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Abstract

Incorporating natural language rationales in
the prompt and In-Context Learning (ICL)
has led to a significant improvement of Large
Language Models (LLMs) performance.
However, rationales currently require
human-annotation or the use of auxiliary
proxy models to target promising samples
or generate high-quality rationales. In
this work, we propose Self-AMPLIFY to
generate automatically rationales from post
hoc explanation methods applied to Small
Language Models (SLMs) to improve their
own performance. Self-AMPLIFY is a 3-step
method that targets samples, generates
rationales and builds a final prompt to leverage
ICL. Self-AMPLIFY performance is evaluated
on two SLMs and two datasets requiring
reasoning abilities: these experiments show
that Self-AMPLIFY achieves good results
against competitors. Self-AMPLIFY is the first
method to apply post hoc explanation methods
to SLM to generate rationales to improve their
own performance in a fully automated manner.

1 Introduction

Autoregressive  Large  Language  Models
(LLMs) such as GPT-3 (Brown et al,
2020), PaLM (Chowdhery et al., 2023) or

LaMDA (Thoppilan et al., 2022), have made
significant advancements in a wide range of NLP
tasks. These models have demonstrated so-called
"emergent abilities" (Schaeffer et al., 2023),
including in-context learning (ICL), instruction
following and reasoning (Wei et al., 2022). ICL
(see Dong et al. (2023) for a recent survey)
involves learning from a few examples integrated
into the prompt without fine tuning the model.
LLMs’ emergent abilities have been leveraged
to enhance performance by incorporating human-
annotated intermediate reasoning steps within the
context, called rationales (Wei et al., 2023). By
learning to sequentially generate (1) the reasoning
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the correct answer, suggesting that we are looking for an activity related to
weather. Therefore, options A, D, and possibly C can be considered. Among
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The answer is A. Satellite imagery is commonly used in weather mapping to
monitor atmospheric conditions, cloud formations, and precipitation patterns.
Therefore, the answer to this question is A.
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Figure 1: Example of three responses to a question from
the ARC Challenge dataset, generated from different
ICL prompting strategies. Traditional input-output (I0)
prompting and auto-CoT (Zhang et al., 2023) fail to
generate the good answer, whereas Self-AMPLIFY is
able to generate important tokens as a rationale before
answering as expected.

steps through rationales and (2) the final answer,
LLMs have reached state-of-the-art performance
in complex tasks requiring reasoning abilities
such as commonsense or symbolic reasoning.
To overcome the need for human annotation,
automatic rationale generation methods have been
proposed. AMPLIFY (Krishna et al., 2023) has
demonstrated that rationales can be generated from
smaller proxy supervised Language Models (LMs)
to enrich the prompt to enhance the performance
of LLMs. AMPLIFY targets promising instances to
be integrated into the final prompt using the proxy
model and automatically builds rationales based on
post hoc attribution explanation methods (Molnar,
2020) applied to this proxy model.

Recently, small autoregressive LMs (SLMs),



with fewer than 14 billions parameters, have
emerged, such as Mistral (Jiang et al., 2023),
Zephyr (Tunstall et al., 2023) or Llama-2-
7B (Touvron et al., 2023).  They achieve
performance sometimes approaching that of
LLMs’ on common benchmarks: their smaller
size makes them computationally efficient while
maintaining a high level of accuracy. In
particular, classical post hoc attribution methods
such as KernelSHAP (Lundberg and Lee, 2017)
or DeepLift (Shrikumar et al., 2017) become
affordable to explain SLMs’ prediction, despite
their high computational cost of these methods.

In this paper, we propose Self-AMPLIFY, an
extension of the AMPLIFY framework for SLMs
that does not need an auxiliary model nor
human annotations. The main contributions of
Self-AMPLIFY are as follows: (i) promising
instances to be integrated into the final prompt
are targeted only using the considered SLM’s
prediction, (ii) post hoc explanation methods
are applied to the SLM itself to generate
automatically rationales as a self-improving signal,
(iii) three types of post hoc explanations methods
are implemented: post hoc attributions, self
topk explanations and self natural language
explanations.

As an illustration, Figure 1 shows three
responses to a question from the ARC
Challenge (Clark et al., 2018) dataset respectively
obtained using the proposed Self-AMPLIFY, a
classical prompting approach, I0, and a rationale
enhanced approach, Auto-CoT (Zhang et al., 2023).
10 and auto-CoT fail to generate the good answer,
while Self-AMPLIFY succeeds.

