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Abstract

Writing is a universal cultural technology that reuses vision for symbolic com-
munication. Humans display striking resilience: we readily recognize words
even when characters are fragmented, fused, or partially occluded. This paper
investigates whether state-of-the-art vision–language models (VLMs) share this
resilience. We construct two psychophysics-inspired benchmarks across distinct
writing systems—Chinese logographs and English alphabetic words—by splic-
ing, recombining, and overlaying glyphs to yield “visible-but-unreadable” stimuli
for models while remaining legible to humans. Despite strong performance on
clean text, contemporary VLMs show a severe drop under these perturbations,
frequently producing unrelated or incoherent outputs. The pattern suggests a struc-
tural limitation: models heavily leverage generic visual invariances but under-rely
on compositional priors needed for robust literacy. We release stimuli genera-
tion code, prompts, and evaluation protocols to facilitate transparent replication
and follow-up work. Our findings motivate architectures and training strategies
that encode symbol segmentation, composition, and binding across scripts, and
they delineate concrete challenges for deploying multimodal systems in education,
accessibility, cultural heritage, and security.

1 Introduction

Reading is one of humanity’s most powerful cultural inventions [1, 2]. By mapping arbitrary visual
marks onto symbolic meaning, writing systems enable the storage, transmission, and accumulation of
knowledge across generations. Despite their vast diversity—from logographic Chinese characters
to alphabetic scripts—humans exhibit striking resilience in reading: we readily recognize text even
when it is cut, overlapped, occluded, or distorted [3, 4]. This robustness likely reflects deep structural
priors in human perception—the expectation that written symbols are composed of parts and follow
compositional rules that support recovery from incomplete input [5].

Artificial intelligence, by contrast, often appears to read but lacks the same resilience. Vision–
language models (VLMs) can transcribe rendered text, answer questions about documents, and
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interleave language with images [6, 7, 8]. Yet their reading ability has not been systematically probed
under distortions that are trivial for humans. We ask a simple but fundamental question: Can models
read what humans can still read? Our results indicate that, despite near-perfect performance on
clean text, state-of-the-art VLMs show a sharp degradation when confronted with perturbed but
human-readable constructs, revealing a robust cross-script gap between human and machine literacy.

To probe this gap, we design psychophysics-inspired benchmarks across two distinct writing systems.
In Chinese logographs, we render a set of 100 four-character idioms and splice each character along
horizontal, vertical, or diagonal axes, recombining fragments into composite glyphs. In English
alphabetic words, we select 100 eight-letter words, divide them into two halves, render each half
in different colors, and overlay them to form fused stimuli. These manipulations preserve human
legibility while consistently reducing VLM accuracy, with models frequently producing unrelated
or incoherent outputs. The observed pattern is consistent with a structural limitation: generic visual
invariances learned from large-scale training [9, 10] may be insufficient for textual identifiability
without stronger symbol-centric priors.

The implications extend beyond technical benchmarks. Robust machine literacy under mild per-
turbations matters for scientific curation of handwritten notes and historical manuscripts [11, 12],
for education and accessibility in non-standard scripts and diverse reader populations [13], for
cross-lingual and low-resource contexts [14], and for security-sensitive document analysis where
adversaries may exploit brittleness [15]. More broadly, gaps between human and machine reading
bear on the reliability of multimodal AI systems [16, 17].

Contributions. This study makes four contributions:

• Evidence of a cross-script failure mode: We show that state-of-the-art VLMs exhibit a marked
collapse on “visible-but-unreadable” stimuli—perturbations that remain trivial for humans across
logographic and alphabetic scripts.

• Psychophysics-inspired benchmarks: We introduce controlled perturbations for Chinese idioms
and English words that preserve human readability while systematically challenging machine
recognition.

• Implications for model design: Findings highlight a fundamental human–AI asymmetry in literacy
and suggest that scaling alone may be insufficient, motivating architectures with explicit structural
priors for segmentation, composition, and binding [18, 19].

