = {ŷj ⊙ vj}1≤j≤np ∈ V̂p∗,
(2)

where G is the ligand-protein graph, {ŷj}1≤j≤np(ŷj ∈ {0, 1}) is an indicator vector predicted by the
pocket prediction module to locate the pocket sites, V̂p∗ denotes the predicted set of pocket residues
and n̂p∗ = |V̂p∗|, ⊙ symbolizes the selection operation based on the indicator vector. The predicted
pocket sites by pocket prediction module enable the subsequent ligand and pocket docking modules
to concentrate effectively on the crucial pocket area, narrowing the large ligand-protein graph to a
more targeted ligand-pocket graph.

The ligand docking module and the pocket docking module cater to the “flexible docking” by pre-
dicting the bound structures of holo ligand and holo pocket respectively, formulated as follows:

{x̂i}1≤i≤nl =ML(Ĝ∗, {hi,xi}1≤i≤nl , {hj ,xj}1≤j≤n̂p∗),

{x̂j}1≤j≤n̂p∗ =MP (Ĝ∗, {hi,xi}1≤i≤nl , {hj ,xj}1≤j≤n̂p∗),
(3)

where Ĝ∗ is the ligand-pocket graph, {x̂i}1≤i≤nl and {x̂j}1≤j≤n̂p∗ are predicted structures of ligand
and pocket respectively. In current model, the ligand docking module and the pocket docking module
predict the structures in isolation, which has a gap to reflect the interactive influence between ligand
atoms and pocket residues in docking process. To rectify this, there is a need for a bridge that
connects the ligand docking module and pocket docking module, enhancing the model to capture
the nature of interactive dynamics of docking.

3.2.3 ITERATIVE UPDATE MECHANISM

To facilitate the exchange of predicted structures between the ligand docking module and the pocket
docking module, we introduce an iterative update mechanism to further promotes the coordinate
refinement. Specifically, the predicted ligand and pocket, which together form the updated ligand-
pocket graph, are fed back into their respective modules to produce new predictions. This k-th
iterative process can be formulated as follows:

{x̂(k+1)
i }1≤i≤nl =ML(Ĝ(k)∗, {hi, x̂

(k)
i }1≤i≤nl , {hj , x̂

(k)
j }1≤j≤n̂p∗),

{x̂(k+1)
j }1≤j≤n̂p∗ =MP (Ĝ(k)∗, {hi, x̂

(k)
i }1≤i≤nl , {hj , x̂

(k)
j }1≤j≤n̂p∗),

(4)

where G(k)∗ denotes the ligand-pocket graph updated by the k-th iteration’s predicted coordinates of
ligand atoms {x̂(k)

i }1≤i≤nl and pocket residues {x̂(k)
j }1≤j≤n̂p∗ , and the number of iterations K is

a hyperparameter discussed in Appendix C.5. Notably, the update mechanism iterates solely on the
coordinates, excluding the features. Additionally, inspired by AlpahFold2 (Jumper et al., 2021), we
only record the gradient at the final iteration during training process. These strategies are beneficial
in reducing the memory demands and easing computational burden.
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3.2.4 TRAINING LOSS AND PIPELINE

Training Loss. FABFlex is built on a multi-task learning framework, utilizing multiple losses to
supervise different modules from various aspects. Referring to FABind series (Pei et al., 2024;
Gao et al., 2024), the training loss comprises pocket prediction loss, ligand coordinate loss, pocket
coordinate loss, and distance map constraint loss, formulated as follows:

L = α1Lpocket pred + α2Lligand coord + α3Lpocket coord + α4Ldis map, (5)

where the pocket prediction loss Lpocket pred encompasses a residue classification loss and a pocket
center loss. The ligand coordinate loss Lligand coord is a Huber regression loss to measure the distance
between predicted and ground-truth coordinates of ligand atoms. Similarly, the pocket coordinate
loss Lpocket coord is a Huber loss to compute the coordinate distance between predicted and ground-
truth pocket residues. The distance map loss Ldis map supervises the predicted relative distance of
atom-residue pairs. The details of implement of training loss are provided in Appendix A.1.

Pipeline. Given an apo ligand initilized by RDKit and an apo protein predicted by AlphaFold2,
the ligand is initially positioned at the center of the protein to construct the ligand-protein graph G.
This graph is passed through the pocket prediction module to identify the binding pocket residues
{vj}1≤j≤n̂p∗ . Navigated by the predicted pocket, the ligand is translated from the protein center to
the pocket center, creating the ligand-pocket graph Ĝ∗. This graph is then fed into the ligand and
pocket docking modules, where it undergoes refinement through an iterative update mechanism. At
the final iteration, the predicted holo structures of ligand {x̂i}1≤i≤nl and pocket {x̂j}1≤j≤n̂p∗ are
obtained from their respective docking modules. The pseudo code is provided in Appendix A.2.

Notably, we adopt a partial teacher-forcing (Lamb et al., 2016) strategy during training process.
When passing pocket information from the pocket prediction module to the docking modules, a
probability factor p is set to control whether the true pocket sites (with probability p) or the predicted
pocket sites (with probability 1 − p) are passed to the docking modules. This strategy allows the
model to rely partially on ground-truth pocket sites for stability, while progressively learning to
depend on its own pocket predictions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset Construction. Our experiments are conducted on the widely used public PDBBind v2020
dataset1, which contains a comprehensive collection of 19,443 protein-ligand crystal complex struc-
tures with experimentally measured binding affinities. For each complex, we align the protein com-
ponent with its corresponding AlphaFold2-predicted structure to obtain the apo protein conforma-
tions. To ensure consistency with previous work (Pei et al., 2024; Lu et al., 2024), we employ
the same dataset splitting and adhere to similar data preprocessing steps. Specifically, complexes
deposited before 2019 are utilized as the training set (12,807 complexes) and validation set (734
complexes), while those recorded after 2019 are designated as test set (303 complexes). Additional
data preprocessing details are provided in Appendix B.1.

Baselines. We compare our proposed FABFlex against a spectrum of competitors, which are cate-
gorized into traditional docking software and deep learning docking methods. Within the traditional
software category, we compare against well-established software including Vina (Trott & Olson,
2010), Glide (Friesner et al., 2004) and Gnina (McNutt et al., 2021). For deep learning-based meth-
ods, we include TankBind (Lu et al., 2022), FABind (Pei et al., 2024), FABind+ (Gao et al., 2024),
DiffDock (Corso et al., 2023), DiffDock-L (Corso et al., 2024) and DynamicBind (Lu et al., 2024).
Among these, TankBind, FABind, FABind+, DiffDock and DiffDock-L maintain the rigid protein
assumption, while DynamicBind is a recently published flexible docking method. From another
perspectives, TankBind, FABind and FABind+ are rooted in regression-based approaches, whereas
DiffDock, DiffDock-L and DynamicBind employ a sampling-based strategy with diffusion models
to refine the conformations of proteins and ligands. Further details are provided in Appendix B.2.