Experimental results discussed in Section 4 show
that Self-AMPLIFY leads to a performance gain
on sarcasm detection and commonsense reasoning
as compared to I0 and auto-CoT. As a result,
we show that post hoc explanation methods of
various kinds can be directly applied to the SLM to
generate automatically rationales to self-improve.
Unlike the original AMPLIFY framework, proxy fine
tuned models are no longer needed to increase
LMs’ performance, making Self-AMPLIFY more
autonomous and flexible.

2 Background and Related Work

In this work, we consider in-context learning
(ICL), where a few samples are provided to an
autoregressive LM within the prompt to perform

a particular NLP task. In this section we recall
some basic principles of post hoc explanations
and existing methods that generate rationales to
enhance LMs’ performance by enriching prompt.

2.1 Post Hoc Explanations Background

We recall two ways of generating post hoc
explanations, respectively expressed using
numerical vectors and natural language rationales.

Attribution method. Attribution methods
compute an importance score for each input feature
to explain the model output. Two types of methods
can be distinguished: perturbation-based and
gradient-based (Zhao et al., 2024).

The former perturbs and resamples feature
values to compute feature importance. Two
common examples are Local Interpretable
Model-agnostic Explanations (LIME) (Ribeiro
et al., 2016) and SHAPIley additive explanations
(SHAP) (Lundberg and Lee, 2017). However,
these methods are computationally expensive due
to the large number of inferences required.

On the other hand, gradient-based approaches
estimate feature importance through the model
backpropagated gradient activity. Two common
examples are Integrated Gradients (Sundararajan
et al., 2017) and DeepLift (Shrikumar et al., 2017).
However, these methods are computationally
expensive due to the need to compute gradients.
Therefore, to the best of our knowledge, they have
not been yet applied to autoregressive LL.Ms.

Post hoc self-rationales. Rationales are natural
language intermediate reasoning steps that justify a
model’s prediction (see (Gurrapu et al., 2023) for a
recent survey) or favor reasoning in LLMs (Huang
and Chang, 2023). Post hoc self-rationale
generation involves directly prompting LM’s to
explain their prediction in natural language given
their answer (Huang et al., 2023; Madsen et al.,
2024). Post-hoc self-rationales contrast with
attribution numerical vector explanations in terms
of their lower level of abstraction.

2.2 Related Work

This section introduces two categories of methods
for generating rationales aimed at enriching the
prompt and encouraging LLMs to engage in
reasoning rather than merely providing answers.

Human-annotated rationales. Firstly, rationales
can be generated manually. Chain-of-Thought
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Figure 2: Self-AMPLIFY overview. Self-AMPLIFY is a 3-step approach generating rationales to self-improve a
SLM in a ICL setting. (1) Promising samples are targeted following two selection strategies: success or error. (2)
Rationales are generated based on a post hoc explanation method: KernelShap, DeepLift, self_exp or self_topk.
(3) The final ICL prompt is built based on the previously generated rationales.

(CoT) (Wei et al., 2023) adds human-annotated
rationale steps in the prompt. The standard
ICL template (x, y) is enhanced to (x, r, y)
where x is the input text, y is the expected
answer and r is the provided rationale. CoT
extensions have been proposed to aggregate
multiple reasoning paths (Wang et al., 2023) or
to enable LLMs to explore multiple promising
reasoning paths (Yao et al., 2023) during text
generation. These approaches significantly
improve LLMs’ performance on NLP tasks
requiring reasoning capabilities. Another way
of using rationales to enrich the ICL prompt
consists in appending the rationale after the answer,
as (z,y,r), resulting in a relative performance
gain (Lampinen et al., 2022) as compared to the
(z,7,y) design.

However relying on human-annotated rationales
makes these methods costly and non entirely
automatable.  Moreover, they require strong
reasoning capabilities and often produce significant
performance gains only for LLMs larger than a
certain size (Wei et al., 2023).

