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Abstract

We study population convergence guarantees of stochastic gradient descent (SGD)
for smooth convex objectives in the interpolation regime, where the noise at
optimum is zero or near zero. The behavior of the last iterate of SGD in this
setting—particularly with large (constant) stepsizes—has received growing atten-
tion in recent years due to implications for the training of over-parameterized
models, as well as to analyzing forgetting in continual learning and to under-
standing the convergence of the randomized Kaczmarz method for solving lin-
ear systems. We establish that after 𝑇 steps of SGD on 𝛽-smooth convex loss
functions with stepsize 0 < 𝜂 < 2/𝛽, the last iterate exhibits expected excess
risk 𝑂

( 1
𝜂 (2−𝛽𝜂)𝑇1−𝛽𝜂/2 +

𝜂

(2−𝛽𝜂)2𝑇
𝛽𝜂/2𝜎2

★

)
, where 𝜎2

★ denotes the variance of the
stochastic gradients at the optimum. In particular, for a well-tuned stepsize we ob-
tain a near optimal 𝑂 (1/𝑇 + 𝜎★/

√
𝑇) rate for the last iterate, extending the results

of Varre et al. [2021] beyond least squares regression; and when 𝜎★ = 0 we obtain
a rate of 𝑂 (1/

√
𝑇) with 𝜂 = 1/𝛽, improving upon the best-known 𝑂 (𝑇−1/4) rate

recently established by Evron et al. [2025] in the special case of realizable linear
regression.

1 Introduction

We study the convergence of Stochastic Gradient Descent (SGD) for smooth convex objectives in the
low-noise and interpolation regimes. Concretely, we consider optimization problems of the form

min
𝑥∈ℝ𝑑

𝐹 (𝑥) := 𝔼𝑧∼Z [ 𝑓 (𝑥; 𝑧)],

whereZ is a distribution over a sample space 𝑍 , and 𝑓 (·; 𝑧) : ℝ𝑑 → ℝ is convex and 𝛽-smooth for all
𝑧 ∈ 𝑍 . In the low-noise regime, the gradient noise at the optimum, defined as 𝜎2

★ := 𝔼𝑧 ∥∇ 𝑓 (𝑥★; 𝑧)∥2
for 𝑥★ ∈ arg min𝑥∈ℝ𝑑 𝐹 (𝑥), is assumed to be small or even zero. The special case where 𝜎2

★ = 0
is known as the interpolation regime, in which 𝑥★ minimizes 𝑓 (·, 𝑧) for almost all 𝑧 ∈ 𝑍 . We seek
bounds on the expected excess risk of SGD, that given an i.i.d. sample 𝑧1, . . . , 𝑧𝑇 ∼ Z performs the
following updates, starting from an initialization 𝑥1 ∈ ℝ𝑑:

𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇ 𝑓 (𝑥𝑡 ; 𝑧𝑡 ). (𝑡 = 1, . . . , 𝑇)
∗Equal contribution.
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Standard convergence bounds of SGD apply to an average (possibly weighted) of the iterates. It is
by now a classical result that in the smooth low-noise regime, the average iterate of SGD with a
constant stepsize 𝜂 = Θ(1/𝛽) converges at a fast rate of 𝑂 (1/𝑇 + 𝜎★/

√
𝑇) [Srebro et al., 2010, Ma

et al., 2018], as compared to the slower 𝑂 (1/
√
𝑇) rate that holds more generally. In this work, we

study last-iterate bounds for SGD, namely bounds that apply to the expected loss 𝔼[𝐹 (𝑥𝑇 )] of the
last SGD iterate rather than to an average of the iterates. Somewhat surprisingly, despite a long line of
work on last-iterate bounds [Rakhlin et al., 2012, Shamir and Zhang, 2013, Jain et al., 2019, Harvey
et al., 2019, Varre et al., 2021, Zamani and Glineur, 2023, Liu and Zhou, 2024a, Evron et al., 2025],
it has remained unknown whether fast rates in the smooth low-noise regime are also attained by the
last iterate. Our goal in this paper is to fill in this gap.

There are several compelling reasons to study last-iterate bounds in low-noise regimes. First, as
argued by Ma et al. [2018], the fast empirical convergence of SGD in training deep models, which is
often run with a fixed constant stepsize, can be attributed to the fact that modern overparameterized
networks are typically powerful enough to interpolate the data and reach zero loss, placing their
optimization naturally in the interpolation regime. Second, it has been established that classical
methods for solving ordinary least squares (OLS) problems and underdetermined systems of linear
equations, such as the (randomized) Kaczmarz method, are instances of last-iterate SGD in the
smooth interpolation regime [e.g., Needell et al., 2014]. Third, it has been recently demonstrated that
last-iterate bounds for SGD in this regime are beneficial for analyzing catastrophic forgetting in a
certain class of realizable continual learning problems [Evron et al., 2022, 2025], and this observation
has led to improved analyses.

Crucially, however, some of the aforementioned applications of SGD in the interpolation regime
hinge on a specific choice of a stepsize: 𝜂 = 1/𝛽. We refer to this as the “greedy stepsize” since,
in the case of least squares (and in particular, in the Kaczmarz method), it leads to an update that
steps directly to a minimizer of the instantaneous loss. Curiously though, previous analyses of SGD
(either for the last or the average iterate) have not been able to treat the greedy choice 𝜂 = 1/𝛽
directly,2 and have only provided bounds for stepsizes of the form 𝜂 = 𝑐/𝛽, for a constant 𝑐 strictly
smaller than one [Srebro et al., 2010, Lan, 2012, Varre et al., 2021, Needell et al., 2014, Liu and
Zhou, 2024a]. Thus, these analyses do not transfer to applications like continual learning and the
randomized Kaczmarz method, which do require the exact setting of 𝜂 = 1/𝛽. Very recently, Evron
et al. [2025] revisited this issue and established last-iterate bounds for SGD with 𝜂 = 1/𝛽 in the
pure interpolation regime (𝜎★ = 0), that scale as 𝑂 (1/𝑇1/4) but hold only for OLS. Thus, there is
still quite a significant gap between the best last-iterate bounds in this case and the fast 𝑂 (1/𝑇) rate
achieved by the average iterate of SGD with general smooth and convex losses.3

