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ABSTRACT

Deep neural networks that incorporate classic reinforcement learning methods,
such as value iteration, into their structure significantly outperform randomly
structured networks in learning and generalization. These networks, however, are
mostly limited to environments with no or very low uncertainty. In this paper,
we propose a new planning module architecture, the VI2N (Value Iteration with
Value of Information Network), that learns to act in novel environments with high
perceptual ambiguity. This architecture over-emphasizes reducing uncertainty
before exploiting the reward. VI2N can also utilize factorization in environments
with mixed observability to decrease the computational complexity of calculating
the policy and to facilitate learning. Tested on a diverse set of domains, each
containing various types of environments with different degrees of uncertainty,
our network outperforms other deep architectures. Moreover, VI2N generates
interpretable cognitive maps highlighting both rewarding and informative locations.
These maps highlight the key states the agent must visit to achieve its goal.

1 INTRODUCTION

Deep neural networks have provided powerful end-to-end solutions to Reinforcement Learning
(RL) problems that map perception to action (François-Lavet et al., 2018). One can approach this
end-to-end learning in a classic supervised fashion, especially when provided an expert policy to
imitate. However, several studies have shown that incorporating cognitive/classic RL mechanisms,
such as simulation of future events and experience replay, improve the learning process significantly.
For example, Value Iteration Networks (VINs) incorporate long-term planning (the simulation of
future events) by implementing the value iteration algorithm (i.e., a sequence of Bellman updates) via
convolutional layers (Bellman, 1957; Tamar et al., 2016; Niu et al., 2018; Zhang et al., 2020; Ishida
& Henriques, 2022). Trained either by reward or through imitation of an expert’s actions, VINs can
learn to navigate in fully observable novel environments significantly better than fully connected
and untied convolutional networks (Tamar et al., 2016). Furthermore, their generated model of the
environment correctly identifies the rewarding areas (e.g., the goal state).

While VINs and deep reinforcement learning architectures in general have been very successful in
many applications, they face a tremendous challenge in many real-world scenarios due to perceptual
ambiguity (Ni et al., 2022). Perceptual ambiguity, often called partial observability, introduces
uncertainty about the current state of the environment. Therefore, the agent must form a probability
distribution, or “belief”, over its current state and choose its action based on this belief. Even simple
networks with a probabilistic belief representation outperform networks with more sophisticated
encoding and RL modules that perform well in challenging fully-observable environments (Ni et al.,
2022; Karkus et al., 2017). However, the main challenge in uncertain environments is that action
selection is based on the current belief, not the belief representation. Therefore, more advanced
policy/planning modules are required to perform well in more complex uncertain environments.

Formally defined by Partially Observable Markov Decision Process (POMDP) framework (Thrun
et al., 2005), optimal decision making under uncertainty is not achievable in polynomial time
(Sondik, 1978). Additionally, powerful sub-optimal approximations involve sampling and tree
search techniques with no differentiable implementation, hindering their use in neural network
implementations (Ross et al., 2008). Because of these limitations, the current state-of-the-art value
iteration network for decision making under partial observability is founded upon a very simple
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POMDP-solver, QMDP, which assumes that all uncertainty disappears after the first step (Karkus
et al., 2017). While this allows for a differential heuristic, this assumption causes the solver to fail in
highly uncertain environments.

This paper proposes a new network architecture, the VI2N (Value Iteration with Value of Information
Network), that can learn to plan in unseen environments with high uncertainty. VI2N is based on the
Pairwise Heuristic (Khalvati & Mackworth, 2013), which calculates the solution of sub-problems
where the belief state is limited to only a pair of states. Since the Pairwise Heuristic can be calculated
by the Bellman equation, it can be implemented with a neural network similar to the VIN. Moreover,
VI2N can utilize factorization in mixed observable environments, formally modeled with Mixed
Observable Markov Decision Processes (MOMDPs) (Ong et al., 2010; Araya-López et al., 2010).
This factorization leads to a huge reduction in computational and memory complexity of the network.
We demonstrate the power of our approach by testing it on navigation problems in the presence
of different types of uncertainty in various environments. In addition to superior performance
in challenging environments with high degree of ambiguity, VI2N generates interpretable maps
highlighting key states with high reward and information.

