
Visible Yet Unreadable: A Systematic Blind Spot of
Vision–Language Models Across Writing Systems

Anonymous Author(s)
Affiliation
Address
email

Abstract

Writing is a universal cultural technology that reuses vision for symbolic com-1

munication. Humans display striking resilience: we readily recognize words2

even when characters are fragmented, fused, or partially occluded. This paper3

investigates whether state-of-the-art vision–language models (VLMs) share this4

resilience. We construct two psychophysics-inspired benchmarks across distinct5

writing systems—Chinese logographs and English alphabetic words—by splic-6

ing, recombining, and overlaying glyphs to yield “visible-but-unreadable” stimuli7

for models while remaining legible to humans. Despite strong performance on8

clean text, contemporary VLMs show a severe drop under these perturbations,9

frequently producing unrelated or incoherent outputs. The pattern suggests a struc-10

tural limitation: models heavily leverage generic visual invariances but under-rely11

on compositional priors needed for robust literacy. We release stimuli genera-12

tion code, prompts, and evaluation protocols to facilitate transparent replication13

and follow-up work. Our findings motivate architectures and training strategies14

that encode symbol segmentation, composition, and binding across scripts, and15

they delineate concrete challenges for deploying multimodal systems in education,16

accessibility, cultural heritage, and security.17

1 Introduction18

Reading is one of humanity’s most powerful cultural inventions [1, 2]. By mapping arbitrary visual19

marks onto symbolic meaning, writing systems enable the storage, transmission, and accumulation of20

knowledge across generations. Despite their vast diversity—from logographic Chinese characters21

to alphabetic scripts—humans exhibit striking resilience in reading: we readily recognize text even22

when it is cut, overlapped, occluded, or distorted [3, 4]. This robustness likely reflects deep structural23

priors in human perception—the expectation that written symbols are composed of parts and follow24

compositional rules that support recovery from incomplete input [5].25

Artificial intelligence, by contrast, often appears to read but lacks the same resilience. Vision–26

language models (VLMs) can transcribe rendered text, answer questions about documents, and27

interleave language with images [6, 7, 8]. Yet their reading ability has not been systematically probed28

under distortions that are trivial for humans. We ask a simple but fundamental question: Can models29

read what humans can still read? Our results indicate that, despite near-perfect performance on30

clean text, state-of-the-art VLMs show a sharp degradation when confronted with perturbed but31

human-readable constructs, revealing a robust cross-script gap between human and machine literacy.32

To probe this gap, we design psychophysics-inspired benchmarks across two distinct writing systems.33

In Chinese logographs, we render a set of 100 four-character idioms and splice each character along34

horizontal, vertical, or diagonal axes, recombining fragments into composite glyphs. In English35

alphabetic words, we select 100 eight-letter words, divide them into two halves, render each half36

in different colors, and overlay them to form fused stimuli. These manipulations preserve human37
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legibility while consistently reducing VLM accuracy, with models frequently producing unrelated38

or incoherent outputs. The observed pattern is consistent with a structural limitation: generic visual39

invariances learned from large-scale training [9, 10] may be insufficient for textual identifiability40

without stronger symbol-centric priors.41

The implications extend beyond technical benchmarks. Robust machine literacy under mild per-42

turbations matters for scientific curation of handwritten notes and historical manuscripts [11, 12],43

for education and accessibility in non-standard scripts and diverse reader populations [13], for44

cross-lingual and low-resource contexts [14], and for security-sensitive document analysis where45

adversaries may exploit brittleness [15]. More broadly, gaps between human and machine reading46

bear on the reliability of multimodal AI systems [16, 17].47

Contributions. This study makes four contributions:48

• Evidence of a cross-script failure mode: We show that state-of-the-art VLMs exhibit a marked49

collapse on “visible-but-unreadable” stimuli—perturbations that remain trivial for humans across50

logographic and alphabetic scripts.51

• Psychophysics-inspired benchmarks: We introduce controlled perturbations for Chinese idioms52

and English words that preserve human readability while systematically challenging machine53

recognition.54

• Implications for model design: Findings highlight a fundamental human–AI asymmetry in literacy55

and suggest that scaling alone may be insufficient, motivating architectures with explicit structural56

priors for segmentation, composition, and binding [18, 19].57

• Broader impact: We delineate risks and opportunities for deploying robust machine reading in58

security, scientific curation, education, accessibility, cultural heritage, and trustworthy multimodal59