• Broader impact: We delineate risks and opportunities for deploying robust machine reading in
security, scientific curation, education, accessibility, cultural heritage, and trustworthy multimodal
AI.

2 Related Work

2.1 Human Reading, Psychophysics, and Structural Priors

Human readers exhibit remarkable robustness to distortions in writing. Classic psychophysics shows
that crowding, occlusion, and fragmentation often impair object recognition, yet humans can still
recover meaning from incomplete text [20, 21]. This resilience has been linked to structural priors
such as segmentation, binding, and morpheme- or radical-level expectations [5]. Our work situates
itself in this tradition: we show that when structural boundaries of glyphs are disrupted, humans
maintain readability but vision–language models (VLMs) collapse, exposing the absence of such
priors in current architectures.

2.2 Multimodal VLMs and Reading Ability

Large VLMs such as CLIP [22], BLIP-2 [23], Kosmos [24], LLaVA [8], GPT-4V, and Gemini have
demonstrated impressive capabilities in multimodal understanding, including text-in-image tasks.
Evaluations on document QA, chart understanding, and OCR-VQA benchmarks suggest that these
models can “read.” However, these evaluations overwhelmingly use natural renderings of text. Our
results reveal that once structural perturbations are introduced, VLMs fail systematically—even when
humans find the text trivial to recognize. This highlights that current VLM “reading” is more a
byproduct of visual invariance than of symbolic identifiability.
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Figure 1: Overview of the experimental framework. Distorted Chinese characters and overlapping
English words were created as stimuli and tested in parallel on human subjects and vision–language
models (VLMs).

2.3 Psychophysics-inspired Evaluation in Machine Learning

Recent work in machine vision has drawn from psychophysics, using controlled parametric stimuli to
generate accuracy–perturbation curves [25, 26]. Such methods have probed frequency sensitivities,
crowding effects, and texture–shape biases. We extend this methodology to the domain of reading,
introducing controlled perturbations that sever the link between visibility and identifiability. Our
cross-script benchmarks expose the tension between generic invariance and symbolic recognition
more sharply than prior visual metamer or distortion studies.

2.4 Sub-character Visual Information in Chinese NLP

Complementary to our findings, recent work has examined whether large language and vision–
language models can recognize and exploit the sub-character structure of Chinese writing. For
instance, Wu et al. [27] construct a benchmark to evaluate models’ ability to leverage radicals,
strokes, and compositional structure in Chinese characters. Their results show that models exhibit
a limited sensitivity to these visual features, and that explicitly providing radical information in
prompts can improve downstream tasks such as part-of-speech tagging. In contrast, our study does
not probe whether models can partially utilize radicals, but instead demonstrates a systematic failure
when characters or words are perturbed in ways that remain fully legible to humans. Whereas [27]
highlight the potential for models to benefit from sub-character information in Chinese, we highlight
a broader architectural blind spot across both logographic and alphabetic scripts, showing that scaling
and prompting are insufficient to bridge the human–machine gap in robust reading.

3 Methods

3.1 Overview

Our goal is to test whether state-of-the-art vision–language models (VLMs) can read stimuli that
remain legible to humans but violate structural assumptions of conventional text. We design two
psychophysics-inspired benchmarks—one based on Chinese logographs and the other on English
alphabetic words—and evaluate multiple VLMs under controlled perturbations. Figure 1 illustrates
the overall pipeline.

3.2 Stimuli Construction

Chinese logographs. We construct a dataset of 100 four-character idioms (chengyu), a canonical
and semantically coherent unit in Chinese. Each character image is rendered in a standard font at
fixed resolution. As shown in Figure 2, to generate perturbed stimuli, we apply one of three cutting
operations:

• Horizontal cut: split the glyph into upper and lower halves, then recombine mismatched parts.

• Vertical cut: split the glyph into left and right halves, recombining across characters.

