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Abstract

The proliferation of fake news has emerged as001
a severe societal problem, raising significant002
interest from industry and academia. While ex-003
isting deep-learning based methods have made004
progress in detecting fake news accurately, their005
reliability may be compromised caused by the006
non-transparent reasoning processes, poor gen-007
eralization abilities and inherent risks of inte-008
gration with large language models (LLMs).009
To address this challenge, we propose TELLER,010
a novel framework for trustworthy fake news011
detection that prioritizes explainability, gener-012
alizability and controllability of models. This013
is achieved via a dual-system framework that014
integrates cognition and decision systems, ad-015
hering to the principles above. The cognition016
system harnesses human expertise to generate017
logical predicates, which guide LLMs in gen-018
erating human-readable logic atoms. Mean-019
while, the decision system deduces generaliz-020
able logic rules to aggregate these atoms, en-021
abling the identification of the truthfulness of022
the input news across diverse domains and en-023
hancing transparency in the decision-making024
process. Finally, we present comprehensive025
evaluation results on four datasets, demonstrat-026
ing the feasibility and trustworthiness of our027
proposed framework.028

1 Introduction029

Fake news has emerged as a prominent social prob-030

lem due to the rampant dissemination facilitated by031

social media platforms (Zhou and Zafarani, 2021).032

Additionally, the swift progress of generative ar-033

tificial intelligence has further amplified this is-034

sue (Cardenuto et al., 2023). While human fact-035

checking experts can accurately verify the authen-036

ticity of news, their efforts cannot scale with the037

overwhelming volume of online information. Con-038

sequently, researchers have turned to automatic039

fake news detection techniques.040

Despite the improved predictive accuracy041

achieved by current deep learning-based detection042

Figure 1: Three crucial aspects of trustworthy fake news
detection algorithms and the correlation between these
principles and our dual-sytem framework TELLER.

approaches (Ma et al., 2023; Qi et al., 2021; Mehta 043

et al., 2022), these methods suffer from the lack 044

of transparency because of the black-box nature 045

of neural networks (Cui et al., 2019) and a limited 046

ability to generalize to unseen data of which the dis- 047

tribution is different from training data, given the 048

inherent diversity of online information (e.g., top- 049

ics, styles and media platforms) (Liu et al., 2024). 050

Moreover, the increasing integration with LLMs is 051

prone to uncontrollable risks due to hallucinations 052

and societal applications. Thus, a growing aware- 053

ness emphasizes trustworthiness1 of these systems 054

(Liu et al., 2023; Sheng et al., 2022). 055

Unfortunately, the characteristics of a trustwor- 056

thy fake news detector remain an open question. 057

Hence, based on recent surveys of Trustworthy AI 058

(Li et al., 2023; Jobin et al., 2019) and fake news 059

detection (Shu, 2023), we identify three crucial as- 060

pects that go beyond accuracy for fake news detec- 061

tion technologies: explainability, generalizability, 062

and controllability. These aspects work collectively 063

to enhance system security and trustworthiness. 064

Firstly, explainability refers to understanding 065

how an AI model performs decision (Miller, 2019). 066

This mechanism serves as a fundamental require- 067

1In AI, trustworthiness refers to the extent to which an AI
system can be trusted to operate ethically, responsibly, and
reliably (Jobin et al., 2019).
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ment for establishing end-user trust in these tools,068

as it enables the disclosure of complex reasoning069

processes and the identification of potential flaws070

in neural networks. Secondly, generalizability rep-071

resents the capability to acquire knowledge from072

limited training data to predict accurately in unseen073

situations (Wang et al., 2023a). Given the imprac-074

ticality of exhaustively collecting and annotating075

vast amounts of data across various news domains,076

generalization ensures the affordable and sustain-077

able deployment of data-driven fake news detection078

algorithms. Lastly, controllability encompasses the079

capacity for human guidance and intervention in080

the behavior of models (Ji et al., 2023a). This ob-081

jective benefits models in understanding specific082

misinformation regulatory policies and rectifying083

deviations if necessary. While recent practices may084

satisfy the requirements of explainability (Xu et al.,085

2022; Liu et al., 2023) or generalization (Kochkina086

et al., 2018; Yue et al., 2023), they often fail to087

adhere to all three principles simultaneously.088

To this end, we propose TELLER, a Trustworthy089

framework for Explainable, generaLizable and con-090

troLlabe dEtectoR, drawing inspiration from the091

dual-system theory2 (Daniel, 2017). This frame-092

work abstracts the existing pipeline of fake news de-093

tection into two components: the cognition and de-094

cision systems. As depicted in Fig. 1, the cognition095

system serves as the first step and is responsible096

for transforming meaningful human expertise from097

renowned journalism teams (Tsang, 2023; Sanders,098

2023) into a set of Yes/No question templates that099

correspond to logic predicates. These decomposed100

questions are then answered using LLMs, which101

provide truth values for corresponding logic atoms.102

On the other hand, the decision system, em-103

powered by a differentiable neural-symbolic model104

(Cingillioglu and Russo, 2021), can integrate the105

output of the cognition system to deduce the final106

authenticity of input news by leveraging domain in-107

variant logic rules learned from data automatically.108

This visible logic-based ensemble can mitigate the109

negative effects caused by inaccurate predictions of110

LLMs and allow for the correction of unreasonable111

rules through adjusting the weights in the model112

manually to align with human expertise.113

Our framework ensures explainability by incor-114

porating human-readable question templates (pred-115

2System 1 provides tools for intuitive, imprecise, and un-
conscious decisions akin to deep learning, while system 2 han-
dles complex situations requiring logical and rational thinking
akin to symbolic learning (Booch et al., 2021).

icates) and a transparent decision-making process 116

based on logic rules. This interpretability further 117

enables the flexibility to adjust rules and enhances 118

the model’s robustness against false LLM predic- 119

tions, thereby guaranteeing controllability. More- 120

over, our model exhibits generalizability, attributed 121

to the generalizable performance of LLMs com- 122

bined with reliable human experience as guidance 123

and the utilization of the neural-symbolic model, 124

which can learn domain-generalizable rules. 125

To summarize, the contributions of this work 126

include: 1) We introduce a systematic framework 127

comprising cognition and decision modules, aim- 128

ing to uphold three crucial principles for estab- 129

lishing a trustworthy fake news detection system: 130

explainability, generalizability, and controllability. 131

2) We validate the effectiveness of our framework 132

by conducting comprehensive experiments using 133

various LLMs on four benchmarks. The results 134

demonstrate the feasibility and trustworthiness of 135

TELLER across different scenarios. 136

2 Related Work 137

2.1 Trustworthy AI 138

Establishing comprehensive trustworthiness in AI 139

is non-trivial due to its multi-objective nature, in- 140

cluding robustness, security, transparency, fairness, 141

safety, and ethical standards (Jobin et al., 2019). 142

Achieving such trustworthiness necessitates consid- 143

ering the entire lifecycle of an AI system, spanning 144

from data preparation and algorithm design, devel- 145

opment, and deployment to management and gover- 146

nance (Li et al., 2023; Eykholt et al., 2018). Recent 147

researchers have explored diverse approaches to 148

enhance AI trustworthiness across various goals 149

and stages to address this challenge. For example, 150

regarding algorithm design, several topics, such 151

as transfer learning, federated learning, and inter- 152

pretable AI, have been proposed to improve mod- 153

els’ robustness, security, and transparency. More- 154

over, the deployment of AI systems necessitates ex- 155

ternal government oversight, particularly for AGI 156

(Bengio et al., 2023). Although our work focuses 157

on enhancing the trustworthiness of detection sys- 158

tems from the algorithm design aspect, we acknowl- 159

edge that there is still much room for improvement 160

to achieve the ultimate goal. 161

2.2 Trustworthy Fake News Detection 162

Recent fake news detection research has witnessed 163

a notable paradigm shift from prioritizing accuracy 164
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to considering trustworthiness. In line with our165

