
Reconstructive Neuron Pruning for Backdoor Defense

Yige Li 1 Xixiang Lyu 1 Xingjun Ma 2 3 Nodens Koren 4 Lingjuan Lyu 5 Bo Li 6 Yu-Gang Jiang 2 3

Abstract
Deep neural networks (DNNs) have been found
to be vulnerable to backdoor attacks, raising secu-
rity concerns about their deployment in mission-
critical applications. While existing defense meth-
ods have demonstrated promising results, it is
still not clear how to effectively remove backdoor-
associated neurons in backdoored DNNs. In this
paper, we propose a novel defense called Re-
constructive Neuron Pruning (RNP) to expose
and prune backdoor neurons via an unlearning
and then recovering process. Specifically, RNP
first unlearns the neurons by maximizing the
model’s error on a small subset of clean sam-
ples and then recovers the neurons by minimiz-
ing the model’s error on the same data. In RNP,
unlearning is operated at the neuron level while
recovering is operated at the filter level, form-
ing an asymmetric reconstructive learning proce-
dure. We show that such an asymmetric process
on only a few clean samples can effectively ex-
pose and prune the backdoor neurons implanted
by a wide range of attacks, achieving a new state-
of-the-art defense performance. Moreover, the
unlearned model at the intermediate step of our
RNP can be directly used to improve other back-
door defense tasks including backdoor removal,
trigger recovery, backdoor label detection, and
backdoor sample detection. Code is available at
https://github.com/bboylyg/RNP.

1. Introduction
Over the past decade, deep neural networks (DNNs) have
demonstrated groundbreaking performance in solving vari-
ous complex real-world problems. However, despite these
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significant successes, recent works have shown that DNNs
are susceptible to different types of adversaries (Szegedy
et al., 2013; Gu et al., 2017). Backdoor attacks represent
one such type of adversary that injects malicious triggers
into victim models during training either by poisoning the
training data or manipulating the training procedure with
specifically-designed trigger patterns. A backdoored model
functions normally with clean data but predicts the pre-
specified backdoor class whenever the trigger patterns ap-
pear. In this era, where pre-trained models and outsourced
training via Machine Learning as a Service (MLaaS) are
commonly adopted to achieve optimal performance at a
minimal cost, the threats posed by backdoor attacks have
increasingly become an issue we cannot overlook.

Numerous methods have been proposed to defend against
backdoor attacks, with detection and removal methods being
the two primary types. Detection methods identify whether
a model has been backdoored (Wang et al., 2019; Guo et al.,
2019; Liu et al., 2019; Xu et al., 2021; Shen et al., 2021; Hu
et al., 2022) or whether a test sample contains a backdoor
trigger (Tran et al., 2018; Chen et al., 2019; Tang et al.,
2021; Zeng et al., 2021; Chen et al., 2022). Removal (or
mitigation) methods are effective in purifying backdoored
models by balancing the backdoor effect and their clean per-
formance (Liu et al., 2018a; Li et al., 2021c; Wu & Wang,
2021). It is often observed in these methods that a back-
doored DNN contains both clean and backdoor neurons,
with the backdoor neurons being activated only by trigger
patterns. The study conducted in (Wu & Wang, 2021) also
shows that backdoor neurons are more sensitive to adver-
sarial perturbations. Intuitively, if backdoor neurons can
be accurately identified from a backdoored model, we can
immediately prune those neurons to obtain a clean model.

To this end, we propose a novel method called Reconstruc-
tive Neuron Pruning (RNP) to expose and prune backdoor
neurons from a backdoored model by unlearning and then
recovering the neurons. Specifically, given a backdoored
model, RNP first unlearns the model by maximizing its
error on clean samples through gradient ascent and then
recovers (relearns) the neurons by minimizing the model’s
error on the same samples. Interestingly, we find that if
the unlearning is performed at the neuron level while the
recovering is performed at the filter level, then the network
tends to relocate the backdoor neurons to compensate for
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the loss of clean features caused by the unlearning. Such an
asymmetric operation can be very effective in locating the
backdoor neurons with only a few clean samples (e.g., 500
images for the CIFAR-10 dataset). The backdoor neurons
can then be easily pruned from the network.

With RNP, we have conducted so far the most extensive
defense experiments in the current literature against 12 ad-
vanced backdoor attacks. Empirical results across different
datasets and model architectures show that our RNP out-
performs the current state-of-the-art method ANP (Wu &
Wang, 2021) against 9/12 attacks on CIFAR-10 dataset and
5/5 attacks on an ImageNet subset. In some cases, our RNP
only needs to remove 41 neurons from the backdoored (by
BadNets (Gu et al., 2017)) model to reduce the attack suc-
cess rate from 100% to 0.20%, while causing no significant
clean accuracy degradation. Moreover, we demonstrate that
the unlearned model obtained at the intermediate step of
RNP can be directly used to improve other backdoor defense
tasks.

To summarize, our main contributions are:

• We introduce the novel technique of neuron unlearn-
ing and recovering on the same set of samples and
reveal that such a simple reconstruction-based learning
process can help expose backdoor neurons in DNNs.

• We propose a new defense method called Reconstruc-
tive Neuron Pruning (RNP), which detects and prunes
backdoor neurons via a neuron-level unlearning fol-
lowed by a filter-level recovering with the help of a few
clean samples.

• We empirically show that RNP outperforms existing
backdoor defenses by a considerable margin against
12 advanced backdoor attacks, and that the unlearned
models can aid in trigger recovery, backdoor label de-
tection, and backdoor sample detection.

2. Related Work
2.1. Backdoor Attack

Depending on how the trigger pattern is crafted, existing
backdoor attacks can be primarily categorized into two
types: input-space attacks and feature-space attacks.

Input-space attacks. This type of attack injects a pre-
defined trigger pattern into a small proportion of the training
data to trick the model into learning the correlation between
the trigger pattern and the backdoor label. The trigger pat-
tern can be relatively simple, such as a single pixel (Tran
et al., 2018), a black-white square (Gu et al., 2017), random
noise (Chen et al., 2017), or more complex patterns such as
adversarial perturbation (Turner et al., 2019), natural reflec-

Table 1. Whether a defense technique can help backdoor detection
(BD), trigger recovery (TR), or backdoor removal (BR).

DEFENSE BD TR BR

NC ✓ ✓ ✗
STRIP ✓ ✗ ✗

FINE-PRUNING ✓ ✗ ✗
ABL ✗ ✗ ✓

I-BAU ✗ ✗ ✓
ANP ✗ ✗ ✓

RNP (OURS) ✓ ✓ ✓

tion (Liu et al., 2020), and sample-wise patterns (Nguyen &
Tran, 2020; Li et al., 2021a; Wang et al., 2022a).

Feature-space attacks. These attacks directly manipulate
the training procedure to optimize the backdoor objective in
the feature space (Shafahi et al., 2018; Cheng et al., 2021;
Zhao et al., 2022) or directly modify the model parameters
via weight perturbation (Garg et al., 2020; Qi et al., 2022b).
These two types of attacks represent two typical threat mod-
els: input-space attacks only need access to a small subset
of the training data, while feature-space attacks require full
access to the training procedure or the final model. Input-
space attacks could occur during the data collection process,
while feature-space attacks could occur in outsourced train-
ing via MLaaS or when downloading pre-trained models
from untrusted sources. As we will show in our experiments,
feature-space attacks are generally more difficult to defend
against than input-space attacks.

2.2. Backdoor Defense

Numerous approaches have been proposed to defend DNNs
against backdoor attacks, among which backdoor detection
and removal methods are the two most popular ones.

Backdoor detection. Several detection works identify back-
doors based on the prediction bias on different input exam-
ples (Li et al., 2020) or the statistical deviation in the feature
space (Tran et al., 2018; Chen et al., 2019; Liu et al., 2022).
More effective detection methods leverage reverse engi-
neering techniques to recover the trigger pattern and then
identify the backdoor label by anomaly detection (Wang
et al., 2019; Liu et al., 2019; Guo et al., 2019; Hu et al.,
2022). The most representative method is Neural Cleanse
(NC) (Wang et al., 2019), which recovers trigger patterns
that can alter the model’s predictions with minimum per-
turbation. There are also methods that detect backdoored
samples at inference time, for example, the STRIP method
(Gao et al., 2019).