AI.60

2 Related Work61

2.1 Human Reading, Psychophysics, and Structural Priors62

Human readers exhibit remarkable robustness to distortions in writing. Classic psychophysics shows63

that crowding, occlusion, and fragmentation often impair object recognition, yet humans can still64

recover meaning from incomplete text [20, 21]. This resilience has been linked to structural priors65

such as segmentation, binding, and morpheme- or radical-level expectations [22]. Our work situates66

itself in this tradition: we show that when structural boundaries of glyphs are disrupted, humans67

maintain readability but vision–language models (VLMs) collapse, exposing the absence of such68

priors in current architectures.69

2.2 Multimodal VLMs and Reading Ability70

Large VLMs such as CLIP [23], BLIP-2 [24], Kosmos [25], LLaVA [8], GPT-4V, and Gemini have71

demonstrated impressive capabilities in multimodal understanding, including text-in-image tasks.72

Evaluations on document QA, chart understanding, and OCR-VQA benchmarks suggest that these73

models can “read.” However, these evaluations overwhelmingly use natural renderings of text. Our74

results reveal that once structural perturbations are introduced, VLMs fail systematically—even when75

humans find the text trivial to recognize. This highlights that current VLM “reading” is more a76

byproduct of visual invariance than of symbolic identifiability.77

2.3 Psychophysics-inspired Evaluation in Machine Learning78

Recent work in machine vision has drawn from psychophysics, using controlled parametric stimuli to79

generate accuracy–perturbation curves [26, 27]. Such methods have probed frequency sensitivities,80

crowding effects, and texture–shape biases. We extend this methodology to the domain of reading,81

introducing controlled perturbations that sever the link between visibility and identifiability. Our82

cross-script benchmarks expose the tension between generic invariance and symbolic recognition83

more sharply than prior visual metamer or distortion studies.84
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Figure 1: Overview of the experimental framework. Distorted Chinese characters and overlapping
English words were created as stimuli and tested in parallel on human subjects and vision–language
models (VLMs).

2.4 Sub-character Visual Information in Chinese NLP85

Complementary to our findings, recent work has examined whether large language and vision–86

language models can recognize and exploit the sub-character structure of Chinese writing. For87

instance, Wu et al. [28] construct a benchmark to evaluate models’ ability to leverage radicals,88

strokes, and compositional structure in Chinese characters. Their results show that models exhibit89

a limited sensitivity to these visual features, and that explicitly providing radical information in90

prompts can improve downstream tasks such as part-of-speech tagging. In contrast, our study does91

not probe whether models can partially utilize radicals, but instead demonstrates a systematic failure92

when characters or words are perturbed in ways that remain fully legible to humans. Whereas [28]93

highlight the potential for models to benefit from sub-character information in Chinese, we highlight94

a broader architectural blind spot across both logographic and alphabetic scripts, showing that scaling95

and prompting are insufficient to bridge the human–machine gap in robust reading.96

3 Methods97

3.1 Overview98

Our goal is to test whether state-of-the-art vision–language models (VLMs) can read stimuli that99

remain legible to humans but violate structural assumptions of conventional text. We design two100

psychophysics-inspired benchmarks—one based on Chinese logographs and the other on English101

alphabetic words—and evaluate multiple VLMs under controlled perturbations. Figure 1 illustrates102

the overall pipeline.103

3.2 Stimuli Construction104

Chinese logographs. We construct a dataset of 100 four-character idioms (chengyu), a canonical105

and semantically coherent unit in Chinese. Each character image is rendered in a standard font at106

fixed resolution. As shown in Figure 2, to generate perturbed stimuli, we apply one of three cutting107

operations:108

• Horizontal cut: split the glyph into upper and lower halves, then recombine mismatched parts.109