work, we primarily examine studies that aim to en-166

hance algorithms’ explainability, generalizability,167

and controllability.168

Regarding explainability, Cui et al. (2019); Xu169

et al. (2022); Liao et al. (2023) suggested obtaining170

key evidence for interpretation based on feature171

importance, while Liu et al. (2023) utilized logic172

clauses to illustrate the reasoning processing. How-173

ever, these methods still need to be more transpar-174

ent due to their probabilistic nature and complex175

architecture. Furthermore, another group of works176

(Huang and Sun, 2023; Hu et al., 2023), explored177

large generative language models (e.g., ChatGPT)178

and regarded the intermediate chain of thoughts179

as an explanation. Nevertheless, these explana-180

tions may not be reliable due to the hallucination181

phenomenon (Ji et al., 2023b) and the misalign-182

ment problem of AGI (Ji et al., 2023a). Moving183

on to generalizability, most methods, such as (Yue184

et al., 2023; Zhu et al., 2023; Qi et al., 2021), en-185

hanced fake news detectors through transfer learn-186

ing algorithms to learn domain-invariant features or187

domain-adaptive features. However, these methods188

inevitably introduce external costs of domain align-189

ment, such as annotating domain labels. As for190

controllability, although some works (Silva et al.,191

2021; Mendes et al., 2023) incorporated the human-192

in-loop technique in data sampling and model eval-193

uation, few works explore how to intervene and edit194

models to align with human expertise. More com-195

parative discussion between TELLER and existing196

work can be found in Appendix E.197

3 Methodology198

Formally, given a piece of news T , the objective of199

the fake news detection task is to predict its label200

of truthfulness y ∈ Y where Y can fit in different201

levels of classification granularity. For example, in202

binary classification setting, Y = {true, false}, and203

T is identified as real (fake) when y is true (false).204

As depicted in Fig. 2, TELLER involves two205

main components: cognition and decision systems.206

The cognition system decomposes human expertise207

into Yes/No question templates corresponding to208

logic predicates. When presented with a new input209

T , the templates and predicates can be instantiated210

to form questions and logic atoms. By leveraging211

the parametric knowledge inside LLMs and gather-212

ing additional information from external tools (e.g.,213

search engines), the cognition system can gener-214

ate answers to these questions, represented as truth 215

values of logic atoms. Then, the decision system 216

takes these truth values as input and generates inter- 217

pretable logic clauses to debunk misinformation by 218

a neural-symbolic model, which can learn generic 219

logic rules from data in an end-to-end manner. 220

3.1 Cognition System 221

To combat misleading information, existing deep 222

learning-based algorithms fall short in gaining pub- 223

lic trust, while fact-checking experts rigorously fol- 224

low designated guidance and principles to facilitate 225

transparent and fair evaluation. Our cognitive sys- 226

tem aims to integrate the strengths of deep learning- 227

based methods that can handle large-scale online 228

information while maintaining the trustworthiness 229

of manual checking. 230

3.1.1 Predicate Construction 231

To begin with, we describe the following symbol 232

convention for clarity: calligraphic font Q and P 233

for sets of question templates and predicates, capi- 234

talized letters Q, P, X for question templates, pred- 235

icates, and variables, and corresponding lowercase 236

letters q, p, x for instances of these entities (ques- 237

tions, logic atoms, values). The truth values of 238

logic atoms are denoted by µ. 239

Inspired by the well-established fact-checking 240

process in Table 5, we initially decompose it into 241

a question template set, denoted as Q, contain- 242

ing eight questions as detailed in Appendix A.1. 243

Each template Qi in Q consists of Ni variables and 244

can be transformed into an Ni-ary logic predicate 245

Pi(Xi,1, . . . ,Xi,Ni) in P . The logic semantics of 246

Pi is interpreted as the affirmative answer to Qi and 247

its truth value µi represents the probability that Pi 248

holds. For instance, take Q1 (i.e., "Background In- 249

formation: X1,1. Statement: X1,2. Is the statement 250

true?") in Fig. 2 as an example. The correspond- 251

ing predicate P1(X1,1,X1,2) can be explained as 252

"Given the background information X1,1, the state- 253

ment X1,2 is true". 254

For each predicate Pi(Xi,1, . . . ,Xi,Ni), we can 255

instantiate the variables Xi,1, . . . ,Xi,Ni with the 256

actual contents taken from any input news to ob- 257

tain logic atoms. Since an input piece of news may 258

contain multiple background information and state- 259

ments (instantiations), we use k to denote the kth 260

instantiation where 1 ≤ k ≤
Ni∏
j=1

|Xi,j |. Here |Xi,j | 261

indicates the total number of possible instantiations 262

for variable Xi,j . Then we denote by pi,k the in- 263

3



Figure 2: The architecture of the proposed framework TELLER. N represents the number of question templates (logic
predicates), Mi denotes the number of logic atoms corresponding to the ith predicate, Y denotes the truthfulness
label set. The semantics of question templates and logic predicates are described in Table 6.

stantiated logic atom corresponding to the question264

qi,k. Next, we introduce how to acquire the truth265

value of each logic atom.266

3.1.2 Logic evaluation with LLMs267

While decomposed questions can provide a com-268

prehensive explanation of how the decision is269

made (Chen et al., 2022; Fan et al., 2020), di-270

rectly answering these questions poses a challenge271

due to the impracticality of annotating enormous272

data to train multiple models for different ques-273

tions. To address this issue, we resort to the more274

general-purpose LLMs (e.g., FLAN-T5 (Chung275

et al., 2022), Llama2 (Touvron et al., 2023b), and276

GPT-3.5) as the foundation for effectively answer-277

ing these questions. Existing LLMs can be catego-278

rized into two groups: LLMopen, such as FLAN-T5279

and Llama2, where the logits of output vocabulary280

can be obtained, and LLMclose, such as GPT-3.5,281

where the logits are not accessible.282

To ensure compatibility with both categories of283

LLMs, we propose two strategies to obtain the final284

truth values of logic atoms. Concretely, we first285

input the question qi,k with a suffix (i.e., "Yes or286

No? Response:") to LLMs in order to measure287

their preference for the affirmative answer "Yes"288

versus the negative one "No". This preference is289

subsequently used to compute the truth value of the290

corresponding logic atom pi,k.291

For LLMopen, we follow (Gallego, 2023; Burns292

et al., 2023) to obtain pre-softmax logits of "Yes"293

and "No" tokens, denoted as vY es and vNo respec-294

tively. Compared with post-softmax logits, pre-295

softmax logits can mitigate the influence of other to-296

kens in output vocabulary, particularly when LLMs297

tend to generate irrelevant tokens that may result in298

vY es or vNo becoming zero. Then the truth value 299

µ for the logic atom p (here we omit the under- 300

script i, k for ease of illustration) can be obtained 301

as follows: 302

µ = 2
evY es

evNo + evY es
− 1. (1) 303

For LLMclose, we sample m times during de- 304

coding and count the frequency of "Yes" and "No" 305

responses as mY es and mNo. Then we compute 306

µ = 2
mY es

mNo +mY es
− 1. (2) 307

In either case, µ is in the range of [−1, 1]. When 308

µ ∈ [−1, 0), µ ∈ (0, 1], and µ = 0, the corre- 309

sponding logic atom p is evaluated as false, true, 310

and unknown, respectively. Once the truth values 311

of all logic atoms for a single predicate Pi (cor- 312

responding to a single question template) are ob- 313

tained, we concatenate them as one vector, denoted 314

as µi. Then we concatenate the value vectors for all 315

predicates as the input for the final decision system. 316

In conclusion, our cognition system can generate 317

diversified questions and logic atoms based on the 318

input news T . These human-readable entities en- 319

hance explainability by showcasing potential inter- 320

mediate reasoning steps and ensure controllability 321

by allowing adjustments to Q and P . Moreover, 322

combining human expertise and LLMs provides 323

the basis for the cognition system’s satisfactory 324

generalization performance in unseen domains. 325

3.2 Decision System 326

After acquiring responses to all questions, it is im- 327

perative to develop a decision system to effectively 328

aggregate them to predict the label of the input 329
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news T while preserving trustworthiness in the330

reasoning process. However, prevalent heuristic331

strategies (e.g., majority voting) lack the flexibil-332

ity to handle complex relationships among differ-333

ent questions and cannot tolerate false predictions,334

and deep-learning-based models cannot be compre-335

hended literally by humans (Wang et al., 2023b).336

Hence, we utilize a neural-symbolic model,337

named Disjunctive Normal Form (DNF) Layer338

(Cingillioglu and Russo, 2021; Baugh et al., 2023),339

as our decision system. This model includes con-340

junctive layers (SL∧) and disjunctive layers (SL∨),341

which can progressively converge to symbolic se-342

mantics such as conjunction ∧ and disjunction ∨343

respectively during model training. Consequently,344

this model can automatically learn logic rules from345

data in an end-to-end manner, capturing general-346

izable relationships between logic predicates and347

the target label. As illustrated in Fig. 2, we stack348

C conjunctive layers SL∧ beneath |Y| disjunctive349

layers SL∨ to construct the DNF Layer, where each350

SL∨ corresponds to a truthfulness label y ∈ Y .351

However, the original DNF Layer proposed in352

(Cingillioglu and Russo, 2021) is not directly ap-353

plicable to our work due to two issues. Firstly,354

the truth value of logic atoms µ ranges in [−1, 1],355

while the original model can only handle values of356

−1 and 1. Secondly, each logic atom in the orig-357

inal DNF Layer is treated differently which loses358

logic semantics where atoms for the same logic359

predicate should share similar functionality. To ad-360

dress the aforementioned challenges, we propose a361

modified DNF layer which takes continuous values362

µ ∈ [−1, 1] as input and assigns the same weight363

for those atoms instantiated from the same logic364

predicate. The detailed description of our modified365

DNF layer can be found in Appendix G.366

More concretely, in our proposed DNF Layer,367

every SL∧ takes truth values µ of all logic atoms368

obtained in the cognition system as input, aiming369

to learn a conjunctive clause conj =
∧

pi,k∈A pi,k370

where A ⊆ {p1,1, . . . , pN,MN
}, referring to a sub-371

set of the complete logic atoms, and outputs the372

truth value of this conjunctive clause. Subsequently,373

each SL∨ receives the truth values of C conjunctive374

clauses to represent a disjunction of these conjunc-375

tions:
∨

c∈C conjc where C ⊆ {1, . . . , C}, referring376

to a subset of all conjs. It then outputs the truth377

value of this disjunction formula, corresponding378

to the final probability that the input news T is379

identified as the label y. Hence, each label y will380

be associated with a DNF clause learned by the 381

DNF layer. Intuitively, the conjunction simulates 382

the idea that if the input news T gives affirmative 383

answers to some questions simultaneously, it is 384

highly probable that it should be assigned to label 385

y. On the other hand, the disjunction provides more 386

flexibility by considering different alternatives (the 387

output is true if at least one of the conj is true) 388

which makes the final decision less sensitive to in- 389

correct atom values due to wrong predictions given 390

by LLMs. For example, assume the learned rules 391

are conj1 ∨ conj2 where conj1 = p1,1 ∧ p1,2 and 392

conj2 = p2,1 ∧ p3,1. Suppose conj1 is true, then 393

we can conclude that conj1 ∨ conj2 is true even if 394

conj2 gives an incorrect value. 395

Last but not the least, we apply softmax function 396

to the output of all disjunction layers SL∨ to obtain 397

the probability z ∈ R|Y| for all possible labels. The 398

entire decision system can be trained in an end-to- 399

end fashion by minimizing the cross-entropy loss 400

function as below: 401

L = −
|Y|∑
l=1

I(yl = yT ) log zl, (3) 402

where yT represents the ground truth label of T . 403

During inference, we select the label corresponding 404

to the highest value in z as the final result. 405

In summary, our decision system can extract in- 406

terpretable symbolic rules from data that exhibit 407

robustness across diverse domains and enable inter- 408

vention by adjusting weights in the DNF Layer to 409

align with prior knowledge (refer to Appendix C). 410

4 Experiments 411

In this section, we present the experiment setup 412

and demonstrate the feasibility, explainability, gen- 413

eralizability and controllability of TELLER through 414

extensive experiments. 415

4.1 Experimental Setting 416

Dataset. We conducted experiments using four 417

challenging datasets, namely LIAR (Wang, 2017), 418

Constraint (Patwa et al., 2021), PolitiFact, and Gos- 419

sipCop (Shu et al., 2020). LIAR comprises the 420

binary classification and multi-classification set- 421

ting with six fine-grained labels for truthfulness 422

ratings. Moreover, Wang (2017); Alhindi et al. 423

(2018) curated relevant evidence (e.g., background 424

information), serving as gold knowledge in an open 425

setting. Constraint, PolitiFact and GossipCop are 426
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binary classification datasets related to COVID-19,427

