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Abstract

Incorporating natural language rationales in001
the prompt and In-Context Learning (ICL)002
has led to a significant improvement of Large003
Language Models (LLMs) performance.004
However, rationales currently require005
human-annotation or the use of auxiliary006
proxy models to target promising samples007
or generate high-quality rationales. In008
this work, we propose Self-AMPLIFY to009
generate automatically rationales from post010
hoc explanation methods applied to Small011
Language Models (SLMs) to improve their012
own performance. Self-AMPLIFY is a 3-step013
method that targets samples, generates014
rationales and builds a final prompt to leverage015
ICL. Self-AMPLIFY performance is evaluated016
on two SLMs and two datasets requiring017
reasoning abilities: these experiments show018
that Self-AMPLIFY achieves good results019
against competitors. Self-AMPLIFY is the first020
method to apply post hoc explanation methods021
to SLM to generate rationales to improve their022
own performance in a fully automated manner.023

1 Introduction024

Autoregressive Large Language Models025

(LLMs) such as GPT-3 (Brown et al.,026

2020), PaLM (Chowdhery et al., 2023) or027

LaMDA (Thoppilan et al., 2022), have made028

significant advancements in a wide range of NLP029

tasks. These models have demonstrated so-called030

"emergent abilities" (Schaeffer et al., 2023),031

including in-context learning (ICL), instruction032

following and reasoning (Wei et al., 2022). ICL033

(see Dong et al. (2023) for a recent survey)034

involves learning from a few examples integrated035

into the prompt without fine tuning the model.036

LLMs’ emergent abilities have been leveraged037

to enhance performance by incorporating human-038

annotated intermediate reasoning steps within the039

context, called rationales (Wei et al., 2023). By040

learning to sequentially generate (1) the reasoning041

Figure 1: Example of three responses to a question from
the ARC Challenge dataset, generated from different
ICL prompting strategies. Traditional input-output (IO)
prompting and auto-CoT (Zhang et al., 2023) fail to
generate the good answer, whereas Self-AMPLIFY is
able to generate important tokens as a rationale before
answering as expected.

steps through rationales and (2) the final answer, 042

LLMs have reached state-of-the-art performance 043

in complex tasks requiring reasoning abilities 044

such as commonsense or symbolic reasoning. 045

To overcome the need for human annotation, 046

automatic rationale generation methods have been 047

proposed. AMPLIFY (Krishna et al., 2023) has 048

demonstrated that rationales can be generated from 049

smaller proxy supervised Language Models (LMs) 050

to enrich the prompt to enhance the performance 051

of LLMs. AMPLIFY targets promising instances to 052

be integrated into the final prompt using the proxy 053

model and automatically builds rationales based on 054

post hoc attribution explanation methods (Molnar, 055

2020) applied to this proxy model. 056

Recently, small autoregressive LMs (SLMs), 057
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with fewer than 14 billions parameters, have058