Automatically generated rationales. Automatic
rationale generation eliminates the need for
human-annotated rationales. Automatic Chain-
of-Thought prompting (Auto-CoT) (Zhang et al.,
2023) proposes to generate automatically natural
language rationales with Zero-Shot-CoT (Kojima
et al., 2022) by prompting the LLM to "think
step by step". A Sentence-Transformer (Reimers
and Gurevych, 2019) is used to cluster input
texts in order to generate one CoT rationale per
cluster, making the approach dependent on this
auxiliary Sentence Transformer. Then, the LLM’s

prediction ¢ is integrated to construct the final
prompt (z, r, y). However, Auto-CoT is prone to
include incorrect demonstrations and low-quality
samples in the prompt, since it does not take
the ground truth answer for the final prompt
construction.

AMPLIFY (Krishna et al., 2023) automatically
generates rationales from post hoc numeric
attribution methods from an auxiliary fine tuned
proxy model. The latter is initially fine tuned on a
corpus of interest to generate relevant explanations.
Then, a n-shot sample selection is performed using
the same proxy model to identify misclassified
instances. These samples are then added to the ICL
prompt, following the (x, r, y) template. Therefore,
AMPLIFY relies heavily on the use of the auxiliary
proxy model, both at the n-shot targeting and
the rationale generation steps. While AMPLIFY
yields significant performance gain as compared
to classical prompting, it has only been tested on
GPT-3 and GPT-3.5. Moreover, AMPLIFY does
not incorporate natural language rationales in its
framework.

3 Proposed approach: Self-AMPLIFY

This section describes the architecture of
Self-AMPLIFY, an extension of AMPLIFY for
SLMs. As sketched in Figure 2 and detailed in the
next subsections, this framework enriches prompts
with self-generated rationales in a fully automated
manner to enhance SLMs’ performance in ICL
settings. By generating rationales directly from
the SLM, Self-AMPLIFY differs from AMPLIFY
in that it does not depend on any auxiliary proxy
model. Therefore, post-hoc explanation methods



are leveraged to self-improve SLM in a fully
autonomous way.

3.1 Self-AMPLIFY overview

As shown in Figure 2 and detailed in the following,
Self-AMPLIFY is a 3-step approach that takes as
input an autoregressive SLM f and a corpus of

texts 7 from which the n-shot sample is generated.

Each input text is associated with an expected
answer, belonging to a label space denoted £ . This
framework is an extension of AMPLIFY (Krishna
et al., 2023).

(i) n-shot Sample Selection. This step aims at
selecting input texts that will be added to the final
prompt. Self-AMPLIFY implements two simple
yet efficient selecting strategies only based on f

prediction, without the need of an auxiliary model.

(ii) Rationale Generation. Rationales are
generated for the previously selected texts by

applying post hoc explanation methods to f itself.

This way, unlike AMPLIFY, rationales are not
generated from a fine tuned side proxy model.
We implements 3 types of post-hoc explanation
methods to generate directly rationales from f,
making Self-AMPLIFY more versatile.

(iii) Prompt Design for SLMs. The final prompt

is built based on the rationales previously generated.

Each generated rationale is added between its
related input text and ground truth answer. The
enriched sample is finally used to make the
prediction on the test set.

3.2 n-shot Sample Selection

The first step consists in selecting n texts from
the corpus of interest 7 to be included in the final
prompt.

Self-AMPLIFY implements two selection
strategies based solely on f prediction: success
and error. The success strategy selects text
instances correctly predicted by f in a standard
prompt setting, whereas the error strategy selects
text instances incorrectly predicted by f. To
determine if an instance of interest x € T is
correctly predicted, we append the text "The
answer is" to the initial prompt to guide f next
token prediction. Therefore, the next token is
more likely to be predicted in the correct format
as in Kojima et al. (2022), i.e with a next token
predicted in the label space £. Denoting y the
ground truth answer, the model prediction is

(X) : Which type of activity would most likely be
included on a weather map?

(A) satellite (B) seismic (C) volcanic (D) hurricane
(¥) : The answer ism -
topd keywords J

M “which” *type”, “weather”, “map”, }
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(x) : Which type of activity would most likely
be included on a weather map?

(A) satellite (B) seismic (C) volcanic (D) hurricane
(r) : The 4 important keywords “which", "type",

“weather” and “map* are hints to predict that

(¥) the answeris E

Figure 3: Self-AMPLIFY rationale generation step with
a post hoc attribution method. Such a method (here
DeepLift or KernelShap) is applied to the SLM to
explain the answer D. The 4 most important tokens are
targeted, and the final rationale r is generated based on
the 4 detected keywords. The (z, r, y) triplet is finally
added to the ICL prompt.

considered as a success if f(x) = y, an error if
f(x) # ybut f(x) is still contained in the label
space, it is discarded otherwise.