politics, and entertainment domains, respectively.428

LLMs. We select the open-source FLAN-T5 and429

Llama2 series, which encompass various parameter430

sizes, as large language models for constructing the431

cognition system. We also conduct experiments us-432

ing GPT-3.5-turbo on the LIAR dataset to examine433

the versatility of our framework.434

Baselines. We compare our model against Direct,435

Few-shot Direct, Zero-shot COT, Few-shot COT,436

Few-shot Logic. The baselines suffixed with Direct437

involve prompting large language models (LLMs)438

to predict the label of input news directly; those439

suffixed with COT utilize chain-of-thought tech-440

niques to enhance the performance of LLMs; those441

suffixed with Logic replace the thought process in442

COT with questions paired with their answers. We443

exclusively implement COT-related methods using444

GPT-3.5-turbo because they show no improvement445

over Direct on FLAN-T5 and Llama 2, as shown446

in Table 12. Additionally, we compare with small447

models, including BERT and RoBERTa, analyzed448

in Appendix E.449

Implementation Detail. We evaluate the perfor-450

mance of our framework using the accuracy and451

Macro-F1, which accommodates class imbalance.452

For each dataset, we train our decision system using453

the training split; select the optimal model based on454

its performance on the validation split; and report455

the results on the test split. To assess the generaliz-456

ability of our model, we consider each dataset as457

a separate domain and train our models using the458

train split from source domains; choose the best459

model on the validation split of source ones; and460

report results on the test split from the target do-461

main. Moreover, to highlight the robustness of our462

framework, we keep all hyperparameters fixed in463

each setting. Details of the experiment setting, data464

leakage analysis, baselines, and model training are465

elaborated in Appendix B.466

4.2 Feasibility Study467

To validate the feasibility of our framework, we468

compare it against multiple baselines across a wide469

range of LLMs and scenarios (e.g., different classi-470

fication granularities) in Table 1 and Table 2. These471

results uncover two crucial findings listed below:472

Firstly, our framework demonstrates satisfactory473

performance in fake news detection tasks. Specifi-474

cally, in the binary classification setting, TELLER475

achieves an accuracy of approximately 76% on the476

GossipCop dataset and over 80% on the other three 477

datasets. Notably, when utilizing Llama 2 (13B) to 478

drive the cognition system, TELLER outperforms 479

all GPT-3.5-turbo based methods by a significant 480

margin. These results highlight the effectiveness of 481

TELLER in distinguishing between fake and gen- 482

uine news. In the multi-classification setting on the 483

LIAR dataset, our framework consistently outper- 484

forms Direct for FLAN-T5 and Llama2 series, even 485

though these models may struggle to discriminate 486

fine-grained labels. This observation underscores 487

the capability of our decision system to mitigate 488

the negative influences of noisy predictions in the 489

cognition system, effectively unleashing the poten- 490

tial of LLMs through logic-based aggregation of 491

answers to decomposed questions. 492

Secondly, our framework exhibits significant po- 493

tential for the future. In the binary classification 494

setting across four datasets, TELLER consistently 495

outperforms Direct in terms of accuracy and macro- 496

F1 scores by an average of 7% and 6%, respectively. 497

Considering the swift improvement of LLM intelli- 498

gence, these results imply that the performance of 499

our framework is likely to scale with the evolution 500

of LLMs. Additionally, due to the notable perfor- 501

mance difference between closed and open settings 502

on the LIAR dataset, it is promising to integrate 503

external tools to acquire extensive evidence from 504

credible sources, such as official government web- 505

sites, to enhance the performance of our systems. 506

4.3 Explainability Verification 507

Explainability is a fundamental factor for establish- 508

ing trust in AI technology. We demonstrate that our 509

framework satisfies this aspect through its inherent 510

mechanism and the visualization of rules. 511

Unlike approaches that rely heavily on LLMs, 512

our cognition system incorporates expert knowl- 513

edge to construct a more well-grounded worldview 514

by generating well-defined question templates and 515

logic predicates. Moreover, our decision system 516

can learn interpretable rules from data to deduce 517

logic clauses to debunk fake news by converging 518

implicit parameters to conjunctive and disjunctive 519

semantics. These symbolic units (e.g., questions 520

and logic atoms) and the interpretable DNF Layer 521

contribute to our framework’s overall explainability 522

and transparency. 523

However, as the number of conjunctive and dis- 524

junctive layers grows, it is difficult for human be- 525

ings to investigate logic rules derived from our 526
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Large Language Models Method
Binary Classification Multi-Classification

Closed Open Closed Open
Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-small (80M) Direct 44.99 31.63 45.08 32.41 18.17 9.28 19.51 10.13

FLAN-T5-base (250M) Direct 54.02 50.79 61.47 61.43 19.43 11.79 21.40 21.40

FLAN-T5-large (780M)
Direct 57.30 52.20 74.38 73.84 19.43 17.84 29.50 24.95

TELLER 66.83(9.53↑) 66.33(14.13↑) 77.76(3.38↑) 77.32(3.49↑) 26.99(7.55↑) 18.04(0.20↑) 33.67(4.17↑) 27.50(2.55↑)
w/ Intervention 65.64 65.12 77.46 77.14 26.28 18.49 35.25 30.05

FLAN-T5-xl (3B)
Direct 58.89 58.62 75.97 75.67 19.67 16.57 29.43 24.74

TELLER 62.36(3.48↑) 60.18(1.56↑) 78.75(2.78↑) 78.55(2.88↑) 24.31(4.64↑) 17.40(0.83↑) 33.52(4.09↑) 27.22(2.48↑)
w/ Intervention 63.65 61.82 79.34 79.07 25.57 19.62 34.46 33.59

FLAN-T5-xxl (11B)
Direct 56.41 56.08 75.17 75.15 22.42 18.31 32.18 28.12

TELLER 66.63(10.23↑) 65.91(9.82↑) 80.24(5.06↑) 79.85(4.70↑) 26.83(4.41↑) 19.68(1.36↑) 35.48(3.30↑) 30.42(2.30↑)
w/ Intervention 67.03 66.19 80.73 80.41 26.91 21.30 35.88 31.63

Llama2 (7B)
Direct 59.88 59.19 72.29 69.63 18.02 9.97 11.01 6.88

TELLER 62.46(2.58↑) 62.45(3.26↑) 79.94(7.65↑) 79.80(10.16↑) 23.29(5.27↑) 15.51(5.55↑) 32.73(21.72↑) 25.55(18.67↑)
w/ Intervention 64.15 62.77 81.93 81.84 23.92 15.14 34.30 27.58

Llama2 (13B)
Direct 56.90 56.90 69.31 63.77 7.32 2.85 10.86 8.25
Ours 66.04(9.14↑) 66.03(9.13↑) 82.52(13.21↑) 82.37(18.60↑) 25.81(18.49↑) 17.71(14.86↑) 38.08(27.22↑) 29.27(21.02↑)

w/ Intervention 67.73 66.97 84.21 84.03 25.10 16.78 38.63 30.60

GPT-3.5-turbo

Direct 42.40 51.48 76.27 74.21 20.46 20.34 26.20 25.12
TELLER - - 79.15(2.88↑) 78.90(4.69↑) - - 31.94(5.74↑) 29.53(4.41↑)

Zero-shot COT 30.88 41.87 72.49 70.83 7.16 9.20 39.81 36.49
Few-shot 61.67 64.05 81.02 81.00 25.65 25.56 46.81 44.61

Few-shot COT 52.04 56.15 74.48 76.21 20.69 17.20 45.63 36.36
Few-shot Logic 49.26 48.85 61.67 60.92 16.37 13.98 20.54 19.22

Table 1: Results on LIAR dataset. "Closed" represents the cognitive system does not have access to any external
knowledge source, while "Open" indicates that it can utilize gold evidence collected by human experts. The best
results for each setting are highlighted with bold numbers and an underline, whereas sub-optimal results are only
highlighted in bold. The number indicates that the performance of w/ Intervention is worse than TELLER. The
number with ↑ indicates the performance gain of TELLER over Direct.