• Vertical cut: split the glyph into left and right halves, recombining across characters.110

• Diagonal cut: split along the main diagonal, recombining triangular fragments.111

These operations preserve local stroke visibility but destroy coherent glyph boundaries. The resulting112

composites remain readable to human subjects, who can reconstruct the intended idiom with near-113

perfect accuracy, but appear as novel glyph-like objects to VLMs.114

English alphabetic words. We sample 100 eight-letter words from a standard English lexicon.115

As shown in Figure 3, taking “hardware" as an example, each word is split into two four-letter116

halves. The first half is rendered in red, the second half in green, with consistent font and resolution.117

The two halves are then overlaid to form a single composite image. Humans can reliably parse118
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Figure 2: Illustration of the character fusion process for the Chinese idiom "滥竽充数". Each pair of
original characters is split along different axes (left–right, top–bottom, or diagonal) and recombined
into fused forms. The procedure demonstrates systematic ways of generating visually ambiguous but
linguistically interpretable characters, which serve as stimuli for evaluating recognition robustness.

Figure 3: Illustration of the English word fusion process using “hardware” as an example. The
original word is split into two segments (“hard” and “ware”), which are then color-coded (red and
green) and recombined into an overlapping fused form.

the superimposed text, but the overlapping colors and fused boundaries challenge models that lack119

explicit segmentation mechanisms.120

3.3 Models Evaluated121

We evaluate a range of widely used VLMs, including open-source models (e.g., Qwen2-VL-7B,122

[29] LLaVA-Mistral-7B [8], and LLaVA-Next-Vicuna-7B [30]) and proprietary frontier models123

(e.g., OpenAI GPT-4o [31], GPT-5 [32], Anthropic Claude Opus 4.1 [33], Sonnet 4 [34], Google124

Gemini 1.5 Pro and 1.5 Flash [35]). All models are accessed through their publicly available APIs or125

checkpoints, without any additional fine-tuning.126
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Table 1: Prompt design for the Chinese idiom fusion task.

Type Prompt English Translation

Basic 请识别这张图片中的汉字，直接返回识
别出的文字，不需要其他解释。

Identify the Chinese characters in the image
and return only the recognized text, without
any explanation.

Detailed 这是一张包含合体字的图片，每个字由
两个汉字的部分组合而成。请仔细观察
并识别出原始的汉字内容。只返回识别
出的文字。

This image contains fused Chinese characters,
where each character is composed of parts
from two different characters. Carefully iden-
tify the original characters and return only the
recognized text.

Contextual 这张图片显示的是中文成语的艺术字
体，其中每个字都是由两个字的部分拼
接而成。请识别出这个四字成语。

This image shows an artistic rendering of
a Chinese idiom, where each character is
formed by fusing parts of two characters.
Identify the complete four-character idiom.

Table 2: Prompt design for the English word fusion task.

Type Prompt

Basic What text do you see in this image?

Detailed This is an 8-letter English word where each half has been diagonally fused together. What word
is it?

For the Chinese idiom fusion task, we design three prompt settings (see Table 1). For the English127

word fusion task, we design two prompt settings (see Table 2). To improve reliability and reduce128

unnecessary token usage in English, we further adopt a concise prompting strategy, appending129

“Answer with just the word, no explanation or thinking.” to the end of each prompt.130

3.4 Evaluation Protocol131

For each stimulus, we collect the model’s textual output and compare it to the ground truth. Accuracy132

is measured differently for Chinese idioms and English words:133

• Chinese idioms: We adopt two complementary evaluation metrics, both applied after preprocessing134

by removing all non-Chinese characters using the regex.135

– Strict Match: A Boolean indicator of whether the prediction is identical to the ground truth.136