emerged, such as Mistral (Jiang et al., 2023),059

Zephyr (Tunstall et al., 2023) or Llama-2-060

7B (Touvron et al., 2023). They achieve061

performance sometimes approaching that of062

LLMs’ on common benchmarks: their smaller063

size makes them computationally efficient while064

maintaining a high level of accuracy. In065

particular, classical post hoc attribution methods066

such as KernelSHAP (Lundberg and Lee, 2017)067

or DeepLift (Shrikumar et al., 2017) become068

affordable to explain SLMs’ prediction, despite069

their high computational cost of these methods.070

In this paper, we propose Self-AMPLIFY, an071

extension of the AMPLIFY framework for SLMs072

that does not need an auxiliary model nor073

human annotations. The main contributions of074

Self-AMPLIFY are as follows: (i) promising075

instances to be integrated into the final prompt076

are targeted only using the considered SLM’s077

prediction, (ii) post hoc explanation methods078

are applied to the SLM itself to generate079

automatically rationales as a self-improving signal,080

(iii) three types of post hoc explanations methods081

are implemented: post hoc attributions, self082

topk explanations and self natural language083

explanations.084

As an illustration, Figure 1 shows three085

responses to a question from the ARC086

Challenge (Clark et al., 2018) dataset respectively087

obtained using the proposed Self-AMPLIFY, a088

classical prompting approach, IO, and a rationale089

enhanced approach, Auto-CoT (Zhang et al., 2023).090

IO and auto-CoT fail to generate the good answer,091

while Self-AMPLIFY succeeds.092

Experimental results discussed in Section 4 show093

that Self-AMPLIFY leads to a performance gain094

on sarcasm detection and commonsense reasoning095

as compared to IO and auto-CoT. As a result,096

we show that post hoc explanation methods of097

various kinds can be directly applied to the SLM to098

generate automatically rationales to self-improve.099

Unlike the original AMPLIFY framework, proxy fine100

tuned models are no longer needed to increase101

LMs’ performance, making Self-AMPLIFY more102

autonomous and flexible.103

2 Background and Related Work104

In this work, we consider in-context learning105

(ICL), where a few samples are provided to an106

autoregressive LM within the prompt to perform107

a particular NLP task. In this section we recall 108

some basic principles of post hoc explanations 109

and existing methods that generate rationales to 110

enhance LMs’ performance by enriching prompt. 111

2.1 Post Hoc Explanations Background 112

We recall two ways of generating post hoc 113

explanations, respectively expressed using 114

numerical vectors and natural language rationales. 115

Attribution method. Attribution methods 116

compute an importance score for each input feature 117

to explain the model output. Two types of methods 118

can be distinguished: perturbation-based and 119

gradient-based (Zhao et al., 2024). 120

The former perturbs and resamples feature 121

values to compute feature importance. Two 122

common examples are Local Interpretable 123

Model-agnostic Explanations (LIME) (Ribeiro 124

et al., 2016) and SHAPley additive explanations 125

(SHAP) (Lundberg and Lee, 2017). However, 126

these methods are computationally expensive due 127

to the large number of inferences required. 128

On the other hand, gradient-based approaches 129

estimate feature importance through the model 130

backpropagated gradient activity. Two common 131

examples are Integrated Gradients (Sundararajan 132

et al., 2017) and DeepLift (Shrikumar et al., 2017). 133

However, these methods are computationally 134

expensive due to the need to compute gradients. 135

Therefore, to the best of our knowledge, they have 136

not been yet applied to autoregressive LLMs. 137

Post hoc self-rationales. Rationales are natural 138

language intermediate reasoning steps that justify a 139

model’s prediction (see (Gurrapu et al., 2023) for a 140

recent survey) or favor reasoning in LLMs (Huang 141

and Chang, 2023). Post hoc self-rationale 142

generation involves directly prompting LM’s to 143

explain their prediction in natural language given 144

their answer (Huang et al., 2023; Madsen et al., 145

2024). Post-hoc self-rationales contrast with 146

attribution numerical vector explanations in terms 147

of their lower level of abstraction. 148

2.2 Related Work 149

This section introduces two categories of methods 150

for generating rationales aimed at enriching the 151

prompt and encouraging LLMs to engage in 152

reasoning rather than merely providing answers. 153

Human-annotated rationales. Firstly, rationales 154

can be generated manually. Chain-of-Thought 155
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Figure 2: Self-AMPLIFY overview. Self-AMPLIFY is a 3-step approach generating rationales to self-improve a
SLM in a ICL setting. (1) Promising samples are targeted following two selection strategies: success or error. (2)
Rationales are generated based on a post hoc explanation method: KernelShap, DeepLift, self_exp or self_topk.
(3) The final ICL prompt is built based on the previously generated rationales.