• Diagonal cut: split along the main diagonal, recombining triangular fragments.
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Figure 2: Illustration of the character fusion process for the Chinese idiom "滥竽充数". Each pair of
original characters is split along different axes (left–right, top–bottom, or diagonal) and recombined
into fused forms. The procedure demonstrates systematic ways of generating visually ambiguous but
linguistically interpretable characters, which serve as stimuli for evaluating recognition robustness.

Figure 3: Illustration of the English word fusion process using “hardware” as an example. The
original word is split into two segments (“hard” and “ware”), which are then color-coded (red and
green) and recombined into an overlapping fused form.

These operations preserve local stroke visibility but destroy coherent glyph boundaries. The resulting
composites remain readable to human subjects, who can reconstruct the intended idiom with near-
perfect accuracy, but appear as novel glyph-like objects to VLMs.

English alphabetic words. We sample 100 eight-letter words from a standard English lexicon.
As shown in Figure 3, taking “hardware" as an example, each word is split into two four-letter
halves. The first half is rendered in red, the second half in green, with consistent font and resolution.
The two halves are then overlaid to form a single composite image. Humans can reliably parse
the superimposed text, but the overlapping colors and fused boundaries challenge models that lack
explicit segmentation mechanisms.
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Table 1: Prompt design for the Chinese idiom fusion task.

Type Prompt English Translation

Basic 请识别这张图片中的汉字，直接返回识
别出的文字，不需要其他解释。

Identify the Chinese characters in the image
and return only the recognized text, without
any explanation.

Detailed 这是一张包含合体字的图片，每个字由
两个汉字的部分组合而成。请仔细观察
并识别出原始的汉字内容。只返回识别
出的文字。

This image contains fused Chinese characters,
where each character is composed of parts
from two different characters. Carefully iden-
tify the original characters and return only the
recognized text.

Contextual 这张图片显示的是中文成语的艺术字
体，其中每个字都是由两个字的部分拼
接而成。请识别出这个四字成语。

This image shows an artistic rendering of
a Chinese idiom, where each character is
formed by fusing parts of two characters.
Identify the complete four-character idiom.

Table 2: Prompt design for the English word fusion task.

Type Prompt

Basic What text do you see in this image?

Detailed This is an 8-letter English word where each half has been diagonally fused together. What word
is it?

3.3 Models Evaluated

We evaluate a range of widely used VLMs, including open-source models (e.g., Qwen2-VL-7B,
[28] LLaVA-Mistral-7B [8], and LLaVA-Next-Vicuna-7B [29]) and proprietary frontier models
(e.g., OpenAI GPT-4o [30], GPT-5 [31], Anthropic Claude Opus 4.1 [32], Sonnet 4 [33], Google
Gemini 1.5 Pro and 1.5 Flash [34]). All models are accessed through their publicly available APIs or
checkpoints, without any additional fine-tuning.

For the Chinese idiom fusion task, we design three prompt settings (see Table 1). For the English
word fusion task, we design two prompt settings (see Table 2). To improve reliability and reduce
unnecessary token usage in English, we further adopt a concise prompting strategy, appending

“Answer with just the word, no explanation or thinking.” to the end of each prompt.

3.4 Evaluation Protocol

For each stimulus, we collect the model’s textual output and compare it to the ground truth. Accuracy
is measured differently for Chinese idioms and English words:

• Chinese idioms: We adopt two complementary evaluation metrics, both applied after preprocessing
by removing all non-Chinese characters using the regex.

– Strict Match: A Boolean indicator of whether the prediction is identical to the ground truth.

* Definition: Correct if and only if prediction == ground_truth.
* Implementation: Direct string comparison.
* Usage: Used for computing idiom-level accuracy.

– Average Similarity: A soft metric that measures partial correctness.

* Computation: Sequence similarity is computed via difflib.SequenceMatcher.
* Return value: A floating-point score between 0 and 1, where 1 indicates a perfect match.

• English words: We only evaluate at the whole-word level, using Exact Match accuracy (i.e., the
predicted word must match the ground truth exactly).