In this work, we provide the first (nearly-)optimal last-iterate convergence rate for SGD in the
low-noise setting, significantly generalizing previous results limited to the OLS case in the pure
interpolation regime with 𝜎★ = 0. Furthermore, we establish the first last-iterate guarantee with a
constant “greedy” stepsize 𝜂 = 1/𝛽 in the interpolation regime and, as a consequence, substantially
improve upon the best known rates for randomized Kaczmarz and realizable continual learning (in
the condition-independent setting, not relying on strong convexity).

1.1 Summary of contributions

In more detail, in this paper we make the following contributions:

(i) We establish a convergence rate of

𝑂

(
1

𝜂(2 − 𝛽𝜂)𝑇1−𝛽𝜂/2 +
𝜂

(2 − 𝛽𝜂)2
𝑇𝛽𝜂/2𝜎2

★

)
for the last iterate of 𝑇-steps SGD with stepsize 0 < 𝜂 < 2/𝛽 on convex and 𝛽-smooth
objectives, where 𝜎2

★ is the variance of the stochastic gradients at the optimum. When 𝜂 ≤
2While not stated explicitly in their paper, Bach and Moulines [2013] did provide a bound for 𝜂 = 1/𝛽, but

only in the context of OLS and only for the average iterate of SGD.
3We remark that even for the average iterate, existing analyses do not directly apply to the greedy stepsize

𝜂 = 1/𝛽; we provide a more refined argument treating this case in Appendix B. The same applies to the
last-iterate bounds in the strongly convex case derived in Needell et al. [2014], which also hold only for 𝜂 < 1/𝛽;
we complement these results with an analysis for any stepsize 𝜂 < 2/𝛽, see details in Appendix C.
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Table 1: Convergence bounds for SGD in smooth convex settings. The table considers the dependence on
the number of iterations 𝑇 , global noise bound 𝜎2 ≥ sup𝑥 𝔼∥∇ 𝑓 (𝑥; 𝑧) − ∇𝐹 (𝑥)∥2, and variance at the optimum
𝜎2
★ := 𝔼∥∇ 𝑓 (𝑥★; 𝑧) − ∇𝐹 (𝑥★)∥2. The step size of the algorithm is denoted by 𝜂. OLS stands for Ordinary Least

Squares. Dependence on other parameters (e.g., the distance to the optimal solution), constants, and logarithmic
factors is omitted for clarity. Only dimension-independent guarantees are included in the table.

SETTING REFERENCE
ADDITIONAL

ASSUMPTIONS
OUTPUT
ITERATE

CONVERGENCE
RATE

𝛽-smooth, convex
𝜂 optimally tuned

Lan [2012] — Average 1/𝑇 + 𝜎/
√
𝑇

Srebro et al. [2010]a — Average 1/𝑇 + 𝜎★/
√
𝑇

Liu and Zhou [2024a] — Last 1/𝑇 + 𝜎/
√
𝑇

This paper — Last 1/𝑇 + 𝜎★/
√
𝑇

𝛽-smooth, convex
realizable (𝜎★ = 0)
𝜂 optimally tuned

Srebro et al. [2010] — Average 1/𝑇
Varre et al. [2021] OLS Last 1/𝑇

This paper — Last 1/𝑇

𝛽-smooth, convex
realizable (𝜎★ = 0)

𝜂 = 1/𝛽

Bach and Moulines [2013]b OLS Average 1/𝑇
Evron et al. [2025] OLS Last 1/𝑇1/4

This paper — Last 1/
√
𝑇

a Srebro et al. [2010] established a slightly weaker guarantee that scales with the approximation error instead
of 𝜎★, but can be refined to 𝑂 (1/𝑇 + 𝜎★/

√
𝑇).

b Bach and Moulines [2013] also established a convergence rate for ordinary least squares in the non-realizable
setting; however, the result is dimension-dependent and therefore omitted from the table.

1/(𝛽 log𝑇), our guarantee translates to 𝑂 (1/(𝜂𝑇) + 𝜂𝜎2
★), providing the first fast last-iterate

convergence rate in the low-noise regime (i.e., when 𝜎★ ≪ 1). In particular, through an
appropriate tuning of the stepsize we obtain a near optimal 𝑂 (1/𝑇 + 𝜎★/

√
𝑇) rate for the last

iterate, extending the results of Varre et al. [2021] beyond least squares regression.

(ii) In the interpolation regime (i.e., when 𝜎★ = 0), we provide the first last-iterate convergence
guarantee with “greedy” constant stepsize 𝜂 = 1/𝛽, achieving a rate of 𝑂 (1/

√
𝑇) and improving

upon the best-known rate of 𝑂 (1/𝑇1/4) in the special case of linear regression due to Evron
et al. [2025]. This improved rate leads to better performance guarantees in applications such
as continual linear regression and the randomized Kaczmarz method, via recent reductions to
SGD with 𝜂 = 1/𝛽.

(iii) Finally, we extend our result in the interpolation regime to without-replacement SGD, achieving
a similar 𝑂 (1/𝑇) fast rate and improving upon prior work where multiple passes over the
samples were required for providing meaningful bounds [Cai and Diakonikolas, 2025, Liu and
Zhou, 2024b].