Backdoor removal. Backdoor removal methods aim to
erase the backdoors from backdoored models without sig-
nificantly reducing their performance on clean samples.
This line of work includes Fine-tuning, Fine-pruning (Liu
et al., 2018a), Neural Attention Distillation (NAD) (Li et al.,
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Figure 1. Overview of our proposed RNP framework, in comparison with 3 existing backdoor removal methods: Fine-pruning, NAD,
and ANP. RNP exposes the backdoor via a neuron-level unlearning followed by a filter-level recovering. Pruning is then applied to
remove the exposed backdoor neurons. Note that both ANP and our RNP do not need fine-tuning after the pruning.

2021c), Channel Lipschitzness Pruning (Zheng et al., 2022),
and Shapley Estimation (Guan et al., 2022). More recently,
training-time defense methods (Li et al., 2021b; Huang et al.,
2022; Wang et al., 2022b) have been proposed to train clean
models directly on backdoored data. Meanwhile, Adver-
sarial Unlearning of Backdoors via Implicit Hypergradient
(I-BAU) (Zeng et al., 2022) is proposed to cleanse back-
doored models with adversarial training. Another recent
work, Adversarial Neuron Pruning (ANP) (Wu & Wang,
2021), prunes those neurons that are more adversarially
sensitive to remove backdoors. ANP has achieved a new
state-of-the-art result against input-space attacks. Our exper-
iments will show that ANP fails on more advanced feature-
space attacks, indicating that adversarial perturbation may
not be an ideal approach for exposing backdoor neurons that
are deeply intertwined with the features. Table 1 summa-
rizes the benefits of existing and our proposed RNP defense
methods.

3. Proposed Method
In this section, we first introduce the threat model, then
present our proposed defense, Reconstructive Neuron Prun-
ing (RNP), and an illustrative example.

3.1. Threat Model

We assume the adversary has successfully injected a back-
door trigger into the target model. The defender’s goal is
to remove the backdoor trigger from the target model with
minimal impact on its clean accuracy (accuracy on clean test
samples), and at the same time, reveal as much information
about the attack as possible, such as the trigger pattern and
the backdoor label. Following prior works (Li et al., 2021c;
Wu & Wang, 2021), we assume the defender has a small
subset of clean data (e.g., 1% of carefully-examined training
data) to develop the defense strategy, which we call defense

data.

3.2. Reconstructive Neuron Pruning

Overview. Figure 1 illustrates our proposed RNP defense.
At the core of RNP is a reconstructive learning process that
first unlearns the neurons on the defense data via Neuron
Unlearning (NU) and then recovers the neurons on the same
data via Filter Recovering (FR). As the defense data is
clean, NU tends to unlearn primarily the clean neurons, i.e.,
neurons associated with the clean features. The backdoor
neurons, i.e., neurons associated with the backdoor features,
are largely preserved in the unlearned model. As such,
the unlearned model can be leveraged to improve other
analyses such as trigger recovery, backdoor label detection,
and backdoor sample detection.

The mechanisms of existing methods, Fine-pruning, NAD,
and ANP are also illustrated in Figure 1 for comparison.
Fine-pruning is a conventional pruning method that prunes
those small-norm neurons from the backdoored model,
while NAD (Li et al., 2021c) adopts the fine-tuned model as
a teacher to distill neurons of the backdoored model. ANP
(Wu & Wang, 2021) exploits adversarial perturbations to
find neurons that are more sensitive to adversarial pertur-
bations as backdoor neurons. Compared to the adversarial
perturbation technique used by ANP, our RNP, with the
asymmetric unlearning and recovering procedure, exposes
more backdoor-associated neurons and leads to better back-
door purification at the pruning step.

Unlearning. Consider a standard K-class classification
task on poisoned training data D = Dc ∪ Db, with
Dc = {(x(i)

c , y
(i)
c )}Ni=1 representing the clean subset and

Db = {(x(j)
b , y

(j)
b )}Mj=1 representing the backdoor subset.

A backdoor attack, or training a backdoored model, can be
viewed as a dual-task learning problem defined on both the
clean subset Dc (clean task) and the backdoor subset Db
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(backdoor task) as follows:

argmin
θ=θc∪θb

[
E(xc,yc)∈Dc

L(f(xc, yc; θc))︸ ︷︷ ︸
clean task

+ E(xb,yb)∈Db
L(f(xb, yb; θb))︸ ︷︷ ︸

backdoor task

]
,

(1)

where f is the victim model with parameters θ, L denotes
the classification loss (e.g., cross-entropy), and θc and θb de-
note the clean and the backdoor neurons, respectively. The
parameter space of the backdoored model can be decom-
posed into θ = θc ∪ θb because there exists a high level of
independence between the clean task and the backdoor task
(Li et al., 2021c), i.e., backdoor attacks by design should not
impact the model’s performance on clean samples (Gu et al.,
2017). Note that, although θ = θc ∪ θb, it does not mean θc
cannot overlap with θb, i.e., it is possible that θc ∩ θb ̸= ∅.

Intuitively, a model can be unlearned with respect to a cer-
tain task by maximizing its loss on the data that defines
the task, an opposite process to model training. Following
the above formulation, there exist two possible strategies to
unlearn a backdoored model: 1) maximize the model’s loss
on the backdoor data Db, or 2) maximize the model’s loss
on the defense data Dd. The first strategy is infeasible for
backdoor defense as the defender does not know the back-
door data in advance. This naturally leads us to the second
strategy that solves the following maximization problem:

max
θ

E(xd, yd)∈Dd
L(f (xd, yd; θ)), (2)

where L is the cross-entropy loss, and (xd, yd) are the clean
samples in the defense dataset and their labels. We denote
the parameters of the unlearned model by θ̂. Note that the
unlearning is performed at a neuron level for all neurons of
the model, so it is termed as Neuron Unlearning (NU).

The above unlearning strategy is extremely simple but can be
very effective. In fact, it is not surprising that clean neurons
will be effectively unlearned if the above maximization is
applied to the entire clean data Dc. Interestingly, we find
that the unlearning can be easily achieved with only a few
clean samples, i.e., the defense data required by the defender
is extremely small (i.e., |Dd| ≪ |D|). For example, on the
CIFAR-10 dataset, 1% of the clean training data is sufficient
to expose the backdoor neurons injected by a wide range of
advanced backdoor attacks. Moreover, the unlearning can
be safely terminated when the performance of the model
on defense data Dd is close to random guess. Note that the
backdoor label inference step is performed on the unlearned
model with the defense data, i.e., the unlearned model tends
to predict the backdoor label for all defense samples (one
unique property of the unlearned model as further explained
in Appendix D.3).

Algorithm 1 Reconstructive Neuron Pruning (RNP)
Input: A backdoored model fθ(·) with parameter θ, the to-

tal number of classes K, defense data Dd, learning rate
η, clean accuracy threshold CAmin, dynamic threshold
DT in [0, 1]

1: Sample a mini-batch (Xd, Yd) from Dd

# Neuron-level unlearning
2: repeat
3: θ̂ ← max

θ
L(f (xd, yd; θ))

4: until fθ̂’s clean accuracy CAfθ̂
(Dd) ≤ CAmin

5: Backdoor label: yt = argmax
K

f(xd; θ̂)

# Filter-level recovering
6: mκ = [1]n # initialized to be all ones
7: repeat
8: mκ = mκ − η ∂L(f(Xd,Yd; m

κ⊙θ̂))
∂mκ

9: mκ = clip[0,1](m
κ) # 0-1 clipping

10: until training converged
# Pruning

11: mκ = I (mκ > DT ) # binarization for pruning
Output: fmκ⊙θ, yt

Recovering. This step aims to recover the clean features
(features of the clean samples) erased by the previous un-
learning step. Recovering can be effectively done by up-
dating the unlearned model to minimize its classification
loss on the defense data, a process similar to model training.
In our RNP, the recovery is performed on the filters rather
than the neurons, and a filter mask is used to locate potential
backdoor filters (and their associated neurons). We term this
technique as Filter Recovering (FR). Formally, FR solves
the following minimization problem to learn the mask:

min
mκ∈[0,1]n

E(xd,/yd)∈Dd
L(f(xd, yd;m

κ ⊙ θ̂)), (3)

where xd ∈ Dd is the defense data, L is the cross-entropy
loss, θ̂ are the parameters of the unlearned model obtained
via NU, and mκ is a mask applied on the filters. Finding the
optimal mask mκ can be viewed as a process to restore as
many clean filters as possible to recover the model’s clean
features on Dd.