Evaluation Metrics. Our primary evaluation metric is the root-mean-square deviation (RMSD)
of Cartesian coordinates, which assesses the accuracy of predicted versus ground-truth structures

1http://pdbbind.org.cn/
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Table 1: Ligand Performance Comparison of Blind Flexible Docking.

Method

Ligand RMSD
Average

Runtime (s)
On All Cases On Unseen Protein Receptors

Percentiles ↓ % Below ↑ Percentiles ↓ % Below ↑
25% 50% 75% Mean < 2Å < 5Å 25% 50% 75% Mean < 2Å < 5Å

Traditional Docking Software
Vina 4.79 7.14 9.21 7.14 6.67 27.33 5.27 7.06 8.84 7.15 6.25 23.21 205*

Glide 2.84 5.77 8.04 5.81 14.66 40.60 2.38 5.01 7.17 5.21 21.36 49.51 1405*

Gnina 2.58 5.17 8.42 5.76 19.32 48.47 2.03 4.96 7.35 5.33 24.55 50.91 146

Deep Learning-based Rigid Docking Methods
TankBind 2.82 4.53 7.79 7.79 8.91 54.46 2.88 4.45 7.53 7.60 4.39 58.77 0.87
FABind 2.19 3.73 8.39 6.63 22.11 60.73 2.73 4.83 9.35 7.15 8.77 50.88 0.12
FABind+ 1.58 2.79 6.69 5.63 35.64 66.01 1.93 3.13 8.59 6.76 27.19 57.89 0.16
DiffDock 1.82 3.92 6.83 6.07 29.04 60.73 1.97 4.82 8.03 7.41 26.32 51.75 82.83
DiffDock-L 1.55 3.22 6.86 5.99 36.75 62.58 1.86 3.16 9.09 7.14 29.82 61.40 58.72

Deep Learning-based Flexible Docking Methods
DynamicBind 1.57 3.16 7.14 6.19 33.00 64.69 2.23 4.02 10.23 8.27 20.18 54.39 102.12

FABFlex 1.40 2.96 6.16 5.44 40.59 68.32 1.81 3.51 8.03 7.17 32.46 59.65 0.49

Notes: The best results are highlighted in bold, and the second best results are underlined. The average runtime for each method is presented in
seconds. The asterisk (*) indicates that the method is executed on the CPU. The left part of the table compares ligand RMSD on all test cases,
while the right part provides a more rigorous comparison for those cases involving protein receptors that were unseen during training process.

for both ligands (Ligand RMSD) and binding pockets (Pocket RMSD). These metrics reflect the
capability of docking model in accurately predicting ligand structures at atom level and pocket
structures at residue level. For Ligand RMSD, we report the percentile values (25%, 50%, 75% and
mean) and percentages of RMSD below the threshold (< 2Å and < 5Å).

Implementation Settings. The initial apo ligand structures are generated using the Experimental-
Torsion Knowledge Distance Geometry (ETKDG) algorithm (Riniker & Landrum, 2015) in RD-
Kit (Landrum et al., 2013) from the molecules’ SMILES sequences. The initial apo protein struc-
tures are obtained through AlphaFold2 (Jumper et al., 2021) predictions based on the proteins’ amino
acid sequences. The more details of hyperparameter setting are provided in Appendix B.3.

4.2 LIGAND PERFORMANCE OF BLIND FLEXIBLE DOCKING

Table 1 summarizes the comparison of ligand performance across various docking methods. The
left part of the table performs the comparison on the all test cases. It can be observed that FABFlex
consistently outperforms both traditional docking software and contemporary deep learning-based
methods almost across all metrics. Typically, a prediction of a ligand’s structure is considered suc-
cessful if its predicted structure is within a RMSD of 2Å from the true holo ligand structure (Lu et al.,
2024). Thus, the ligand RMSD < 2Å is a critical metric to evaluate the capacity of molecular dock-
ing methods. FABFlex excels in this metric, achieving the ligand RMSD < 2Å at 40.59%, which
has generated a significant margin compared to the second-best competitor, showcasing FABFlex’s
superior ability in predicting accurate binding structures of ligands.

The right part of Table 1 performs a more rigorous assessment of docking methods using 114 ligand-
protein complexes that involve protein receptors that were not seen during the training process. This
assessment is crucial for evaluating the generalization capability of each method. Although FABFlex
does not achieve the best results in every metric, it excels significantly in the critical measure of
ligand RMSD < 2Å. Notably, FABFlex reaches 32.46%, markedly outperforming all competitors,
which fall below 30%. This performance underscores FABFlex’s ability to generalize effectively to
new and unseen proteins. Additional analysis of ligand performance is provided in Appendix C.1.

4.3 POCKET PERFORMANCE OF BLIND FLEXIBLE DOCKING

Fig. 3 illustrates the cumulative distribution of pocket RMSD performance. In the left figure, which
evaluates all test complexes, we observe that although FABFlex does not outperform DynamicBind,
it still has a positive effect on refining pocket poses from the initial AlphaFold2 structures. The
right figure focuses on complexes with unseen protein receptors. It can be observed that for pocket
RMSD below 0.75Å, the DynamicBind distribution curve almost always stays at the lowest position,
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Figure 3: Pocket Performance Comparison of Blind Flexible Docking. The left figure shows the
cumulative percentage of pocket RMSD on all test cases, while the right figure evaluates on those
cases with protein receptors that were unseen during training process.

while FABFlex maintains results that are not worse than those of AlphaFold2. This suggests that for
these unseen protein receptors, FABFlex demonstrates better robustness compared to DynamicBind,
as it does not degrade the protein structures. These outcomes are not surprising, as DynamicBind
employs a diffusion model to adjust the conformation of the entire protein, rather than just the pocket
region. While this approach reduces the degrees of freedom and enhances the accuracy, it may limit
its ability to generalize to new proteins. Furthermore, DynamicBind faces computational efficiency
challenges, which will be discussed in the next section.