2 BACKGROUND

Markov Decision Process (MDP): Sequential decision making is usually expressed as a Markov
Decision Process (MDP) (Thrun et al., 2005). Formally, an MDP is (S,A, T,R, γ) where S is the
set of states of the environment, A is the set of all available actions to the agent, the transition
function T : |S| × |A| × |S| → [0, 1] defines T (s, a, s′) = P (s′|s, a), the probability of ending up
in state s′ by performing action a in state s, R : |S| × |A| → R is a bounded function determining
the reward gained in state s, shown as R(s), and γ ∈ (0, 1] is the discount factor for the reward
(Thrun et al., 2005). Starting from an initial state, s0, the goal of the agent is to come up with a
recipe for action selection, called a policy π, that maximizes the total discounted reward. Since
the system is Markovian, the policy can be expressed as a mapping from states to actions, i.e.
π : |S| × |A| → [0, 1]. The optimal policy π∗ is π∗ = argmaxπ

∑H
t=0 γ

tE[R(st)|π, s0] where the
horizon H defines the length of this sequence. In classic Reinforcement learning, the value iteration
algorithm computes the optimal policy through a series of Bellman updates (Bellman, 1957), i.e.
Vt(s) = maxa

[
R(s, a) + γ

∑
s′∈S T (s, a, s′)Vt−1(s

′)
]

(t ≤ H). In deep reinforcement learning,
this optimal policy/mapping is learned with a network with the state S (or a representation of it, ϕ(s))
as the input and the action as the output of the network (François-Lavet et al., 2018).

Value Iteration Network (VIN): When the transition function is spatially invariant, a neural network
can learn T and R by implementing the Bellman equation with convolutional layers (Tamar et al.,
2016)). More specifically, given the map of the environment and the current state of the agent (e.g.,
its position on the map) as the inputs and an expert’s action or reward as the output, VIN learns
convolutional kernels of fR and fP representing reward and transition functions. Such a network with
the integration of value iteration as an explicit planning module, generally known as a Value Iteration
Network (VINs), significantly outperforms networks with similar computational power (e.g., layers)
in learning to plan in unseen environments (Tamar et al., 2016). Originally built for simple lattice
worlds with spatially invariant transition functions, value iteration networks have been significantly
improved in terms of applicability to domains with more complex structures over the past years (Niu
et al., 2018; Zhang et al., 2020; Ishida & Henriques, 2022). All of these improvements, however, are
still mainly limited to fully observable environments.

Partially Observable Markov Decision Process (POMDP): Existence of uncertainty in the real
world, especially in the form of perceptual ambiguity, has made MDPs impractical in many situations
(Thrun et al., 2005). Similarly, state-of-the-art networks reaching extraordinary performance in very
complicated yet fully observable tasks often fail to handle seemingly small amounts of ambiguity
in the environment (Ni et al., 2022). Partially Observable MDPs (POMDPs) represent the closest
approach to MDPs that deals with the uncertainty by adding an observation set and observation
function to its framework. Formally, a POMDP is a tuple (S,A,Z, T,O,R, γ) where S,A, T,R,
and γ are defined very similar to their definition in MDP. Z is the set of observations and O :
|S| × |Z| → [0, 1] is the observation function determining probability of observation z in state s,
i.e. O(s, z) = P (z|s). In a POMDP, the agent is not fully aware of its current state. Therefore, it
has to maintain a probability distribution over states, often called its belief b(s). Starting from a
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prior probability distribution over states of the environment, called the initial belief (b0), the goal
is to maximize the expected discounted reward (Ross et al., 2008). For a POMDP, the optimal
decision policy π∗ can be expressed as a mapping from belief states (probability distributions
over states) to distribution of actions that maximizes the total expected reward (Sondik, 1978), i.e.
π∗ = argmaxπ

∑H
t=0 γ

tE[R(st, at, zt+1)|bt, π]. The uncertainty about the state makes the agent
navigate in the belief state space instead of the state space. At time step t, the belief state bt is
updated based on the previous belief state bt−1 after action at−1 and observation zt as follows:
bt(s) ∝ P (zt|s, at−1)

∑
s′∈S P (s|s′, at−1)bt−1(s

′). Partial observability also makes the problem of
finding the optimal policy exponentially more complex than the MDP. While the optimal policy of an
MDP can be found in polynomial time, finding the optimal policy of a POMDP is NP-hard (Thrun
et al., 2005). As a result, the optimal policy can only be approximated by methods such as heuristics,
sampling, and search trees (Ross et al., 2008; Khalvati & Mackworth, 2013).