The question is why recovering should be applied to the
filters. Intuitively, if unlearning is also applied to the neu-
rons, it will become a direct reversal of the unlearning,
ending up with the unlearned clean neurons restored to their
original values. This does not help expose the backdoor
neurons. Filter-level recovering restricts the freedom of
recovery to a coarser granularity, thus forcing the model
to reuse the dormant backdoor neurons to compensate for
the loss of the clean features. The clean neurons in this
process are also relearned to recover the clean functionality,
which, however, is not sufficient due to the limitation of the
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Figure 2. The feature maps (channel-wise averaged) of one back-
doored image at the second residual block of a backdoored ResNet-
18 model (by BadNets), and the unlearned, the recovered, and the
pruned models by our RNP. The rectangles and circles highlight
the regions that are mostly activated by the clean and backdoor
patterns, respectively.

filter-level recovery. Neuron unlearning and filter recovering
form an asymmetric unlearning-recovering (maximization-
minimization) mechanism to expose backdoor neurons. We
will provide empirical understandings of the mechanism and
the necessity of unlearning-recovering in Section 4.3.

Pruning. The elements in the filter mask mκ are all initial-
ized to be one and clipped to be within the range of [0, 1]
during the recovering process. After recovering, a low value
close to zero in mκ indicates that the filter (and its asso-
ciated neurons) contains mostly repurposed neurons that
are likely to be backdoor-related. These neurons can thus
be pruned to purify the backdoored model. As shown in
Figure 2, in the recovered model, the activations related to
the trigger pattern are greatly decreased (mask value de-
creases to almost zero) while those of the clean features are
significantly boosted (mask value remains close to 1 due to
the clipping operation).

The complete procedure of our RNP is described in Algo-
rithm 1, where pruning is applied to the original model fθ
based on the learned filter mask mκ. The optimal pruning
rate can be flexibly determined via dynamic thresholding
in [0, 1]. The idea is to prune as many neurons as possible
until the drop in the clean accuracy becomes unacceptable.
In our experiments, we take dynamic thresholding as our
default setting, unless otherwise stated. More analyses of
different pruning rate determination strategies and the num-
ber of neurons pruned by our RNP can be found in Table 8
(see Appendix B.2) and Table 3, respectively.

3.3. An Illustrative Example

Here, we provide an illustrative example to understand and
verify that asymmetric unlearning and recovering can ex-
pose backdoor neurons.

Figure 2 visualizes the feature maps of a backdoored im-
age at the second residual block of a backdoored ResNet-18
model. Specifically, at the unlearning step, the clean neurons
(features) are unlearned to have much weaker signals (in-
dicated by the blurry feature map of the unlearned model),
especially the most salient features (those in the yellow
rectangles). At the recovering step, those weakened clean
features will be boosted back to their initial intensity, so
their corresponding mask values will increase (rather than
decrease). Conversely, the backdoor neurons will be re-
purposed by the recovering process to compensate (or help
boost) the weakened clean neurons, so their mask values
will be largely decreased (close to zero), and their activa-
tions will almost “disappear”. This can be observed from
the dark blue region of the recovered model at the bottom
right corner (marked by the red dashed circle) of the feature
map. Note that the mask mκ is an element-wise scaling
matrix applied to each filter, as defined in Eqn. 3.

The above result indicates that the neuron-level unlearning
erases the clean feature (although not completely) while
keeping the backdoor feature almost unchanged. The re-
covered model relocates the neurons associated with the
backdoor to compensate for the clean feature, and the back-
door is completely removed from the pruned model. More
understanding of why asymmetric unlearning and recover-
ing is the key to exposing backdoor neurons can be found
in Section 4.3.

4. Experiments
4.1. Experimental Setup

Attack Setup. We primarily consider 12 state-of-the-art
backdoor attacks. These include 7 input-space attacks: Bad-
Nets (Gu et al., 2017), Trojan (Liu et al., 2018b), Blend
(Chen et al., 2017), Dynamic (Nguyen & Tran, 2020),
WaNet (Nguyen & Tran, 2021), SIG (Barni et al., 2019),
and CL (Turner et al., 2019), as well as 3 feature-space at-
tacks: FC (Shafahi et al., 2018), DFST (Cheng et al., 2021),
and AWP (Garg et al., 2020). In addition, two recently
proposed adaptive attacks termed LIRA (Doan et al., 2021)
and Adaptive-Blend (A-Blend) (Qi et al., 2022a) are also
considered. We follow the default settings suggested in their
original papers and the open-source codes for most attacks,
including the trigger pattern, trigger size, and backdoor la-
bel. As in previous works (Wu & Wang, 2021; Li et al.,
2021b), we evaluate the defense performance against the
12 attacks on the CIFAR-10 dataset and an ImageNet-12
dataset. The backdoor label of all attacks is set to class
0. The detailed settings of these attacks and datasets are
summarized in Table 6. It should be noted that some of
the attacks are not considered for ImageNet-12 because 1)
they were not proposed for ImageNet and 2) they failed to
reproduce on ImageNet-12.
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Table 2. Performances of 5 backdoor defense methods against 12 backdoor attacks. The experiments were done on CIFAR-10 with
ResNet-18 and ImageNet-12 subset with ResNet-34 using only 1% clean defense data. ASR: attack success rate (%); CA: clean accuracy
(%). The best results are boldfaced.

Datasets
Backdoor
Attacks

No Defense FP NAD I-BAU ANP RNP (Ours)
ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA

CIFAR-10

BadNets 100.00 93.40 15.11 88.15 1.20 90.64 15.50 91.18 0.53 91.61 0.20 92.22
Trojan 99.90 93.15 56.51 85.43 5.68 88.72 12.78 90.46 1.00 92.37 2.23 92.56
Blend 100.00 93.10 68.22 85.21 10.92 89.77 1.62 90.16 0.50 92.31 0.33 92.62

CL 100.00 94.84 24.38 88.75 13.17 89.76 23.12 88.82 15.20 92.86 8.87 93.12
SIG 90.86 94.59 19.16 87.88 0.64 89.40 29.32 89.67 1.19 92.97 0.43 94.62

Dynamic 99.97 91.36 41.73 83.28 13.60 88.64 18.74 86.87 9.20 89.66 15.24 90.18
WaNet 99.10 93.67 68.92 86.35 17.46 82.41 23.18 87.38 13.14 92.64 10.98 92.83

FC 100.00 94.67 98.45 87.62 36.07 88.02 17.93 86.75 74.75 81.97 1.80 90.93
DFST 100.00 94.52 88.78 85.32 12.70 88.72 25.58 87.44 10.80 90.66 4.61 92.78
AWP 94.39 94.30 23.17 86.04 1.71 89.13 8.71 89.62 0.67 92.64 1.04 94.24
LIRA 100.00 92.71 87.78 83.12 32.12 86.73 51.33 82.56 20.25 87.78 13.51 92.26

A-Blend 71.86 92.16 85.22 81.82 18.51 85.23 33.38 85.91 23.71 90.16 1.09 90.38
Average 96.34 93.54 56.45 85.75 13.65 88.10 21.77 88.07 14.25 90.64 5.03 92.18

ImageNet-12

BadNets 100.00 88.53 91.70 83.23 9.12 83.26 15.38 85.15 10.25 85.21 5.80 85.83
Trojan 100.00 89.79 93.69 81.40 12.31 82.52 19.61 84.11 7.48 87.41 0.59 89.30
Blend 99.90 89.44 92.14 82.13 28.76 82.93 9.34 82.27 6.21 86.40 5.54 86.89
SIG 73.78 88.18 87.82 81.27 21.15 83.31 29.23 81.57 25.53 52.52 15.20 84.15
FC 95.77 88.95 90.52 79.36 31.43 81.56 38.51 79.33 42.69 53.01 17.23 83.36

Average 93.89 88.98 91.17 81.48 20.55 82.72 22.41 82.49 18.43 72.91 8.87 85.91

Defense Setup. We consider a total of 8 backdoor defense
methods, which include 2 backdoor detection methods: Neu-
ral Cleanse (NC) (Wang et al., 2019) and STRIP (Gao et al.,
2019), 5 existing backdoor removal methods: Fine-pruning
(FP) (Liu et al., 2018a), Neural Attention Distillation (NAD)
(Li et al., 2021c), Adversarial Unlearning of Backdoors via
Implicit Hypergradient (I-BAU) (Zeng et al., 2022), Ad-
versarial Neuron Perturbation (ANP) (Wu & Wang, 2021),
Anti-backdoor Learning (ABL) (Li et al., 2021b), and lastly,
our RNP. All defenses share limited access to only 500
clean samples as their defense data (for both CIFAR-10 and
ImageNet-12). Two typical data augmentation techniques
(horizontal flip and random crop) are applied. We follow the
open-source codes of FP, NAD, and ANP, and adjust their
hyper-parameters to obtain the best performance on differ-
ent attacks. For our RNP, the maximum unlearning epochs
are set to 20 and the actual unlearning epochs range from 5
to 15, depending on the datasets, models, and attacks.