4.4 INFERENCE EFFICIENCY

High efficiency facilitates the widespread adoption of a method in real-world applications. In the
last column on the right of Table 1, we showcase a comparison of the average inference time for
each ligand-protein pair. Traditional docking software such as Vina, Glide, and Gnina exhibit no-
tably longer inference times. Among regression-based methods, TankBind, FABind, and FABind+
demonstrate considerably faster speed than sampling-based approaches such as DiffDock and Dy-
namicBind. Notably, FABFlex achieves an inference speed of only 0.49 seconds, which is approx-
imately 208 times faster than DynamicBind, a recently developed method for flexible docking that
averages 102.12 seconds. This efficiency gain is attributed to the design philosophy of FABFlex
that directly predicts the bound structures without requiring multiple rounds of sampling or extra
external pocket detection tools. Additionally, FABFlex specifically focuses on the conformational
changes in the core pocket region, rather than the entire protein. As the pocket constitutes a small
part of the protein, this design effectively reduces the computational burden.

Table 2: Performance of pocket prediction.

Method
Given Apo Proteins Given Holo Proteins

CLS ACC % ↑ Pocket Center (Å) CLS ACC % ↑ Pocket Center (Å)

MAE ↓ RMSE ↓ EucDist ↓ MAE ↓ RMSE ↓ EucDist ↓
P2Rank - 4.04 5.69 7.85 - 4.11 6.17 8.05

FABind 73.32 3.06 5.30 6.18 73.54 3.08 5.35 6.18
FABind+ 87.18 3.49 5.09 6.94 87.52 3.50 5.13 6.69

FABFlex 87.08 3.29 4.83 6.59 87.06 3.31 4.89 6.63

Notes: “-” means that P2Rank is an external pocket detection tool without pocket residue classification.

4.5 POCKET PREDICTION ANALYSIS

Table 2 illustrates the performance of FABFlex’s pocket prediction module in comparison with to
existing P2Rank, FABind and FABind+. Among them, P2Rank (Krivák & Hoksza, 2018) is an open-
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Figure 4: Case PDB 6OIM to intuitively present the process of iterative update.

source tool widely used in existing docking methods for pre-determining potential binding pocket
sites (Lu et al., 2022; Zhang et al., 2023). To intuitively analyze the effectiveness of pocket prediction
across different methods, we evaluate the quality of pocket prediction from two perspectives: residue
classification and pocket center position. For classification, we report the accuracy (CLS ACC). For
the pocket center, we employ the mean-absolute-error (MAE), the root-mean-square-error (RMSE),
and the Euclidean distance (EucDist), each calculated between predicted pocket center and native
pocket center to quantify the accuracy of pocket localization. From Table 2, we can observe that
regardless of apo or holo protein, FABFlex predicts pocket sites that are comparable to FABind and
FABind+, and consistently outperform P2Rank. These results indicate the effectiveness of FABFlex
in identifying pocket residues, even when confronting apo proteins. Additionally, integrating pocket
prediction into the flexible docking process appears to be more advantageous than relying on an
external pocket detection tool. Notably, FABFlex achieves the lowest RMSE at 4.83 and 4.89, and
the lower RMSE suggests FABFlex’s stability in error control, with fewer cases of extreme errors.
Moreover, we provide intuitive visualization of two pocket prediction cases in Appendix C.12.

Table 3: Experimental results of ablation studies.

Method Ligand RMSD (Å) Pocket RMSD (Å) Pocket Center (Å)

Mean ↓ Median ↓ <2Å(%) ↑ Mean ↓ Median ↓ MAE ↓ RMSE ↓ EucDist ↓
FABFlex 5.44 2.96 40.59 1.10 0.63 3.29 4.83 6.59

One Docking Module 5.73 3.91 27.06 1.59 1.08 3.46 4.83 6.90
w/o Iterative Update 6.14 3.78 19.80 1.11 0.63 3.33 4.88 6.67
Iterative Internally 5.35 2.94 35.31 1.42 0.88 3.36 4.86 6.73
Using P2Rank 7.28 3.07 34.22 1.15 0.68 4.04 5.69 7.85

4.6 ABLATION STUDY

We conduct a series of ablation studies to investigate different factors affecting model performance,
including the following: (1) Using a single docking module to predict both the holo structures of
the ligand and pocket degrades performance for both, indicating that decomposing flexible docking
into two subtasks helps reduce the complexity each module needs to handle. (2) Removing iterative
update mechanism significantly impairs the ligand performance (with ligand RMSD < 2Å from
40.59% to 19.80%), indicating the critical role of iterative update in ligand coordinate refinement.
(3) Applying the iterative update mechanism only internally within the ligand and pocket docking
modules negatively impacts both ligand RMSD and pocket RMSD, underscoring the importance of
prediction exchange to connect the two docking modules. (4) Replacing the pocket sites predicted
by the pocket prediction module with those predicted by P2Rank reduces overall performance, sug-
gesting that integrating pocket prediction within the docking process may be more effective than
relying on an external pocket detection tool.

4.7 ANALYSIS OF ITERATIVE UPDATE

We take a case of PDB 6OIM as an example to visualize the structural refinements in iterative
update process to intuitively analyze its function in FABFlex. As shown in Fig. 4, we observe
that the ligand gradually approaches the true position of holo ligand from iteration 1 to iteration 6.
This resembles a simulation of the ligand docking process, where the molecule is attracted to and
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Figure 5: Two case studies of PDB 6OIM (left) and PDB 6ORT (right).

interacts with the binding pocket sites. This observation suggests the effectiveness and reasonability
of the iterative update mechanism adopted in FABFlex. Additionally, we notice that as iterations
increase, the structural changes become smaller, indicating that an appropriate number of iterations
is sufficient. More iterations appear unnecessary and may even increase the computational burden
without significant benefit. More case studies are provided in Appendix C.7 for further analysis.

4.8 CASE STUDY

Fig. 5 visualizes two cases of PDB 6OIM and PDB 6ROT, to demonstrate the effectiveness of our
FABFlex in blind flexible docking. We have following observations:

FABFlex can pinpoint the binding pocket site. In the case of PDB 6OIM, existing methods such
as FABind, FABind+ and DynamicBind wrongly determine the binding sites. In contrast, FABFlex
successfully locates the correct binding pockets, achieving significantly lower ligand RMSD of
3.85Å. This underscores FABFlex’s ability to accurately pinpoint binding pockets, even in such
difficult case where other methods fall short.