The success strategy relies on the idea that "the
higher the prediction certainty, the more relevant
the explanation" (Bhan et al., 2023a). On the
contrary, the error strategy relies on the idea
that adding misclassified examples may avoid
similar misclassifications on the test set. We
assess the impact of the selection strategy on f
performance in Section 4. This way, regardless of
the selection strategy, Self-AMPLIFY does not rely
on an auxiliary model to target promising tokens,
making it more flexible than other methods.

3.3 Rationale Generation

The rationale generation step is summarized in
Figure 3. Once the n-shot sample is created,
rationales are generated by computing post hoc
explanation from f directly. Self-AMPLIFY differs
from the AMPLIFY framework in that it generates
rationales without the use of an auxiliary fine tuned
model. In addition, Self-AMPLIFY implements
3 types of post hoc explanations to generate
natural language rationale: post hoc attributions
(DeepLift and KernelSHAP), post hoc self_topk
explanations and self_exp rationales where
AMPLIFY only implements attribution methods.



This makes Self-AMPLIFY more versatile. Post-
hoc explanations are computed to explain each
(z,y) pair and, finally, to build their associated
rationales r.

DeepLift and KernelShap are computed to
explain the (z,y) pair, i.e. f output neuron related
to y. DeepLift decomposes the neural network
prediction by backpropagating the contributions of
all neurons in the network to each input feature.
Attribution scores are computed with respect to
a chosen baseline. We define the latter so that
attribution is only computed on the input text,
disregarding the special tokens or instruction text
in the prompt. KernelSHAP samples instances in
the neighborhood of x to approximate Shapley
Values. In the same way as DeepLift, we only
perturb input tokens belonging to the input text,
disregarding the rest of the prompt. Therefore,
attribution is only computed on tokens from the
instance of interest. Appendix A provides more
details about this post hoc attribution computation
step.

The k tokens with the highest attribution score
are then selected to build the rationale: it is defined
following the template "The k keywords (wordy),
(wordy),..., and (wordy) are important to predict
that the answer is (y)". This way, Self-AMPLIFY
generates rationales from post hoc attribution
methods by converting a numerical vector of
importance into a natural language rationale.

self_topk consists in directly prompting f to
generate the k£ most important tokens used to
make its prediction. The self_topk explanation
is generated in a "answer then generate” post
hoc manner, since the text containing the £ most
important keywords is generated given the ground
truth answer y.

Finally, self_exp consists in prompting f to
generate a p-step natural language explanation
in a post hoc manner, given the ground truth y.
Therefore, self_exp can be defined as a post hoc
Chain-of-Thought explanation. The final related
rationale 7 is defined following the template "p-step
rationale: () , therefore the answer is (y)", where
¢ is the post-hoc natural language explanation
previously generated, and p is the number of
steps in the rationale. Appendix A.3 provides
more details about the prompts used to generate
self_topk and self_exp rationales. Figure 4
gives an example of generated answers conditioned
by different rationale generator (Self-AMPLIFY

in 3 different versions, classical prompting and
Auto-CoT).

3.4 Prompt Design for SLMs

The final step consists in designing the prompt that
is used to make the prediction on the test set.

We define a preprompt at the beginning of the
final prompt to define the instruction asked to f,
i.e. generating a rationale and an answer to a
specific question. The preprompt can take two
different forms, depending on the format of the
generated rationales (top_k important words or p-
step natural language explanation). More details
about the preprompt are provided in Appendix A.

Finally, the output prompt is built based on the
previously generated rationales. The latter is built
following the template: "preprompt, (x1,71,y1),
(x2,72,Y2), -y (Tn,"Tn,Yn)". Finally, this n-shot
prompt is used as a context to make predictions in
an ICL setting on the test set.

4 Experimental Settings

This section presents the experimental study
conducted across two datasets and two
autoregressive SLMs. Four versions of
Self-AMPLIFY, respectively based on four
post hoc explanations methods, are compared to
Auto_CoT, a competitor automatically generating
rationales and IO, a traditional prompting setup
baseline. Finally, we assess the impact of the
selection strategy and the post hoc explanation
method on Self-AMPLIFY.