Evaluation Metrics. We adopt three metrics for defense
evaluation: 1) Detection Rate (DR), which is the success
rate of the defense in identifying the backdoor label or the
backdoored model; 2) Clean Accuracy (CA), which is the
model’s accuracy on clean test data; and 3) Attack Success
Rate (ASR), which is the model’s accuracy on backdoored
test data.

4.2. Main Defense Results

Results on CIFAR-10. Table 2 reports the defense per-
formances of 5 backdoor defense methods against the 12
backdoor attacks on CIFAR-10. It is clear that our RNP
achieves the best defense performance by reducing the aver-
age ASR from 96.34% to 5.03% with the minimum drop of
CA (less than 2% on average). In contrast, FP, NAD, I-BAU,
and ANP only reduce the average ASR to 56.45%, 13.65%,
21.77%, and 14.25%, respectively.

We notice that each defense method has its limitations
against some specific attacks. For instance, even though
RNP has the best overall performance, it is weaker than
ANP in defending against the Dynamic attack by approx-
imately 6.04% of ASR. On the other hand, while ANP
achieves considerable results against most attacks, it has
much poorer performance on FC, reducing the ASR only to
74.75%. We speculate that the adversarial perturbation in
ANP cannot effectively locate the backdoor neurons when
the backdoor features were optimized to collide with the
clean features (and so as the neurons) by the FC attack.
NAD also mirrors a similar pattern, which struggles to de-
fend against FC, WaNet, and DFST. Meanwhile, our RNP
also outperforms the recent defense I-BAU on all attacks.
In terms of ASR, RNP surpasses I-BAU by more than 15%
against BadNets, CL, SIG, and FC attacks, more than 10%
against WaNet, DFST, and more than 1% against Blend
and Dynamic. In terms of CA, RNP outperforms I-BAU
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Table 3. The number of neurons pruned by ANP and our RNP against 12 types of backdoor attacks on the CIFAR-10 dataset. Neurons ↓
indicates the total number of neurons being pruned, and on All means the pruning across all the blocks of ResNet-18.

Defense Metric BadNets Trojan Blend CL SIG Dynamic WaNet FC DFST AWP LIRA A-Blend

ANP
Neurons ↓ (on All) 94 96 42 135 88 69 126 199 165 56 158 96

ASR (%) 0.53 1.00 0.50 15.20 1.19 9.20 13.14 74.75 10.80 0.67 20.25 23.71
CA (%) 91.61 92.37 92.31 92.86 92.97 89.66 92.64 81.97 90.66 92.64 87.78 90.16

RNP
Neurons ↓ (on All) 41 48 28 103 73 59 92 155 83 40 112 78

ASR (%) 0.20 2.23 0.33 8.87 0.43 15.24 10.98 1.80 4.61 1.04 13.51 1.09
CA (%) 92.22 92.56 92.62 93.12 94.62 90.18 92.83 90.93 92.78 94.24 92.96 90.38

by more than 3% against SIG, Dynamic, WaNet, and FC.
Finally, FP has the poorest overall performance with an av-
erage ASR higher than 50% against most attacks, indicating
that pruning the most dormant neurons on the clean inputs is
not accurate enough against advanced attacks. More results
of our RNP with different DNN architectures can be found
in Appendix B.3.

Results on ImageNet-12. The results on the ImageNet-
12 dataset are also presented in Table 2. It is evident that
our RNP surpasses all 4 baselines in terms of either ASR
or CA. Particularly, RNP outperforms FP, NAD, I-BAU,
and ANP by 82.3%, 11.68%, 13.54%, and 9.56% more
ASR reduction respectively, with only ≤ 3% decline in CA.
Note that the two current SOTA defenses I-BAU and ANP
failed to defend against the SIG and FC attacks to a large
extent. More specifically, I-BAU/ANP only reduces the
ASR to 29.23%/25.53% against SIG and 38.51%/42.69%
against FC attacks. Our RNP is more effective against these
two attacks than I-BAU and ANP, decreasing their ASRs
to 15.20%, and 17.23%, respectively. This is somewhat
unsurprising that the two attacks become more effective on
high-resolution images, as SIG adds large and repetitive
sinusoidal patterns into the background while FC directly
attacks the representation space.

In summary, our RNP achieves superior performance against
a wide range of attacks compared to the 4 baselines. This
is due to RNP’s ability to expose and identify backdoor
neurons via its asymmetric unlearning-recovering process,
leading to a more precise pruning effect. The sensitivity of
RNP to different model architectures and poisoning rates are
provided in Appendix B.3 and Appendix B.6, respectively.

The Number of Neurons Pruned by RNP. Here, we show
the number of neurons pruned by ANP and our RNP against
12 backdoor attacks and report the results on the CIFAR-10
dataset in Table 3. These results show that 1) only a few neu-
rons in a backdoored DNN are responsible for the backdoor
functionality; and 2) complex attacks such as CL, WaNet,
FC, and LIRA tend to create more backdoor neurons, and
in this case, ANP has to prune more neurons than our RNP
to reduce the ASR. For instance, ANP needs to prune 94,

96, and 42 neurons to defend against input-space attacks
BadNets, Trojan, and Blend, respectively. By contrast, our
RNP can achieve comparable or even better defense perfor-
mance by pruning roughly half the number of neurons. A
similar advantage of RNP can also be observed against other
advanced attacks. The above findings shed new light on the
working mechanism of backdoor attacks and also verify the
preciseness of our RNP in locating the backdoor neurons.
The results of RNP under different pruning strategies can
be found in Appendix B.2.

RNP against Strong Adaptive Attacks. Here, we test the
resistance of our RNP defense to strong adaptive attacks.
We design two adaptive attacks: 1) Adaptive-distillation,
which leverages knowledge distillation to align the neuron
activation of a backdoored student network with that of a
cleanly trained teacher network; and 2) Adv-training, which
adversarially perturbs the backdoor neurons identified by
our RNP and then fine-tunes the model on the clean subset
of defense samples. Both attacks are designed to make ex-
posing backdoor neurons very difficult. Table 4 reports the
defense results of ANP and our RNP against the 2 adaptive
attacks. It is clear that ANP has failed to defend against the 2
adaptive attacks to some extent (ASR=24.81% and 54.01%).
Our RNP, on the contrary, is fairly robust to both attacks
with the ASR reduced to 13.22% and 18.09% respectively
while maintaining a high CA.

In the future, it is certainly possible that more advanced
attacks could break our defense. However, in the current
literature, we believe our RNP, as a simple and general
framework, has proven itself to be the most effective defense
against the most diverse attacks. We have also tested RNP’s
effectiveness against all-to-all attacks in Appendix B.4 and
various trigger sizes in Appendix B.5.

Impact of the Defense Data Size. In this part, we explore
the impact of the size of the defense data used to unlearn the
backdoored model. We monitor the performance of RNP
under varying sizes of the defense (unlearning) set, includ-
ing 0.5% (250), 1% (500), 5% (2500), and 10% (5000) of
the original clean training set, respectively, and present the
results in Figure 3. We find that the more clean data used
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Figure 3. Performance (ASR/CA) of RNP under different defense
data sizes (%) against 5 attacks.
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Figure 4. Performance (ASR/CA) of RNP under different unlearn-
ing epochs against 5 attacks.