* Definition: Correct if and only if prediction == ground_truth.137

* Implementation: Direct string comparison.138

* Usage: Used for computing idiom-level accuracy.139

– Average Similarity: A soft metric that measures partial correctness.140

* Computation: Sequence similarity is computed via difflib.SequenceMatcher.141

* Return value: A floating-point score between 0 and 1, where 1 indicates a perfect match.142

• English words: We only evaluate at the whole-word level, using Exact Match accuracy (i.e., the143

predicted word must match the ground truth exactly).144

• Human baseline: We recruit 10 participants (native speakers for the corresponding script) and145

measure accuracy under the same stimuli. We randomize order, enforce attention checks, and report146

aggregate accuracy with confidence intervals, as well as per-item confusion patterns.147

4 Experiments148

4.1 Overall Results149

Across both the Chinese idiom and English word fusion tasks, all evaluated VLMs show a substantial150

performance gap compared to human recognition (100% across all cases).151
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Table 3: Recognition accuracy of idiom images with character-splitting rendering under three
prompting strategies. The table reports strict matching rate (exact idiom match), average matching
rate (similarity-based match), and human evaluation results (all rated as 100%).

Model Strict Matching Rate Average Matching Rate Human Evaluation

OpenAI
gpt-4o/basic 0.0% 11.1% 100%
gpt-4o/context 0.0% 5.2% 100%
gpt-4o/detailed 0.7% 7.7% 100%
gpt-5/basic 0.0% 10.5% 100%
gpt-5/context 5.0% 11.4% 100%
gpt-5/detailed 1.5% 12.1% 100%

Anthropic
claude-opus-4-1/basic 1.0% 15.5% 100%
claude-opus-4-1/context 0.0% 1.8% 100%
claude-opus-4-1/detailed 5.2% 14.7% 100%
claude-sonnet-4/basic 0.0% 10.1% 100%
claude-sonnet-4/context 0.0% 1.4% 100%
claude-sonnet-4/detailed 0.8% 7.3% 100%

Gemini
gemini-1.5-flash/basic 0.3% 7.5% 100%
gemini-1.5-flash/context 5.0% 10.6% 100%
gemini-1.5-flash/detailed 1.5% 11.0% 100%
gemini-1.5-pro/basic 0.0% 8.0% 100%
gemini-1.5-pro/context 0.2% 3.4% 100%
gemini-1.5-pro/detailed 0.3% 7.5% 100%

LLaVA
llava-mistral-7b/basic 0.0% 0.6% 100%
llava-mistral-7b/context 0.0% 0.5% 100%
llava-mistral-7b/detailed 0.0% 0.6% 100%
llava-next-vicuna-7b/basic 0.0% 0.6% 100%
llava-next-vicuna-7b/context 0.0% 0.5% 100%
llava-next-vicuna-7b/detailed 0.0% 0.6% 100%

Qwen
qwen2-vl-7b/basic 0.0% 24.4% 100%
qwen2-vl-7b/context 0.0% 13.9% 100%
qwen2-vl-7b/detailed 0.0% 24.0% 100%

For the Chinese idiom task (Table 3), strict matching accuracy (exact idiom recognition) remains152

extremely low across all models, typically below 5%. Even with similarity-based evaluation, average153

matching rates rarely exceed 15%, with the exception of Qwen2-VL-7B, which achieves around 24%.154

Prompt design has only limited impact: detailed prompts provide modest improvements for some155

models (e.g., GPT-5, Claude Opus 4.1), while context-oriented prompts do not consistently help.156

For the English word fusion task (Figure 4), overall performance is likewise poor, with recogni-157

tion accuracy capped at 20% even under detailed prompts (GPT-5). Proprietary frontier models158

(e.g., GPT-4o, GPT-5, Gemini 1.5) show slightly better performance than open-source alternatives159