LLMs Method
Constraint PolitiFact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-large
Direct 78.06 77.97 56.62 54.84 67.43 58.76

TELLER 80.32(2.27↑) 80.11(2.14↑) 67.65(11.03↑) 67.65(12.81↑) 69.53(2.10↑) 59.39(0.63↑)
w/ Intervention 80.46 80.31 68.38 68.29 70.28 60.74

FLAN-T5-xl
Direct 75.32 74.79 55.88 50.72 67.73 52.80

TELLER 83.77(8.45↑) 83.66(8.88↑) 68.82(9.14↑) 64.68(13.95↑) 69.58(1.85↑) 58.72(5.91↑)
w/ Intervention 83.95 83.88 69.12 68.79 72.23 63.84

FLAN-T5-xxl
Direct 74.80 73.23 52.21 43.65 68.93 52.82

TELLER 83.39(8.59↑) 83.24(10.01↑) 69.12(16.91↑) 68.57(24.92↑) 69.18(0.25↑) 57.21(4.39↑)
w/ Intervention 83.62 83.54 69.12 68.95 71.48 62.12

Llama2 (7B)
Direct 81.83 81.73 77.21 77.00 66.78 52.23

TELLER 83.72(1.89↑) 83.54(1.81↑) 83.82(6.62↑) 83.81(6.81↑) 70.68(3.90↑) 59.58(7.35↑)
w/ Intervention 85.13 85.04 83.82 83.82 73.38 65.32

Llama2 (13B)
Direct 57.53 51.75 77.94 77.10 52.55 52.27

TELLER 87.31(29.78↑) 87.29(35.53↑) 79.41(1.47↑) 79.41(2.30↑) 74.48(21.93↑) 66.32(14.06↑)
w/ Intervention 87.78 87.71 78.68 78.65 75.92 69.30

Table 2: Results on Constraint, PolitiFact, and GossipCop datasets without access to retrieved background informa-
tion. The best results for each setting are highlighted with bold numbers. The number and the number with ↑ have
the same meaning as in Table. 1.
decision system. To address this issue, we propose527

a strategy to prune unnecessary weights in the DNF528

Layer. For example, we present the rules extracted529

from the pruned model for GossipCop in Table 4,530

where each conjunctive clause identifies one can-531

didate rule. The pruning algorithm and rules for532

other datasets are described in Appendix C.533

Table 4 can be interpreted as learning DNF rules534

for both true and false labels of input news. Specif-535

ically, the true label is predicted if either ¬conj34536

or ¬conj43 is true, i.e., either ¬P2 ∧P3 ∧P6 ∧P8537

or P3 ∧ P6 ∧ P8 is false when removing the nega-538

tion. Given the semantics of these logic predicates539

shown in Table 6, we know that P2, P3 and P8540

check the consistency between the background in-541

formation and a given message, whereas P6 scruti-542

nizes improper intention from the message alone. 543

On the other hand, the news will be predicted as 544

false if conj27 is true, i.e., P4 is false which means 545

that the background information in the message is 546

neither accurate or objective according to Table 6. 547

4.4 Generalizability Verification 548

Ensuring the generalization ability of fake news de- 549

cision systems is vital for their sustainable and prac- 550

tical deployment. As observed in Table 3, TELLER 551

consistently outperforms Direct across all domains 552

and LLMs without the assistance of any generaliza- 553

tion algorithm, while only exhibiting a negligible 554

performance drop in the GP−→C domain using 555

Llama2 7B. This is attributed to the remarkable 556

zero-shot ability of LLMs and the effectiveness of 557
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LLMs Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl
Direct 67.73 52.80 75.32 74.79 55.88 50.72

TELLER 68.13(0.40↑) 56.54(3.74↑) 82.40(7.0↑) 82.09(7.31↑) 61.76(5.88↑) 60.92(10.19↑)

FLAN-T5-xxl
Direct 68.93 52.82 74.80 73.23 52.21 43.65

TELLER 69.13(0.2↑) 53.15(0.34↑) 77.44(2.64↑) 76.21(2.98↑) 66.18(13.97↑) 66.17(22.52↑)

Llama2 7B
Direct 66.78 52.23 81.83 81.73 77.21 77.00

TELLER 68.33(1.55↑) 59.33(7.10↑) 81.60(−0.24↓) 81.04(−0.69↓) 83.09(5.88↑) 82.82(5.82↑)

Llama2 13B
Direct 52.55 52.27 57.53 51.75 77.94 77.10

TELLER 70.93(18.38↑) 60.90(8.63↑) 85.09(27.56↑) 84.87(33.1↑) 79.41(1.47↑) 79.41(2.30↑)

Table 3: Results on cross-domain experiments. C, P and G represent Constraint, PolitiFact, and GossipCop datasets.

conj34 = ¬P2 ∧ P3 ∧ P6 ∧ P8

conj43 = P3 ∧ P6 ∧ P8

conj27 = ¬P4

Ptrue = ¬conj34 ∨ ¬conj43
Pfalse = conj27

Table 4: Extracted rules for the GossipCop dataset when
using Llama2 (13B)
the DNF layer which further compensates for bi-558

ased predictions made by LLMs through rule-based559

aggregation. Particularly, the performance gains560

of TELLER in cross-domain and in-domain exper-561

iments (refer to Table 2) are positively correlated,562

implying that the decision system manages to learn563

domain-agnostic rules. Moreover, the Pearson cor-564

relation coefficient between these two groups of565

performance gains shows a substantial improve-566

ment from 0.01 to 0.53 when transitioning from the567

FLAN-T5 series to the more powerful Llama2 se-568

ries. This finding suggests that leveraging stronger569

LLMs to drive the cognition system enhances the570

generalization capability of our framework.571

4.5 Controllability Verification572

Controllability ensures that fake news detection sys-573

tems are subject to effective human oversight and574

intervention. We demonstrate TELLER satisfies this575

attribute from two aspects. Firstly, we verify the576

feasibility of manually rectifying rules learned by577

our decision system that may exhibit irrational be-578

havior. For instance, we observe that P3 (i.e., "The579

message contains adequate background informa-580

tion") should have a positive logical relation with581

Ptrue instead of negation in Table 4. To correct582

this, we perform a manual adjustment by setting583

the corresponding weight to zero, effectively re-584

moving P3 from the logic rule. However, this mod-585

ification only leads to a negligible improvement in586

the test split. Further investigation reveals that the587

truth value of logic atoms pertaining to P3 of most588

real samples is negative, possibly due to the prefer-589

ence of LLMs. This suggests the superiority of our590

logic-based decision system in reducing the nega-591

tive effect of incorrect predictions made by LLMs592

automatically. Secondly, we simulate human ex- 593

perts by intervening in the actions of our cognition 594

system. We achieve this by guiding LLMs to ex- 595

pand the question template set Q using Algorithm 596

1, referred to as w/ intervention in Tables 1 and 597

2. The new question template set for intervention 598

is shown in Table 7. The results consistently in- 599

dicate that w/ intervention outperforms TELLER, 600

highlighting the potential of LLMs as an agency 601

for automatically regulating the behaviors of the 602

cognition system. Thus, our framework ensures a 603

comprehensive control mechanism by simultane- 604

ously facilitating human and AI agents’ oversight. 605

Furthermore, we conduct additional experiments 606

to verify the effectiveness of the DNF Layer in 607

logic formulation over other decision systems, 608

namely decision trees, Naive Bayes classifiers and 609

MLP. We replace the DNF Layers with these three 610

algorithms to derive the final decisions. The results 611

are shown in Tables 15 and 16 for in-domain and 612

cross-domain settings, respectively in Appendix D. 613

5 Conclusion 614

In this work, we address the limitations of existing 615

fake news detection methods, which struggle to 616

establish reliability and end-user trust. To tackle 617

this issue, we identify three crucial aspects for con- 618

structing trustworthy misinformation detection sys- 619

tems: explainability, generalizability, and controlla- 620

bility. By prioritizing these principles, we propose 621

a dual-system framework TELLER that incorpo- 622

rates cognition and decision systems. To validate 623

our framework’s feasibility, explainability, general- 624

izability, and controllability, we conduct extensive 625

experiments on diverse datasets and LLMs. These 626

results affirm the effectiveness and trustworthiness 627

of our approach and highlight its significant poten- 628

tial through evolving both subsystems in the future. 629

While we achieve trustworthiness from an algorith- 630

mic perspective, we emphasize the importance of 631

further research to improve the trustworthiness of 632

the entire lifecycle of fake news detection systems. 633
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Limitations634

We identify three main limitations of our work.635

Firstly, although our framework focuses on enhanc-636

ing the trustworthiness of fake news detection algo-637

rithms, trustworthiness is also influenced by other638

stages of the AI system lifecycle, such as data col-639

lection and deployment. Given the advancements640

in AI techniques and the importance of online in-641

formation security, we encourage future research642

to address the challenges of building trustworthy643

AI systems comprehensively.644

Secondly, as shown in Table 1, integrating exter-645

nal tools to acquire high-quality background knowl-646

edge significantly improves the performance of647

fake news detection systems. However, collecting648

information that can effectively support detection649

tasks using such tools is non-trivial due to the com-650

plexities of open-domain information retrieval and651

the diversity of news content. For instance, we652

search for background information by inputting653

check-worthy claims of P1 into a search engine654

and filter out as much useful information as possi-655

ble using GPT-3.5-turbo. However, integrating this656

evidence led to a slight performance drop on Con-657

straint, PolitiFact, and GossipCop datasets (Due to658

page limitations, we do not include this experiment659

in our paper). Therefore, we leave this for future660

research.661

Thirdly, despite the excellent and robust perfor-662

mance of our decision system, especially in gen-663

eralization ability, the expressiveness of the DNF664

Layer is still limited due to its simple architecture.665

For example, the DNF Layer learns rules from data666

without considering the semantics of logic predi-667

cates. It may be crucial to develop more powerful668

decision models to fully unleash the potential of669

large language models, such as incorporating the670

semantics of logic predicates. However, given the671

low-dimensional input and the need for trustwor-672

thiness, the DNF layer remains a prudent choice.673

Moreover, there also exists a trade-off between674

trustworthiness and the complexity of the decision675

system.676

Ethics Statement677

This paper adheres to the ACM Code of Ethics and678

Professional Conduct. Specifically, the datasets we679

utilize do not include sensitive private information680

and do not pose any harm to society. Furthermore,681

we will release our codes following the licenses of682

any utilized artifacts.683

Of paramount importance, our proposed dual- 684

system framework serves as an effective measure 685

to combat fake news and safeguard individuals, 686

particularly in the current era dominated by large 687

generative models that facilitate the generation of 688

deceptive content with increasing ease. Moreover, 689

our approach fulfills explainability, generalizabil- 690

ity, and controllability, thereby mitigating concerns 691

regarding the security of AI products and enabling 692

their deployment in real-world scenarios. 693
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A Details of Cognition System1094

Unlike convolutional deep learning-based fake1095

news detection frameworks that classify in a la-1096

tent space, the cognition system of TELLER, aims1097

to emulate human fact-checking experts by com-1098

plying with specific policies to ensure transparency1099

and controllability of the detection process. In this1100

section, we describe the construction of the set1101

of question templates Q and Q′ for TELLER and1102

w/Intervention respectively in Appendix A.1.1103

Furthermore, we introduce a trick for batch training1104

by fixing the number of logic atoms for different1105

inputs in Appendix A.2 and outline some potential1106

techniques for further improvement of the cogni-1107

tion system in Appendix A.3.1108

A.1 Construction of Question Templates1109

To provide an overview, we present the referenced1110

human-checking process in Table 5. In this table,1111

Steps I, VI and VII are excluded from detection1112

algorithms, as they either fall into the preliminary1113

procedures or the post-processing stages of the fake1114

news detection pipeline. These steps may involve1115

data crawling, human-computer interaction, ma-1116

chine translation, etc. As a result, we concentrate1117

on the other steps.1118

Subsequently, we decompose the process into a1119

Yes/No question template set Q, where each tem-1120

plate Qi in Q corresponds to a predicate Pi in1121

the predicate set P . All question templates and1122

their corresponding predicates are listed in Table 6.1123

Specifically, for Q1, our objective is to determine1124

the trustworthiness of statements in the input news.1125

Here, statements represent crucial information in1126

news articles, playing a vital role in debunking mis-1127

information. Additionally, extracting statements1128

from news is a challenging task. While previous1129

studies like Liao et al. (2023); Fung et al. (2021)1130

used pre-trained language models to generate sum-1131

maries as statements, we choose to utilize GPT-1132

3.5-turbo to generate statements for simplicity in1133

implementation. The prompt used for this purpose1134

is as follows:1135

To verify the MESSAGE, what are the critical

claims related to this message we need to
verify? Please use the following format to
answer. If there are no important claims,
answer “not applicable”.