See Table 1 for a summary of our results compared to existing art. We remark that while the improved
𝑂 (1/

√
𝑇) rate we establish in the greedy case 𝜂 = 1/𝛽 is likely not tight (we discuss optimality more

below), it does not follow from the general 𝑂 (1/
√
𝑇) rate for the last iterate of SGD in the convex

and Lipschitz (non-smooth) case [e.g., Shamir and Zhang, 2013, Liu and Zhou, 2024a]. Indeed, the
latter convergence results require a non-constant stepsize of order 𝜂 = Θ̃(1/

√
𝑇), whereas our goal is

to specifically address the particular choice of 𝜂 = 1/𝛽.

Open problems. Our work leaves several interesting questions for further investigation. Most
notably, our rate in the regime where 𝜎★ = 0 and 𝜂 = 1/𝛽 is 𝑂 (1/

√
𝑇), whereas the best known lower

bound in this setting is Ω(1/𝑇) [e.g., Zhang et al., 2023], which also matches the upper bound for
the average-iterate of SGD (see details in Appendix B). Closing this gap remains an open question
for future work. As noted above, such an upper bound would also yield improved guarantees in
continual learning and the Kaczmarz method. Notably, in those settings as well, the best known lower
bound is Ω(1/𝑇) [Evron et al., 2022]. Moreover, when the step size 𝜂 is optimally tuned, we obtain
nearly optimal convergence rates up to logarithmic factors. Eliminating this remaining gap is left for
future work. Finally, our convergence guarantee under without-replacement sampling currently holds
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only in the interpolation regime. Whether this guarantee can be established in the low-noise regime
remains an open question.

1.2 Related work

Last-iterate analysis of SGD. There is a rich line of work studying last-iterate convergence of
SGD, most of which focuses on the convex Lipschitz setup in the gradient oracle model [Rakhlin
et al., 2012, Shamir and Zhang, 2013, Jain et al., 2019, Harvey et al., 2019, Zamani and Glineur,
2023, Liu and Zhou, 2024a]. Surprisingly, this line of work has reached fruition with near-optimal
bounds in all but the low-noise regimes. While the recent work of Liu and Zhou [2024a] additionally
establishes last-iterate convergence for smooth convex objectives which may be applied in our setting,
their bounds depend on a global noise parameter that can be arbitrarily larger than 𝜎★. In particular,
in the interpolation regime, their result translates to a suboptimal convergence rate of 𝑂 (1/

√
𝑇),

whereas average-iterate bounds are known to achieve the faster rate of 𝑂 (1/𝑇) [Srebro et al., 2010].
Moreover, their analysis does not establish convergence of SGD with the “greedy” stepsize 𝜂 = 1/𝛽,
which is of particular importance due to the connection to continual learning and the Kaczmarz
method [e.g., Needell et al., 2014, Evron et al., 2022, 2025]. By considering only the restricted class
of ordinary least squares (OLS), several works have established last-iterate convergence results (see
Table 1 for details). In contrast, we do not assume loss functions have any specific parametric form,
nor do we assume the full objective is strongly convex.

Overparametrization in deep learning. Our work is additionally motivated by modern machine
learning setups, where heavily over-parameterized deep neural networks are trained via SGD to
perfectly fit the training data. Recent research connects over-parametrization with the ability to
interpolate the training data, i.e., realizability of the empirical risk, and further, realizability with the
fast convergence of SGD observed in practice [Ma et al., 2018]. In accordance, a growing line of
work studies convergence behavior of SGD in the interpolation regime [e.g., Ge et al., 2019, Vaswani
et al., 2019, Berthier et al., 2020, Varre et al., 2021, Wu et al., 2022, Liu et al., 2023], typically for
under-determined linear regression problems, or under the assumption that component losses are
convex and smooth and the full objective is strongly convex.

The Kaczmarz method. It is by now well-known that several variants of the (randomized) Kacz-
marz method for solving underdetermined linear systems can be cast as instances of stochastic
gradient descent [Needell et al., 2014]. Typical convergence bounds for the Kaczmarz method
depend on the condition number of the coefficient matrix 𝐴; when the minimal singular value of 𝐴 is
strictly positive, various variants of the method are known to converge linearly to the minimum-norm
solution 𝑥★ [Gower and Richtárik, 2015, Han and Xie, 2024, Needell and Tropp, 2014]. However,
the convergence rates in these settings can be arbitrarily slow, depending on the condition number of
𝐴, which is potentially arbitrarily large. Our results extend these findings by providing bounds that
apply even when 𝜎min = 0, independently of the condition number of 𝐴. Our guarantees in this case
are in terms of the squared error, rather than of the Euclidean distance to a solution.

A key idea introduced by Strohmer and Vershynin [2009] in the context of the Kaczmarz method is
to sample rows non-uniformly, with probabilities proportional to their squared norms. This sampling
strategy fits naturally within the SGD framework, allowing us to analyze norm-based variants and
derive a sharper bound (Corollary 4), where the bound depends on the average rather than the
maximum row norm. In the block setting, both uniform and weighted sampling approaches have been
explored [Needell and Tropp, 2014, Gower and Richtárik, 2015]. Similar to the single-row case, our
results indicate that assigning sampling probabilities based on block norms can improve the analysis
in a similar way, and imply better bounds through the average rather than the maximum block norm.