(CoT) (Wei et al., 2023) adds human-annotated156

rationale steps in the prompt. The standard157

ICL template (x, y) is enhanced to (x, r, y)158

where x is the input text, y is the expected159

answer and r is the provided rationale. CoT160

extensions have been proposed to aggregate161

multiple reasoning paths (Wang et al., 2023) or162

to enable LLMs to explore multiple promising163

reasoning paths (Yao et al., 2023) during text164

generation. These approaches significantly165

improve LLMs’ performance on NLP tasks166

requiring reasoning capabilities. Another way167

of using rationales to enrich the ICL prompt168

consists in appending the rationale after the answer,169

as (x, y, r), resulting in a relative performance170

gain (Lampinen et al., 2022) as compared to the171

(x, r, y) design.172

However relying on human-annotated rationales173

makes these methods costly and non entirely174

automatable. Moreover, they require strong175

reasoning capabilities and often produce significant176

performance gains only for LLMs larger than a177

certain size (Wei et al., 2023).178

Automatically generated rationales. Automatic179

rationale generation eliminates the need for180

human-annotated rationales. Automatic Chain-181

of-Thought prompting (Auto-CoT) (Zhang et al.,182

2023) proposes to generate automatically natural183

language rationales with Zero-Shot-CoT (Kojima184

et al., 2022) by prompting the LLM to "think185

step by step". A Sentence-Transformer (Reimers186

and Gurevych, 2019) is used to cluster input187

texts in order to generate one CoT rationale per188

cluster, making the approach dependent on this189

auxiliary Sentence Transformer. Then, the LLM’s190

prediction ŷ is integrated to construct the final 191

prompt (x, r, ŷ). However, Auto-CoT is prone to 192

include incorrect demonstrations and low-quality 193

samples in the prompt, since it does not take 194

the ground truth answer for the final prompt 195

construction. 196

AMPLIFY (Krishna et al., 2023) automatically 197

generates rationales from post hoc numeric 198

attribution methods from an auxiliary fine tuned 199

proxy model. The latter is initially fine tuned on a 200

corpus of interest to generate relevant explanations. 201

Then, a n-shot sample selection is performed using 202

the same proxy model to identify misclassified 203

instances. These samples are then added to the ICL 204

prompt, following the (x, r, y) template. Therefore, 205

AMPLIFY relies heavily on the use of the auxiliary 206

proxy model, both at the n-shot targeting and 207

the rationale generation steps. While AMPLIFY 208

yields significant performance gain as compared 209

to classical prompting, it has only been tested on 210

GPT-3 and GPT-3.5. Moreover, AMPLIFY does 211

not incorporate natural language rationales in its 212

framework. 213

3 Proposed approach: Self-AMPLIFY 214

This section describes the architecture of 215

Self-AMPLIFY, an extension of AMPLIFY for 216

SLMs. As sketched in Figure 2 and detailed in the 217

next subsections, this framework enriches prompts 218

with self-generated rationales in a fully automated 219

manner to enhance SLMs’ performance in ICL 220

settings. By generating rationales directly from 221

the SLM, Self-AMPLIFY differs from AMPLIFY 222

in that it does not depend on any auxiliary proxy 223

model. Therefore, post-hoc explanation methods 224
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are leveraged to self-improve SLM in a fully225

autonomous way.226

3.1 Self-AMPLIFY overview227

As shown in Figure 2 and detailed in the following,228

Self-AMPLIFY is a 3-step approach that takes as229

input an autoregressive SLM f and a corpus of230

texts T from which the n-shot sample is generated.231

Each input text is associated with an expected232

answer, belonging to a label space denoted L . This233

framework is an extension of AMPLIFY (Krishna234

et al., 2023).235

(i) n-shot Sample Selection. This step aims at236

selecting input texts that will be added to the final237

prompt. Self-AMPLIFY implements two simple238

yet efficient selecting strategies only based on f239

prediction, without the need of an auxiliary model.240

(ii) Rationale Generation. Rationales are241

generated for the previously selected texts by242

applying post hoc explanation methods to f itself.243

This way, unlike AMPLIFY, rationales are not244

generated from a fine tuned side proxy model.245

We implements 3 types of post-hoc explanation246

methods to generate directly rationales from f ,247

making Self-AMPLIFY more versatile.248

(iii) Prompt Design for SLMs. The final prompt249

is built based on the rationales previously generated.250

Each generated rationale is added between its251

related input text and ground truth answer. The252

enriched sample is finally used to make the253

prediction on the test set.254

3.2 n-shot Sample Selection255

The first step consists in selecting n texts from256

the corpus of interest T to be included in the final257

prompt.258

Self-AMPLIFY implements two selection259

strategies based solely on f prediction: success260

and error. The success strategy selects text261

instances correctly predicted by f in a standard262

prompt setting, whereas the error strategy selects263

text instances incorrectly predicted by f . To264

determine if an instance of interest x ∈ T is265

correctly predicted, we append the text "The266

answer is" to the initial prompt to guide f next267

token prediction. Therefore, the next token is268

more likely to be predicted in the correct format269

as in Kojima et al. (2022), i.e with a next token270

predicted in the label space L. Denoting y the271

ground truth answer, the model prediction is272

Figure 3: Self-AMPLIFY rationale generation step with
a post hoc attribution method. Such a method (here
DeepLift or KernelShap) is applied to the SLM to
explain the answer D. The 4 most important tokens are
targeted, and the final rationale r is generated based on
the 4 detected keywords. The (x, r, y) triplet is finally
added to the ICL prompt.