4.1 Experimental protocol.

Datasets. Self-AMPLIFY is tested on two
common LMs’ benchmarks. The ARC
Challenge (Clark et al., 2018) is a commonsense
reasoning dataset containing grade-school science
questions. ARC is designed to evaluate a model’s
ability to use prior knowledge about the world.
The Snarks dataset (Srivastava et al., 2022) aims at
distinguishing between sarcastic and non-sarcastic
sentences. These datasets are commonly used to
evaluate LMs’ performance.

Models. We test Self-AMPLIFY on Instruction-
tuned SLMs whose size does not exceed 7 billion
parameters and achieve good results in the usual
benchmarks. Mistral Tiny (Jiang et al., 2023) is
a SLM with 7 billion parameters achieving state-of-
the-art performance among other SLMs in a wide
variety of NLP tasks. Zephyr (Tunstall et al., 2023)



Mistral Tiny Zephyr
Selection Post hoc ARC ARC

strategy Method explainer | Challenge Snarks Challenge Snarks

DeepLift 71.7 47.6 67.3 42.8

KernelShap 71.7 46.9 66.7 41.4

Success Self-AMPLIFY Self_topk 72.7 31.7 66.7 41.3

Self_exp 74.3 64.1 67.3 46.2

I0 68.3 49.0 64.4 48.2

Auto-CoT 73.3 53.8 63.3 57.9

DeepLift 70.7 56.6 69.3 48.3

KernelShap 68.0 54.5 68.7 45.5

Error Self-AMPLIFY = TF topk 70.0 572 717 593

Self_exp 72.0 68.3 63.0 48.3

I0 72 46.9 63.0 36.5

Auto-CoT 72.7 54.5 65.0 49.7

Table 1: Self-AMPLIFY accuracy (%) on 2 test sets and comparison with competitors. Self-AMPLIFY is tested on
4 versions, depending on the post hoc explainer used to generate rationales. I0 stands for "input-output" standard
prompting. Auto-CoT (Zhang et al., 2022) is a competing method automatically generating rationales to enhance

the input prompt.

is also a 7 billion parameters SLM demonstrating
high performance on the same benchmarks.

Self-AMPLIFY versions and
We test the four implemented post hoc
explanation methods in Sel1f-AMPLIFY : DeepLift,
KernelShap, self_topk and self_exp. These
Self-AMPLIFY versions are compared to a
traditional (x, y) prompting setup (input-output,
I0) and Auto-CoT (Zhang et al., 2023). For a
fair comparison, we apply Self-AMPLIFY and
Auto-CoT on the same n-shot sample. We do
not compare Self-AMPLIFY to AMPLIFY because
the main interest of our work is to generate
rationale without using any additional model.
Since AMPLIFY uses a proxy fine tuned LM (up
to 200 epochs) to generate its rationales, the
comparison would be unfair.

Post hoc attribution methods and self_topk are
computed with £k = 6, meaning that the 6 most
important tokens are used to generate rationales.
Self_exp p-step rationales are generated with p =
3, and ICL context size is set at n = 8.

The four versions of Self-AMPLIFY and its
competitors are tested on the same samples from
ARC Challenge and Snarks. Therefore, contexts
are enriched from the same training corpus 7~
and inference is performed on the same test sets.
In particular, evaluation is performed on 350
randomly sampled texts from ARC Challenge and

competitors.

145 from Snarks.

The Mistral Tiny model is used in the end to
recover the SLMs response in the correct format,
belonging to the label space (for example A, B, C
or D for ARC Challenge) to compute accuracy.

4.2 Results.

Global Results. As shown in Table 1, in each
case (dataset, SLM), the best result is obtained by
one of the Self-AMPLIFY variants. Self-AMPLIFY
improves performance as compared to IO and
achieves better results than Auto-CoT on average,
validating the value of post hoc generated rationales
to enhance SLMs. Post hoc attribution methods
can lead to significant performance gain as
compared to I0 and Auto-CoT. In particular, the
Self_exp generated rationales induce generally
better performance, especially with the success
selection strategy. Accuracy is significantly higher
on ARC Challenge than Snarks, the latter task
being more challenging.

Impact of the selection strategy and the task.
Table 1 shows that the selection strategy has a
significant impact on the results. The selection
strategy leads to wide performance gaps on the
Snarks dataset, where the error selection strategy
is more advantageous for Self-AMPLIFY compared
to its competitors.