FABFlex excels in ligand structure prediction. In the case of PDB 6ROT, while all methods
successfully identify the correct binding pocket, the ligand structures predicted by FABFlex are
significantly closer to the ground truth compared to other methods, with ligand RMSD of merely
0.77Å. This low ligand RMSD means that the ligand predicted by FABFlex is nearly identical to the
actual holo ligand. This visualization suggests FABFlex’s proficiency in predicting ligand structure.
Additional case studies are provided in Appendix C.11.

5 CONCLUSION

A high-efficiency molecular docking method is an effective tool in drug discovery, as it enables the
fast assessment and screening of millions or even billions of potential molecule-protein interactions
within a limited time, discovering promising drug candidates early in the development process. This
work proposes FABFlex, a regression-based, end-to-end neural model tailored for real-world blind
flexible docking scenarios. FABFlex offers a solution, different from existing generative model-
based sampling approaches, to achieve both fast computational speed and accurate docking per-
formance. Looking ahead, we aim to explore fast and accurate multi-site docking, a task of great
significance and heightened complexity, as it allows for the investigation of intricate interactions
across multiple binding sites.
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6 ETHICS STATEMENT

This paper proposes a model aimed at enhancing both computational efficiency and accuracy in
blind flexible docking. All data used for model training and evaluation were obtained from publicly
available molecular docking benchmark datasets. The advancement of molecular docking technolo-
gies has both positive and potential negative implications. On the positive side, our method can
contribute to advancements in drug discovery. However, there is also the risk of misuse or ma-
licious use, as molecular docking models could be applied to explore harmful or non-therapeutic
compounds. To mitigate this risk, we are releasing our code with the explicit intent of support-
ing ethical and medically approved drug discovery efforts, in full compliance with relevant legal
standards and institutional guidelines. This paper adheres to strict research integrity protocols and
responsible dataset usage, ensuring that our contributions support the broader objectives of ethical
scientific progress.

7 REPRODUCIBILITY STATEMENT

The experimental settings for our model are described in detail in Section 4.1. The experiments
are all conducted on the widely used public molecular docking benchmark PDBBind v2020 dataset.
We provide the link to our source codes to ensure the reproducibility of our experimental results:
https://anonymous.4open.science/r/FABFlex-7007
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

David Ryan Koes, Matthew P Baumgartner, and Carlos J Camacho. Lessons learned in empirical
scoring with smina from the csar 2011 benchmarking exercise. Journal of chemical information
and modeling, 53(8):1893–1904, 2013.

Radoslav Krivák and David Hoksza. P2rank: machine learning based tool for rapid and accurate
prediction of ligand binding sites from protein structure. Journal of cheminformatics, 10:1–12,
2018.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent net-
works. Advances in neural information processing systems, 29, 2016.

Greg Landrum et al. Rdkit: A software suite for cheminformatics, computational chemistry, and
predictive modeling. Greg Landrum, 8(31.10):5281, 2013.

Thomas J Lane. Protein structure prediction has reached the single-structure frontier. Nature Meth-
ods, 20(2):170–173, 2023.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos San-
tos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein
sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022:500902,
2022.

Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
Trigonometry-aware neural networks for drug-protein binding structure prediction. Advances in
neural information processing systems, 35:7236–7249, 2022.

Wei Lu, Jixian Zhang, Weifeng Huang, Ziqiao Zhang, Xiangyu Jia, Zhenyu Wang, Leilei Shi,
Chengtao Li, Peter G Wolynes, and Shuangjia Zheng. Dynamicbind: predicting ligand-specific
protein-ligand complex structure with a deep equivariant generative model. Nature Communica-
tions, 15(1):1071, 2024.

Andrew T McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep learn-
ing. Journal of cheminformatics, 13(1):43, 2021.

Garrett M Morris and Marguerita Lim-Wilby. Molecular docking. Molecular modeling of proteins,
pp. 365–382, 2008.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Garrett M Morris, David S Goodsell, Ruth Huey, and Arthur J Olson. Distributed automated docking
of flexible ligands to proteins: parallel applications of autodock 2.4. Journal of computer-aided
molecular design, 10:293–304, 1996.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Qizhi Pei, Kaiyuan Gao, Lijun Wu, Jinhua Zhu, Yingce Xia, Shufang Xie, Tao Qin, Kun He, Tie-
Yan Liu, and Rui Yan. Fabind: Fast and accurate protein-ligand binding. Advances in Neural
Information Processing Systems, 36, 2024.

Michael Plainer, Marcella Toth, Simon Dobers, Hannes Stärk, Gabriele Corso, Céline Marquet, and
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A METHODOLOGY DETAILS

A.1 DETAILS OF TRAINING LOSSES

The blind flexible docking is modelled as a supervised learning task. The ground-truth encompasses
residues that form binding pocket sites, along with the actual coordinates of both holo ligand and
holo pocket. The training loss implementations draw extensively from the methodologies outlined
in FABind (Pei et al., 2024) and FABind+ (Gao et al., 2024). Corresponding to the statement in
Section 3.2.4, we provide detailed descriptions of each training loss to improve the reproducibility
of our study:

Given that only a small fraction of the residues in a protein belong to the pocket, the pocket residue
detection is treated as an imbalanced binary classification task using binary-classification cross en-
tropy loss (BCELoss)2, aiming at identifying which residues belongs to the pocket. The formulation
of this loss is given by:

Lpocket cls =
1

N

N∑
i=1

pi
qi
{−

pi∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)]}, (6)

where N is the total number of training complexes, pi the number of residues in the i-th protein,
qi the count of residues that form the pocket in the i-th protein. The weighting factor pi/qi adjusts
the emphasis on proteins with fewer pocket-forming residues, ensuring their adequate importance in
the training process. Additionally, the pocket center loss, denoted as Lpocket center, adopts a Huber
loss3 to supervise the position of the predicted pocket, formulated as follows:

Lpocket center =
1

N

N∑
i=1

HuberLoss(centeri, ĉenteri), (7)

where centeri is the actual centroid coordinate of pocket in the i-th protein, and ĉenteri is the pre-
dicted centroid coordinate, which is calculated using a weighted average of all residue coordinates in
the i-th protein, with the weights derived from the output probabilities of the Gumbel-Softmax dis-
tribution. After that, the residue classification loss Lpocket cls and the pocket center loss Lpocket center,
are combined to formulate the overall pocket prediction loss Lpocket pred as follows:

Lpocket pred = αcls
1 Lpocket cls + αcenter

1 Lpocket center. (8)

The ligand coordinate loss and the pocket coordinate loss both utilize the Huber loss to regress the
predicted structures towards their respective real holo structures:

Lligand coord =
1

N

N∑
i=1

HuberLoss(x̃l
i, x̂

l
i), Lpocket coord =

1

N

N∑
i=1

HuberLoss(x̃p
i , x̂

p
i ), (9)

where x̂l
i (x̂p

i ) and x̃l
i (x̃p

i ) are the predicted ligand (pocket) coordinates and actual holo ligand
(pocket) coordinates respectively, for the i-th complex.