(LLaVA, Qwen2-VL), yet still fall far below human-level recognition. Detailed prompts consistently160

outperform basic prompts, indicating that explicit task guidance can mitigate, but not resolve, the161

recognition challenge.162

Taken together, these results highlight a systematic blind spot in current VLMs: while humans easily163

parse visually fused characters and words, models fail almost completely, regardless of architecture,164

scale, or prompting strategy.165

4.2 Recognition Difficulty Analysis166

To better understand model limitations, we further analyze recognition difficulty across individual167

stimuli (Figures 5, 6).168
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Figure 4: Performance of vision–language models (VLMs) on the English word fusion recognition
task. Accuracy is reported under two prompting conditions (basic vs. detailed). Overall performance
is low across all models, with proprietary frontier models (e.g., GPT-4o, GPT-5, Gemini) achieving up
to 20% accuracy under detailed prompts, while most open-source models (LLaVA variants, Qwen2-
VL) perform near chance level.

Figure 5: Word recognition difficulty comparison. Top: hardest words (0% recognition rate). Bottom:
easiest words (16.7%-55.6% recognition rate).

For the English word fusion task (Figure 5), recognition rates vary widely across words. The169

hardest cases, such as hardware, checksum, and decoding, exhibit complete failure across models170

(0% recognition). These words involve highly overlapping letter structures or stroke collisions, which171

appear to overwhelm the visual parsing mechanisms of current VLMs. In contrast, relatively easier172

words such as keyboard, alphabet, and password achieve recognition rates between 38.9% and 55.6%,173

suggesting that clearer segmentation cues or less stroke overlap can partially mitigate the ambiguity.174

For the Chinese idiom fusion task (Figure 6), the difficulty gap is even more pronounced. Many id-175

ioms are never correctly recognized (0%). Even the relatively “easiest” idioms only reach 2.5%–8.0%176

accuracy. The logographic structure of Chinese characters amplifies this problem: fusing parts of two177

characters often produces a visually valid but semantically misleading glyph, making it especially178

challenging for VLMs.179

Importantly, however, this gradation of difficulty is not reflected in human perception. Human180

participants reported no meaningful difference between “hard” and “easy” examples, recognizing all181

items near-perfectly regardless of stroke overlap or fusion style. This divergence highlights that the182

observed error spectrum is not intrinsic to the stimuli themselves, but rather emerges from architectural183

blind spots in current VLMs. Whereas humans rely on robust gestalt grouping, contextual priors,184
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Figure 6: Idioms recognition difficulty comparison. Top: hardest idioms (0% recognition rate).
Bottom: easiest idioms (2.5%-8% recognition rate).

and flexible character reconstruction, VLMs lack mechanisms to resolve structured visual ambiguity,185

leading to stark performance discrepancies that do not exist in human cognition.186

In a nutshell, these results reveal that difficulty for VLMs is an artifact of model limitations rather187

than an inherent property of the task. This underscores a systematic blind spot in visual–linguistic188

parsing, spanning both alphabetic and logographic writing systems.189

5 Discussion and Conclusion190

Our study reveals a universal failure mode in vision–language models (VLMs): accuracy that is191

near-perfect on clean text collapses to near-zero under perturbations that remain fully legible to192

humans. This gap highlights a fundamental cognitive asymmetry. Humans read by deploying193

structural priors—segmentation, composition, and symbol binding—while VLMs rely on global194

invariances that misfire when identifiability is challenged.195

The implications are profound. Reading is not mere pattern recognition but structured symbol196

recovery. Humans achieve this effortlessly; VLMs do not. While larger models and more data may197

help, our results suggest that scaling alone may be insufficient. Instead, models must incorporate198

literacy-oriented priors: glyph- or radical-aware representations, mechanisms for segmentation and199

binding, and cross-script strategies that generalize across writing systems.200

The “visible-but-unreadable” blind spot matters well beyond safety. Robust reading under perturbation201