Mixed Observable Markov Decision Process (MOMDP): Although most environments in the
natural world incorporate elements of uncertainty, not all aspects of one’s current state are unknown.
By factorizing the state space into different dimensions, one can separate the visible factors, which
contain full observability, from the hidden factors, which are uncertain. An environment with a
factorized state space can be referred to as a Mixed Observable Markov Decision Process (MOMDP)
(Ong et al., 2010; Araya-López et al., 2010). Although MOMDPs still involve the computation of
a belief probability distribution over states, the number of states this belief distribution needs to be
computed over can be reduced significantly by only computing solutions for belief distributions on
the hidden, or uncertain, factors. Notably, there is not much difference in MOMDP notations other
than factorizing the state space into visible/fully observable (Sv) and hidden/partially observable
(Sh), where S = Sh × Sv. Transition, reward, and observation functions could still depend on the
whole state. However, in many cases, the factorization could be applied to these functions as well.
Notably, not all POMDP solvers can benefit from factorization, but the ones that do can compute
equally accurate solutions with less computations and memory.

Deep networks for solving POMDPs and MOMDPs: Since POMDPs and MOMDPs have an
additional observation function compared to MDPs, deep architectures for decision making under
partial observability represent observation kernel fZ in addition to transition function kernel fP and
reward kernel fR. Notably, the structure of these kernels depend on the problem, but the general
methodology and algorithm of learning is the same. For example, in a navigation problem, the
agent might observe only its surrounding instead of the whole world, which makes the observation
kernel a 3 × 3 convolutional kernel. In a different domain, observation kernel might consist of
only a 1 × 1 convolution over the agent’s current position. Similar to classic POMDP solvers, a
POMDP solver network consists of two modules of belief update and policy, forming a recurrent
architecture together. The belief update can be easily implemented in a network, as exemplified
in the QMDP-Net architecture (Karkus et al., 2017) (Also demonstrated in figure A–1). However,
designing a powerful policy module is very challenging due to the differentiability requirement. As a
result, current networks for solving POMDPs have a very simple policy module, e.g., a model-free
RL module (Ni et al., 2022) and QMDP. MOMDP solver network has the same structure, but with a
smaller-sized belief state space covering only the unobservable factor of the state space. Like classic
POMDP solvers, how the policy module takes advantage of mixed observability is significantly more
important than the belief update module.

3 MODEL

Our main goal is to provide a better policy module for the value iteration networks in partially
observable environments. Our architecture is founded upon a “Pairwise Heuristic”. Originating from
Bayesian active learning in which the heuristic is used to find the correct hypothesis with a set of
noisy tests (Golovin et al., 2010), the Pairwise Heuristic has also been used in robot localization
(Khalvati & Mackworth, 2012) and a general-purpose POMDP-solver when the environment model
is fully known (Khalvati & Mackworth, 2013). Here we present the POMDP-solver version, slightly
modified for our framework.

The Pairwise Heuristic for solving POMDPs: The main idea of the pairwise heuristic is to use
solutions of the smallest sub-problems that still consider the uncertainty about the true hypothesis/state,
which would be pairs (sets of 2) of hypotheses/states (Golovin et al., 2010). In a POMDP, this would
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be the set of |S|(|S| − 1)/2 optimal policies in each of which the belief is .5 for two states. The
expected total reward of each of these policies is the value of the pair, shown by V (s, s′), for
s, s′ ∈ S. Calculating pairwise optimal policies is still computationally very expensive. Therefore,
the pairwise heuristic for POMDPs applies an additional heuristic to calculate V (s, s′) (Khalvati &
Mackworth, 2013). For each pair, it resolves the uncertainty first and then exploits the reward. Given
the observation function, the uncertainty is already resolved for some pairs of states. To be more
precise, it is highly unlikely to have a notable probability/belief for states with different observations.
These pairs are “distinguishable”. For other pairs of states, i.e. indistinguishable ones, the Pairwise
Heuristic resolves the uncertainty by going to distinguishable pairs. Two states are distinguishable if
there is a high probability that different observations are recorded in the two states. Formally, s and
s′ are distinguishable if and only if:∑

o

∑
s′,s′

p(o|s)(1− p(o|s′)) + p(o|s′)(1− p(o|s)) ≥ 2λ (1)