MESSAGE:
CLAIM:
CLAIM:

MESSAGE: $MESSAGE$.

Then, we replace the "$MESSAGE$" with input 1136

news and take the generated claims as statements 1137

for Q1 (P1). 1138

Additionally, when verifying the controllabil- 1139

ity of our framework, we propose adjusting the 1140

question template set to deal with the diversity 1141

of fake news. While this adjustment should be 1142

done by fact-checking experts to ensure the reason- 1143

ableness of new questions, our empirical findings 1144

demonstrate the feasibility of guiding large lan- 1145

guage models, such as GPT-3.5-turbo, to generate 1146

new question templates. These templates are then 1147

manually filtered by us to create the final question 1148

template set Q′, and the corresponding predicate 1149

set P ′ for intervention, as outlined in Algorithm 1150

1. Such human verification is incorporated into 1151

our intervention method to ensure more control- 1152

lability because the main point of controllability 1153

is to intervene via human knowledge instead of 1154

relying on models entirely. Moreover, such man- 1155

ual checking is not time-consuming, with only a 1156

few candidate questions being generated. Table 7 1157

presents these newly added question templates and 1158

predicates. The prompt R used in this algorithm is 1159

as follows: 1160

Write some questions that can be used to de-
termine whether a news report is misinforma-
tion. The questions should be answerable by
large language models in a close-book situa-
tion without requiring additional information.
Please format each question using the <s> and
</s> tags, such as <s>A question</s>.

A.2 Trick for Batch Training 1161

To enable batch training, we fix the number of logic 1162

atoms, denoted as Mi for each predicate Pi. Specif- 1163

ically, If Mi <
Ni∏
j=1

|Xi,j |, we randomly select Mi 1164
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atoms. Conversely, if Mi >
Ni∏
j=1

|Xi,j |, we pad the1165

vector by 0 accordingly. In the end, µ can be repre-1166

sented as [µ1,1, . . . , µ1,M1 , . . . , µN,1, . . . , µN,MN
],1167

where µ ∈ RM and M =
N∑
i
Mi.1168

A.3 The Potential of Cognition System1169

It is noteworthy that specific techniques can be1170

employed to improve the performance of our cog-1171

nitive system. For instance, when obtaining the an-1172

swers to questions as truth values for corresponding1173

logic atoms in Sec. 3.1.2, we exclusively consider1174

"Yes" and "No" tokens. However, considering the1175

relationship between model outputs and final pre-1176

dictions, "Right" and "Wrong" tokens can also be1177

suitable candidates. Therefore, drawing motivation1178

from (Gao et al., 2021; Cui et al., 2022), existing1179

manual or automatic verbalizer techniques that es-1180

tablish mappings between diverse model outputs1181

and final labels can be leveraged to enhance per-1182

formance. Additionally, the ensemble of prompts,1183

similar to "Yes or No? The answer is: ", has proven1184

effective for the "Yes" and "No" classification task1185

in (Gallego, 2023). Consequently, our dual-system1186

framework exhibits substantial potential for future1187

improvements in the cognitive system.1188

Algorithm 1 Question Template Generation for
Intervention Algorithm

Input: Prompt R, the original question template
set Q, and a copy of Q denoted as Q̂

Output: The question template set Q′ for inter-
vention

1: Set the number of iteration steps as T
2: for Iteration t = 1, . . . , T do
3: Use R to guide GPT-3.5-turbo in generating

a set of new question templates Q′

4: for each question template Q′
i in Q′ do

5: Compute the average similarity score be-
tween Q′

i and all templates in Q̂ using
Sentence BERT.

6: end for
7: Add Q′

i ∈ Q′ with the lowest similarity
score to Q̂.

8: end for
9: Q′ = Q̂ \ Q

10: Manually refine Q′ by removing duplicate and
impractical templates that are non-verifiable
through LLMs, resulting in the final Q′.
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Step I: Selecting claims
(1) To filter the information on news websites, social media, and online databases through manual selection
and computer-assisted selection.
(2) The public can submit suspicious claims.
(3) Selecting suspicious claims based on their hotness in Hong Kong, considering factors such as the
amount of likes, comments, and shares the message has received.

A) Is the content checkable?
B) Any misleading or false content?
C) Does it meet public interest?
D) Is it widespread?

Step II: Tracing the source
(1) Determining the source of the information.
(2) Identifying the publication date.
(3) Investigating the publisher and their background and reputation.
(4) Checking for similar information.
(5) Capturing a screen record and attaching the URL link.
(6) Providing two or more additional sources of information.
Step III: Fact-checking the suspicious information
(1) Applying the Five Ws and an H: When, Where, Who, What, Why, How.
(2) Searching for evidence to verify the information, such as official press releases, authoritative media
reports, and research reports.
(3) Attempting to engage the person or organization making the claim through email or telephone, if
necessary.
(4) Consulting experts in the relevant field, if necessary.
Step IV: Retrieving contextual information
(1) Checking if the original claim contains adequate background information.
(2) Assessing the accuracy and objectivity of the background information.
(3) Identifying any intentionally eliminated content that distorts the meaning.
Step V: Evaluating improper intentions
(1) Assessing if there is any improper intention (e.g., political motive, commercial purpose) in the
information.
(2) Investigating if the publisher has a history of publishing information with improper intentions.
Step VI: Self-checking
(1) Fact-checkers signing a Declaration of Interest Form before joining the team.
(2) Ensuring fact-checkers maintain objectivity and avoid biases during the process.
(3) Upholding the principle of objectivity and avoiding emotional involvement.
Step VII: Publishing and reviewing reports
(1) Completing a draft of the fact-check report, followed by editing and reviewing by professional editors
and consultants.
(2) Updating the report if any mistakes or defects are found, and providing clarification on correction
reasons and date.

Table 5: Fake news detection policy of HKBU FACT CHECK Team (Tsang, 2023)
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Question Template Logic Predicate: Logic Semantics Annotation
Q1: Background Information: X1,1.
Statement: X1,2. Is the statement true?

P1(X1,1,X1,2): Given the back-
ground information X1,1, the
statement is true.

X1,1: Background information for
input news, X1,2: Check-worthy
statements in input news.

Q2: Background Information: X2,1.
Message: X2,2. Is the message true?

P2(X2,1,X2,2): Given the back-
ground information X2,1, the mes-
sage is true.

X2,1: Background information for
input news, X2,2: Input news.

Q3: Message: X3,1. Did the message
contain adequate background informa-
tion?

P3(X3,1): The message con-
tains adequate background infor-
mation.

X3,1: Input news.

Q4: Message: X4,1. Is the background
information in the message accurate and
objective?

P4(X4,1): The background infor-
mation in the message is accurate
and objective.

X4,1: Input news.

Q5: Message: X5,1. Is there any content
in the message that has been intention-
ally eliminated with the meaning being
distorted?

P5(X5,1): The content in the mes-
sage has been intentionally elimi-
nated with the meaning being dis-
torted

X5,1: Input news.

Q6: Message: X6,1. Is there an im-
proper intention (political motive, com-
mercial purpose, etc.) in the message?

P6(X6,1): The message has an im-
proper intention.

X6,1: Input news.

Q7: Publisher Reputation: X7,1. Does
the publisher have a history of publish-
ing information with an improper inten-
tion?

P7(X7,1): Given the publisher
reputation X7,1, the publisher has
a history of publishing informa-
tion with an improper intention.

X7,1: Publishing history.

Q8: Background Information: X8,1.
Message: X8,2. Is the message false?

P8(X8,1,X8,2): Given the back-
ground information X8,1, the mes-
sage is false.

X8,1: Background information for
input news, X8,2: Input news.

Table 6: Question template set Q and logic predicate set P

Question Template Logic Predicate: Logic Semantics Annotation
Q9: News Report: X9,1. Is the news report
based on facts or does it primarily rely on
speculation or opinion?

P9(X9,1): The news report is based on
facts and relies on speculation or opinion.

X9,1: Input news.

Q10: News Report X10,1: Are there any
logical fallacies or misleading arguments
present in the news report?

P10(X10,1): The news report has logical
fallacies or misleading arguments.

X10,1: Input news.

Q11: Message: X11,1. Does the message
exhibit bias?

P11(X11,1): The message exhibits bias. X11,1: Input news.

Q12: News report: X12,1. Are there any
grammatical or spelling errors in the news
report that may indicate a lack of profes-
sional editing??

P12(X12,1): The news report has grammat-
ical and spelling errors.

X12,1: Input news.

Q13: News report: X13,1. Does the news
report use inflammatory language or make
personal attacks?

P13(X13,1): The news report uses inflam-
matory language and makes personal at-
tacks.