This gap is is even more pronounced with post



selection strategy | DeepLift | KernelShap | self_topk | random
error 67.44+3.8 | 67.4 £3.0 68.6 1.1 | 61.6 £4.5
success 67.7 £2.1 | 69.0 £3.1 67.0 £2.0 | 63.9 £6.6

Table 2: Average accuracy (%) and standard deviation computed on 6 runs of Self-AMPLIFY for different topk
post hoc explainers, on Mistral Tiny and ARC Challenge. All topk methods do better in average than the random

keyword generator, for every selection strategy.

selection strategy | topk | DeepLift | KernelShap | self_topk
error 4 70.6 67.7 72.7
6 70.0 68.0 70.0
Success 4 70.3 70.3 72.7
6 70.3 70.3 67.7

Table 3: Average accuracy (%) of Self-AMPLIFY for different topk post hoc explainers and different topk values,
onMistral Tiny and ARC Challenge. Self_topk rationales lead to better performance with 4 important keywords

in the generated rationales.

hoc attribution explainers, where KernelShap and
DeepLift have low performance with the success
strategy whereas their accuracy becomes higher
than their competitors with the error selection
strategy (between 4 and 9 points difference).

We hypothesize that these disparities can be
explained by the complexity of the Snark task
(sarcasm detection). Assuming that "the higher
the prediction certainty, the better the related
explanation”, post hoc attribution explanations
seem to fail generating useful rationales on
previously successfully predicted instance to
enhance performance. The performance gain from
the error selection strategy would then be related
to the corrective signal added in the prompt to avoid
similar misclassifications.

Self-AMPLIFY leads to better result in general
on the ARC Challenge dataset with almost every
type of post hoc explainer. In particular, we
hypothesize that the good results obtained by post
hoc attributions methods on the ARC Challenge
dataset and the success strategy are due to the
lower complexity of the task. Generating rationales
from successfully classified texts with such a level
of complexity would then provide high quality
signal to improve SLM’s performance.

Impact of the post hoc explainer. The
Self_exp post hoc explainer generates more
useful rationale to improve SLMs’ accuracy
in average, as shown in Table 1. DeeplLift
and KernelShap performances ar similar, with
DeepLift having slightly better results. In
particular, Self_exp is more robust than the other
post hoc explainers when Self-AMPLIFY does not

lead to significant performance gain compared to
its competitors (see for example Mistral Tiny on
Snarks with the success selection strategy).

Which topk explainer leads to more useful
rationales ? We perform a deeper analysis of
the impact of the topk post hoc explainer through
an ablation study. We run 6 times Self-AMPLIFY
on the same test set from ARC Challenge in order
to have different ICL context samples from one run
to the other. The analysis is performed on Mistral
Tiny, with rationales generated from each of the
3 considered post hoc topk explainers (DeepLift,
KernelShap and Self_topk) and a random topk
keyword generator (random). This way, we assess
the sensitivity of Self-AMPLIFY to the post hoc
explainer generating topk explanations.

Table 2 shows the results of the performed
ablation study. Self-AMPLIFY leads to a better
accuracy when grounded on a topk explainer
compared to the random baseline. Self_topk
gives the highest average accuracy when samples
are selected according to the success strategy.
KernelShap gives the highest average accuracy
when samples are selected according to the error
strategy.

Impact of the number of keywords in the
rationale. We run Self-AMPLIFY on the same
ICL sample and test set from ARC Challenge with
k = 4 and k = 6 to assess the impact of the number
of keywords. The analysis is performed for each
topk explainer and each selection strategy. Table 3
shows the obtained results. Self_topk is the only
topk explainer inducing a lower accuracy with 6



keywords instead of 4, whereas KernelShap and
DeepLift are very stable

5 Discussion

We introduced Self-AMPLIFY, an extension of
the AMPLIFY framework, automatically generating
rationales to enrich the prompt in ICL settings
for small language models. Self-AMPLIFY is the
first approach enriching the prompt without human-
annotated rationales or the use of auxiliary models,
but only with the SLM itself.

The proposed framework is versatile and can
work with any other post hoc attribution methods,
such as Integrated Gradient or LIME. Therefore,
one can chose the appropriate attribution method
to use, depending on the level of information
available about the model. For example, some
APIs do not provide access to model internal
parameters, making the use of KernelShap a better
option as compared to DeepLift. In addition, it
would be interesting to test Se1f-AMPLIFY on even
smaller SLMs with less reasoning abilities such as
TinyLlama (Zhang et al., 2024).