The distance map loss serves as an auxiliary objective, employing mean-squared-error loss
(MSELoss)4 to supervise the relative positions between ligand atoms and pocket residues, formally
expressed as follows:

Ldis map =
1

N

N∑
i=1

MSELoss(D̃i, D̂i), (10)

where D̃i and D̂i represent the actual and predicted distance maps respectively. Each element D̃jk
i

in D̃i is the Euclidean distance between the j-th atom in the ligand and the k-th residue in the pocket.
Similarly, D̂jk

i in D̂i corresponds to the predicted pairwise distances.

2https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#bcewithlogitsloss
3https://pytorch.org/docs/stable/generated/torch.nn.HuberLoss.html#huberloss
4https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#mseloss
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Algorithm 1 Pseudo code of FABFlex’s inference.

1: Inputs:
2: 3D coordinates of apo ligands {xi ∈ R3}1≤i≤nl and apo proteins {xj ∈ R3}1≤j≤np

3: Ligand atom features {hi ∈ Rdl}1≤i≤nl and protein residue features {hj ∈ Rdp}1≤j≤np

4: Outputs:
5: Predicted coordinates of holo ligand {x̂i ∈ R3}1≤i≤nl and holo pockets {x̂j ∈ R3}1≤j≤np̂∗

6: Inference:
7: {ŷj}1≤j≤np =MS(G, {hi,xi}1≤i≤nl , {hj ,xj}1≤j≤np), # predict pocket sites
8: {vj}1≤j≤n̂p∗ = {ŷj ⊙ vj}1≤j≤np , # pick out pocket residues with yj = 1
9: for iterative update k : 1→ K do

10: Ĝ(k)∗ construct←−−−− {Gl, {x̂(k)
i }1≤i≤nl , {x̂(k)

j }1≤j≤n̂p∗}, # construct ligand-pocket graph

11: {x̂(k+1)
i }1≤i≤nl =ML(Ĝ(k)∗, {hi, x̂

(k)
i }1≤i≤nl , {hj , x̂

(k)
j }1≤j≤n̂p∗), # predict ligand

12: {x̂(k+1)
j }1≤j≤n̂p∗ =MP (Ĝ(k)∗, {hi, x̂

(k)
i }1≤i≤nl , {hj , x̂

(k)
j }1≤j≤n̂p∗), # predict pocket

13: end for
14: {x̂i}1≤i≤nl ← {x̂(K)

i }1≤i≤nl , {x̂j}1≤j≤n̂p∗ ← {x̂(K)
j }1≤j≤n̂p∗ , # final predicted structures

15: Return: Predicted coordinates of holo ligand {x̂i}1≤i≤nl and holo pocket {x̂j}1≤j≤n̂p∗ .

A.2 PSEUDO CODE OF FABFLEX

To intuitively elucidate the comprehensive inference processes of FABFlex, we delineate the pseudo
code in Algorithm 1. The inference begins with the pocket prediction module, which identifies the
binding pocket sites. Subsequently, the ligand and pocket docking modules iteratively refine and
predict the holo structures of ligands and pockets.

B EXPERIMENTAL DETAILS

B.1 DETAILS OF DATASET PREPROCESSING

PDBBind v2020 is a widely utilized benchmark database in related molecular docking research (Pei
et al., 2024; Lu et al., 2024; 2022; Corso et al., 2023). It collected 19,443 experimentally measured
protein-ligand complexes along with their 3D structures. Due to the absence of apo protein structures
in the dataset, we follow Lu et al. (2024) and employ the well-established AlphaFold2 to predict
the apo conformations of these protein structures. Consistent with above mentioned studies, we
adopt the same dataset split strategy to enhance comparability. From the dataset, we select 303
test complexes recorded after 2019 and 734 validation complexes recorded before 2019, with the
remaining complexes allocated for training. For the training set, complex samples that could not be
processed by RDKit (Landrum et al., 2013) or TorchDrug (Zhu et al., 2022) are excluded. Further
filtering excludes samples with protein amino acid chains longer than 1500 residues and molecules
larger than 150 heavy atoms, resulting in a refined set of 12,807 training complexes. The statistics
of the dataset are summarized in Table 4.

Table 4: Dataset statistics of preprocessed PDBBind v2020.

PDBbind # Complexes avg. residues
in proteins

max. residues
in proteins

avg. heavy atoms
in ligands

max. atoms
in ligands

Train 12,807 310.59 1,290 31.30 149
Validate 734 312.14 1,025 32.52 177
Test 303 280.92 1,098 35.77 147

B.2 BASELINES

We compare our proposed method with a variety of competitors, including traditional molecular
docking software and recent deep learning-based methods:
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Table 5: Implementation configuration of FABFlex.

Configuration Pretraining Stage 1 Pretraining Stage 2 Joint Training Stage

Learning rate 5e-5 5e-5 5e-6
Epoch 1000 600 600

Batch size 2 4 4
Dropout 0.1 0.1 0.1

Teacher-forcing Yes Yes No (p = 0.5)
Optimizer Adam Adam Adam
Scheduler LinearLR LinearLR LinearLR

Loss weights

Residue classification αcls
1 1.0 - 1.0

Pocket center αcenter
1 0.05 - 0.05

Ligand docking α2 1.5 - 1.5
Pocket docking α3 - 15.0 15.0
Distance map α4 1.0 1.0 1.0

• Traditional molecular docking software:

– Vina (Trott & Olson, 2010): AutoDock Vina is among the most widely used open-source
docking programs, renowned for its enhanced docking performance. It achieves this through
improvements to its scoring function, optimization algorithm and search strategy. Specifically,
Vina enhances the X-score (Wang et al., 2002) and employs the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) (Nocedal & Wright, 1999) method for local optimization.

– Glide (Friesner et al., 2004): Glide distinguishes itself from other docking software by per-
forming a systematic and comprehensive search of the conformational, orientational, and po-
sitional spaces of the docked ligand to a rigid protein receptor. This process involves technolo-
gies such as hierarchical filters, ChemScore function (Eldridge et al., 1997), among others.