X13,1: Input news.

Table 7: Question template set Q′ and logic predicate set P ′ generated by GPT-3.5-turbo for intervention
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B Details of Experimental Setting1189

B.1 Datasets1190

LIAR is a publicly available dataset for fake1191

news detection, sourced from POLITIFACT.COM.1192

This dataset comprises six fine-grained labels for1193

truthfulness ratings: true, mostlytrue, halftrue,1194

barelytrue, false, and pantsfire. To align with1195

the binary classification problem, we merge true,1196

mostlytrue into true and merge barelytrue,1197

false, and pantsfire into false, following (Liao1198

et al., 2023). Moreover, Wang (2017); Alhindi1199

et al. (2018) curated relevant evidence from fact-1200

checking experts (e.g., publisher information, back-1201

ground information, etc.), which serve as gold1202

knowledge in an open setting.1203

Constraint is a manually annotated dataset of real1204

and fake news related to COVID-19. We adopt1205

the data pre-processing procedures described in1206

(Patwa et al., 2021), which involve removing all1207

links, non-alphanumeric characters, and English1208

stop words.1209

PolitiFact and GossipCop are two binary classifi-1210

cation subsets extracted from FakeNewsNet (Shu1211

et al., 2020). The PolitiFact subset comprises polit-1212

ical news, while the GossipCop subset comprises1213

entertainment stories. To optimize experimental1214

costs and adhere to maximum context limitations,1215

we exclude news samples longer than 3,000 words.1216

For dataset partitioning, we follow the default1217

partition if specified; otherwise, we use a 7:1:21218

ratio. Table 8 presents the statistics of each dataset.1219

Split LIAR Constraint PolitiFact GossipCop
Train 10202 6299 469 6999

Validation 1284 2139 66 999
Test 1271 2119 136 2002

Table 8: Statistics of four benchmarks

1220

B.2 Data Leakage Analysis1221

In our work, we used four publicly available1222

datasets to evaluate our proposed framework,1223

TELLER. To begin with, following recent work1224

(Oren et al., 2023), we refer to the problem of data1225

leakage (data contamination) as the situation where1226

the pretraining and finetuning dataset of LLMs con-1227

tains the testing splits of datasets used in our work.1228

To mitigate the risks associated with data leakage1229

during our evaluation, we took three precaution-1230

ary steps to ascertain that the probability of the1231

occurrence of data leakage is particularly low: 1232

Manual Check: For the open-public Flan-T5 and 1233

Llama 2 series, we double-checked the dataset 1234

cards of these two model families and did not find 1235

a data leaking problem. Concretely, we checked 1236

the finetuning data (i.e., Appendix F Finetuning 1237

Data Card of (Chung et al., 2022)) and pre-training 1238

data (i.e., C4 dataset in Sec. 3.4.1 of (Raffel 1239

et al., 2020)) for the family of Flan-T5 models 1240

and checked the pre-training data of Llama 1 (i.e., 1241

Sec. 2.1 of (Touvron et al., 2023a)) while the pre- 1242

training data of Llama 2 seems not publicly avail- 1243

able yet. 1244

Assumption Experiment: If data leakage were 1245

present, we would expect the detection accuracy 1246

of LLMs to scale with model size, given that the 1247

memorization ability of LLMs is positively cor- 1248

related to the size of models empirically (Kaplan 1249

et al., 2020). However, our results in Tables 1 and 1250

2 do not support this hypothesis, suggesting a low 1251

likelihood of data leakage. 1252

Empirical Analysis: Some measurements for data 1253

leakage exist (Oren et al., 2023; Touvron et al., 1254

2023b). We used the Sharded Rank Comparison 1255

Test, proposed by Oren et al. (2023) to analyze po- 1256

tential data leakage in our datasets on Llama2 (7B). 1257

We did not analyze the data leakage problem of the 1258

GPT series here due to the limited and expensive 1259

access, while Llama2 and FLAN-T5 are LLMs we 1260

mainly use. The results in Table 9 indicate no data 1261

leakage risk for Llama2 (i.e., when the p-value> 1262

0.05 means there is no data leakage risk). However, 1263

these measurements of data leakage problems may 1264

compromise the accuracy of determining whether 1265

dataset contamination occurs and have contributed 1266

to evaluation performance sometimes because of 1267

many confounding factors (a detailed discussion in 1268

A.6 of (Touvron et al., 2023b)). 1269

While TELLER has shown satisfactory accuracy 1270

on four open-public datasets, our main contribution 1271

is the systematic framework that adheres to explain- 1272

ability, generalizability, and controllability. As per 1273

our experimental results, TELLER’s detection per- 1274

formance can scale by integrating more powerful 1275

LLMs and external techniques, demonstrating the 1276

effectiveness of our approach as LLMs and related 1277

techniques continue to evolve. Consequently, even 1278

if the possible data leakage problem may have a 1279

deceptively good influence on the detection accu- 1280

racy, we argue that it will not decrease our work’s 1281

contribution. 1282
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Table 9: The Sharded Rank Comparison Test for data
leakage problem. We run this test on all testing splits of
four datasets for Llama2 (7B).

Dataset P-value
LIAR 0.8355

Constraint 0.7869
PolitiFact 0.7712

GossipCop 0.7802

B.3 Illustration of Different Baselines1283

We compare our model against Direct, Few-shot1284

Direct, Zero-shot COT, Few-shot COT, Few-shot1285

Logic. Direct utilizes LLMs to calculate the prob-1286

ability of each label using Eqs. 1-2 and then se-1287

lects the label with the highest likelihood as the1288

predicted label. Building upon Direct, Few-shot1289

Direct incorporates demonstration samples with1290

known labels as contextual information to enhance1291

the model’s performance. Zero-shot COT and Few-1292

shot COT employ the chain-of-thought (COT) tech-1293

nique (Wei et al., 2022), enabling LLMs to engage1294

in step-by-step reasoning. While Zero-shot COT1295

immediately adds the prompt "Let us think step1296

by step!", Few-shot COT provides multiple COT1297

exemplars. For Few-shot Logic, we replace the1298

thought process in COT with instantiated questions1299

accompanied by corresponding answers generated1300

by our cognition system. We omit comparisons1301

with Few-shot and COT-based prompt methods for1302

Llama 2 and FLAN-T5 because COT prompts have1303

been found to yield performance gains basically1304

when used with models of approximately 100B1305

parameters (Wei et al., 2022), and both Few-shot1306

and COT-based methods show no additional im-1307

provement over Direct as revealed by Table 12, we1308

exclusively implement COT-related methods using1309

GPT-3.5-turbo.1310

Below we show the templates for these five base-1311

lines for the fake news detection task in the closed1312

setting without access to any external knowledge1313

source.1314

Direct:1315

Message: $MESSAGE$.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGE$" with input1316

news, "$Label$" with candidate truthfulness labels.1317

Few-shot Direct:1318

Following given examples to answer Yes/No
questions.

Message: Says the Annies List political
group supports third-trimester abortions on
demand.
Is the message true?
Yes or No? Response: No

Message: Says the Annies List political
group supports third-trimester abortions on
demand.
Is the message false?
Yes or No? Response: Yes

(· · · more examples here · · ·)

Message: $MESSAGE$.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGE$" with in- 1319

put news, "$Label$" with candidate truthfulness 1320

labels. Furthermore, during the testing phase, the 1321

examples are randomly selected from the training 1322

set. 1323

Zero-shot COT: 1324

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.
Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the 1325

input news. 1326

Few-shot COT: 1327

You will be provided with a statement, and
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your task is to classify its truthfulness into one
of two categories: true and false.

Example One
Message: Says the Annies List political group
supports third-trimester abortions on demand.
Let’s think step by step and give answer with
suffix “So the final answer is".
Annie’s List was comfortable with candidates
who oppose more limits on late-term abortions
while he also supported candidates who voted
for more limits this year. Both dose not
mention of third-trimester abortions.
So the final answer is false.

(· · · more examples here · · ·)

Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the1328

input news.1329

Few-shot Logic:1330

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.

Example One
Message: Says the Annies List political group
supports third-trimester abortions on demand.
Decomposed Questions:
(1) Statement: The Annies List is a political
group. Is the statement true?
Yes
(2) Statement: The Annies List supports
third-trimester abortions. Is the statement
true?
No
(3) Did the message contain adequate back-
ground information?
False

(· · · more examples here · · ·)

Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the1331

input news. 1332

Additionally, we conducted supplementary ex- 1333

periments comparing our framework with other 1334

non-LLM-based misinformation detectors (referred 1335

to as small models following convention), includ- 1336

ing BERT3 and RoBERTa4, presented in Tables 13 1337

and 14 for in-domain and cross-domain settings, 1338

respectively. These small models are finetuned on 1339

misinformation detection datasets. Especially for 1340

the cross-domain setting, we consider each dataset 1341

as a separate domain and fine-tune these models us- 1342

ing the train split from source domains, choose the 1343

model on the validation split of source ones, and re- 1344

port results on the test split from the target domain. 1345

Moreover, we do not compare our framework here 1346

with existing transfer learning algorithms because 1347

we assume the domain label and target domain data 1348

are unavailable in our work. 1349

B.4 Model Training for Decision System 1350

In the decision system of our framework, we em- 1351

ploy the DNF Layer to learn human-readable rules 1352

from data differentially. To train this model, we 1353

utilize the Adam optimizer with a learning rate of 1354

1e-3. Regarding the hyperparameters, we search 1355

the conjunction number C within the range [10, 20, 1356

30, 40, 50], and the weight decay within the range 1357

[1e-3, 5e-4, 1e-4]. Furthermore, to showcase the 1358

superiority of our approach, we maintain consistent 1359

hyperparameters across different LLMs in each set- 1360

ting. For instance, all hyperparameters of TELLER 1361

in the closed setting for the binary classification 1362

task on the LIAR dataset remain unchanged. The 1363

batch size is set to 64, and the number of epochs is 1364

set to 30. Additionally, we progressively converge 1365

the model towards symbolic semantics by adjusting 1366

δ (refer to Appendix G for detail) to 1 or -1 before 1367

the first 15 epochs using exponential decay. 1368

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/FacebookAI/

roberta-base
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C Details of Explainability Study1369