is essential for science, accessibility, cultural heritage, and trustworthy multimodal AI. Addressing202

this gap is therefore not a minor refinement but a prerequisite for building AI that can partner with203

humans in domains where literacy is indispensable.204

Our study is limited to two scripts and controlled perturbations. Expanding to more languages, fonts,205

and distortions, combined with systematic human studies, will help map the full scope of the problem206

and inspire design. Exploring symbolic-neural hybrids and explicit segmentation architectures207

remains an open and promising frontier.208

In summary, our work documents a striking divergence between human and machine reading and209

frames it as both a vulnerability and an opportunity. Achieving human-like resilience will require210

rethinking how structure, priors, and compositionality are embedded in multimodal learning.211
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Agents4Science AI Involvement Checklist283

1. Hypothesis development: Hypothesis development includes the process by which you284

came to explore this research topic and research question. This can involve the background285

research performed by either researchers or by AI. This can also involve whether the idea286

was proposed by researchers or by AI.287

Answer: [B]288

Explanation: The research idea and framing were primarily human-driven. The motiva-289

tion—testing whether VLMs can read human-legible but perturbed text—was formulated290

by the human researcher, drawing on background knowledge in psycholinguistics and AI291

safety. AI tools provided assistance in refining the wording of hypotheses, brainstorming292

possible perturbation types, and clarifying methodological framing, but the core direction293

came from the human.294

2. Experimental design and implementation: This category includes design of experiments295

that are used to test the hypotheses, coding and implementation of computational methods,296

and the execution of these experiments.297

Answer: [C]298

Explanation: AI models were used extensively for generating stimuli (e.g., rendering idioms299

with character-splitting, overlaying English words with colors, creating figure prototypes)300

and for producing code snippets to automate data processing and evaluation. The human301

researcher guided the overall design, validated outputs, and ensured scientific rigor, but302

much of the coding and figure-generation was handled with AI assistance. Thus, the majority303

of the execution work came from AI under human supervision.304

3. Analysis of data and interpretation of results: This category encompasses any process to305

organize and process data for the experiments in the paper. It also includes interpretations of306

the results of the study.307

Answer: [C]308

Explanation: AI helped organize recognition accuracy results, generate tables and plots,309

and draft interpretations of trends across models and prompt types. The human researcher310

critically evaluated these analyses, drew the central conclusions (e.g., the universal gap311

between human and AI literacy), and ensured the arguments connected to cognitive science312

and AI architecture. Therefore, AI performed a large share of the data summarization and313

visualization, while humans provided conceptual interpretation and validation.314

4. Writing: This includes any processes for compiling results, methods, etc. into the final315

paper form. This can involve not only writing of the main text but also figure-making,316

improving layout of the manuscript, and formulation of narrative.317

Answer: [C]318

Explanation: AI was heavily used for drafting, polishing, and restructuring text—including319

the Introduction, Discussion, and figure captions. The human researcher provided the core320

ideas, checked factual correctness, ensured alignment with scientific standards, and made321

final editorial decisions. Thus, while the narrative flow and sentence structure benefited322

from AI generation, the intellectual substance and framing remained human-led.323

5. Observed AI Limitations: What limitations have you found when using AI as a partner or324

lead author?325

Description: 1) Surface-level reasoning: AI often produced plausible but shallow explana-326

tions, which required human correction to ensure conceptual depth and technical accuracy.327

2) While AI tools were effective for generating analysis figures and result plots (e.g., through328

Python code for automated visualization), they showed clear limitations in producing com-329

plex schematic diagrams such as methodological flowcharts. These tasks often required330

significant manual adjustment or external design tools. Among the models tested, Gemini331

2.5 Pro provided the most useful support for figure drafting, but even so, the quality and332

flexibility were below what is required for final publication standards.333
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Agents4Science Paper Checklist334