– Gnina (McNutt et al., 2021): Gina is an advanced molecular docking software that incor-
porates convolutional neural networks into its scoring function, and leverages Monte Carlo
sampling to comprehensively explore the conformational space of ligands.

• Deep learning-based methods following protein rigidity assumption:

– TankBind (Lu et al., 2022): TankBind employs the external tool P2Rank (Krivák & Hoksza,
2018) to detect potential binding pocket sites, segmenting the entire protein into functional
blocks. Subsequently, TankBind uses a trigonometry-aware graph neural network to model
protein-ligand interactions, predicting the distance matrix and optimizing ligand structures.

– FABind (Pei et al., 2024): FABind adopts an end-to-end framework that streamlines the mod-
eling of protein-ligand interactions by integrating binding pocket predictions with docking
tasks. This approach accelerates the docking computation process by eliminating the need for
external pocket detection tools.

– FABind+ (Gao et al., 2024): FABind+ is an enhanced version of FABind, incorporating ad-
ditional improvements such as dynamic pocket radius adjustments for each complex and per-
mutation invariance loss to supervise ligand structures. These enhancements boost the perfor-
mance of predicted ligand structures.

– DiffDock (Corso et al., 2023): DiffDock utilizes diffusion models (Yang et al., 2023) to man-
age the conformational refinements of ligands in molecular docking. This approach conceptu-
alizes docking as a generative modeling task by mapping ligand poses onto a non-Euclidean
manifold, effectively reducing the degrees of freedom for structural refinements. Additionally,
DiffDock trains a confidence model to estimate the poses for multiple samplings.

– DiffDock-L (Corso et al., 2024): DiffDock-L is an enhanced version of DiffDock (Corso
et al., 2023) that improves docking model performance by scaling data and model size and
incorporating synthetic data to boost generalization capacity.

• Recent deep learning-based flexible docking method:

– DynamicBind (Lu et al., 2024): DynamicBind is a recent flexible docking method breaking
down the rigid protein assumption. It leverages equivariant geometric diffusion networks to
manipulate the structure changes in both ligands and proteins, recovering ligand-specific poses
from their apo stages.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: The cumulative distribution of ligand RMSD.

B.3 DETAILS OF IMPLEMENTATION SETTING

Model Configuration. The dimension dl of initial features extracted via TorchDrug (Zhu et al.,
2022) for ligand atoms is set to 56, and the dimension dp of ESM-2 (Lin et al., 2022) features for
amino acid is 1280. The number of FABind-layers is configured as {1, 5, 5} for pocket prediction
module, ligand docking module and pocket docking module, respectively. The number of hidden
size is set to {128, 512, 512} for the same modules in the corresponding order. The pocket radius of
20Å is used to delineate the binding pocket sites for each ligand-protein complex.

Training details. Simultaneously optimizing all three subtasks of blind flexible docking from
scratch is a challenging task. We introduce a two-stage pretraining process to warm up the model.
In the first stage, the model is trained under rigid docking conditions, using a (holo protein, apo
ligand) pair to predict the holo ligand structure. In the second stage, the model is trained using an
(apo protein, holo ligand) pair to predict the holo pocket structure. After that, the model under-
goes joint training to predict both the holo ligand and holo pocket from (apo protein, apo ligand)
inputs. This progressive approach allows the model to learn from simpler tasks to more complex
ones, facilitating the solution of blind flexible docking.

Training Configuration. Table 5 summarizes the training configurations in this study. The ex-
periments are conducted using the Pytorch framework5. The model is trained on eight NVIDIA
RTX 4090 GPUs. The pretraining stages 1 and 2 reduce task difficulty by fixing either the small
molecule or the protein as the holo structure while keeping the other as the apo structure, to warm
up the model. The approximate training durations for pretraining stages 1 and 2, as well as the joint
training stage, are {10, 5, 5} days, respectively. The configurations vary slightly across different
stages, mainly in terms of learning rate, and the application of teacher forcing. During the pretrain-
ing stages, and teacher forcing are utilized to kick-start the model effectively. As the progress to the
joint training stage, the learning rate is reduced to better adapt the model to flexible docking.

5https://pytorch.org/
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Table 6: Analysis of the number of samplings.

Methods Ligand RMSD (Å) Pocket RMSD (Å) Average
Runtime (s)Mean ↓ Median ↓ <2Å(%) ↑ Mean ↓ Median ↓

DynamicBind(1) 6.26 3.45 27.15 0.84 0.59 22.04
DynamicBind(10) 6.21 3.41 27.48 0.84 0.57 47.22
DynamicBind(40) 6.19 3.16 33.00 0.84 0.58 102.12

FABFlex 5.44 2.96 40.59 1.10 0.63 0.49

Figure 7: Performance from holo proteins to apo proteins. Left: ligand RMSD. Right: ligand RMSD
< 2Å.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 DISTRIBUTION OF LIGAND PERFORMANCE

To showcase the ligand performance comprehensively, Fig. 6 provides the cumulative distibution of
ligand RMSD. It can be observed that FABFlex occupies the topmost position in the distribution
curve in the majority of cases. Especially for the cases of ligand RMSD < 2Å, which are crucial in-
dicators for evaluating a molecular docking method, the superiority of FABFlex becomes even more
distinct. This findings corroborates previous results in Table 1, further highlighting the advantages
of FABFlex in ligand performance.

C.2 ANALYSIS OF NUMBER OF SAMPLINGS

In this section, we specifically vary the number of samplings in {1, 10, 40} of DynamicBind for
further analysis. Table 6 illustrates the experimental results. It can be observed that as the number
of samplings decreases, there is a notable performance degradation for DynamicBind, for example,
the percentage of ligand RMSD less that 2Ådrops from 33.00% with 40 samplings to 27.15% with
one samplings. Besides, even DynamicBind(1) only sample once, its runtime is still much slower
than that of regression-based models. These observations reflect the inherent trade-off between
performance and efficiency in these diffusion-based methods like DynamicBind, where the runtime
grows with the number of samplings.

C.3 PERFORMANCE FROM RIGID TO FLEXIBLE

In this section, we conduct experiments to evaluate the performance differences between rigid pro-
tein docking and flexible docking. Fig. 7 illustrates comparative performances when holo and apo
proteins are employed as inputs in molecular docking experiments. We observe a notable decrease
in performance when transitioning from holo to apo structures with both FABind and FABind+.
Conversely, FABFlex consistently maintains its performance, whether measuring ligand RMSD or
the percentage of ligand RMSD < 2Å. These results indicate that FABFlex’s superior ligand per-
formance over the FABind series can be attributed to its self-adaptive capability to accommodate
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Table 7: Impact of the number of iterative updates.