To enhance the accessibility of the rules generated1370

by the DNF Layer, we propose a pruning algo-1371

rithm that extracts more concise logic clauses by1372

eliminating insignificant weights. The algorithm is1373

described in Algorithm 2. Furthermore, to demon-1374

strate the explainability of our framework, we visu-1375

alize the extracted rules obtained from the pruned1376

model for Constraint, PolitiFact, and GossipCop1377

datasets in Tables 10, 11 and 4, respectively. In1378

these tables, Ptrue and Pfalse represent the proposi-1379

tion that the input news is identified as true or false,1380

respectively. In our visualization experiments, we1381

employ Llama2 (13B) as the LLM in the cogni-1382

tion system. We set the number of conjunctive1383

layers C as 50, the performance drop threshold ϵ1384

as 0.005, and b as 0.0001 to reduce the number of1385

conjunction clauses. More details regarding these1386

parameters can be found in Appendix G.1387

Algorithm 2 Pruning Algorithm for the DNF Layer
Input: Trained DNF Layer Φ, performance drop threshold ϵ
Output: Pruned DNF Layer Φ′ and extracted rule set R
1: Initialize R′ as an empty set
2: Initialize R by extracting rules from Φ
3: Initialize Φ′ using Φ
4: while |R′| ̸= |R| do
5: Initialize R by extracting rules from Φ′

6: Prune disjunctions if the removal of a disjunction
results in a performance drop smaller than ϵ

7: Prune unused conjunctions that are not utilized by any
disjunction

8: Prune conjunctions if the removal of a conjunction
results in a performance drop smaller than ϵ

9: Prune disjunctions that use empty conjunctions
10: Prune disjunctions again if the removal of a disjunc-

tion results in a performance drop smaller than ϵ
11: Update the pruned model as Φ′ and extract rules from

Φ′ to obtain R′;
12: end while

conj48 = P4 ∧ ¬P8

conj25 = ¬P4 ∧ ¬P5 ∧ P8

conj40 = P2 ∧ P4

Ptrue = conj48
Pfalse = conj25 ∨ ¬conj40

Table 10: Extracted rules for the Constraint dataset
when using Llama2 (13B).

conj36 = P3 ∧ P6 ∧ P8

conj44 = P5 ∧ P1 ∧ P8

conj0 = P1

conj49 = P2 ∧ P3 ∧ P4

Ptrue = ¬conj36 ∨ ¬conj44
Pfalse = ¬conj0 ∨ ¬conj49

Table 11: Extracted rules for the PolitiFact dataset when
using Llama2 (13B).
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LLMs Method
Constraint PolitiFact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl
Direct 75.32 74.79 55.88 50.72 67.73 52.80

Few-shot 75.17 74.48 52.20 45.07 67.13 51.20
Few-shot COT 52.67 45.76 58.08 56.62 46.65 46.50

FLAN-T5-xxl
Direct 74.80 73.23 52.21 43.65 68.93 52.82

Few-shot 75.97 75.97 50.73 41.10 68.53 51.87
Few-shot COT 52.66 45.33 50.61 41.43 65.98 47.15

Llama2 (7B)
Direct 81.83 81.73 77.21 77.00 66.78 52.23

Few-shot 71.68 71.30 75.74 75.74 66.13 59.62
Few-shot COT 52.10 34.77 55.14 42.89 47.95 47.43

Llama2 (13B)
Direct 57.53 51.75 77.94 77.10 52.55 52.27

Few-shot 57.24 50.48 80.14 79.56 51.55 51.39
Few-shot COT 53.79 44.98 50.01 33.33 65.28 50.92

Table 12: Comparison between different prompt methods on FLAN-T5 and Llama2 series.

Method
Constraint PolitiFact GossipCop LIAR

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)
BERT 96.98 97.11 85.29 85.71 81.97 86.45 63.06 62.42

RoBERTa 97.07 97.21 88.97 89.36 82.72 87.07 64.55 63.16
TELLER (best) 87.78 87.71 83.82 83.82 75.92 69.30 67.73 66.97

Table 13: Comparison between small models and TELLER on four datasets for binary classification task in an
in-domain setting.

Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)
BERT 46.97 31.12 65.69 70.65 48.53 46.97

RoBERTa 47.45 38.26 64.56 65.79 52.21 48.00
TELLER (best) 70.93 60.90 85.09 84.87 83.09 82.82

Table 14: Comparison between small models and TELLER for binary classification task in a cross-domain setting.
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D Comparison with Different Decision1388

Models1389

In our work, we utilize the DNF Layer to construct1390

our decision system, guaranteeing explainability1391

and controllability. However, there are also other1392

alternatives, such as existing neural symbolic archi-1393

tectures and interpretable machine learning algo-1394

rithms. By comparing the DNF Layer with these1395

candidates, we demonstrate that our dual-system1396

framework can achieve better performance by in-1397

venting a more effective decision model to unleash1398

the ability of LLMs.1399

While existing neural symbolic architectures can1400

extract useful rules from data (Booch et al., 2021),1401

they indeed have certain limitations. Firstly, these1402

architectures often require complex mechanisms to1403

implement logical operations, which makes them1404

unsuitable for immediate application in fake news1405

detection tasks. For example, Qu et al. (2021);1406

Cheng et al. (2023) developed neural-symbolic1407

models for knowledge graph completion, but their1408

reliance on well-defined graph structures makes1409

them infeasible for our task. Secondly, these ar-1410

chitectures often suffer from efficiency issues. For1411

instance, δLP proposed in (Evans and Grefenstette,1412

2018) had high computational complexity, and HRI1413

(Glanois et al., 2022) was incompatible with batch1414

training, which externally required users to pre-1415

define rule templates to constrain the search space.1416

Furthermore, to the best of our knowledge, there1417

may be no neural-symbolic framework available1418

that can simultaneously handle the challenges of1419

missing values and multi-grounding problems (i.e.,1420

one predicate can be instantiated as multiple logic1421

atoms), which are common in our tasks. There-1422

fore, we acknowledge the need for future research1423

to develop a more suitable and powerful neural-1424

symbolic framework in the context of fake news1425

detection.1426

Since each dimension in µ is precisely bonded1427

to a question template (logic predicate), we can1428

employ traditional machine learning classification1429

algorithms, including decision tree5, naive Bayes1430

Classifier6 and multi-layer perceptron (MLP), to1431

replace the DNF Layer to drive our decision system,1432

while maintaining partial aspects of trustworthy AI.1433

Therefore, we compare the DNF Layer with these1434

5https://scikit-learn.org/stable/modules/tree.
html

6https://scikit-learn.org/stable/modules/
naive_bayes.html

three methods in both in-domain and cross-domain 1435

settings on three datasets, shown in Tables 15 and 1436

16, respectively. 1437

According to the results, we conclude that the 1438

decision tree and MLP perform better when the 1439

training and testing data are from the same do- 1440

main. Meanwhile, the naive Bayes Classifier 1441

demonstrates more satisfactory generalization per- 1442

formance in cross-domain experiments across var- 1443

ious LLMs. This implies that our proposed dual- 1444

system framework shows potential in developing a 1445

more powerful decision module, such as an ensem- 1446

ble of these algorithms. However, the DNF Layer 1447

still outperforms these three methods in most cases 1448

when using Llama2 (13B) as the driver of the cog- 1449

nition system, achieving a better trade-off between 1450

accuracy and generalization ability. Moreover, the 1451

DNF Layer also exhibits advantages over these 1452

methods in terms of its ability to handle missing 1453

values and multi-grounding problems, as well as 1454

its flexibility in efficiently searching logic rules 1455

in a large space, whereas the decision tree is con- 1456

strained by depth and width. 1457
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LLMs Method
Constraint PolitiFact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-large

Decision Tree 78.53 78.30 67.65 67.19 70.88 62.76
Bayes Classifier 80.93 80.86 66.18 66.15 68.33 61.04

MLP 81.26 81.16 71.42 63.43 71.62 63.74
TELLER 80.32 80.11 67.65 67.65 69.53 59.39

FLAN-T5-xl

Decision Tree 84.29 84.27 66.91 66.10 71.13 61.58
Bayes Classifier 82.40 82.22 68.38 67.88 68.23 60.23

MLP 84.52 84.44 70.28 60.74 70.78 62.76
TELLER 83.77 83.66 68.82 64.68 69.58 58.72

FLAN-T5-xxl

Decision Tree 84.14 84.12 72.06 71.00 72.13 67.08
Bayes Classifier 82.49 82.30 68.38 67.61 68.38 57.62

MLP 83.29 83.15 72.78 65.82 72.52 65.98
TELLER 83.39 83.24 69.12 68.57 69.18 57.21

Llama2 (7B)

Decision Tree 84.33 84.32 79.41 77.00 72.38 65.24
Bayes Classifier 83.11 82.97 76.47 76.29 71.98 66.67

MLP 84.99 84.94 74.68 68.80 74.83 68.86
TELLER 83.72 83.54 83.82 83.81 70.68 59.58

Llama2 (13B)

Decision Tree 86.50 86.49 83.09 83.07 74.43 68.99
Bayes Classifier 84.99 84.92 80.15 80.06 73.58 69.59

MLP 87.31 87.31 77.37 72.72 76.97 72.01
TELLER 87.31 87.29 79.41 79.41 74.48 66.32

Table 15: Results of different decision models on Constraint, PolitiFact, and GossipCop datasets without access to
retrieved background information. The best results for each dataset are highlighted with bold numbers.