• Human baseline: We recruit 10 participants (native speakers for the corresponding script) and
measure accuracy under the same stimuli. We randomize order, enforce attention checks, and report
aggregate accuracy with confidence intervals, as well as per-item confusion patterns.
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Table 3: Recognition accuracy of idiom images with character-splitting rendering under three
prompting strategies. The table reports strict matching rate (exact idiom match), average matching
rate (similarity-based match), and human evaluation results (all rated as 100%).

Model Strict Matching Rate Average Matching Rate Human Evaluation

OpenAI
gpt-4o/basic 0.0% 11.1% 100%
gpt-4o/context 0.0% 5.2% 100%
gpt-4o/detailed 0.7% 7.7% 100%
gpt-5/basic 0.0% 10.5% 100%
gpt-5/context 5.0% 11.4% 100%
gpt-5/detailed 1.5% 12.1% 100%

Anthropic
claude-opus-4-1/basic 1.0% 15.5% 100%
claude-opus-4-1/context 0.0% 1.8% 100%
claude-opus-4-1/detailed 5.2% 14.7% 100%
claude-sonnet-4/basic 0.0% 10.1% 100%
claude-sonnet-4/context 0.0% 1.4% 100%
claude-sonnet-4/detailed 0.8% 7.3% 100%

Gemini
gemini-1.5-flash/basic 0.3% 7.5% 100%
gemini-1.5-flash/context 5.0% 10.6% 100%
gemini-1.5-flash/detailed 1.5% 11.0% 100%
gemini-1.5-pro/basic 0.0% 8.0% 100%
gemini-1.5-pro/context 0.2% 3.4% 100%
gemini-1.5-pro/detailed 0.3% 7.5% 100%

LLaVA
llava-mistral-7b/basic 0.0% 0.6% 100%
llava-mistral-7b/context 0.0% 0.5% 100%
llava-mistral-7b/detailed 0.0% 0.6% 100%
llava-next-vicuna-7b/basic 0.0% 0.6% 100%
llava-next-vicuna-7b/context 0.0% 0.5% 100%
llava-next-vicuna-7b/detailed 0.0% 0.6% 100%

Qwen
qwen2-vl-7b/basic 0.0% 24.4% 100%
qwen2-vl-7b/context 0.0% 13.9% 100%
qwen2-vl-7b/detailed 0.0% 24.0% 100%

4 Experiments

4.1 Overall Results

Across both the Chinese idiom and English word fusion tasks, all evaluated VLMs show a substantial
performance gap compared to human recognition (100% across all cases).

For the Chinese idiom task (Table 3), strict matching accuracy (exact idiom recognition) remains
extremely low across all models, typically below 5%. Even with similarity-based evaluation, average
matching rates rarely exceed 15%, with the exception of Qwen2-VL-7B, which achieves around 24%.
Prompt design has only limited impact: detailed prompts provide modest improvements for some
models (e.g., GPT-5, Claude Opus 4.1), while context-oriented prompts do not consistently help.

For the English word fusion task (Figure 4), overall performance is likewise poor, with recogni-
tion accuracy capped at 20% even under detailed prompts (GPT-5). Proprietary frontier models
(e.g., GPT-4o, GPT-5, Gemini 1.5) show slightly better performance than open-source alternatives
(LLaVA, Qwen2-VL), yet still fall far below human-level recognition. Detailed prompts consistently
outperform basic prompts, indicating that explicit task guidance can mitigate, but not resolve, the
recognition challenge.
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Figure 4: Performance of vision–language models (VLMs) on the English word fusion recognition
task. Accuracy is reported under two prompting conditions (basic vs. detailed). Overall performance
is low across all models, with proprietary frontier models (e.g., GPT-4o, GPT-5, Gemini) achieving up
to 20% accuracy under detailed prompts, while most open-source models (LLaVA variants, Qwen2-
VL) perform near chance level.

Figure 5: Word recognition difficulty comparison. Top: hardest words (0% recognition rate). Bottom:
easiest words (16.7%-55.6% recognition rate).