1. Claims335

Question: Do the main claims made in the abstract and introduction accurately reflect the336

paper’s contributions and scope?337

Answer: [Yes]338

Justification: The abstract and introduction clearly state the paper’s contribu-339

tions—identifying a universal failure mode in VLMs, designing cross-script benchmarks,340

and analyzing implications. These claims are fully supported by the experimental results.341

Guidelines:342

• The answer NA means that the abstract and introduction do not include the claims343

made in the paper.344

• The abstract and/or introduction should clearly state the claims made, including the345

contributions made in the paper and important assumptions and limitations. A No or346

NA answer to this question will not be perceived well by the reviewers.347

• The claims made should match theoretical and experimental results, and reflect how348

much the results can be expected to generalize to other settings.349

• It is fine to include aspirational goals as motivation as long as it is clear that these goals350

are not attained by the paper.351

2. Limitations352

Question: Does the paper discuss the limitations of the work performed by the authors?353

Answer: [Yes]354

Justification: The paper includes a dedicated discussion of limitations, noting that the study355

is restricted to two scripts and controlled perturbations, and that further research is needed356

across more languages, fonts, and distortions.357

Guidelines:358

• The answer NA means that the paper has no limitation while the answer No means that359

the paper has limitations, but those are not discussed in the paper.360

• The authors are encouraged to create a separate "Limitations" section in their paper.361

• The paper should point out any strong assumptions and how robust the results are to362

violations of these assumptions (e.g., independence assumptions, noiseless settings,363

model well-specification, asymptotic approximations only holding locally). The authors364

should reflect on how these assumptions might be violated in practice and what the365

implications would be.366

• The authors should reflect on the scope of the claims made, e.g., if the approach was367

only tested on a few datasets or with a few runs. In general, empirical results often368

depend on implicit assumptions, which should be articulated.369

• The authors should reflect on the factors that influence the performance of the approach.370

For example, a facial recognition algorithm may perform poorly when image resolution371

is low or images are taken in low lighting.372

• The authors should discuss the computational efficiency of the proposed algorithms373

and how they scale with dataset size.374

• If applicable, the authors should discuss possible limitations of their approach to375

address problems of privacy and fairness.376

• While the authors might fear that complete honesty about limitations might be used by377

reviewers as grounds for rejection, a worse outcome might be that reviewers discover378

limitations that aren’t acknowledged in the paper. Reviewers will be specifically379

instructed to not penalize honesty concerning limitations.380

3. Theory assumptions and proofs381

Question: For each theoretical result, does the paper provide the full set of assumptions and382

a complete (and correct) proof?383

Answer: [NA]384
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Justification: The paper is empirical and does not contain formal theorems or proofs.385

Therefore, this item is not applicable.386

Guidelines:387

• The answer NA means that the paper does not include theoretical results.388

• All the theorems, formulas, and proofs in the paper should be numbered and cross-389

referenced.390

• All assumptions should be clearly stated or referenced in the statement of any theorems.391

• The proofs can either appear in the main paper or the supplemental material, but if392

they appear in the supplemental material, the authors are encouraged to provide a short393

proof sketch to provide intuition.394

4. Experimental result reproducibility395

Question: Does the paper fully disclose all the information needed to reproduce the main ex-396

perimental results of the paper to the extent that it affects the main claims and/or conclusions397

of the paper (regardless of whether the code and data are provided or not)?398

Answer: [Yes]399

Justification: The paper describes the benchmark construction, prompts, evaluation metrics,400

and tested models in detail. This information is sufficient for independent reproduction401

given access to the listed VLM APIs.402

Guidelines:403

• The answer NA means that the paper does not include experiments.404

• If the paper includes experiments, a No answer to this question will not be perceived405

well by the reviewers: Making the paper reproducible is important.406

• If the contribution is a dataset and/or model, the authors should describe the steps taken407

to make their results reproducible or verifiable.408

• We recognize that reproducibility may be tricky in some cases, in which case authors409

are welcome to describe the particular way they provide for reproducibility. In the case410

of closed-source models, it may be that access to the model is limited in some way411