Iteration Ligand RMSD (Å) Pocket RMSD (Å) Pocket Center (Å) Average
Runtime (s)Mean ↓ Median ↓ <2Å(%) ↑ Mean ↓ Median ↓ MAE ↓ RMSE ↓ EucDist ↓

# ITER=1 6.11 3.69 21.45 1.12 0.64 3.33 4.90 6.69 0.11
# ITER=2 5.50 3.01 36.96 1.13 0.65 3.31 4.86 6.63 0.18
# ITER=4 5.41 2.91 39.27 1.14 0.64 3.31 4.88 6.64 0.33
# ITER=6 5.44 2.96 40.59 1.10 0.63 3.29 4.83 6.59 0.49
# ITER=8 5.33 2.87 38.94 1.10 0.63 3.28 4.79 6.58 0.60

protein conformational changes. This capacity allows FABFlex to effectively handle molecular
docking under both rigid protein assumption and flexible docking condition.

Figure 8: Results of adding noise. Left: ligand RMSD. Right: ligand RMSD < 2Å.

C.4 ROBUSTNESS EVALUATION

To further evaluate the robustness and corroborate the discussion in Appendix C.3, we conduct the
experiments that introduce perturbations into the input protein conformations. Specifically, we in-
crementally introduce standard Gaussian noise (mean = 0, standard deviation = 1) to the coordinates
within the binding pocket. The noise is added based on a probability parameter pnoise which varies
from 0.1 to 1.0 with interval 0.1, that is, meaning that each coordinate has a probability pnoise of
having noise added. To enhance the reliability of the results, each experiment is repeated with three
different random seeds, and the mean results along with their standard deviations are reported. The
results are illustrated in Fig. 8. As expected, the performance of all methods inevitably deteriorates
as the noise increases, as observed in the figure. However, the curve corresponding to FABFlex
consistently demonstrates the better performance. This suggests that, despite the lack of specific
robustness-focused design in FABFlex, it still exhibits a certain degree of robustness, capable of
handling a certain level of perturbation in the input protein structures.

C.5 HYPERPARAMETER ANALYSIS

We conduct experiments to analyze the impact of varying the number of iterative updates. Table 7
summarizes the results. We observe that as the iterations increase, the ligand RMSD metrics improve
and tend to stabilize, and the average inference times also increase. In contrast, the improvement in
the metrics of pocket RMSD is minimal, and the metrics for pocket center show a slight improve-
ment. These findings underscore the impact of the number of iterative updates on refineing ligand
structures, as an appropriate number of iterations can greatly enhance the structures of ligands.

C.6 ASSESSMENT OF POSEBUSTER TEST SUITES

To assess the physical validity of generated ligand structures, we use the PoseBuster (Buttenschoen
et al., 2024) test suites performing on the flexible PDBBind to evaluate the ligand structures pre-
dicted by various docking models. Table 8 summarizes the experimental results. Following Pose-
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Table 8: Assessment of PoseBuster test suites.

Methods Ligand RMSD < 2Å (%) PB-valid & Ligand RMSD < 2Å (%)

FABind 22.52 1.32
FABind+ 34.11 8.94
DiffDock-L 37.42 16.89
DynamicBind 30.79 14.57
FABFlex 39.40 13.91

Figure 9: Assessment of 20 aspects by PoseBuster test suites.

Buster, we call that molecule poses which pass all tests in PoseBusters are “PB-valid”. It can be
observed that FABFlex achieves the highest RMSD < 2Å percentage of 39.40% among all competi-
tors, demonstrating its superior accuracy in predicting docking poses close to the ground truth holo
ligands. However, the percentage of “PB-valid & RMSD < 2Å” of FABind, FABind+, and FABFlex
is lower than those of DiffDock-L and DynamicBind, reflecting the strength of diffusion-based mod-
els in generating physically valid molecular poses. This may be attributed to that diffusion-based
models adjust molecular structures through translational, rotational, and torsional movements, re-
ducing the degrees of freedom. Notably, FABFlex achieves a “PB-valid & RMSD < 2Å” (13.91%)
comparable to DynamicBind (14.57%), larger than poor FABind (1.32%) and FABind+ (8.94%),
showcasing its balance in pursuing both accuracy and physical validity. Moreover, to analyze the
physical validity comprehensively, we showcase the validity rates of all aspects by PoseBuster test
suites in Figure 9. It can be observed that a core limitation regarding the physical validity of deep
learning-based docking models lies in the “minimum distance to protein”, that is, the distance be-
tween protein-ligand atom pairs is larger than 0.75 times the sum of the pairs van der Waals radii.
All docking methods demonstrate a low validity rate in this aspect. Additionally, the validity of
other critical factors, such as “tetrahedral chirality”, “internal steric clash”, “internal energy”, and
“volume overlap with the protein”, also requires further improvement.

C.7 ADDITIONAL CASES FOR ANALYSIS OF ITERATIVE UPDATE

Fig. 10 provides additional three cases to further support the discussion in Section 4.7. In case PDB
6PGO and PDB 6GZY, we observe a similar iterative update process as seen in PDB 6OIM. The
ligands gradually approach the true holo structures from iteration 1 to iteration 6. The case of PDB
6CJJ is slightly different. We observe that the ligand is already positioned close to the holo ligand at
iteration 1. From iterations 1 to 6, the ligand undergoes continuous refinement, and by iteration 6, it
aligns very closely with the true holo structure. Consequently, these cases suggest that the iterative
update process not only rectifies ligand positions when far from the holo ligands, but also refines the
ligand conformations that are already near the correct binding position.
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Figure 10: Three more case studies of PDB 6PGO, PDB 6GZY, and PDB 6CJJ, to intuitively show-
case the iterative update from iteration 1 to iteration 6.

Table 9: Analysis of clash score.

Methods Vina Glide Gnina TankBind FABind FABind+ DiffDock DynamicBind FABFlex

clash score ↓ 0.02 0.08 0.05 0.41 0.51 0.45 0.33 0.27 0.37

C.8 ANALYSIS OF STERIC CLASH

In this section, we conduct experiments to analyze the steric clash in the predicted structures by
the docking methods. Following DynamicBind (Lu et al., 2024), the clash score is defined as the
root-mean-square of the van der Waals overlaps for all atom pairs between the ligand and the protein
where the interatomic distance is less than 4Å, formulated as follows:

clash score =

√∑N
i=0 VdW overlop2

N
, (11)

where N is the number of atom pairs with distances considered. A lower clash score indicates
fewer or less steric clashes. Table 9 illustrates the class scores across various competitors. It can
be observed that traditional docking software achieves significantly lower clash scores, whereas all
deep learning-based docking methods exhibit higher clash scores. This reflects a core limitation
of deep learning-based docking methods: despite their improved docking accuracy, they are more
prone to steric clash issues. Addressing this challenge is a promising direction for future research.