considered as a success if f(x) = y, an error if 273

f(x) ̸= y but f(x) is still contained in the label 274

space, it is discarded otherwise. 275

The success strategy relies on the idea that "the 276

higher the prediction certainty, the more relevant 277

the explanation" (Bhan et al., 2023a). On the 278

contrary, the error strategy relies on the idea 279

that adding misclassified examples may avoid 280

similar misclassifications on the test set. We 281

assess the impact of the selection strategy on f 282

performance in Section 4. This way, regardless of 283

the selection strategy, Self-AMPLIFY does not rely 284

on an auxiliary model to target promising tokens, 285

making it more flexible than other methods. 286

3.3 Rationale Generation 287

The rationale generation step is summarized in 288

Figure 3. Once the n-shot sample is created, 289

rationales are generated by computing post hoc 290

explanation from f directly. Self-AMPLIFY differs 291

from the AMPLIFY framework in that it generates 292

rationales without the use of an auxiliary fine tuned 293

model. In addition, Self-AMPLIFY implements 294

3 types of post hoc explanations to generate 295

natural language rationale: post hoc attributions 296

(DeepLift and KernelSHAP), post hoc self_topk 297

explanations and self_exp rationales where 298

AMPLIFY only implements attribution methods. 299
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This makes Self-AMPLIFY more versatile. Post-300