λ is a constant that is specified by a domain expert. If there is no noise in observations, this value is
1. Otherwise, this threshold is set to a value close to but less than 1. The pairwise value (V (s, s′))
of distinguishable pairs is simply the average of the value function of each of the states in the
underlying MDP model of the environment (assuming full observability in the environment), i.e.,
.5(V (s) + V (s′)). To find the value function of the indistinguishable pairs, we use a value iteration
algorithm in an MDP where the states are pairs of states of our original problem. The transition
function of this MDP is determined by the joint transition probability distribution of the original
environment:

T ((s, s′), a, (s′′, s′′′)) = p((s′′, s′′′)|(s, s′), a) = p(s′′|s, a)p(s′′′|s′, a) (2)

The reward of each pair is simply the average reward of the two states in the original problem:

R(s, s′) = 0.5(R(s) +R(s′)) (3)

Therefore, the Bellman equation of our pairwise value iteration algorithm is as follows:

Vk(s, s
′) = maxa[R(s, s′) + γ

∑
s′′,s′′′

T ((s, s′), a, (s′′, s′′′))Vk−1(s
′′, s′′′)] (4)

Initial pairwise values, i.e., V0(s, s
′), in the above equation is .5(V (s) + V (s′)) for distinguished

pairs and the minimum possible reward for indistinguished ones. To select an action, the Pairwise
Heuristic POMDP-solver maximizes the expected value of pairs using the joint belief state, i.e.,
b(s, s′) = b(s)b(s′):

a∗k = argmax
a

∑
(s,s′)

b(s, s′)Q((s, s′), a) (5)

If the probabilities of all states, except the most likely one, become negligible, the selected action
would be the optimal action of the underlying MDP for that most likely state.

Notably, in a MOMDP, any pair of states with different visible factors are distinguishable. Therefore,
the heavy computation of value iterations on pairs would be reduced to |Sv|.|Sh|.(|Sh| − 1)/2, which
is a significant decrease in computational complexity when |Sh| << |Sv|. More specifically these
pairwise values can be represented as V (sv, sh, s

′
h) where sv ∈ Sv and sh, s

′
h ∈ Sh.

VI2N Architecture: All of the pairwise heuristic POMDP solver processes have a straightforward
differentiable implementation. The central part of this solver is the pairwise value iteration (Eq. 4),
which uses the pairwise transition (Eq. 2), and reward functions (Eq. 3). Moreover, the initial pairwise
values are determined by the value of states (V (s)) in the underlying MDP and the distinguishability
of each pair of states (Eq. 1). The network implementation of these components is demonstrated in
figure 1a.

Starting from the value iteration algorithm implemented by a VI module, the network learns fP and
fR, determining T (s, a, s′) and R(s) of the environment, in addition to the value of single states,
V (s). From this point, the objective becomes converting elements of the environment to a pair-space
representation to allow for the VI2 module implementation. Specifically, we must convert T (s, a) and
R(s) into T ((s, s′), a) and R(s, s′) for all s, s′ ∈ S × S. We can convert R(s) using an averaging
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(a) (b)

(c)

(d)

Figure 1: VI2N Architecture. a) Required preprocessing to prepare for Pairwise Value Iteration
b) Example conversion of one channel of the transition kernel fP to the corresponding channel of
pairwise transition kernel. Example assumes a 4x4 environment of 16 states, where S = number of
states, kernel size = 2(

√
s+ 1) + 1, and k = ⌊kernel size/2⌋ =

√
s+ 1. c) Pairwise Value Iteration

modules, which uses outputs from part (a) to determine the selected action. d) Factorized Pairwise
Value Iteration modules (Factorized version of part (c)).
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layer across all s. As mentioned before, while the principles of value iteration networks remain the
same, the details of kernels depend on the problem. Here, following the previous works we focus on
2D goal-based navigation with different types of uncertainty (More details in section 4), where the
agent moves to one of the adjacent cells. Therefore, the transition function is implemented by a 3× 3
kernel. This kernel must be transformed into a transition kernel for the pairwise state space, which
involves increasing the size of the kernel from (3, 3) to (2(

√
S + 1) + 1, 2(

√
S + 1) + 1) to allow

for row and column transitions between pairs (assuming the grid world is a
√
S ×

√
S square). This

kernel is constructed using the learned transition probabilities from the VI Module and has a number
of channels equal to the number of actions available in the environment similar to fP . All nine values
of each channel of fP would be mapped to the main diagonal of the pairwise transition kernel in the
corresponding channel as demonstrated in figure 1b.