Table 4. Defense results of ANP and our RNP on CIFAR-10 dataset
against 2 adaptive attacks: 1) Adaptive-distillation (Adapt-D) and
2) Adv-training (Adv-T).

Adaptive
Attacks

No Defense ANP RNP (Ours)

CA ASR CA ASR CA ASR

Adapt-D 91.56 84.76 89.78 24.81 90.58 13.22

Adv-T 88.56 73.36 83.06 54.01 86.15 18.09

in unlearning, the stronger RNP’s ability to reduce the ASR
for most attacks. However, the results are counter-intuitive
for CA, especially for the Dynamic and CL attacks. Surpris-
ingly, the CA drops as the size of the unlearning set grows.
More specifically, the CA drops rapidly from nearly 90% to
less than 30% as we increase the size of the defense set to
10%. We conjecture that this is because both CL and Dy-
namic cover the whole image with complex trigger patterns
(possibly confusing with the clean feature representation),
and thus the more clean data used in unlearning, the higher
the chance for RNP to accidentally prune clean neurons.
To summarize, our RNP achieves a higher CA with fewer
data (i.e., 0.5% and 1%) for all these attacks, which is more
practical for data-limited situations.

Impact of Unlearning Epochs. We are also interested
in the impact of unlearning epochs on the performance of
RNP. Therefore, we investigate the defense performances
of RNP against 5 backdoor attacks (i.e., BadNets, SIG, CL,
Dynamic, and FC) after the 5th, 10th, 15th, and 20th epochs
of unlearning, respectively, and plot them in Figure 4. We
find that unlearning the model for an excessive number of
epochs hinders defense performance. More specifically, as
we increase the unlearning epoch from the 10th to the 15th,
the ASR does not drop further (in fact, it even becomes
slightly higher), while the CA declines substantially for 4
of the 5 attacks. A possible explanation is that a gradient
explosion occurs when maximizing the loss on the clean
defense data, causing the unlearned model to collapse in
later epochs (e.g., the 15th). This is why we terminate the
unlearning immediately when the CA drops to a random
guess (i.e., 10%).

4.3. Understanding the Mechanism of RNP

Asymmetric Unlearning-Recovering. We first show that
asymmetric unlearning and recovering are key to success-
fully exposing backdoor neurons. We demonstrate this by
investigating the deep features obtained via different combi-
nations of neuron unlearning (NU), neuron recovering (NR),
filter unlearning (FU), and filter recovering (FR).

As can be observed in the left subfigure of Figure 5, sym-
metric unlearning-recovering, i.e., NU-NR and FU-FR, can
hardly affect the backdoor features. Neuron recovering in
NU-NR and FU-NR can recover more clean features than
filter recovering, as it offers more capacity to recover the
neurons. Filter recovering (i.e., NU-FR and FU-FR), on
the other hand, leads to darker feature maps (fewer activa-
tions) at the shallow layers (i.e., Block 2 and Block 3). This
implies that filter recovering indeed limits the capacity for
clean feature recovery.

Filter unlearning followed by a fine-grained neuron recov-
ering (i.e., FU-NR) can mitigate the backdoor at the deep
layers (Block 4) but not at the shallow layers (Block 2).
The clean features are largely recovered, yet some backdoor
features still exist. Only the neuron unlearning followed by
a coarse-grained filter recovering (i.e., NU-FR) can effec-
tively force the model to erase the backdoor features (and
the associated backdoor neurons). The defense performance
of the 4 strategies shown in the right subfigure of Figure
5 also confirms its effectiveness in locating and removing
the backdoor neurons. In Appendix C.2, we also show that
filter recovering can be effectively achieved at a few layers,
e.g., layers before each batch normalization. However, it
has to be applied across the network at both shallow and
deep layers to achieve the best result.

Necessity of Unlearning and Recovering. Apart from the
“asymmetric” working mechanism of RNP, we have also
run 3 experiments (with CIFAR-10, ResNet-18, and 500
clean images as defense data) to show whether we need
both neuron unlearning (maximization) and filter recovering
(minimization) in Table 13 (Appendix C.1). The findings
can be summarized as follows. 1) Unlearning without re-
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Figure 5. Left: The feature maps (channel-wise averaged output at the 2nd, 3rd, and 4th residual blocks of ResNet-18) of a backdoored
image under 4 different unlearning-recovering strategies: NU-NR, FU-FR, FU-NR, and NU-FR. The squares and circles highlight the
backdoored and clean regions, respectively. Right: The defense performance (ASR and CA) of the 4 unlearning-recovering strategies.
These experiments were conducted with ResNet-18 and BadNets attack on CIFAR-10. NU: neuron unlearning; FU: filter unlearning; NR:
neuron recovering; FR: filter recovering.

covering causes CA to drop significantly, which verifies
the usefulness of the recovery step. 2) recovering without
unlearning cannot decrease ASR, which proves that unlearn-
ing is a MUST. 3) Unlearning by learning incorrectly (i.e.,
minimizing towards a wrong target rather than maximizing)
is notably worse than our RNP. The detailed discussion and
analysis of the above findings are provided in Appendix C.

More Explorations with the Unlearned Model. Here, we
demonstrate one important benefit of our RNP, that is, the
unlearned model (NU-model) produced at its unlearning
step can be leveraged to improve other backdoor defense
tasks. First of all, the unlearned model directly exposes the
backdoor label (class) since the functionality of the clean
classes has been unlearned. When applying the trigger re-
covery and backdoor detection method Neural Cleanse (NC)
(Wang et al., 2019) on the unlearned model (rather than
the original model), one can expose the potential backdoor
target more easily and improve the quality of the recovered
triggers. When applying the backdoor sample detection
method STRIP (Gao et al., 2019) on the unlearned model,
one can detect backdoor samples that are notably more com-
plex and stealthy. Moreover, the unlearned model can also
help boost the defense performance of existing backdoor re-
moval methods like Fine-Pruning (Liu et al., 2018a). More
detailed analyses can be found in Appendix D.

5. Limitation
While our RNP achieves promising results against exist-
ing attacks, it does have several limitations: 1) It is not
theoretically guaranteed to defend against all unforeseen
attacks, thus having the risk of being compromised by more
advanced attacks; 2) RNP faces a noticeable challenge when
defending against backdoor attacks with low poisoning rates
(e.g., the poisoning rate ≤ 1%), in which backdoor-related

neurons/features are much easier to hide within clean neu-
rons/features, leading to inaccurate pruning; 3) RNP fails to
erase backdoors trained on lightweight model architectures
like EfficientNet, sacrificing too much CA to reduce the
ASR without fine-tuning. We will address these limitations
of our RNP defense in our future work.

6. Conclusion
This paper proposes a novel and effective method called
Reconstructive Neuron Pruning (RNP) to expose and prune
the backdoor neurons from backdoored DNNs. At the core
of RNP is an asymmetric unlearning-recovering scheme
that first unlearns the neurons on a few clean samples via
a neuron-level unlearning, and then recovers the neurons
on the same clean samples via a filter-level recovering.
We revealed the phenomenon that asymmetric unlearning-
recovering from fine-grained unlearning to coarse-grained
recovering can help expose backdoor neurons. We empiri-
cally demonstrated the effectiveness of RNP as a backdoor
defense method and the benefit of the unlearning technique
itself to other backdoor defense tasks, including trigger
recovery, backdoor label detection, and backdoor sample
detection. We hope our work could provide a new perspec-
tive for the community to develop more powerful backdoor
defenses in the future.
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A. Implementation Details of RNP
A.1. Datasets and Classifiers

The datasets and DNN models used in our experiments are summarized in Table 5.

Table 5. Detailed information of the datasets and classifiers used in our experiments.

Dataset Labels Input Size Training Images Classifier

CIFAR-10 10 32 x 32 x 3 50000 ResNet-18/ VGG-16/ MobileNet-V2
ImageNet subset 12 224 x 224 x 3 12406 ResNet-34

A.2. Attack Details

We mainly considered 12 state-of-the-art backdoor attacks, including 7 input-space attacks: BadNets (Gu et al., 2017),
Trojan (Liu et al., 2018b), Blend (Chen et al., 2017), Dynamic (Nguyen & Tran, 2020), WaNet (Nguyen & Tran, 2021), SIG
(Barni et al., 2019), and CL (Turner et al., 2019), and 3 feature-space attacks: FC (Shafahi et al., 2018), DFST (Cheng et al.,
2021), and AWP (Garg et al., 2020). In addition, we evaluated two recently proposed adaptive attacks termed LIRA (Doan
et al., 2021) and Adaptive-Blend (A-Blend) (Qi et al., 2022a).