As a future work, it would be interesting to
assess the faithfulness of the generated rationales.
It would be also valuable to analyze in more
depth the keywords generated by the SLM in ICL
settings. Generated post hoc explanations could be
compared to ground truth post hoc explanations
that would have been computed in a post hoc
manner. This would provide rich insights about
the ability of LMs to learn to explain. We see these
perspectives as promising paths towards a better
understanding of LMs’ ability to self-explain and
generate faithful explanations.

A way of improvement of Self-AMPLIFY
could be to generate other types of rationales to
enrich the prompt such as textual counterfactual
examples (see e.g. (Bhan et al.,, 2023b) for a
recent method). By providing slight modifications
to apply to the input text to change the SLM
outcome, counterfactual examples could give
strong correcting yet simple signals to self-enhance
the SLM. It constitutes promising directions to
generate valuable rationales to enhance SLM’s
performance.

Finally, a deeper analysis of the link
between task complexity, selection strategy
and Self-AMPLIFY performance would provide
precious information about situations where post
hoc explainers provide more valuable rationales

than others.

For anonymity reasons, we do not provide a link
to the Self-AMPLIFY github. The code will be
available upon acceptance to facilitate reproduction
and further research.

6 Conclusion

This paper presents Self-AMPLIFY, an extension
of the AMPLIFY framework to build rationales
from a SLM to improve itself in ICL settings.
Self-AMPLIFY is the first method to generate
rationales without the use of any auxiliary side
model. Self-AMPLIFY implements 2 selection
strategies and 4 post hoc explanation methods,
making it versatile and flexible. Self-AMPLIFY
results in performance gain in the two considered
tasks, outperforming Auto-CoT. Finally, this
work sheds light on the interest of using
post hoc attribution methods to enhance SLM’s
performance.

7 Limitations

Datasets and models. In this work we have
tested Self-AMPLIFY by applying it on 2 datasets
and 2 language models. The conclusions of our
work would have more weight if other datasets
were included in the study. Furthermore, it
would be interesting to test Self-AMPLIFY on even
smaller SLMs with less reasoning abilities such as
TinyLlama (Zhang et al., 2024). This would make
the framework even more useful to the community.

Rationale relevance. The quality of the
generated rationales is not assessed, neither when
enriching the prompt (rationale generation step),
nor when generating the text (prediction on the
test set). These rationales should be interpreted
with caution, as they have been generated solely to
enhance SLMs’ performance. This phenomenon
has been raised by (Zhang et al., 2022), where
wrong demonstrations based on low quality
rationales can still lead to performance gains.

Computational cost. The use of KernelShap and
DeepLift is computationally costly. Even if it is
affordable to use them with SLMs, the resource
requirement is substantial. One could lower the
number of samples used to compute KernelShap if
needed (see Appendix A.4) to make it even more
affordable.



Ethics Statement

Since SLMs’ training data can be biased, there is
a risk of generating harmful text during inference.
One using Self-AMPLIFY to generate rationales
must be aware of these biases in order to stand
back and analyze the produced texts. Finally, SLMs
consume energy, potentially emitting greenhouse
gases. They must be used with caution.
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A Appendix

A.1 Scientific libraries

We used several open-source libraries in this
work: pytorch (Paszke et al., 2019), HuggingFace
transformers (Wolf et al., 2020) sklearn (Pedregosa
etal., 2011) and Captum (Miglani et al., 2023). We
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will make our code available upon acceptance to
facilitate reproduction and further research.
A.2 SLMs implementation Details

Small Language Models. The library used to

import the pretrained SLMs is Hugging-Face.

In particular, the backbone version of Mistral
is mistralai/Mistral-7B-Instruct-v@.2, and
the one of Zephyr is
HuggingFaceH4/zephyr-7b-beta.

Instruction special tokens. The special tokens to

use SLMs in instruction mode were the followings:

e Mistral-7B-Instruct-ve.2

— user_token = ’[INST]’
— assistant_token =’[/INST]’
— stop_token = ’</s>’
e Zephyr-7b-beta
— user_token = ’<|user|>’

— assistant_token
’<|assistant|>’
’</S>’

— stop_token

Text generation. Text generation was performed
using the native functions of the Hugging Face
library: generate. The generate function has
been used with the following parameters:

* max_new_tokens = 300
e do_sample = True
* num_beams = 2

2

* no_repeat_ngram_size
e early_stopping = True

A3

Here we provide some details of different prompts
used to give instructions to SLMs.