Continual linear regression. Prior work in continual learning has extensively studied the problem
of catastrophic forgetting, demonstrating that the extent of forgetting is influenced by factors such
as task similarity, model overparameterization, and the plasticity-stability trade-off [Goldfarb et al.,
2024, Mermillod et al., 2013]. A growing body of theoretical and empirical research has shown that
forgetting can diminish over time when tasks are presented in cyclic or random orderings [Evron
et al., 2022, 2023, Kong et al., 2023, Jung et al., 2025, Cai and Diakonikolas, 2025, Lesort et al.,
2023, Hemati et al., 2024, Evron et al., 2025]. Such orderings have been studied as mechanisms for
mitigating forgetting, either through explicit control of learning environments or by modeling naturally
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recurring patterns (e.g., seasonality in real-world domains). A recent line of work [Evron et al., 2022,
2025] demonstrated that convergence bounds for convex, 𝛽-smooth realizable optimization—such as
those considered in our setting—can be applied to continual linear regression, where each task is a
regression problem learned to convergence. Our more general results yield state-of-the-art bounds
when applied in this setting. Concurrently to this work, Levinstein et al. [2025] showed that optimal
𝑂 (1/𝑇) bounds in continual linear regression can also be achieved using a different approach: instead
of fully optimizing each task, they present two methods—one that minimizes a regularized loss per
task and another that performs a finite number of optimization steps.

With vs. without-replacement sampling. Our analysis of SGD without-replacement relates to
prior work on average iterate convergence [e.g., Recht and Ré, 2012b, Nagaraj et al., 2019, Safran
and Shamir, 2020, Rajput et al., 2020, Mishchenko et al., 2020, Cha et al., 2023, Cai et al., 2023].
For smooth, non-strongly convex objectives, near-optimal bounds have been established [Nagaraj
et al., 2019, Mishchenko et al., 2020], with refined parameter dependence in the realizable case by
Cai et al. [2023]. Last-iterate guarantees have more recently been studied by Liu and Zhou [2024b],
Cai and Diakonikolas [2025], though these results assume non-constant step sizes and provide rates
in terms of epochs, limiting their applicability to our setting. Specifically, in a realizable 𝛽-smooth
setup, after 𝐽 without-replacement SGD epochs over a finite sum of size 𝑛, Mishchenko et al. [2020],
Cai et al. [2023] obtained an 𝑂 (𝛽/𝐽) bound for the average iterate with step size 𝜂 = 1/(𝛽𝑛) and
Liu and Zhou [2024b], Cai and Diakonikolas [2025] derived similar bounds for the last iterate up
to logarithmic factors. In addition, Evron et al. [2025] recently analyzed the OLS setting with large
step sizes, showing a last-iterate rate of 𝑂 (1/𝑇) for optimally tuned step sizes, and 𝑂 (1/𝑇1/4) for
𝜂 = 1/𝛽. We extend those results to general convex 𝛽-smooth realizable objectives, obtaining similar
rates under optimal tuning and an improved 𝑂 (1/

√
𝑇) rate for 𝜂 = 1/𝛽 under without-replacement

sampling.

The role of sampling order has also been studied in the context of the Kaczmarz method, where
without-replacement sampling can lead to faster convergence. Recht and Ré [2012a] conjectured that
a noncommutative arithmetic-geometric mean inequality could explain this advantage, but this was
later disproven by Lai and Lim [2020], with further clarification by De Sa [2020]. Empirical work
has shown that row-shuffling and cyclic orderings can perform comparably to i.i.d. sampling [Oswald
and Zhou, 2015], aligning with broader observations in shuffled SGD [Bottou, 2009, Yun et al., 2021].
Our results support those of Evron et al. [2025] that suggests that with- and without-replacement
sampling yield comparable performance up to constant factors. Thus, our analysis does not reveal a
theoretical preference for one strategy over the other, leaving open the question of whether practical
advantages can be gained through ordering.

Concurrent work. Following the initial publication of the present manuscript on arXiv [Attia et al.,
2025], an independent work was released [Garrigos et al., 2025], which investigates the last-iterate
convergence of SGD for convex and smooth objectives and establishes results closely related to ours.
For a properly tuned stepsize, Garrigos et al. [2025] achieves the same nearly-optimal convergence
rate of 𝑂 (1/𝑇 + 𝜎★/

√
𝑇). On the other hand, their result does not support for large stepsizes in the

range 1/𝛽 ≤ 𝜂 < 2/𝛽 (in particular, it does not accommodate the “greedy” choice 𝜂 = 1/𝛽) and,
compared with Theorem 2, provides weaker convergence rates for stepsizes of the form 𝜂 = 𝑐/𝛽 for a
constant 𝑐 < 1. In addition, the very recent work of Cortild et al. [2025], brought to our attention
after the initial publication of our manuscript on arXiv, establishes average-iterate guarantees for
SGD in the convex and smooth setting for any stepsize 𝜂 < 1/(2𝛽), results that closely mirror those
we include in Appendix B.

2 Last-iterate analysis in low-noise regimes

This section presents our main results concerning last-iterate convergence of SGD in the interpolation
and low-noise regimes: in the interpolation regime, all functions share a common minimizer; while
in the low-noise regime, the objective 𝐹 (𝑥) admits a minimizer, and the variance of the stochastic
gradients at that minimizer is small. Subsequently, we provide an overview of our analysis technique.
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Problem setup. Let 𝑍 be an index set for convex loss functions 𝑓 (·; 𝑧) : ℝ𝑑 → ℝ, andZ ∈ Δ(𝑍)
be an arbitrary distribution over 𝑍 . We consider the unconstrained stochastic optimization problem:

min
𝑥∈ℝ𝑑

{𝐹 (𝑥) := 𝔼𝑧∼Z 𝑓 (𝑥; 𝑧)} , (1)

under the assumption that the loss functions are individually smooth. Specifically, we assume that
for all 𝑧 ∈ 𝑍 , the function 𝑓 (·; 𝑧) is 𝛽-smooth, namely that ∥∇ 𝑓 (𝑦; 𝑧) − ∇ 𝑓 (𝑥; 𝑧)∥ ≤ 𝛽∥𝑦 − 𝑥∥ for
all 𝑥, 𝑦 ∈ ℝ𝑑 . (Throughout, ∥·∥ refers to the ℓ2 norm.) We further assume that the objective 𝐹 admits
a minimizer, denoted by 𝑥★ ∈ arg min𝑥∈ℝ𝑑 𝐹 (𝑥), and that the variance of the stochastic gradients
at 𝑥★ is bounded, 𝜎2

★ := 𝔼∥∇ 𝑓 (𝑥★; 𝑧)∥2 < ∞.4 The special case where 𝜎2
★ = 0 is referred to as the

interpolation regime, in which 𝑥★ minimizes 𝑓 (·, 𝑧) for almost all 𝑧 ∈ 𝑍 .