hoc explanations are computed to explain each301

(x, y) pair and, finally, to build their associated302

rationales r.303

DeepLift and KernelShap are computed to304

explain the (x, y) pair, i.e. f output neuron related305

to y. DeepLift decomposes the neural network306

prediction by backpropagating the contributions of307

all neurons in the network to each input feature.308

Attribution scores are computed with respect to309

a chosen baseline. We define the latter so that310

attribution is only computed on the input text,311

disregarding the special tokens or instruction text312

in the prompt. KernelSHAP samples instances in313

the neighborhood of x to approximate Shapley314

Values. In the same way as DeepLift, we only315

perturb input tokens belonging to the input text,316

disregarding the rest of the prompt. Therefore,317

attribution is only computed on tokens from the318

instance of interest. Appendix A provides more319

details about this post hoc attribution computation320

step.321

The k tokens with the highest attribution score322

are then selected to build the rationale: it is defined323

following the template "The k keywords ⟨word1⟩,324

⟨word2⟩,..., and ⟨wordk⟩ are important to predict325

that the answer is ⟨y⟩". This way, Self-AMPLIFY326

generates rationales from post hoc attribution327

methods by converting a numerical vector of328

importance into a natural language rationale.329

self_topk consists in directly prompting f to330

generate the k most important tokens used to331

make its prediction. The self_topk explanation332

is generated in a "answer then generate" post333

hoc manner, since the text containing the k most334

important keywords is generated given the ground335

truth answer y.336

Finally, self_exp consists in prompting f to337

generate a p-step natural language explanation338

in a post hoc manner, given the ground truth y.339

Therefore, self_exp can be defined as a post hoc340

Chain-of-Thought explanation. The final related341

rationale r is defined following the template "p-step342

rationale: ⟨ϕ⟩ , therefore the answer is ⟨y⟩", where343

ϕ is the post-hoc natural language explanation344

previously generated, and p is the number of345

steps in the rationale. Appendix A.3 provides346

more details about the prompts used to generate347

self_topk and self_exp rationales. Figure 4348

gives an example of generated answers conditioned349

by different rationale generator (Self-AMPLIFY350

in 3 different versions, classical prompting and 351

Auto-CoT). 352

3.4 Prompt Design for SLMs 353

The final step consists in designing the prompt that 354

is used to make the prediction on the test set. 355

We define a preprompt at the beginning of the 356

final prompt to define the instruction asked to f , 357

i.e. generating a rationale and an answer to a 358

specific question. The preprompt can take two 359

different forms, depending on the format of the 360

generated rationales (top_k important words or p- 361

step natural language explanation). More details 362

about the preprompt are provided in Appendix A. 363

Finally, the output prompt is built based on the 364

previously generated rationales. The latter is built 365

following the template: "preprompt, (x1, r1, y1), 366

(x2, r2, y2), ..., (xn, rn, yn)". Finally, this n-shot 367

prompt is used as a context to make predictions in 368

an ICL setting on the test set. 369

4 Experimental Settings 370

This section presents the experimental study 371

conducted across two datasets and two 372

autoregressive SLMs. Four versions of 373

Self-AMPLIFY, respectively based on four 374

post hoc explanations methods, are compared to 375

Auto_CoT, a competitor automatically generating 376

rationales and IO, a traditional prompting setup 377

baseline. Finally, we assess the impact of the 378

selection strategy and the post hoc explanation 379

method on Self-AMPLIFY. 380

4.1 Experimental protocol. 381

Datasets. Self-AMPLIFY is tested on two 382

common LMs’ benchmarks. The ARC 383

Challenge (Clark et al., 2018) is a commonsense 384

reasoning dataset containing grade-school science 385

questions. ARC is designed to evaluate a model’s 386

ability to use prior knowledge about the world. 387

The Snarks dataset (Srivastava et al., 2022) aims at 388

distinguishing between sarcastic and non-sarcastic 389

sentences. These datasets are commonly used to 390

evaluate LMs’ performance. 391

Models. We test Self-AMPLIFY on Instruction- 392

tuned SLMs whose size does not exceed 7 billion 393

parameters and achieve good results in the usual 394

benchmarks. Mistral Tiny (Jiang et al., 2023) is 395

a SLM with 7 billion parameters achieving state-of- 396

the-art performance among other SLMs in a wide 397

variety of NLP tasks. Zephyr (Tunstall et al., 2023) 398
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Mistral Tiny Zephyr
Selection
strategy Method Post hoc

explainer
ARC

Challenge Snarks ARC
Challenge Snarks

Success
Self-AMPLIFY

DeepLift 71.7 47.6 67.3 42.8
KernelShap 71.7 46.9 66.7 41.4
Self_topk 72.7 31.7 66.7 41.3
Self_exp 74.3 64.1 67.3 46.2

IO 68.3 49.0 64.4 48.2
Auto-CoT 73.3 53.8 63.3 57.9

Error
Self-AMPLIFY

DeepLift 70.7 56.6 69.3 48.3
KernelShap 68.0 54.5 68.7 45.5
Self_topk 70.0 57.2 71.7 59.3
Self_exp 72.0 68.3 63.0 48.3

IO 72 46.9 63.0 36.5
Auto-CoT 72.7 54.5 65.0 49.7

Table 1: Self-AMPLIFY accuracy (%) on 2 test sets and comparison with competitors. Self-AMPLIFY is tested on
4 versions, depending on the post hoc explainer used to generate rationales. IO stands for "input-output" standard
prompting. Auto-CoT (Zhang et al., 2022) is a competing method automatically generating rationales to enhance
the input prompt.