We must also determine which set of pairs (s, s′) are distinguishable. We implement this by applying
the convolutional kernel for the observation function, fZ , to all states (the gridworld map) to get
matrix Z. Then we use the outer product of Z and 1 − Z and compare it with a threshold to
implement Eq. 1. We express the distinguishability by a binary |S| × |S| matrix, D. The pairwise
value initialization (V0(s, s

′)) is done using matrix multiplication of D and .5(V (s) + V (s′)) (for
distinguished pairs) in addition to multiplication of (1−D) and minR(S) in the shape of an |S|× |S|
matrix (for indistinguishable pairs). With the pairwise reward and transition function calculated,
pairwise value iteration (Eq. 4) is just another VI module, which we call the VI2 module. Finally, the
action selection (Eq. 5) is done by multiplying the pairwise belief state (outer product of belief by
itself) with pairwise Q values and applying the max pooling layer (figure 1b).

The size of VI2N decreases significantly if the state space can be factorized into visible and hidden
factors: s = (sv, sh) where S = SV × Sh. In this case, the pairwise modules of R, V , and D
would be |Sv| × |Sh| × |Sh| (with size = |Sv|.|Sh|2) instead of |S| × |S| (with size = |Sv|2.|Sh|2) as
demonstrated in figure 1d. This is a significant reduction when |Sh| << |Sv|.

4 RESULTS

We compared VI2N with the QMDP-Net on two types of grid-world navigation problems with differ-
ent types of uncertainty and challenges. Since QMDP-Net has been shown to perform significantly
better than unconstrained networks (Karkus et al., 2017), we did not include them in our analysis. We
used the same belief update mechanism for both agents to have a fair comparison between the two
policy modules, i.e., QMDP-Net and VI2N. Moreover, we set the number of recurrences in the VI
module of QMDP-net equal to the total number of recurrences in VI and VI2 modules of our network.
Importantly, the transition kernel did not get updated in the pairwise module (VI2) (we did not pass
gradients in this module). Therefore, Q-MDP net did actually have a computational advantage over
VI2N in terms of the number of free parameters.

Our first task/problem set was the standard single-goal navigation where the position of the goal
is visible in the input map, but the agent does not know its own position. Instead, it observes its
surroundings. This problem set included several environments with various amounts of perceptual
ambiguity. In the second navigation task/problem set, the agent knows its position but is unaware of
the exact position of the goal. Instead, a few possible locations for the goal are given to the agent. The
agent should go to a “landmark” spot to find the goal. Multiple potential goal positions make the state
space significantly larger. However, the state space can be represented as (agent’s position, goal’s
position) in which the first factor is fully observable. Each of the two tasks/problem sets includes
different structural versions, 4 in the first task and 3 in the second. Networks are trained on each
structure (15000 to 30000 instances), and tested on novel environments of the same structure (3000
to 6000 instances). Details of the process can be found in appendix A.

Task 1 - Observable goal, unknown position: For the first task, we designed four environments
with different levels of perceptual ambiguity. Moreover, each type of environment was tested at
various levels of obstacle density. The observation and action functions were kept constant among
the environments to have a systematic comparison in terms of uncertainty and complexity of the
decision-making. The actions were “right”, “up”, “down”, and “left”, moving the agent one cell in
the direction specified by the name, and also action “stay”. The agent was able to observe the cell
it was on and also the neighboring cells in each of the cardinal directions. Since our focus was on
perceptual ambiguity, not handling noise in sensors and actuators, both of our sensors and actuators
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(a) (b)

Figure 2: Example testing environments. a) For the observable goal, unknown position task, there
are four types of random, blocks, walls, and symmetric environments, each of which with various
density rates. The goal is not shown in those maps. b) For the unknown goal, observable position
task, there are different numbers of potential places for the goal in the environment, and displayed
are 2-goal and 4-goal examples. The potential goals are shown in green, and the landmark is shown
in orange. The agent finds out in which potential places the goal is actually placed if and only if it
goes to the landmark spot.

were noise-free. Notably, we tested the networks on environments with reasonable amount of noise,
and both of them maintained their performance.