Throughout the paper, we consider the fixed stepsize SGD algorithm, which given an initialization
𝑥1 ∈ ℝ𝑑 , stepsize 𝜂 > 0, number of steps 𝑇 and an i.i.d. sample 𝑧1, . . . , 𝑧𝑇 , performs at each step
𝑡 = 1, . . . , 𝑇 the update

𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇ 𝑓𝑡 (𝑥𝑡 ), where 𝑓𝑡 (𝑥) := 𝑓 (𝑥; 𝑧𝑡 ).

2.1 Main results

We next state our main results. We begin with the guarantee in the interpolation regime.

Theorem 1 (last-iterate convergence in the interpolation regime). Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such
that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧. Assume there exists 𝑥★ ∈ ℝ𝑑 such that 𝑥★ ∈
arg min𝑥∈ℝ𝑑 𝑓 (𝑥; 𝑧) for all 𝑧 ∈ 𝑍 . Then, for SGD initialized at 𝑥1 ∈ ℝ𝑑 with step size 𝜂 < 2/𝛽, where
𝑇 ≥ 2, we have the following last iterate guarantee:

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 3∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂)𝑇1−𝛽𝜂/2 .

In particular:

(i) when 𝜂 = 1
𝛽

, it holds that 𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 3𝛽 ∥𝑥1−𝑥★∥2√
𝑇

;

(ii) when 𝜂 = 1
𝛽 log2 (𝑇 )

, it holds that 𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 6𝛽 ∥𝑥1−𝑥★∥2 log2 (𝑇 )
𝑇

.

In comparison to the average-iterate guarantee of SGD [Srebro et al., 2010], the last-iterate guarantee
in Theorem 1 incurs a suboptimal factor of 𝑇𝛽𝜂/2; by choosing 𝜂 ≤ 1/(𝛽 log2 𝑇), this suboptimality
is reduced to a logarithmic factor and the bound nearly matches the average-iterate performance.

We further extend the above last-iterate convergence guarantee to the more general low-noise regime,
where the noise at the optimum is small but nonzero.

Theorem 2 (last-iterate convergence in the low-noise regime). Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that
𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧. Assume there exists a minimizer 𝑥★ ∈ arg min𝑥∈ℝ𝑑 𝐹 (𝑥),
and that 𝜎2

★ < ∞. Then, for 𝑇-steps SGD initialized at 𝑥1 ∈ ℝ𝑑 with step size 𝜂 < 2/𝛽, where 𝑇 ≥ 2,
we have the following last iterate guarantee:

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 12∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂)𝑇1−𝛽𝜂/2 +
24𝜂

(2 − 𝛽𝜂)2
𝜎2
★𝑇

𝛽𝜂/2 log2 (𝑇 + 2).

In particular, when 𝜂 = min
{
1/𝛽 log2 (𝑇), ∥𝑥1 − 𝑥★∥/

√︁
𝜎2
★𝑇 log2 (𝑇 + 2)

}
,

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤
24𝛽∥𝑥1 − 𝑥★∥2 log2 (𝑇)

𝑇
+

120𝜎★∥𝑥1 − 𝑥★∥
√︁

log2 (𝑇 + 2)
√
𝑇

.

Theorem 2 is essentially an extension Theorem 1 (where we had 𝜎★ = 0), albeit with larger constant
factors that stem from the discrepancy between ∥∇ 𝑓 (𝑥𝑡 ; 𝑧)∥ and ∥∇ 𝑓 (𝑥𝑡 ; 𝑧) − ∇ 𝑓 (𝑥★; 𝑧)∥ in the
low-noise case, when 𝑥★ is not necessarily a minimizer of 𝑓 (𝑥★; 𝑧).

4In case of multiple minima, 𝜎★ can be defined with respect to any one of them—and in fact, its value can be
shown to be the same across all minimizers; for additional details, see Appendix E.
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2.2 Proof outline

Here we give an outline of the proof of Theorem 1, containing the main components of our analysis;
for the full proof of Theorems 1 and 2, see Appendix G. While the outline is stated for the interpolation
setting and with replacement sampling, the core components discussed also play a central role in our
low-noise (Theorem 2) and sampling without-replacement (Theorem 3) results.

A natural starting point for obtaining last-iterate guarantees in the interpolation regime is through
the analysis technique of Shamir and Zhang [2013], who provided the first last-iterate convergence
guarantee in the general convex (non-smooth) setting. Recent previous work extended the technique
to the interpolation regime [Evron et al., 2025], but was limited to linear regression and only achieved
a suboptimal 𝑂 (1/𝑇1/4) rate for 𝜂 = 1/𝛽.5 An alternative approach, which was also taken by Liu
and Zhou [2024a], is based on a powerful technique introduced by Zamani and Glineur [2023] for
analyzing the subgradient method for deterministic (non-smooth) convex optimization, which they
used for obtaining min-max optimal rates.