is also a 7 billion parameters SLM demonstrating399

high performance on the same benchmarks.400

Self-AMPLIFY versions and competitors.401

We test the four implemented post hoc402

explanation methods in Self-AMPLIFY : DeepLift,403

KernelShap, self_topk and self_exp. These404

Self-AMPLIFY versions are compared to a405

traditional (x, y) prompting setup (input-output,406

IO) and Auto-CoT (Zhang et al., 2023). For a407

fair comparison, we apply Self-AMPLIFY and408

Auto-CoT on the same n-shot sample. We do409

not compare Self-AMPLIFY to AMPLIFY because410

the main interest of our work is to generate411

rationale without using any additional model.412

Since AMPLIFY uses a proxy fine tuned LM (up413

to 200 epochs) to generate its rationales, the414

comparison would be unfair.415

Post hoc attribution methods and self_topk are416

computed with k = 6, meaning that the 6 most417

important tokens are used to generate rationales.418

Self_exp p-step rationales are generated with p =419

3, and ICL context size is set at n = 8.420

The four versions of Self-AMPLIFY and its421

competitors are tested on the same samples from422

ARC Challenge and Snarks. Therefore, contexts423

are enriched from the same training corpus T424

and inference is performed on the same test sets.425

In particular, evaluation is performed on 350426

randomly sampled texts from ARC Challenge and427

145 from Snarks. 428

The Mistral Tiny model is used in the end to 429

recover the SLMs response in the correct format, 430

belonging to the label space (for example A, B, C 431

or D for ARC Challenge) to compute accuracy. 432

4.2 Results. 433

Global Results. As shown in Table 1, in each 434

case (dataset, SLM), the best result is obtained by 435

one of the Self-AMPLIFY variants. Self-AMPLIFY 436

improves performance as compared to IO and 437

achieves better results than Auto-CoT on average, 438

validating the value of post hoc generated rationales 439

to enhance SLMs. Post hoc attribution methods 440

can lead to significant performance gain as 441

compared to IO and Auto-CoT. In particular, the 442

Self_exp generated rationales induce generally 443

better performance, especially with the success 444

selection strategy. Accuracy is significantly higher 445

on ARC Challenge than Snarks, the latter task 446

being more challenging. 447

Impact of the selection strategy and the task. 448

Table 1 shows that the selection strategy has a 449

significant impact on the results. The selection 450

strategy leads to wide performance gaps on the 451

Snarks dataset, where the error selection strategy 452

is more advantageous for Self-AMPLIFY compared 453

to its competitors. 454

This gap is is even more pronounced with post 455
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selection strategy DeepLift KernelShap self_topk random
error 67.4 ±3.8 67.4 ±3.0 68.6 ±1.1 61.6 ±4.5

success 67.7 ±2.1 69.0 ±3.1 67.0 ±2.0 63.9 ±6.6

Table 2: Average accuracy (%) and standard deviation computed on 6 runs of Self-AMPLIFY for different topk
post hoc explainers, on Mistral Tiny and ARC Challenge. All topk methods do better in average than the random
keyword generator, for every selection strategy.

selection strategy topk DeepLift KernelShap self_topk

error 4 70.6 67.7 72.7
6 70.0 68.0 70.0

success 4 70.3 70.3 72.7
6 70.3 70.3 67.7

Table 3: Average accuracy (%) of Self-AMPLIFY for different topk post hoc explainers and different topk values,
on Mistral Tiny and ARC Challenge. Self_topk rationales lead to better performance with 4 important keywords
in the generated rationales.

hoc attribution explainers, where KernelShap and456

DeepLift have low performance with the success457

strategy whereas their accuracy becomes higher458

than their competitors with the error selection459

strategy (between 4 and 9 points difference).460

We hypothesize that these disparities can be461

explained by the complexity of the Snark task462

(sarcasm detection). Assuming that "the higher463

the prediction certainty, the better the related464

explanation", post hoc attribution explanations465

seem to fail generating useful rationales on466

previously successfully predicted instance to467

enhance performance. The performance gain from468

the error selection strategy would then be related469

to the corrective signal added in the prompt to avoid470

similar misclassifications.471

Self-AMPLIFY leads to better result in general472

on the ARC Challenge dataset with almost every473

type of post hoc explainer. In particular, we474

hypothesize that the good results obtained by post475

hoc attributions methods on the ARC Challenge476

dataset and the success strategy are due to the477

lower complexity of the task. Generating rationales478

from successfully classified texts with such a level479

of complexity would then provide high quality480

signal to improve SLM’s performance.481

Impact of the post hoc explainer. The482

Self_exp post hoc explainer generates more483

useful rationale to improve SLMs’ accuracy484

in average, as shown in Table 1. DeepLift485

and KernelShap performances ar similar, with486

DeepLift having slightly better results. In487

particular, Self_exp is more robust than the other488

post hoc explainers when Self-AMPLIFY does not489

lead to significant performance gain compared to 490

its competitors (see for example Mistral Tiny on 491

Snarks with the success selection strategy). 492

Which topk explainer leads to more useful 493

rationales ? We perform a deeper analysis of 494

the impact of the topk post hoc explainer through 495

an ablation study. We run 6 times Self-AMPLIFY 496

on the same test set from ARC Challenge in order 497

to have different ICL context samples from one run 498

to the other. The analysis is performed on Mistral 499

Tiny, with rationales generated from each of the 500

3 considered post hoc topk explainers (DeepLift, 501

KernelShap and Self_topk) and a random topk 502

keyword generator (random). This way, we assess 503

the sensitivity of Self-AMPLIFY to the post hoc 504

explainer generating topk explanations. 505

Table 2 shows the results of the performed 506

ablation study. Self-AMPLIFY leads to a better 507

accuracy when grounded on a topk explainer 508

compared to the random baseline. Self_topk 509

gives the highest average accuracy when samples 510

are selected according to the success strategy. 511

KernelShap gives the highest average accuracy 512

when samples are selected according to the error 513

strategy. 514

Impact of the number of keywords in the 515

rationale. We run Self-AMPLIFY on the same 516

ICL sample and test set from ARC Challenge with 517

k = 4 and k = 6 to assess the impact of the number 518

of keywords. The analysis is performed for each 519

topk explainer and each selection strategy. Table 3 520

shows the obtained results. Self_topk is the only 521

topk explainer inducing a lower accuracy with 6 522
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keywords instead of 4, whereas KernelShap and523