(e.g., to registered users), but it should be possible for other researchers to have some412

path to reproducing or verifying the results.413

5. Open access to data and code414

Question: Does the paper provide open access to the data and code, with sufficient instruc-415

tions to faithfully reproduce the main experimental results, as described in supplemental416

material?417

Answer: [Yes]418

Justification: we will release the code upon acceptance.419

Guidelines:420

• The answer NA means that paper does not include experiments requiring code.421

• Please see the Agents4Science code and data submission guidelines on the conference422

website for more details.423

• While we encourage the release of code and data, we understand that this might not be424

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not425

including code, unless this is central to the contribution (e.g., for a new open-source426

benchmark).427

• The instructions should contain the exact command and environment needed to run to428

reproduce the results.429

• At submission time, to preserve anonymity, the authors should release anonymized430

versions (if applicable).431

6. Experimental setting/details432

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-433

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the434

results?435

Answer: [Yes]436

13



Justification: As the study evaluates existing models rather than training new ones, the437

relevant details focus on prompt design, dataset construction, and evaluation procedures,438

which are fully documented in the manuscript.439

Guidelines:440

• The answer NA means that the paper does not include experiments.441

• The experimental setting should be presented in the core of the paper to a level of detail442

that is necessary to appreciate the results and make sense of them.443

• The full details can be provided either with the code, in appendix, or as supplemental444

material.445

7. Experiment statistical significance446

Question: Does the paper report error bars suitably and correctly defined or other appropriate447

information about the statistical significance of the experiments?448

Answer: [Yes]449

Justification: Recognition accuracies are averaged over 2 runs, and we report both strict and450

similarity-based metrics. This conveys the robustness of results.451

Guidelines:452

• The answer NA means that the paper does not include experiments.453

• The authors should answer "Yes" if the results are accompanied by error bars, confi-454

dence intervals, or statistical significance tests, at least for the experiments that support455

the main claims of the paper.456

• The factors of variability that the error bars are capturing should be clearly stated457

(for example, train/test split, initialization, or overall run with given experimental458

conditions).459

8. Experiments compute resources460

Question: For each experiment, does the paper provide sufficient information on the com-461

puter resources (type of compute workers, memory, time of execution) needed to reproduce462

the experiments?463

Answer: [Yes]464

Justification: Experiments relied on API access to proprietary VLMs and open-source465

checkpoints (7B scale) run on a single H200 GPU.466

Guidelines:467

• The answer NA means that the paper does not include experiments.468

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,469

or cloud provider, including relevant memory and storage.470

• The paper should provide the amount of compute required for each of the individual471

experimental runs as well as estimate the total compute.472

9. Code of ethics473

Question: Does the research conducted in the paper conform, in every respect, with the474

Agents4Science Code of Ethics (see conference website)?475

Answer: [Yes]476

Justification: The work conforms to the Agents4Science Code of Ethics. No private or477

sensitive data are used, and experiments focus on widely available benchmarks and open-478

source/public APIs.479

Guidelines:480

• The answer NA means that the authors have not reviewed the Agents4Science Code of481

Ethics.482

• If the authors answer No, they should explain the special circumstances that require a483

deviation from the Code of Ethics.484

10. Broader impacts485

Question: Does the paper discuss both potential positive societal impacts and negative486

societal impacts of the work performed?487
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Answer: [Yes]488

Justification: The paper explicitly discusses broader impacts, including positive applications489

in science, accessibility, and cultural heritage, as well as risks of adversarial misuse in490

content moderation and security contexts.491

Guidelines:492

• The answer NA means that there is no societal impact of the work performed.493

• If the authors answer NA or No, they should explain why their work has no societal494

impact or why the paper does not address societal impact.495

• Examples of negative societal impacts include potential malicious or unintended uses496

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,497

privacy considerations, and security considerations.498

• If there are negative societal impacts, the authors could also discuss possible mitigation499

strategies.500
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