Starting point: the Zamani & Glineur technique. The starting point of our analysis is the
technique of Zamani and Glineur [2023] for deriving last-iterate convergence bounds for the (deter-
ministic) subgradient method in nonsmooth convex optimization. Starting at 𝑥1 ∈ ℝ𝑑 and performing
the deterministic update steps over a convex and differentiable function 𝐹 with a fixed stepsize,
𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇𝐹 (𝑥𝑡 ) for 𝑡 = 1, 2, . . . , 𝑇 , it follows from their analysis that

𝜂

𝑇∑︁
𝑡=1

𝑐𝑡 (𝐹 (𝑥𝑡 ) − 𝐹 (𝑥★)) ≤
𝑣2

0
2
∥𝑥1 − 𝑥★∥2 +

𝜂2

2

𝑇∑︁
𝑡=1

𝑣2
𝑡 ∥∇𝐹 (𝑥𝑡 )∥2,

where 𝑐𝑡 = 𝑣2
𝑡 − (𝑣𝑡 −𝑣𝑡−1)

∑𝑇
𝑠=𝑡 𝑣𝑠 and 0 < 𝑣0 ≤ 𝑣1 ≤ · · · ≤ 𝑣𝑇 are arbitrary non-decreasing weights.

By carefully selecting the weights such that 𝑐𝑇 > 0 and 𝑐𝑡 = 0 for 1 ≤ 𝑡 < 𝑇 , one can obtain a
convergence bound for the last iterate 𝑥𝑇 :

𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★) ≤
𝑣2

0
2𝜂𝑐𝑇

∥𝑥1 − 𝑥★∥2 +
𝜂

2𝑐𝑇

𝑇∑︁
𝑡=1

𝑣2
𝑡 ∥∇𝐹 (𝑥𝑡 )∥2.

Step (i): from deterministic to stochastic smooth optimization. Our first step is to generalize the
analysis to the stochastic case, in which the update step at step 𝑡 is 𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇ 𝑓 (𝑥𝑡 ; 𝑧𝑡 ), where
𝑧𝑡 ∼ Z. Extending the analysis, we obtain that

𝜂

𝑇∑︁
𝑡=1

𝑐𝑡𝔼[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥★)] ≤
𝑣2

0
2
∥𝑥1 − 𝑥★∥2 +

𝜂2

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.

Using the inequality 𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ 2𝛽𝔼[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥★)], which is a result of standard properties of
convex and smooth functions, gives

𝜂

𝑇∑︁
𝑡=1

(
𝑐𝑡 − 𝛽𝜂𝑣2

𝑡

)
𝔼[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥★)] ≤

𝑣2
0

2
∥𝑥1 − 𝑥★∥2.

Step (ii): modifying the weights 𝒗1, . . . , 𝒗𝑻 . The bound in the above display cannot yield a
meaningful bound for 𝜂 = 1/𝛽, since the leading coefficient is negative: 𝑐𝑡 − 𝑣2

𝑡 < 0. Even with
𝜂 < 1/𝛽, the previously specified weights which satisfy 𝑐𝑡 = 0 for 1 ≤ 𝑡 < 𝑇 lead to a vacuous

inequality. Using instead the weights setting 𝑣𝑡 = (𝑇 − 𝑡 + 2)−
1−𝛽𝜂
2−𝛽𝜂 for 𝑡 < 𝑇 and 𝑣𝑇 = 𝑣𝑇−1, for

which one can show that 𝑐𝑡 − 𝛽𝜂𝑣2
𝑡 ≥ 0, we can establish that

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] = 𝑂

(
𝛽∥𝑥1 − 𝑥★∥2𝑇−1+ 𝛽𝜂

2−𝛽𝜂
)
, (2)

which is still vacuous for 𝜂 = 1/𝛽, but is strong enough for obtaining a rate of 𝑂 (1/𝑇) for stepsize
𝜂 = 1/log2 (𝑇).

5In Appendix D we provide a simplified analysis using the technique of Shamir and Zhang [2013] for the
general convex and smooth setting; while the analysis achieves near-optimal guarantees for small stepsizes, it
does not yield a guarantee for the choice 𝜂 = 1/𝛽 and provides weaker rates for large stepsizes 𝜂 = 𝑐/𝛽 (for a
constant 𝑐 < 1).
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Step (iii): tightening the regret analysis. To further support the greedy setting 𝜂 = 1/𝛽 and to
improve the above bound for general 𝜂 ≤ 1/𝛽, we further tighten the analysis, obtaining

𝜂

𝑇∑︁
𝑡=1

𝑐𝑡𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)] ≤
1
2
𝑣2

0∥𝑥1 − 𝑥★∥2 +
𝜂2

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

− 𝜂

2𝛽

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
.

This is achieved by replacing the use of the gradient inequality, 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩, in
the analysis of for general convex functions with the tighter lower bound for convex and smooth
functions: 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 1

2𝛽 ∥∇ 𝑓 (𝑦) − ∇ 𝑓 (𝑥)∥
2.

Step (iv): handling the cross terms. A new challenge now arises from handling the cross terms
∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2. A basic approach will be to use Young’s inequality to bound

∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 ≤ (1 + 𝜆)∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 + (1 + 1/𝜆)∥∇ 𝑓𝑡 (𝑥𝑠)∥2.
After rearranging the terms and carefully optimize over 𝜆, one can already obtain a bound of

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] = 𝑂

(
𝛽∥𝑥1 − 𝑥★∥2 𝑇

−2+ 1
1−𝜂𝛽/2+𝜂2𝛽2/8

)
,

achieving a rate of 𝑂 (𝑇−2/5) with stepsize 𝜂 = 1/𝛽.

Step (v): step-dependent Young’s inequality. We further tighten our analysis by carefully modi-
fying the above Young’s inequality parameter 𝜆 for each 𝑥𝑡 , 𝑥𝑠 pair. This leads us to the improved
bound in Theorem 1, with a rate of 𝑂 (1/

√
𝑇). Additionally, for a stepsize of 𝜂 = 1/2𝛽, our improved

analysis achieves a rate of 𝑂 (𝑇−3/4), compared to the rate of 𝑂 (𝑇−2/3) achieves by Eq. (2).