DeepLift are very stable524

5 Discussion525

We introduced Self-AMPLIFY, an extension of526

the AMPLIFY framework, automatically generating527

rationales to enrich the prompt in ICL settings528

for small language models. Self-AMPLIFY is the529

first approach enriching the prompt without human-530

annotated rationales or the use of auxiliary models,531

but only with the SLM itself.532

The proposed framework is versatile and can533

work with any other post hoc attribution methods,534

such as Integrated Gradient or LIME. Therefore,535

one can chose the appropriate attribution method536

to use, depending on the level of information537

available about the model. For example, some538

APIs do not provide access to model internal539

parameters, making the use of KernelShap a better540

option as compared to DeepLift. In addition, it541

would be interesting to test Self-AMPLIFY on even542

smaller SLMs with less reasoning abilities such as543

TinyLlama (Zhang et al., 2024).544

As a future work, it would be interesting to545

assess the faithfulness of the generated rationales.546

It would be also valuable to analyze in more547

depth the keywords generated by the SLM in ICL548

settings. Generated post hoc explanations could be549

compared to ground truth post hoc explanations550

that would have been computed in a post hoc551

manner. This would provide rich insights about552

the ability of LMs to learn to explain. We see these553

perspectives as promising paths towards a better554

understanding of LMs’ ability to self-explain and555

generate faithful explanations.556

A way of improvement of Self-AMPLIFY557

could be to generate other types of rationales to558

enrich the prompt such as textual counterfactual559

examples (see e.g. (Bhan et al., 2023b) for a560

recent method). By providing slight modifications561

to apply to the input text to change the SLM562

outcome, counterfactual examples could give563

strong correcting yet simple signals to self-enhance564

the SLM. It constitutes promising directions to565

generate valuable rationales to enhance SLM’s566

performance.567

Finally, a deeper analysis of the link568

between task complexity, selection strategy569

and Self-AMPLIFY performance would provide570

precious information about situations where post571

hoc explainers provide more valuable rationales572

than others. 573

For anonymity reasons, we do not provide a link 574

to the Self-AMPLIFY github. The code will be 575

available upon acceptance to facilitate reproduction 576

and further research. 577

6 Conclusion 578

This paper presents Self-AMPLIFY, an extension 579

of the AMPLIFY framework to build rationales 580

from a SLM to improve itself in ICL settings. 581

Self-AMPLIFY is the first method to generate 582

rationales without the use of any auxiliary side 583

model. Self-AMPLIFY implements 2 selection 584

strategies and 4 post hoc explanation methods, 585

making it versatile and flexible. Self-AMPLIFY 586

results in performance gain in the two considered 587

tasks, outperforming Auto-CoT. Finally, this 588

work sheds light on the interest of using 589

post hoc attribution methods to enhance SLM’s 590

performance. 591

7 Limitations 592

Datasets and models. In this work we have 593

tested Self-AMPLIFY by applying it on 2 datasets 594

and 2 language models. The conclusions of our 595

work would have more weight if other datasets 596

were included in the study. Furthermore, it 597

would be interesting to test Self-AMPLIFY on even 598

smaller SLMs with less reasoning abilities such as 599

TinyLlama (Zhang et al., 2024). This would make 600

the framework even more useful to the community. 601

Rationale relevance. The quality of the 602

generated rationales is not assessed, neither when 603

enriching the prompt (rationale generation step), 604

nor when generating the text (prediction on the 605

test set). These rationales should be interpreted 606

with caution, as they have been generated solely to 607

enhance SLMs’ performance. This phenomenon 608

has been raised by (Zhang et al., 2022), where 609

wrong demonstrations based on low quality 610

rationales can still lead to performance gains. 611

Computational cost. The use of KernelShap and 612

DeepLift is computationally costly. Even if it is 613

affordable to use them with SLMs, the resource 614

requirement is substantial. One could lower the 615

number of samples used to compute KernelShap if 616

needed (see Appendix A.4) to make it even more 617

affordable. 618
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Ethics Statement619