Taken together, these results highlight a systematic blind spot in current VLMs: while humans easily
parse visually fused characters and words, models fail almost completely, regardless of architecture,
scale, or prompting strategy.

4.2 Recognition Difficulty Analysis

To better understand model limitations, we further analyze recognition difficulty across individual
stimuli (Figures 5, 6).

For the English word fusion task (Figure 5), recognition rates vary widely across words. The
hardest cases, such as hardware, checksum, and decoding, exhibit complete failure across models
(0% recognition). These words involve highly overlapping letter structures or stroke collisions, which
appear to overwhelm the visual parsing mechanisms of current VLMs. In contrast, relatively easier
words such as keyboard, alphabet, and password achieve recognition rates between 38.9% and 55.6%,
suggesting that clearer segmentation cues or less stroke overlap can partially mitigate the ambiguity.

For the Chinese idiom fusion task (Figure 6), the difficulty gap is even more pronounced. Many id-
ioms are never correctly recognized (0%). Even the relatively “easiest” idioms only reach 2.5%–8.0%
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Figure 6: Idioms recognition difficulty comparison. Top: hardest idioms (0% recognition rate).
Bottom: easiest idioms (2.5%-8% recognition rate).

accuracy. The logographic structure of Chinese characters amplifies this problem: fusing parts of two
characters often produces a visually valid but semantically misleading glyph, making it especially
challenging for VLMs.

Importantly, however, this gradation of difficulty is not reflected in human perception. Human
participants reported no meaningful difference between “hard” and “easy” examples, recognizing all
items near-perfectly regardless of stroke overlap or fusion style. This divergence highlights that the
observed error spectrum is not intrinsic to the stimuli themselves, but rather emerges from architectural
blind spots in current VLMs. Whereas humans rely on robust gestalt grouping, contextual priors,
and flexible character reconstruction, VLMs lack mechanisms to resolve structured visual ambiguity,
leading to stark performance discrepancies that do not exist in human cognition.

In a nutshell, these results reveal that difficulty for VLMs is an artifact of model limitations rather
than an inherent property of the task. This underscores a systematic blind spot in visual–linguistic
parsing, spanning both alphabetic and logographic writing systems.

5 Discussion and Conclusion

Our study reveals a universal failure mode in vision–language models (VLMs): accuracy that is
near-perfect on clean text collapses to near-zero under perturbations that remain fully legible to
humans. This gap highlights a fundamental cognitive asymmetry. Humans read by deploying
structural priors—segmentation, composition, and symbol binding—while VLMs rely on global
invariances that misfire when identifiability is challenged.

The implications are profound. Reading is not mere pattern recognition but structured symbol
recovery. Humans achieve this effortlessly; VLMs do not. While larger models and more data may
help, our results suggest that scaling alone may be insufficient. Instead, models must incorporate
literacy-oriented priors: glyph- or radical-aware representations, mechanisms for segmentation and
binding, and cross-script strategies that generalize across writing systems.

The “visible-but-unreadable” blind spot matters well beyond safety. Robust reading under perturbation
is essential for science, accessibility, cultural heritage, and trustworthy multimodal AI. Addressing
this gap is therefore not a minor refinement but a prerequisite for building AI that can partner with
humans in domains where literacy is indispensable.
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Our study is limited to two scripts and controlled perturbations. Expanding to more languages, fonts,
and distortions, combined with systematic human studies, will help map the full scope of the problem
and inspire design. Exploring symbolic-neural hybrids and explicit segmentation architectures
remains an open and promising frontier.

In summary, our work documents a striking divergence between human and machine reading and
frames it as both a vulnerability and an opportunity. Achieving human-like resilience will require
rethinking how structure, priors, and compositionality are embedded in multimodal learning.