3 Extensions and implications

In this section, we show how our improved last-iterate convergence guarantees for SGD in the
realizable setting, presented in Theorem 1, leads to sharper convergence rates in several key settings
studied in the literature. In particular, we extend our analysis to without-replacement SGD, and derive
new results in continual learning, leveraging the improved guarantees for both with and without-
replacement sampling. These include the block Kaczmarz method, continual linear regression as well
as continual linear classification and projection onto convex sets (for the latter, see Appendix A).

3.1 Without-replacement SGD

We first extend our result to a without-replacement sampling variant of the optimization problem
Eq. (1). For this, we assume the instance set 𝑍 is finite with 𝑛 := |𝑍 |, and consider the empirical risk
minimization objective:

min
𝑥∈ℝ𝑑

{
𝐹𝑍 (𝑥) :=

1
𝑛

∑︁
𝑧∈𝑍

𝑓 (𝑥; 𝑧)
}
, (3)

which we will optimize by stochastic gradient descent w.r.t. a uniformly random shuffle of the training
examples. For initialization 𝑥1 ∈ ℝ𝑑 , step size 𝜂 > 0, without-replacement SGD samples a uniformly
random permutation 𝜋 ∼ Unif( [𝑛] ↔ 𝑍), and iterates:

𝑥𝑡+1 ← 𝑥𝑡 − 𝜂∇ 𝑓 (𝑥𝑡 ; 𝜋𝑡 ). (4)

We achieve the following convergence result,
Theorem 3. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧. Assume fur-
ther that there exists a joint minimizer 𝑥★ ∈ ∩𝑧∈𝑍 arg min𝑥∈ℝ𝑑 𝑓 (𝑥; 𝑧). Then, for without-replacement
SGD (Eq. (4)) initialized at 𝑥1 ∈ ℝ𝑑 with step size 𝜂 < 2/𝛽, we have the following last iterate guar-
antee for all 2 ≤ 𝑇 ≤ 𝑛:

𝔼[𝐹𝑍 (𝑥𝑇 ) − 𝐹𝑍 (𝑥★)] ≤
9∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂)𝑇1−𝛽𝜂/2 +
4𝛽2𝜂∥𝑥1 − 𝑥★∥2

𝑇
.
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In particular, for 𝜂 = 1
𝛽

we obtain 𝔼[𝐹𝑍 (𝑥𝑇 ) − 𝐹𝑍 (𝑥★)] ≤ 13𝛽∥𝑥1 − 𝑥★∥2/
√
𝑇, and for 𝜂 = 1

𝛽 log2 𝑇

we obtain, 𝔼[𝐹𝑍 (𝑥𝑇 ) − 𝐹𝑍 (𝑥★)] ≤ 22𝛽 log𝑇 ∥𝑥1 − 𝑥★∥2/𝑇.

To prove Theorem 3, we first establish a bound on 𝔼[ 𝑓𝑇 (𝑥𝑇 )− 𝑓𝑇 (𝑥★)] as in the with-replacement case.
We then apply the without-replacement algorithmic stability for smooth and realizable objectives
provided by Evron et al. [2025]. The full proof appears in Appendix H.

3.2 The randomized (block-)Kaczmarz method

Block-Kaczmarz method is a classical algorithm for solving underdetermined linear systems of the
form 𝐴𝑥 = 𝑏 [Kaczmarz, 1937, Elfving, 1980]. The method initializes 𝑥1 = 0, and at each iteration 𝑡,
samples, with or without replacement, a random block (𝐴𝜏 (𝑡 ) , 𝑏𝜏 (𝑡 ) ) from the matrix 𝐴 and performs
the update:

𝑥𝑡+1 ← 𝑥𝑡 − 𝑐𝐴+𝜏 (𝑡 )
(
𝐴𝜏 (𝑡 )𝑥𝑡 − 𝑏𝜏 (𝑡 )

)
, (5)

where the solution returned is the last iterate, 𝑥𝑇 . The choice 𝑐 = 1 corresponds to the standard
Kaczmarz method, while values 𝑐 < 1 are also of interest in certain settings (e.g., Needell et al.,
2014).

In contrast to previous works (see discussion in Section 1.2), which consider the case where 𝐴 is
a full-rank matrix and derives upper bounds on the distance between 𝑥𝑇 and the unique solution,
𝑥★, that depend on the condition number of 𝐴 (see Section 1.2 for a detailed discussion), our
analysis evaluates the algorithm’s performance using the average loss of the proposed solution, i.e.,
𝐹 (𝑥𝑇 ) = 1

2𝑚
∑𝑚

𝑗=1 ∥𝐴 𝑗𝑥𝑇 − 𝑏 𝑗 ∥2. Following is the guarantee for the block-Kaczmarz method.

Corollary 4. Let 𝑇 ≥ 2, 𝑐 ≤ 1, and let 𝐴𝑥 = 𝑏 be an equation system. Let 𝑥★ be such that 𝐴𝑥★ = 𝑏.
Assume that ∥𝐴∥2 ≤ 𝑅. Then, the block-Kaczmarz method (Eq. (5)) for 𝑇 iterations satisfies,

𝔼 [𝐹 (𝑥𝑇 )] = 𝑂

(
𝑅2∥𝑥★∥2

𝑇1−𝑐𝛽/2

)
.

In particular, for the standard method (𝑐 = 1) we obtain 𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 𝑂 (𝑅2∥𝑥★∥2/
√
𝑇), and

for 𝑐 = 1/(𝛽 log𝑇) we obtain, 𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 𝑂 (𝑅2∥𝑥★∥2/𝑇).

The bound given in Corollary 4 improves upon the result 𝑂 (1/𝑇1/4) given by Evron et al. [2025] for
the standard method (𝑐 = 1), and matches their bound when using the optimal choice 𝑐 = 1/log𝑇 .
The full proof appears in Appendix I. We remark that even in the extensively studied well-conditioned
case, the 𝑐 = 1 case was not covered by existing results, as it corresponds to with SGD stepsize
𝜂 = 1/𝛽; we complement these results with a general analysis for any 0 < 𝜂 < 2/𝛽, see details in
Appendix C.