We started with a “random” environment. In the random environment, obstacles are randomly placed
within the arena at both 5% and 10% density/sparsity levels (figure 2a, top left). With an average
of 20 or 40 obstacles in this environment, uncertainty would be resolved in a few steps. As a result,
both networks had a very high success rate (table 1, top row). We increased the ambiguity by adding
the constraint of minimal continuity in each axis to the random environment, which produces very
few blocks with a side size of 4. This type of environment called “blocks”, was generated to model
environments where obstacles are randomly placed as independent clusters ((figure 2a, bottom left).
With the increase in perceptual ambiguity compared to the “random” environment, both networks’
performance dropped. However, the drop was lower for VI2N (table 1, the second row from the top).
Our third environment called “walls”, contained long walls parallel to the border in an empty arena,
resembling long hallways for robots with sonar sensors ((figure 2a, top right). The superiority of
VI2N became appreciable in this challenging environment, where the middle walls and borders are
not easily distinguishable (table 1, the second row from the bottom).

Our most challenging environment was called “symmetric”. In the symmetric environment, four
copies of a smaller random environment are placed in each corner of a larger grid-world (figure 2a,
bottom right). The density of each of the four “rooms” (small environment block) was 5%, 10%, or
15%. This environment requires more long-term planning and information gathering, as it has more
indistinguishable states that could lead to incorrect assumptions about belief in simpler updates. In
this environment, the VI2N drastically outperformed the QMDP-Net, which demonstrates its ability
to use long-term planning to generate effective policies. Moreover, VI2N was more robust to changes
in sparsity in complex environments, whereas the QMDP-Net performance dropped at a higher rate
as each type of environment became more challenging with the change in density/sparsity. We also
tested the robustness of networks against minor changes in the new environment by corrupting the
symmetry. Specifically, we corrupted the full symmetry of our 10% density test set by changing five
random empty cells to obstacles in one of the rooms (5% of that 10× 10 room). The median success
rate dropped to 68% for VI2N, and 48% for QMDP-net.

Task 2 - Unknown goal, observable position: Our gridworlds for the second navigation task/problem
set were generated with a similar script as the “random” worlds used in the first problem set, with
the side of each world, N , being 10, and an obstacle density of 20%. However, we manipulated
the number of possible goal locations displayed on the map, |G|, for these worlds, increasing the
uncertainty of the environment by adding more possible goal locations. Each location added increases
the state space by N ×N , yielding |S| = N ×N × |G| states. Our worlds all included a “landmark”
location, which produced an observation that revealed the hidden location of the goal to the agent
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Table 1: Success Rate of network solvers in task 1 (unknown agent’s position)

Model Environment

Random(5%) Random(10%) Walls(1) Walls(2) Walls(3)

VI2N 93± 1% 95± 1% 77± 1% 83± 1% 82± 1%
QMDP-Net 93± 1% 96± 1% 69± 1% 78± 2% 80± 2%

Blocks(5%) Blocks(10%) Symm(5%) Symm(10%) Symm(15%)

VI2N 91%± 1 91± 1% 76± 3% 74± 3% 65± 4%
QMDP-Net 88± 1% 89± 1% 61± 3% 51± 5% 41± 4%

(number of observations |O| equals |G| + 1, representing each goal and a “neutral” observation).
Other locations had absolutely no information about the position of the goal. Example environments
with 2 and 4 possible goal locations are shown in figure 2b.

The potential goal locations either yield a large reward or a large penalty, disincentivizing the agent
from going to potential goal places one by one, instead of visiting the “landmark”. This is similar to
a natural task where an agent knows where it is, but does not know where the reward is. In those
cases, the agent may navigate the environment in order to gain information about the goal before
proceeding to exploit the reward. This task also explores the concept of a MOMDP, incorporating a
visible and hidden component. In this task the visible factor of the state, Sv, is the agent’s location.
The hidden factor, Sh, is the goal’s position, which is one of the potential locations (|Sh| = |G|).
Using this factorization, our pairwise modules were 100 times smaller (N ×N × |G|2 instead of
(N × N)2 × |G|2 where N = 10). As seen in table 2, our network significantly outperformed
QMDP-net in all conditions. Upon further examination of each solver’s trajectory through the space,
we found that V I2N visited the landmark state far more frequently than QMDP-net, visiting the
landmark an average of 96% of the time, whereas the QMDP-net only visited the landmark an average
of 34% of the time.

Table 2: Success Rate of network solvers in task
2 (unknown goal, observable position) in different
conditions (number of potential goal locations).