Figure 6 shows a few examples of the backdoor triggers used in our experiments. All attacks were mainly trained on
CIFAR-10 (Krizhevsky et al., 2009) to attack the ResNet-18 model (He et al., 2016) or an ImageNet-12 (Deng et al., 2009)
subset to attack ResNet-34. We trained all models for 200 epochs using Stochastic Gradient Descent (SGD) with an initial
learning rate of 0.1, a batch size of 128, and a weight decay of 5e-4 to obtain the backdoored models. The learning rate
was divided by 10 at the 60th and 120th epochs. We used two standard data augmentation techniques (horizontal flip and
random crop with padding 4× 4) during model training. We followed the default settings suggested in the original papers
and the open-source codes for most attacks; this included the trigger pattern, trigger size, and backdoor label. We also tuned
the hyperparameters of several attacks that were negatively affected by the two data augmentations to obtain the best attack
performance. We carefully altered the hyperparameter configurations for several feature-space attacks to ensure that they
achieved the best attack performances. The backdoor label of all attacks was set to class 0. We also evaluated the defense
performance of our RNP on an ImageNet-12 subset. Following previous work (Li et al., 2021b), we reproduced 5 attacks
on ImageNet-12: BadNets, Blend, Trojan, SIG, and FC. We omitted the other attacks due to failed reproductions. Table 6
summarizes the detailed settings of these attacks.

Table 6. Attack settings of 12 backdoor attacks. ASR (%): attack success rate; CA (%): clean accuracy.

Attacks Trigger Type Trigger Pattern Target Label Poisoning Rate

BadNets Fixed Grid 0 0.1
Trojan Fixed Reversed Watermark 0 0.1
Blend Fixed Random Pixel 0 0.1

Dynamic Varied Mask Generator 0 0.1
SIG Fixed Sinusoidal Signal 0 0.08
CL Fixed Grid and PGD Noise 0 0.08
FC Varied Optimization-based source 1, target 0 0.08

DFST Varied Style Generator 0 0.1
WaNet Varied Optimization-based 0 0.1
AWP Fixed Weight Perturbation 0 0.1
LIRA Varied Optimization-based 0 0.1

A-Blend Fixed Mixer Construction 0 0.1

A.3. Defense Details

We experimented with 8 backdoor defenses in total, including 2 backdoor detection methods: Neural Cleanse (NC) (Wang
et al., 2019) and STRIP (Gao et al., 2019), and 5 backdoor removal methods: Fine-pruning (FP) (Liu et al., 2018a), Neural
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Figure 6. Examples of 12 backdoor trigger patterns on CIFAR-10.

Attention Distillation (NAD) (Li et al., 2021c), Adversarial Unlearning of Backdoors via Implicit Hypergradient (I-BAU)
(Zeng et al., 2022), Adversarial Neuron Perturbation (ANP) (Wu & Wang, 2021), Anti-backdoor Learning (ABL) (Li
et al., 2021b), and our RNP. All defenses had limited access to only 500 defense data from the CIFAR-10 training set (or
ImageNet-12).

We used the open-source PyTorch code for NC 1 to reproduce the results of backdoor detection and trigger recovery. To
combine our NU with the existing method NC (i.e., NU+NC), we replaced only the original model f used by NC with
our unlearned model fθ̂ and kept other settings unchanged. For STRIP, we calculated the relative entropy between the
backdoored model’s output distributions on clean vs. backdoored examples. We then compared the difference in relative
entropies between the original backdoored model and the unlearned backdoored model θ̂NU .

We reimplemented FP using PyTorch and pruned the last convolutional layer (i.e., Layer4.conv2) of the model until the
CA of the network became lower than 80%. For NAD, we adopted the same settings used in the open-sourced code 2 and
cautiously selected the best hyper-parameter β from [0, 5000] with an interval of 500. For I-BAU, we followed the settings
used in the open-sourced code 3 to present the best defense results. We used the open-source code for ANP 4, and followed
the suggested settings with the perturbation budget ϵ = 0.4 and the trade-off coefficient α = 0.2 to optimize the mask. We
also combined our NU with NC to recover the trigger patterns and then erased the triggers from the backdoored model using
the unlearning technique used in ABL.

For our RNP defense, we maximized the unlearned model fθ̂ for 20 epochs until its clean accuracy dropped to 10% (random
guess) with a learning rate of 0.01, a batch size of 128, and a weight decay of 5e-2. For the recovering step, we optimized
the filter mask for 20 epochs with a learning rate of 0.2. In comparison to pruning by fraction, we found that pruning the
neurons by a dynamic threshold often yielded better performance, and adopting a threshold within [0.4, 0.7] consistently
produced the best results of RNP (low ASR and high CA) against all backdoor attacks. Note that ANP also suggested the
dynamic threshold strategy. The neurons were pruned based on the learned mask using the dynamic thresholding strategy for
an accuracy drop ∼ 2%. See Table 8 and Table 3 for more detailed analyses of different pruning strategies and pruning rates.

All defense methods were trained using the same data augmentation techniques, i.e., random crop (padding = 4) and
horizontal flipping as mentioned in the attack settings.

1https://github.com/VinAIResearch/input-aware-backdoor-attack-release/tree/master/defenses/neural cleanse
2https://github.com/bboylyg/NAD
3https://github.com/YiZeng623/I-BAU
4https://github.com/csdongxian/ANP backdoor
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Table 7. Comparison between ANP and our RNP against 6 backdoor attacks on GTSRB dataset. Note that only 500 clean samples are
used as defense data.

Backdoor Attacks No Defense ANP RNP (Ours)
ASR CA ASR CA ASR CA

BadNets 100 96.83 3.59 95.37 0.16 95.49
Blend 100 96.71 2.59 94.57 1.64 95.54
Trojan 99.97 96.14 5.73 94.27 6.96 95.35

CL 68.65 95.53 5.8 91.32 0 94.24
SIG 85.13 96.33 0 22.89 5.74 94.91

Dynamic 100 97.11 7.27 96.58 6.11 96.65

B. Additional Experimental Results of RNP
B.1. Comparison between RNP and ANP on the GTSRB Dataset

We conducted a set of new experiments on the suggested GTSRB dataset. Table 7 below reports the performance of ANP
and our RNP against 6 typical attacks (BadNets, Trojan, Blend, CL, SIG, Dynamic). The results indicate that our RNP
method generalizes well and consistently outperforms ANP on this new dataset against the 6 attacks.

B.2. RNP with Different Pruning Strategies

Existing work (Wu & Wang, 2021) implemented neuron pruning with two different strategies: threshold or fraction. The
threshold-based strategy prunes the neurons with a mask value smaller than the pre-specified threshold (by setting the
neuron weight to 0), while the fraction-based strategy prunes a certain proportion of the neurons via the mask. To verify
their effectiveness, we trained BadNets models using ResNet-18 with similar settings as described in Section 4. For a fair
comparison, we reported the performance metrics such as ASR, CA, and the number of pruned neurons in Table 8. We
found that the threshold-based strategy achieves better results on both ASR and CA than fraction-based pruning (ASR:
92.22 VS. 91.82, CA: 0.20 VS. 0.47). Interestingly, the superiority of the threshold-based strategy is also reflected by the
number of pruned neurons (Neurons: 41 vs. Neurons: 48); fewer pruned neurons result in less effect on the CA. This finding
provides another piece of evidence of how effective and precise our RNP can expose the backdoor neurons. As a result, we
set the threshold-based strategy as the default setting throughout all experiments unless otherwise specified.

Table 8. Comparison to the pruning strategy by dynamic threshold and by fraction against BadNets on ResNet-18, respectively. Neurons ↓
indicates the number of neurons pruned.