LLMs Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl

Decision Tree 68.98 62.33 73.67 73.32 63.97 62.71
Bayes Classifier 67.13 59.26 82.49 82.49 64.71 64.64

MLP 67.63 55.67 74.80 74.78 64.71 63.76
TELLER 68.13 56.54 82.40 82.09 61.76 60.92

FLAN-T5-xxl

Decision Tree 68.33 55.53 70.60 70.35 61.03 60.98
Bayes Classifier 68.33 54.71 82.63 82.51 62.50 62.50

MLP 67.58 53.96 74.23 74.22 66.18 65.81
TELLER 69.13 53.15 77.44 76.21 66.18 66.17

Llama2 7B

Decision Tree 52.20 52.05 76.40 75.02 66.91 64.84
Bayes Classifier 65.98 62.46 82.82 82.60 67.65 65.49

MLP 65.73 64.87 81.50 80.82 75.00 74.65
TELLER 68.33 59.33 81.60 81.04 83.09 82.82

Llama2 13B

Decision Tree 61.59 61.14 71.54 68.21 71.32 71.32
Bayes Classifier 71.53 69.09 82.59 82.25 78.68 78.25

MLP 71.33 68.48 78.76 77.62 80.15 79.96
TELLER 70.93 60.90 85.09 84.87 79.41 79.41

Table 16: Results of different decision models on cross-domain experiments. C, P and G represent Constraint,
PolitiFact, and GossipCop datasets, respectively. The best results for each dataset are highlighted with bold numbers.
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E Comparison with Existing Work on1458

Three Principles1459

It is imperative to compare our LLM-based frame-1460

work with prevailing misinformation detection1461

methods across dimensions of explainability, gen-1462

eralizability, and controllability. We conduct addi-1463

tional experiments to compare with small models1464

to demonstrate the strength of TELLER in gener-1465

alizability. However, quantitatively measuring ex-1466

plainability and controllability in deep learning is1467

presently challenging (Li et al., 2023), necessitat-1468

ing substantial research endeavors.1469

Generalizability: We conduct additional experi-1470

ments comparing with small models (BERT and1471

RoBERTa) in Tables 13 and 14 for in-domain1472

(with finetuning) and cross-domain settings, re-1473

spectively. These results illustrate that small mod-1474

els only outperform TELLER in an in-domain set-1475

ting, but TELLER excels in zero-shot generalization1476

(around 30% improvement in terms of Accuracy1477

and F1-Score) and can handle more complex misin-1478

formation detection tasks, exemplified by superior1479

performance on the LIAR dataset. This advantage1480

aligns with many real scenarios, characterized by1481

the absence of training data and the presence of1482

sophisticated misinformation (Pelrine et al., 2023).1483

Consequently, TELLER proves significantly advan-1484

tageous in such contexts.1485

Moreover, the feasibility and adaptability of1486

TELLER are underscored by the resource-intensive1487

nature of gathering adequate data for small models.1488

Additionally, our framework, as a general and sys-1489

tematic framework, can achieve better in-domain1490

accuracy by integrating small fine-tuned models1491

into our cognition system, treating their binary clas-1492

sification outputs as truth values1493

Explainability: Current interpretative methods us-1494

ing feature importance, attention visualization, and1495

multiview learning (Cui et al., 2019; Xu et al., 2022;1496

Liao et al., 2023; Ying et al., 2023) may be unre-1497

liable and possess limited explanatory power, as1498

indicated by (Liu et al., 2022). Another approach1499

(Liu et al., 2023), employing neural-symbolic learn-1500

ing for multimodal misinformation detection, falls1501

short of clause length and readability caused by1502

its unexplainable predicates. Unlike small-model-1503

based misinformation detectors, our cognition sys-1504

tem incorporates expert knowledge to construct a1505

more well-grounded worldview, which is unreal-1506

istic for small models to achieve. Furthermore,1507

another group of work (Huang and Sun, 2023; Hu1508

et al., 2023) explored large generative language 1509

models (e.g., ChatGPT) and regarded the interme- 1510

diate chain of thoughts as an explanation. Nev- 1511

ertheless, these explanations may not be reliable 1512

due to the hallucination phenomenon and the mis- 1513

alignment problem of AGI (Chen and Shu, 2023). 1514

Compared with them, our decision system can learn 1515

interpretable rules to explicitly aggregate generated 1516

logic atoms for further double-checking instead of 1517

relying on the implicit aggregation of LLMs. 1518

Controllability: As shown in Sec. 2.2, some stud- 1519

ies integrated human-in-loop techniques (Wu et al., 1520

2022) for data sampling and model evaluation, 1521

whereas our framework prioritizes algorithm de- 1522

sign. Moreover, while recent RLHF techniques 1523

(Rafailov et al., 2023) can incorporate human guid- 1524

ance in model behaviors based on reinforcement 1525

learning, they indeed require external high-quality 1526

fine-tuning data and sophisticated finetuning. In 1527

contrast, our framework achieves controllability 1528

through natural manipulation of the question set 1529

and logic rules in our cognition and decision sys- 1530

tems 1531

In summary, TELLER effectively addresses chal- 1532

lenges in explainability, generalizability, and con- 1533

trollability. We also emphasize TELLER is a gen- 1534

eral framework and does not sacrifice performance 1535

for explainability, generalizability, and controlla- 1536

bility, considering its potential to integrate fine- 1537

tuned small models to improve the in–domain per- 1538

formance. 1539
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F Cost Analysis1540

One crucial consideration of TELLER is the ex-1541

pense associated with the N queries to LLMs. The1542

specific costs, including inference time and token1543

cost, will be discussed below.1544

Inference Time: Due to the limited access times of1545

GPT-3.5-turbo in minutes, it is time-consuming to1546

perform N queries for our framework. However,1547

it is worthwhile that it may also require multiple1548

queries for GPT-3.5-turbo to adopt self-consistency1549

and least-to-most prompt techniques to achieve the1550

comparable performance as our framework, given1551

there is a performance gap between Direct and1552

TELLER in Table 1.1553

Furthermore, our experiments indicate that utiliz-1554

ing smaller LLMs, like FLAN-T5 (XL and XXL)1555

and Llama 2 (7B and 13B), suffices for effective1556

misinformation detection. In this case, our frame-1557

work stands out from COT-based methods (Pan1558

et al., 2023; Pelrine et al., 2023; Wang and Shu,1559

2023) as it eliminates the necessity of generating1560

numerous immediate reasoning steps sequentially.1561

Specifically, our cognition system only requires1562

decoding the first token (i.e., "yes"/"no") to com-1563

pute truth values. Since the primary bottleneck in1564

the inference time of LLMs arises from subsequen-1565

tial decoding, the cost of TELLER is lower than1566

COT-based methods. For instance, consider a COT-1567

based model that generates 100 tokens for input1568

news. The theoretical inference time of our frame-1569

work is thus 1
100 of COT-based methods, assuming1570

parallel decoding of the first token of N questions.1571

Token Cost: Assuming our framework needs N1572

queries and other LLM-based methods requires1573

one with input query length L and output length1574

M , cin is the price of input tokens, cout is the1575

price of output tokens, and the token cost ratio be-1576

tween our framework and LLM-based methods is1577
N×(L×cin+1×cout)

L×cin+M×cout
. In general, cout is higher than1578

cin. Then if M is significantly high when the out-1579

put of other LLM-based methods contains lots of1580

tokens such as COT, the total cost does not give1581

much difference.1582
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G Formal Description of DNF Layer1583

In this section, we introduce modified Disjunctive1584

Normal Form (DNF) Layer employed in our frame-1585

work. The DNF Layer is built from semi-symbolic1586

layers (SL), which can progressively converge to1587

symbolic semantics such as conjunction ∧ and dis-1588

junction ∨.1589

Specifically, for the truth value vector µ ∈ RM1590

mentioned in Sec. 3.1.2, SL can be formulated as1591

follows:1592

µo = tanh

 M∑
j

wjµj + β

 , (4)1593

β = δ

b−
∑
j

|wjµj |

 , (5)1594

where wj represents learnable parameters, b =1595

max
j

|wjµj | and δ ∈ [−1, 1] represents the seman-1596

tic gate selector. µj is the truth value for the jth1597

logic atom obtained from the cognitive system. The1598

sign of the learned weight wj indicates whether µj1599

(if wj is positive) or its negation (if wj is negative)1600

contributes to µo. Thus, logical negation (e.g., ¬pj)1601

can be computed as the multiplicative inverse of1602

the input: −µj .1603

Eq. 4 resembles a standard feed-forward layer,1604

aiming to compute a single truth value from a col-1605

lection of values µj corresponding to different in-1606

stantiations of a single predicate/question. β serves1607

as the bias term. As shown by (Cingillioglu and1608

Russo, 2021), by adjusting δ from 0 to 1 during1609

training, SL tends to converge to conjunctive se-1610

mantics as SL∧ (e.g., p1 ∧ p2, . . . ,∧pM ), indicat-1611

ing that if at least one wjµj is false, the output1612

µo will be false; otherwise, µo will be true. Con-1613

versely, by gradually adjusting δ from 0 to −1,1614

SL can attain disjunctive semantics as SL∨ (e.g.,1615

p1 ∨ p2, . . . ,∨pM ), where if at least one wjµj is1616

true, µo will be true; otherwise, µo will be false.1617

Additionally, b can guarantee µo being true (false)1618

when all wjµj are true (false) for SL∧ (SL∨).1619

Since each dimension in µ corresponds to the1620

same predicate for different inputs, SL effectively1621

represents the relationship among different instanti-1622

ations and the target output µo, enabling the learn-1623

ing of generic rules for various inputs. Moreover,1624

by employing rule-based aggregation, our frame-1625

work exhibits noise tolerance against incorrect pre-1626

dictions of LLMs in the cognition system, particu-1627

larly owing to the SL∨.1628

Notably, one predicate can be instantiated by 1629

multiple assignments, i.e., Pi pertains to Mi logic 1630

atoms in Appendix A.2. Thus, the parameters 1631

bound to these Mi logic atoms should naturally 1632

share the logical semantics of Pi. Instead of gath- 1633

ering all possible combinations of Mi logic atoms 1634

for training (
Mi∏
j=1

j), we let these logic atoms share 1635

the same w. In this scenario, SL can be represented 1636

as follows: 1637

µo = tanh(

N∑
i

Mi∑
j

wiµi,j + β), (6) 1638

β = δ(b−
N∑
i

Mi∑
j

|wiµi,j |), (7) 1639

where N is the number of predicates. 1640
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