Model |G|
2 3 4

VI2N 98± 2% 96± 2% 95± 2%
QMDP-Net 57± 4% 53± 2% 51± 2%

Table 3: Effect of number of recurrence
on VI2N success rate (task 2, |G| = 4).

kV I kV I2 Success %

5 5 0.58± 16%
20 1 0.41± 2%
1 60 0.45± 9%
40 20 0.95± 2%
60 40 0.94± 2%

Effect of recurrence: V I2N has two planning modules, each with a recurrence parameter k (kV I

and kV I2) specifying the planning horizon. To assess the importance of these modules and their
associated parameters, we trained and tested V I2N with different recurrence parameters in the
most challenging environment, i.e task 2 with 4 potential places for the goal. As demonstrated in
table 3, short horizons hurt the performance, while horizons above certain values do not lead to any
improvement, similar to classic value iteration. Moreover, the better performance of a network with
kV I = kV I2 = 5 compared to networks with k = 1 in one of the modules as well as QMDP-Net
highlights the importance of both planning modules in V I2N , one for reward exploitation, and the
other for resolving uncertainty.

Interpretability and the emergence of code for informative locations: Besides the superiority of
VI2N, measured by an objective measure of success rate, our method produces interpretable maps that
highlights both informative and rewarding areas. Specifically, in addition to producing value maps
representing the space in terms of the reward values via the value function of single states (V (s)),
VI2N specifies informative areas via marginal pairwise values, i.e.,

∑
s V (s, s′), as demonstrated in

figure 3. This map significantly contributes to the interpretability of our method, explaining why
specific actions were performed and why certain areas were visited more, especially when they were
not directly related to the source of reward (goal). Informative states are not represented in the
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QMDP-net value function, even in the environments where the QMDP-Net performs well. This is
expected, as QMDP, the algorithm behind policy generation of QMDP-Net, does not take resolving
uncertainty into account.

(a) (b)

Figure 3: VI2N represents rewarding areas through the value function of single states and
informative areas through the value function of pairs. QMDP-Net focuses only on the reward.
a) Example generated maps in the first problem set. The leftmost maps represent the environment
where the gray areas are obstacles and the black cell represents the goal. b) Example generated maps
in the second data set with for goal spots. Rewarding goal is shown in green, the misleading “goals”
are shown in red, the landmark state is orange and the obstacles are shown in black

5 DISCUSSION

We have introduced the VI2N as a deep learning architecture for decision making under uncertainty,
modeled after the fully differentiable Pairwise Heuristic. The VI2N architecture demonstrates the
ability for long-term planning for resolving the uncertainty which exceeds the capacity of previously
proposed network architectures seen in the VIN and the QMDP-Net, especially in challenging
environments with high perceptual ambiguity. Moreover, it’s the only network that can take advantage
of mixed observability of the environment and factorization. Furthermore, in addition to reward value
maps, VI2 generates information value maps, highlighting the informative areas in respect to the
reward (goal). Since the main focus of our work is on the planning/policy module of the network,
our environments were simple 2D binary grid worlds similar to VIN and QMDP-Net papers. We
expect improvements of classic VIN over the past years (Niu et al., 2018; Zhang et al., 2020; Ishida
& Henriques, 2022) to be easily applicable to our network as the main component of our network is
still a VI module. In fact, applying these improvements is an exciting future research direction to
extend the applicability of our network.

Similar to other networks in the VIN family, the most significant limitation of VI2N is the requirement
of spatial invariance for transition and observation functions. Moreover, all of the tasks in this paper
were 2D navigation. This allowed us to have a systematic comparison based on different types
and levels of uncertainty. Testing other tasks, such as grasping, would definitely contribute to the
reliability of our results. However, designing scalable, challenging, and intuitive setups for other
tasks is unfortunately complicated. For example, as shown in the QMDP-Net paper, the available
grasping environment is not even challenging for the classic QMDP algorithm with more than 98
percent success rate (Karkus et al., 2017). It is also worth mentioning that pairwise modules are easily
scalable for environments with higher dimensions. For example, the only major structural change for
a 3D navigation task is using a larger kernel for pairwise transition function. Finally, our results are
limited to learning from an expert (and not from reward reinforcement).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

Details of experiments, including network parameters, training and testing process, and environment
generation are available in the appendix A. The code for implementing the networks will become pub-
licly available, when the paper gets accepted. Due to storage limitations, the generated environments
can not be uploaded. However, the code for generating these environments will become publicly
available.
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A NETWORK ARCHITECTURE AND DETAILS OF EXPERIMENT