By Threshold 0 0.2 0.5 0.6 0.65 0.7 0.75 0.8
Neurons ↓ 0 0 5 11 23 41 75 178

ASR (%) 100 100 100 95.50 81 0.2 0 0
CA (%) 93.4 93.4 93.39 92.84 92.8 92.22 91.17 86.92

By Fraction (%) 0 1 2 3 4 5 8 10
Neurons ↓ 0 48 93 144 192 240 384 432

ASR (%) 100 0.47 0.16 0 0 0 0 0
CA (%) 93.4 91.82 89.81 89.02 85.71 81.68 72.20 64.93

B.3. RNP with Different Model Architectures

We also evaluated our RNP with additional model architectures, including ResNet-18, VGG-19, MobileNet-V2, and
EfficientNet-B0. Table 9 reports the performance of ANP and our RNP against 3 typical attacks (BadNets, Trojan, Blend)
on the CIFAR-10 dataset. The results indicate that our RNP generalizes well across most different model architectures (i.e.,
ResNet-18, VGG-19, and MobileNet-V2) but faces challenges with the EfficientNet architecture.

Specifically, we found that RNP achieves better defense performance than ANP on ResNet-18, VGG-19, and MobileNet-V2
while facing the same challenge as ANP on EfficientNet-B0, where the accuracy of the pruned model dropped significantly.
We speculate that this result may be related to the design of lightweight model structures. The sparse neurons in lightweight
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model structures limit the asymmetric unlearning-recovering and make it difficult to locate the backdoor neurons accurately,
thereby leading to decreased performance of RNP. We will investigate and address the performance degradation of RNP on
such lightweight model structures in our future research.

Table 9. Defense performance (ASR and CA) of ANP and our RNP with different model architectures on the CIFAR-10 dataset. Note that
only 500 images are used for defense.

Model Architectures Metric ResNet-18 Vgg-19 MobileNet-V2 EfficienNet-B0
No

Defense ANP RNP
(Ours)

No
Defense ANP RNP

(Ours)
No

Defense ANP RNP
(Ours)

No
Defense ANP RNP

(Ours)

BadNets ASR 100 0.53 0.20 100 3.31 0.38 100 5.92 3.17 100 3.12 2.79
CA 93.40 91.61 92.22 92.63 92.37 92.57 92.89 90.48 91.67 76.74 34.31 65.62

Trojan ASR 99.90 1.00 2.23 99.98 2.60 2.49 100 2.03 2.96 100 3.63 1.18
CA 93.15 92.37 92.56 92.67 92.44 92.31 93.01 90.91 90.21 76.48 28.83 68.17

Blend ASR 100 0.50 0.33 100 2.93 2.72 100 1.79 1.21 100 6.32 4.38
CA 93.10 92.31 92.62 92.60 92.17 92.06 92.80 86.71 90.26 75.52 21.43 63.77

Table 10. Comparison between ANP and our RNP against 3 all-to-all backdoor attacks on CIFAR-10. Note that only 500 clean samples
are used as defense data.

Backdoor Attacks No Defense ANP RNP (Ours)
ASR CA ASR CA ASR CA

BadNets (all-to-all) 92.18 92.65 6.16 88.58 1.24 92.56
Trojan (all-to-all) 91.98 92.57 18.84 88.14 8.78 90.67
Blend (all-to-all) 84.23 92.38 13.81 86.26 11.56 90.02

Table 11. Defense performance of our RNP against BadNets under various trigger sizes on CIFAR-10. Note that only 500 clean samples
are used as the defense data.

Backdoor Attacks No Defense ANP RNP (Ours)
ASR CA ASR CA ASR CA

3× 3 100 93.40 0.53 91.61 0.20 92.22
5× 5 100 92.94 0.74 89.72 1.44 91.38

10× 10 100 91.78 9.08 88.53 1.76 91.66

B.4. RNP against All-to-All Attacks

We reproduced 3 typical all-to-all (i.e., target label = original label +1) attacks with ResNet-18 on the CIFAR-10 dataset.

Here, we report the defense results for both our RNP and ANP. For ANP, we directly used its open-sourced code and
selected its best defense results for comparison. The results, presented in Table 10, show that ANP achieves good defense
performance in terms of both ASR and CA. However, our RNP method still outperformed ANP with noticeable margins.
For example, the CA of our RNP is all above 90% while ANP is around 86% to 88%. The ASR reduction of our method is
∼ 5%, ∼ 10%, and ∼ 2% better than ANP against BadNets, Trojan, and Blend attacks, respectively.

B.5. RNP against Different Trigger Sizes

The performance of our RNP against BadNets under different trigger sizes is reported in Table 11. It shows that our RNP can
defend against the attack with different trigger sizes from 3× 3 to 10× 10. Note that a 10× 10 trigger appears rather large
and obvious on 32× 32 CIFAR-10 images. Increasing the trigger size does bring slightly more resistance to our defense but
is very limited. Please note that, except for BadNets, Trojan, and AWP attacks, the triggers of other attacks span the entire
image, that is, they have a fixed trigger size – the image/input size.

B.6. RNP against Different Poisoning Rate

We evaluated RNP’s performance against the BadNets attack on CIFAR-10 with diverse poisoning rates. From Table 12, we
observed that both ANP and RNP inevitably encounter clean accuracy degradation as the poisoning rate decreases. When
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Table 12. Defense performance of ANP and our RNP against BadNets attack on CIFAR-10 with diverse poisoning rates. Note that only
500 images are used for defense.

CIFAR-10: BadNets No Defense ANP RNP RNP + Finetuning
ASR CA ASR CA ASR CA ASR CA

10% (5000) 100 93.4 0.53 91.61 0.2 92.22 3.78 92.64
5% (2500) 100 92.59 1.63 78.83 0.32 90.26 2.51 90.18
1% (500) 99.96 92.67 75.8 59.42 5.29 84.8 4.45 86.59

0.05% (250) 99.18 92.36 0 14.42 0 56.32 0.46 77.29

the poisoning rate is 0.05%, the clean accuracy of ANP drops to 14.42%, while our RNP drops to 56.32% but improves to
77.29% when fine-tuning is applied. We conjecture that this is because the low poisoning rate hides the backdoor neurons
more stealthily among the benign neurons, making pruning more challenging. However, low poisoning rates pose a challenge
for most current state-of-the-art backdoor defenses, including backdoor sample detection (e.g., STRIP (Gao et al., 2019)),
backdoor model detection (e.g., Neural Cleanse (Wang et al., 2019)), backdoor model/neuron removal (e.g., ANP (Wu &
Wang, 2021)), and robust backdoor learning (e.g., ABL (Li et al., 2021b)). Effective solutions to such a challenge deserve
further investigation.

Table 13. Defense results of 1) pruning without filter recovering; 2) filter recovering with/without neuron unlearning; and 3) unlearning by
learning incorrectly. The experiments are implemented on CIFAR-10 with ResNet-18, and 500 clean images as the defense data.

Pruning
Results

No Defense Pruning w/o
Recovering

Filter Recovering
w/o Unlearning

Filter Recovering
w/ Unlearning (RNP) Learning Incorrectly

CA ASR CA ASR CA ASR CA ASR CA ASR

BadNets 93.40 100 40.5 0 93.39 100 92.22 0.20 80.58 3.64

SIG 94.59 90.86 29.49 0.38 94.57 90.61 94.62 0.43 93.78 0.73

CL 94.84 100 11.82 0.44 93.84 100 91.92 8.87 71.12 4.00

Dynamic 91.36 99.97 31.2 0 91.26 99.85 90.18 15.24 83.33 76.06

FC 94.67 100 18.23 7.52 94.41 100 90.93 1.80 80.23 17.33

C. More Understandings of RNP
C.1. Necessity of Neural Unlearning and Filter Recovering

In addition to ”asymmetric unlearning-recovering,” we have conducted 3 new experiments (with CIFAR-10, ResNet-18,
and 500 clean images as defense data) to demonstrate the key element of neural unlearning and filter recovering. The
conclusions have also been carefully checked against other attacks. The settings and findings of these experiments are
summarized below, with the results reported in Table 13.

a) Pruning without filter recovering, where the backdoored neurons are directly pruned from the unlearned model. This
is to validate the usefulness of the recovering step.