Prompting format

Prompt for self_topk rationale generation
user
Choose the right answer with the (topk) most
important keywords used to answer. Example: The
answer is (A), the (topk) most important keywords
to make the prediction are "word:", ... and "word"

Preprompt for self_exp rationale generation
user
Choose the right answer and generate a concise
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(n_steps)-step explanation, with only one
sentence per step. Example: The answer is (A),
(n_steps)-step explanation: stepy, steps,...,step,.

Final ICL n-samples prompt example based
on topk rationales
user
You are presented with multiple choice question,
where choices will look like (A), (B), (C) or
(D), generate (topk_words) keywords providing
hints and generate the right single answer Ouput
example: The (topk_words) keywords "word;",
"words" ... and "wordy" are important to predict
that the answer is (A)
( question; )
assistant
( rationale; )
( answery )

user

( question,, )
assistant

( rationale, )
(answer, )
user

( question, 1)

A.4 Post hoc attribution explanation methods

Captum library. Post hoc attribution has been
computed using the Captum (Miglani et al., 2023)
library. Self-AMPLIFY implements additional
post hoc attribution methods as compared to
those presented in our paper. These additional
post hoc attribution methods can be used in the
Self-AMPLIFY framework to generate rationales.
Overall, we implement the following methods:

¢ Gradient-based

— GradientXActivation
— IntegratedGradients
— DeepLift

e Perturbation-based

FeatureAblation

Lime

KernelShap

ShapleyValueSampling

ShapleyValues



Which of these determines whether a fertilized egg
develops into a toad, a snake, or a lizard?
(A) the sex of the egg (B) the age of the egg (C) the size of
the egg (D) the genes of the egg

DeeplLift
X KernelShap

Auto-CoT
"determines’, "fertilized ", The development and differentiation of
"develops”, "(A)", "(B)", and KernelSHAP "determines”, "fertilized", pm e
*(C)" are not provided, but «egg» 'develops’, "into", and "genes" are cells_durlng embryoggnesm |s_
based on context, the correct the important keywords that help predict determined by the genetic material

contained within an egg or sperm cell.
Genes carry the instructions for
building and developing various
structures and functions specific to
each species. Once a spermatozoan
(male gamete) fuses with an ovum

the correct answer, which is D

keywords for this question
might be "genes of" and "egg".
The answer would then be (E)

This question is not about

(female germ cell), the resulting zygote
m . ecosystems or the begins to develop and undergoes a
"The genes contained within the el"WIrOnme i rat'her IabOUt series of cell divisions and
g X ) blololgy. The deterfnlnat!on of morphological changes, guided by its
FertillZED EGG determine which type of animal (i.e. X .
whether it will davelop into A d Kes. linard : unique set of genes. These genetic
TOAD. A SNAKE. OR AEIZARD toads, sna ?3' lzar S’,Btc'? an instructions determine whether the
These Ienetic ins'tructions COIT-IB e \"Vlllde\fil%lop e fertile egg will develop into an
from b(gnth the sperm and ege and dletermlqed b%’ its genes, amphibian like a frog (toad), a reptile
dictate th (fevelo mengtgal which a;e |r_\he;|te1_:1[ from tge like lizards or snakes, rather than
X .p . parents during W: O another species or even the same
pathway, resulting in different the answer to the question

. X species with different traits. Therefore,
Organisms. presented is: D. genes. the answer is D
\ Therefore, answer: D /

Figure 4: ARC Challenge answers conditioned by different ICL prompt built from different rationale generators.

Attribution implementation details. In
particular, gradient-based approach are computed
with respect to the SLM embedding layer (layer
= model.model.embed_tokens).

The parameters used to computed DeeplLift
and KernelShap were Captum’s default settings.
In particular, KernelShap was computed with
n_samples = 350

Baseline choice. The baseline choice is decisive
for DeepLift computation. The baseline is selected
so that importance is only computed with respect
to the initial prompt, so that special tokens and
preprompt have an attribution equal to 0. The
baseline is thus constructed as a modified version
of the text on which DeepLift is applied. The only
difference is that the prompt corresponding to the
statement, the question part and possible answers
is replaced with padding.
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