A value iteration network for decision-making in partially observable environments is a recur-
rent network consisting of two main modules: The belief update (Bayes Filter) module and the
policy/planning module (figure A–1, left). The input to the network is mainly the map of the environ-
ment. After selecting each action (output), the network also receives an observation which is used
along with the chosen action to update the belief for the next actions. Belief update operations, such
as update after action and normalization, are easily implementable in a network, as exemplified in the
QMDP-Net paper Karkus et al. (2017)(figure A–1, right). The policy module selects the action given
the map and the belief, as demonstrated in figure 1 of the main text.

Figure A–1: Value iteration networks for decision making under partial observability. a) The network
consists of two main modules: the belief update module and the policy module. b) Belief update
module: This module implements the step of belief update in the POMDP as explained in the main
text and other works such as QMDP-Net Karkus et al. (2017).

For the first task, the input map is two binary matrices indicating obstacles v.s. empty space, and
goal v.s. no goal, respectively. This means that, given the size of the map in all of our environments
(20× 20), this map was a binary 2× 20× 20 tensor. As mentioned in the main text, the actions were
‘right’, ‘up’, ‘down’, and ‘left’, moving the agent one cell in the direction specified by the name and
also action ‘stay’. The observation range was also 1, represented by a 3× 3 kernel. The agent was
able to observe the neighboring cells in each of the cardinal directions. Moreover, the goal state was
observable when the agent was in it. Therefore, there were 17 observations in total. As mentioned
in the main part of the paper, the action and observation functions were noise-free / deterministic.
Therefore, and for simplicity, we represented the observation function as a 5× 3× 3 tensor, using
five channels instead of 17, each of which is representative of one of the 5 (out of 9) observable cells.

As our goal was to compare the policy modules, we assumed that the agent knows the observation
function and updates the belief perfectly in all tested architectures (including QMDP nets). Therefore,
each data point consisted of the grid world map, the belief as the input, and the selected action as
the output. Networks for all environment types were trained and tested within the same type except
“random” and “blocks”. The training set for these two was simply the aggregate of data points of
both types (we basically combined data points of these environments during training).

Each training data set for the first problem consisted of around 12000 environments, each of which
with two or three different start states. For each type, density rates were distributed uniformly, e.g.,
6000 environments with 5% density for the “random” and “blocks”. The train-validation ratio was
95%− 5%. Moreover, the test success rate was calculated by running the generated model on 1,000
novel environments of the same type, each of which with 20 different start states for each density.
The batch size was 100 for all methods and environments. The maximum number of epochs was
1000 for QMDP-Net and 300 for VI2N as it was computationally more expensive. Both networks
reached a stable point in the last quarter of training, suggesting that more epochs were unnecessary.
All implementations (VI2N and QMDP-Net) were in Pytorch, and the experiments were done with
GPU boxes with 4 NVIDIA GeForce RTX 2080 Ti graphic cards. Each epoch took at most 1 hour
(for VI2N).

For our second task, the input map consists of obstacle, goal, and landmark channels. The obstacle
channel is a binary matrix like the obstacle matrix for our first problem set, representing obstacles vs.
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empty space. Each possible goal location in the environment was represented in its own layer, as the
existence of one goal means the other goals are not valid in that state. Finally, the landmark, which
returns an observation revealing the true goal, was represented by another binary matrix indicating
landmark state vs non-landmark state in the last layer. All of the grid worlds were 10× 10 matrices,
with a varying number of possible goals, yielding input maps of size 10×10× (2+ |G|). In this case,
the agent always knew its (x, y) dimension location, so the observation function was represented by
a |G| + 1 vector, with a "null" observation, as well as an individual observation corresponding to
each state. As with the first problem, we first assume the agent knows the observation and transition
functions and updates the belief perfectly in all tested functions.

Our training set for the second task is slightly smaller, consisting of around 3000 environments with
5 start states in each environment, totaling about 15000 unique action labels. We used a smaller
dataset because of the smaller belief distribution in these tasks. Our test set was also slightly smaller,
consisting of 2000 environments with 5 start states for each environment. Like with the first task, the
train-validation ratio was 95− 5%, and we used a batch size of 100 and allowed our models to learn
for 300 epochs.
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