Finding: The backdoor can be reliably erased from the model (most of the ASR is close to 0), but the clean accuracy (CA)
is below 41%. The low ASR indicates that the backdoor neurons can also be removed even without recovering, but this
could also remove a certain amount of clean neurons (CA drops significantly). This can be explained by the visualizations
(Unlearned model vs. Recovered model) in Figure 2 in our main paper. Without the recovering, the key clean neurons (in
the yellow rectangles) will be largely damaged, and some clean neurons outside the rectangles will be changed too slightly.
This will cause two negative effects: 1) the clean accuracy is hard to recover (caused by damaged clean neurons), and 2)
some clean neurons may accidentally get removed. This also verifies the importance of the recovering step (a comparison of
neuron recovering vs. filter recovering has already been analyzed in Figure 5). Please note that, without the recovering, the
neurons that DO NOT change much during the unlearning process should be removed (as only the clean neurons will be
unlearned). However, with recovering, the neurons that change the MOST should be removed (as backdoor neurons are
repurposed).

b) Filter recovering with/without neuron unlearning, which is to show that neuron unlearning is a MUST.
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Table 14. Filter recovering at different residual blocks of ResNet-18. Neurons ↓ indicates the number of neurons pruned at the
corresponding block of ResNet-18 against BadNets attack.

Mask Location Baseline RNP Neurons ↓
ASR (%) CA (%) ASR (%) CA (%) -

Block 1 100 93.40 9.98 73.37 56
Block 2 100 93.40 9.40 88.60 67
Block 3 100 93.40 9.01 93.10 62
Block 4 100 93.40 6.50 93.61 55

All Block 100 93.40 0.20 92.22 41

Finding: The result shows that filter recovering alone cannot decrease the ASR (over 90%) although the clean accuracy is as
good as the original model. This is somewhat unsurprising, as filter recovering without unlearning is the same as directly
fine-tuning the model on the defense data.

c) Unlearning by learning incorrectly, where the backdoored model is fine-tuned on incorrectly labeled clean samples
(the labels are set to be their predicted labels of the RNP-unlearned model). That is, this model optimizes the same
objective as our RNP but via a process of minimization (learning incorrectly) rather than maximization (unlearning).

Finding: This defense is notably worse than our RNP, which indicates that minimization and maximization are quite
different in terms of their impact on the neurons. Maximization (unlearning) can be understood from the perspective of
adversarial perturbation applied to the neurons, i.e., it updates the most influential neurons to maximize the model’s error (as
it is the quickest way to reduce the loss). Minimization, on the other hand, tends to update all neurons (even repurpose some
of the neurons, as we have shown in Figure 5) to reduce the classification loss. We believe this finding itself is interesting
even out of the scope of backdoor defense.

C.2. How Does Filter Location Impact RNP?

Table 14 shows how the location of filter recovering affects the defense performance of our RNP. We restrict the filter mask
to be applied before the last batch normalization layer at different residual blocks of the network and report the defense
performance after pruning. It shows that the defense is more effective if the mask is applied at deeper layers (Block 4 vs.
Block 1), in terms of both ASR and CA. This indicates that the attack strength accumulates from shallow to deep layers
and becomes more malicious in the deep layers (pointing to the backdoor class). It is worth mentioning that, when only
recovering and pruning Block 4, the clean accuracy is largely preserved, or even slightly improved: 93.61% vs. 93.40%
(in Table 14). This implies that sweeping the deep layers may be a good option if clean accuracy is the primary concern
in real-world applications. RNP becomes most effective when filter recovering is applied across the entire network (All
Block), which is also the default setting of our experiments. It achieves the best ASR performance, but the CA is reduced by
approximately 2%. Therefore, we recommend this strategy if security is the primary concern in real-world applications.

D. Exploration with the Unlearned Model
Here, we will show that the unlearned model (NU-model) produced by our NU technique can be leveraged not only to
improve existing defense methods but also to assist with trigger recovery, backdoor label detection, and backdoor sample
detection.

D.1. Improving Backdoor Removal

Previous work proposed fine-tuning on the recovered trigger (denoted as ’NC+FT’) (Wang et al., 2019), trigger unlearning
(denoted as ’NC+ABL’) (Li et al., 2021b), and fine-pruning (denoted as ’FP’) (Liu et al., 2018a) to repair the backdoored
model. To further explore our NU technique, we propose to perform backdoor removal on the NU-unlearned model. We set
NC+FT as the baseline. The experiment results in Table 15 show that using the unlearned model can significantly improve
the performance of the three defenses against all attacks. More specifically, in comparison to the baseline (i.e., NC+FT),
adding NU can further lower the average ASR for NC+FT (row 2), NC+ABL (row 3), and FP (row 4) by 4.18%, 3.78%, and
6.01%, respectively. Meanwhile, NU also boosts clean accuracy to a certain extent. These results verify that NU can indeed
be a central part of effective backdoor removal.
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Table 15. Performance of 3 defense methods with/without our proposed NU respectively against backdoor attacks on CIFAR-10. ASR:
attack success rate (%); CA: clean accuracy (%); AvgDev: the average % deviation in ASR/CA compared to the baseline ’NC+FT’.

Metric Defense BadNets Trojan Blend CL SIG Dynamic WaNet FC DFST AWP AvgDev

ASR
NC+FT (Baseline) 8.31 1.64 3.71 3.51 5.62 9.71 8.19 43.69 12.50 3.20 -

NU+NC+FT 0.72 0.78 0.24 0.58 1.18 8.67 1.10 34.58 9.60 0.87 ↓ 4.18
NU+NC+ABL 0.28 1.02 1.87 0.24 3.37 46.86 7.79 0 0.9 0.01 ↓ 3.78

NU+FP 0.37 1.42 0 6.48 0.04 11.16 10.19 4.91 4.89 0.56 ↓ 6.01

CA
NC+FT (Baseline) 93.21 92.96 92.63 92.28 82.06 91.28 83.32 87.62 87.93 94.16 -

NU+NC+FT 92.13 93.14 92.64 83.79 80.36 91.08 88.32 92.76 88.93 94.70 ↑ 0.03
NU+NC+ABL 93.92 93.28 91.32 93.23 88.60 81.19 93.30 85.06 93.22 94.36 ↑ 1.00

NU+FP 89.94 85.30 92 92.57 93.88 86.84 92.23 91.87 92.58 94.53 ↑ 1.42

Figure 7. Side-by-side comparison of the original trigger patterns
and their recovered versions by NC on the backdoored models and
by our NU (NU+NC) on the unlearned models.
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Figure 8. Overall entropy difference between clean and backdoor
examples. A greater difference in entropy indicates a better detec-
tion performance.

Table 16. Detection accuracy (top-1, %) of the backdoor label.
Types BadNets Trojan Blend CL SIG Dynamic WaNet FC DFST AWP
NC 65 95 90 90 15 80 85 0 20 95

NU+NC 100 100 100 100 100 100 100 90 95 100
NU 100 100 100 100 100 100 100 100 100 100

D.2. Improving Trigger Recovery

Figure 7 shows a few examples of recovered triggers. We observe that, compared to the NC alone (second row), the triggers
recovered by the NU-unlearned model present a more precise trigger quality and a reasonable size for almost all attacks.
NC alone fails to recover the trigger on CL, SIG, and Dynamic, due to the recovered trigger having more image noise. We
speculate that the success of ’NU+NC’ is because the unlearned model contains fewer clean but more backdoor neurons
than the original backdoored model. In other words, the unlearned model makes trigger reverse engineering easier.

D.3. Improving Backdoor Label Detection

Table 16 shows the NU-unlearned model can efficiently boost the performance of backdoor label detection for Neural
Cleanse (NC). Interestingly, NU alone achieves the best detection rate by 100% on all the attacks. This is because, as clean
neurons are gradually removed from the model, the backdoor class naturally arises. As a result, the samples are predicted by
the unlearned model to be of the backdoor class.

D.4. Improving Backdoor Sample Detection

Figure 8 shows the average relative entropy between the outputs of the clean and the backdoored examples by the original
STRIP and our NU combined with STRIP (denoted as NU+STRIP). We find that NU+STRIP creates a greater relative
entropy (nearly 0.2) than the ordinary STRIP. The greater the relative entropy, the better the detection performance on
filtering poisoned examples. Our NU amplifies the gap between clean and backdoor outputs in relative entropy, consequently
contributing to detecting more advanced triggers.
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