Table 10: Analysis of binding affinity, including IC50 and K value.

Methods FABind FABind+ DynamicBind FABFlex

IC50 (µM) ↓ 6.32 6.24 6.27 5.92
K Value (µM) ↓ 6.23 6.19 6.18 6.10
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C.9 ANALYSIS OF BINDING AFFINITY

In this section, we conduct experiments to evaluate the binding affinity of predicted structures of
ligand-protein complexes. Specifically, we employ the MBP (Yan et al., 2024), a structure-based
binding affinity prediction model, to evaluate IC50 and K value of the predicted structures as indica-
tors of binding affinity. IC50 represents the concentration of a ligand required to inhibit 50% of the
protein’s activity, while K Value reflects the dissociation constant, directly measuring the strength of
the ligand-protein binding affinity6. For both metrics, smaller values indicate stronger binding affin-
ity and better docking quality. Table 10 summarizes the experimental results. It can be observed that
FABFlex achieves the lowest IC50 at 5.92 µM and K Value at 6.10 µM among all competitors. This
observation suggests that FABFlex has potential to better predict biologically relevant interactions.

Table 11: Performance comparison in pocket-based flexible docking.

Methods Ligand RMSD Pocket RMSD Avg.
Runtime (s)Mean (Å) ↓ Median (Å) ↓ < 2Å (%) < 5Å (%) Mean (Å) ↓ Median (Å) ↓

FABind 4.47 3.23 23.76 67.66 - - 0.10
FABind+ 4.21 2.66 36.63 69.97 - - 0.14
DiffDock-Pocket(10) - 2.60 41.00 - - - 17
DiffDock-Pocket(40) - 2.60 41.70 - - - 61
ReDock(10) - 2.50 39.00 74.80 - - 15
ReDock(40) - 2.40 42.90 76.40 - - 58

FABFlex 3.45 2.57 42.24 75.25 0.93 0.66 0.47

C.10 PERFORMANCE ON POCKET-BASED FLEXIBLE DOCKING

In this section, we conduct experiments to assess the applicability of FABFlex in pocket-based flex-
ible docking, where reliable prior knowledge of the binding pocket sites or sidechains is available.
Specifically, the pocket prediction module is bypassed, and the partial teacher-forcing strategy is
removed to adapt FABFlex model to pocket-based docking, where we feed the ground truth pocket
amino acids and try to predict the holo structures of ligand and pocket. Moreover, we addition-
ally evaluate FABind and FABind+ in pocket-based docking scenario, and we include the results
reported in DiffDock-Pocket (Plainer et al., 2023) and ReDock (Huang et al.) for comparison. The
experimental results are summarized in Table 11. It can be observed that FABFlex is also effec-
tive in pocket-based docking scenario, achieving a Ligand RMSD < 2Å of 42.24 %, outperforming
FABind, FABind+, DiffDock-Pocket(10), DiffDock-Pocket(40), and ReDock(10), and comparable
to ReDock(40) of 42.90 %. Furthermore, FABFlex achieves a Pocket RMSD Mean of 0.93 Å,
demonstrating its ability to model protein flexibility. On Ligand RMSD < 5Å, FABlex achieves
75.25%, comparable to ReDock(40), surpassing FABind, FABind+ and ReDock(10). Notably, the
average runtime of FABFlex is only 0.47 seconds, which is considerably faster than DiffDock-
Pocket(40) and ReDock(40) (more than 100x times faster), indicating the strong efficiency of our
FABFlex. These results suggest that the regression-based paradigm has the potential and capacity to
handle protein flexibility in both blind and pocket-based docking scenarios.

C.11 ADDITIONAL CASE STUDIES

In this section, we provide six additional cases to further support the discussion in Section 4.8.
Fig. 11 visualizes four cases of PDB 6PGO, PDB 6PGP, PDB 6EEB, and PDB 6O5G. FABFlex suc-
cessfully positions the ligands in the correct pocket regions and achieves the lowest ligand RMSD.
Fig. 12 visualizes two cases of PDB 6CYH and PDB 6N8X, in which FABFlex closely approximates
the ground-truth ligand structures, with ligand RMSD of 0.94Å and 0.73Å, respectively. Further-
more, FABFlex positively reduces pocket RMSD across all cases. These cases highlight FABFlex’s
proficiency in accurately identifying pocket sites and predicting ligand structures.

C.12 CASE STUDIES OF POCKET PREDICTION

In this section, Fig. 13 visualizes two cases of PDB 6QQW and PDB 6HHJ, to intuitively showcase
the effectiveness of our FABFlex in binding pocket prediction. It can be observed that for both two

6https://en.wikipedia.org/wiki/IC50
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Figure 11: Four more case studies of PDB 6PGO, PDB 6PGP, PDB 6EEB, and PDB 6O5G.

cases, the predicted pockets are correctly located in the correct regions, centered around the binding
sites of their respective holo ligands. This ensures that the predicted ligands are also correctly
positioned within the pocket region.

D BROADER IMPACTS AND LIMITATIONS

Broader impacts. In the current landscape, with the vast number of known proteins and small
molecules, a high-efficiency molecular docking method is essential for analyzing and processing
large-scale molecule-protein interactions within a limited timeframe, aiding in the discovery of po-
tential drug candidates with therapeutic value. Therefore, the exploration and development of fast
and accurate docking methods in real-world scenarios are crucial to advancing AI-driven technolo-
gies in drug discovery.
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Figure 12: Two more case studies of PDB 6CYH and PDB 6N8X.

Figure 13: Two case studies of PDB 6QQW and PDB 6HHJ to showcase pocket prediction.

Limitations. There still are several limitations in this study. Firstly, the performance of pocket
structures does not surpass that of the advanced method DynamicBind. This discrepancy motivates
us to incorporate advantages of the sampling-based strategy to enhance the results. Additionally,
deep learning-based methods tend to produce structures with more clashes compared to traditional
docking software. To address this, a post-optimization method could be implemented to mitigate
such issues (Stärk et al., 2022). Alternatively, integrating biological or chemical constraints into
model design and optimization might also help alleviate these problems (Jiang et al., 2024).
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