6 AI Agent Setup

This paper was developed with assistance from multiple AI agents. GPT-5 was used for idea
exploration, literature synthesis, and drafting the manuscript text, which was then iteratively refined
through human–AI collaboration. Claude Code contributed to experiment implementation, generation
of results, and polishing of technical sections including code, tables, and figures. The framework
figure was created using Gemini 2.5 Pro, based on conceptual input from the authors. All human
authors reviewed, edited, and approved the final content. The AI agents were used as drafting and
productivity tools; all research design, analysis, and interpretations were directed by the human
authors.
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Agents4Science AI Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by AI. This can also involve whether the idea
was proposed by researchers or by AI.
Answer: [B]
Explanation: The research idea and framing were primarily human-driven. The motiva-
tion—testing whether VLMs can read human-legible but perturbed text—was formulated
by the human researcher, drawing on background knowledge in psycholinguistics and AI
safety. AI tools provided assistance in refining the wording of hypotheses, brainstorming
possible perturbation types, and clarifying methodological framing, but the core direction
came from the human.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.
Answer: [C]
Explanation: AI models were used extensively for generating stimuli (e.g., rendering idioms
with character-splitting, overlaying English words with colors, creating figure prototypes)
and for producing code snippets to automate data processing and evaluation. The human
researcher guided the overall design, validated outputs, and ensured scientific rigor, but
much of the coding and figure-generation was handled with AI assistance. Thus, the majority
of the execution work came from AI under human supervision.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.
Answer: [C]
Explanation: AI helped organize recognition accuracy results, generate tables and plots,
and draft interpretations of trends across models and prompt types. The human researcher
critically evaluated these analyses, drew the central conclusions (e.g., the universal gap
between human and AI literacy), and ensured the arguments connected to cognitive science
and AI architecture. Therefore, AI performed a large share of the data summarization and
visualization, while humans provided conceptual interpretation and validation.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.
Answer: [C]
Explanation: AI was heavily used for drafting, polishing, and restructuring text—including
the Introduction, Discussion, and figure captions. The human researcher provided the core
ideas, checked factual correctness, ensured alignment with scientific standards, and made
final editorial decisions. Thus, while the narrative flow and sentence structure benefited
from AI generation, the intellectual substance and framing remained human-led.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or
lead author?
Description: 1) Surface-level reasoning: AI often produced plausible but shallow explana-
tions, which required human correction to ensure conceptual depth and technical accuracy.
2) While AI tools were effective for generating analysis figures and result plots (e.g., through
Python code for automated visualization), they showed clear limitations in producing com-
plex schematic diagrams such as methodological flowcharts. These tasks often required
significant manual adjustment or external design tools. Among the models tested, Gemini
2.5 Pro provided the most useful support for figure drafting, but even so, the quality and
flexibility were below what is required for final publication standards.
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Agents4Science Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contribu-
tions—identifying a universal failure mode in VLMs, designing cross-script benchmarks,
and analyzing implications. These claims are fully supported by the experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a dedicated discussion of limitations, noting that the study
is restricted to two scripts and controlled perturbations, and that further research is needed
across more languages, fonts, and distortions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper is empirical and does not contain formal theorems or proofs.
Therefore, this item is not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes the benchmark construction, prompts, evaluation metrics,
and tested models in detail. This information is sufficient for independent reproduction
given access to the listed VLM APIs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• We recognize that reproducibility may be tricky in some cases, in which case authors

are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: we will release the code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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Justification: As the study evaluates existing models rather than training new ones, the
relevant details focus on prompt design, dataset construction, and evaluation procedures,
which are fully documented in the manuscript.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Recognition accuracies are averaged over 2 runs, and we report both strict and
similarity-based metrics. This conveys the robustness of results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments relied on API access to proprietary VLMs and open-source
checkpoints (7B scale) run on a single H200 GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?
Answer: [Yes]
Justification: The work conforms to the Agents4Science Code of Ethics. No private or
sensitive data are used, and experiments focus on widely available benchmarks and open-
source/public APIs.
Guidelines:

• The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The paper explicitly discusses broader impacts, including positive applications
in science, accessibility, and cultural heritage, as well as risks of adversarial misuse in
content moderation and security contexts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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