Since SLMs’ training data can be biased, there is620

a risk of generating harmful text during inference.621

One using Self-AMPLIFY to generate rationales622

must be aware of these biases in order to stand623

back and analyze the produced texts. Finally, SLMs624

consume energy, potentially emitting greenhouse625

gases. They must be used with caution.626
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A Appendix 829

A.1 Scientific libraries 830

We used several open-source libraries in this 831

work: pytorch (Paszke et al., 2019), HuggingFace 832

transformers (Wolf et al., 2020) sklearn (Pedregosa 833

et al., 2011) and Captum (Miglani et al., 2023). We 834
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will make our code available upon acceptance to835

facilitate reproduction and further research.836

A.2 SLMs implementation Details837

Small Language Models. The library used to838

import the pretrained SLMs is Hugging-Face.839

In particular, the backbone version of Mistral840

is mistralai/Mistral-7B-Instruct-v0.2, and841

the one of Zephyr is842

HuggingFaceH4/zephyr-7b-beta.843

Instruction special tokens. The special tokens to844

use SLMs in instruction mode were the followings:845

• Mistral-7B-Instruct-v0.2846

– user_token = ’[INST]’847

– assistant_token =’[/INST]’848

– stop_token = ’</s>’849

• Zephyr-7b-beta850

– user_token = ’<|user|>’851

– assistant_token =852

’<|assistant|>’853

– stop_token = ’</s>’854

Text generation. Text generation was performed855

using the native functions of the Hugging Face856

library: generate. The generate function has857

been used with the following parameters:858

• max_new_tokens = 300859

• do_sample = True860

• num_beams = 2861

• no_repeat_ngram_size = 2862

• early_stopping = True863

A.3 Prompting format864

Here we provide some details of different prompts865

used to give instructions to SLMs.866

867

Prompt for self_topk rationale generation868

user869

Choose the right answer with the ⟨topk⟩ most870

important keywords used to answer. Example: The871

answer is (A), the ⟨topk⟩ most important keywords872

to make the prediction are "word1", ... and "wordk"873

874

Preprompt for self_exp rationale generation875

user876

Choose the right answer and generate a concise877

⟨n_steps⟩-step explanation, with only one 878

sentence per step. Example: The answer is (A), 879

⟨n_steps⟩-step explanation: step1, step2,...,stepn. 880

881

Final ICL n-samples prompt example based 882

on topk rationales 883

user 884

You are presented with multiple choice question, 885

where choices will look like (A), (B), (C) or 886

(D), generate ⟨topk_words⟩ keywords providing 887

hints and generate the right single answer Ouput 888

example: The ⟨topk_words⟩ keywords "word1", 889

"word2" ... and "wordk" are important to predict 890

that the answer is (A) 891

⟨ question1 ⟩ 892

assistant 893

⟨ rationale1 ⟩ 894

⟨ answer1 ⟩ 895

... 896

user 897

⟨ questionn ⟩ 898

assistant 899

⟨ rationalen ⟩ 900

⟨ answern ⟩ 901

user 902

⟨ questionn+1⟩ 903

A.4 Post hoc attribution explanation methods 904

Captum library. Post hoc attribution has been 905

computed using the Captum (Miglani et al., 2023) 906

library. Self-AMPLIFY implements additional 907

post hoc attribution methods as compared to 908

those presented in our paper. These additional 909

post hoc attribution methods can be used in the 910

Self-AMPLIFY framework to generate rationales. 911

Overall, we implement the following methods: 912

• Gradient-based 913

– GradientXActivation 914

– IntegratedGradients 915

– DeepLift 916

• Perturbation-based 917

– FeatureAblation 918

– Lime 919

– KernelShap 920

– ShapleyValueSampling 921

– ShapleyValues 922
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Figure 4: ARC Challenge answers conditioned by different ICL prompt built from different rationale generators.

Attribution implementation details. In923

particular, gradient-based approach are computed924

with respect to the SLM embedding layer (layer925

= model.model.embed_tokens).926

The parameters used to computed DeepLift927

and KernelShap were Captum’s default settings.928

In particular, KernelShap was computed with929

n_samples = 350930

Baseline choice. The baseline choice is decisive931

for DeepLift computation. The baseline is selected932

so that importance is only computed with respect933

to the initial prompt, so that special tokens and934

preprompt have an attribution equal to 0. The935

baseline is thus constructed as a modified version936

of the text on which DeepLift is applied. The only937

difference is that the prompt corresponding to the938

statement, the question part and possible answers939

is replaced with padding.940
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