3.3 Continual linear regression

Continual linear regression has been studied extensively in recent years [e.g., Doan et al., 2021, Evron
et al., 2022, Lin et al., 2023, Peng et al., 2023, Goldfarb and Hand, 2023, Li et al., 2023, Goldfarb
et al., 2024, Hiratani, 2024, Evron et al., 2025]. In this setting, the learner is provided with a sequence
of 𝑚 regression tasks, where each task is represented by a dataset (𝐴 𝑗 , 𝑏 𝑗 ) for 𝑗 = 1, . . . , 𝑚, with
𝐴 𝑗 ∈ ℝ𝑛 𝑗×𝑑 , 𝑏 𝑗 ∈ ℝ𝑛 𝑗 .

The learner initializes with 𝑥1 = 0 and, at each iteration, receives a task (𝐴𝜏 (𝑡 ) , 𝑏𝜏 (𝑡 ) ) that sampled
uniformly at random (with or without replacement) and minimizes the squared loss for the current
task by performing the update

𝑥𝑡+1 ←
{
minimize ∥𝑥 − 𝑥𝑡 ∥2 s.t. 𝐴𝜏 (𝑡 )𝑥 = 𝑏𝜏 (𝑡 )

}
. (6)

After 𝑇 iterations, the algorithm returns the final model 𝑥𝑇+1. We assume that ∥𝐴 𝑗 ∥ ≤ 𝑅 for all 𝑗 ∈
[𝑚], and we focus on the realizable case, where there exists a vector 𝑥★ ∈ ℝ𝑑 such that 𝐴 𝑗𝑥

★ =

𝑏 𝑗 for all 𝑗 ∈ [𝑚] . We consider two performance metrics: the forgetting, defined as 𝐹𝜏 (𝑥𝑇+1) :=
1

2𝑇
∑𝑇

𝑡=1 ∥𝐴𝜏 (𝑡 )𝑥𝑇+1 − 𝑏𝜏 (𝑡 ) ∥2, and the population loss, 𝐹 (𝑥𝑇+1) := 1
2𝑚

∑𝑚
𝑗=1 ∥𝐴 𝑗𝑥𝑇+1 − 𝑏 𝑗 ∥2.6

6A more general definition of forgetting is 𝐹𝜏 (𝑥𝑇+1) := 1
2𝑇

∑𝑇
𝑡=1 ∥𝐴𝜏 (𝑡 )𝑥𝑇+1−𝑏𝜏 (𝑡 ) ∥2− 1

2𝑇
∑𝑇

𝑡=1 ∥𝐴𝜏 (𝑡 )𝑥𝑡+1−
𝑏𝜏 (𝑡 ) ∥2, but under Eq. (6) and realizability, the two definitions coincide.
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Table 2: Comparison of forgetting and loss rates for continual linear regression. The same rates hold for
block Kaczmarz with 𝑐 = 1. Notation: 𝑘 = tasks, 𝑇 = iterations, 𝑑 = dimensionality, 𝑟, 𝑟max = average and
maximum data-matrix ranks, 𝑎 ∧ 𝑏 = min(𝑎, 𝑏). We omit multiplicative factors of ∥𝑥★∥2𝑅2.

REFERENCE BOUND
RANDOM ORDERING
WITH REPLACEMENT

RANDOM ORDERING
W/O REPLACEMENT

Evron et al. [2022] Upper
𝑑 − 𝑟
𝑇

—

Evron et al. [2025] Upper
1
4√
𝑇
∧
√
𝑑 − 𝑟
𝑇

∧
√
𝑚 𝑟

𝑇

1
4√
𝑇
∧ 𝑑 − 𝑟

𝑇

This paper Upper
1
√
𝑇

1
√
𝑇

Evron et al. [2022] Lower
1
𝑇

* 1
𝑇

*

* Can be obtained by their construction for 𝑚 = 2.

Previous work [Evron et al., 2022, 2023, 2025] has shown that the update rule in Eq. (6) can be
reduced to an SGD update with step size 𝜂 = 1 over modified loss functions. By leveraging this
reduction and applying our main result for the last iterate of SGD (Theorem 1), we derive improved
convergence guarantees for continual linear regression. In particular, using the convergence rate of
SGD on 𝛽-smooth functions with step size 𝜂 = 1

𝛽
from Theorem 1, we obtain the following result:

Corollary 5. Suppose tasks are sampled uniformly at random, either with or without replacement,
from a collection of 𝑚 jointly realizable tasks. Then, after 𝑇 ≥ 2 iterations, the expected population
loss and forgetting of the continual linear regression algorithm in Eq. (6) satisfy

𝔼𝜏 [𝐹 (𝑥𝑇+1)] = 𝑂

(
𝑅2∥𝑥★∥2/

√
𝑇

)
, 𝔼𝜏 [𝐹𝜏 (𝑥𝑇+1)] = 𝑂

(
𝑅2∥𝑥★∥2/

√
𝑇

)
.

The result in Corollary 5 improves the best known parameter-independent rates for continual linear
regression from Evron et al. [2025] (see Table 2 for a more detailed comparison to previous work).
For the proof of Corollary 5, see Appendix I.
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A Additional extensions: Projection Onto Convex Sets (POCS) and continual
linear classification

Here we provide additional extensions of our previous last iterate convergence result for SGD to other
well-researched settings, Projection Onto Convex Sets (POCS) and continual linear classification.
Comparison of our bounds in those regime to previous work appears in Table 3.

Table 3: Forgetting Rates in Weakly-Regularized Continual Linear Classification on Separable Data. We
omit multiplicative factors of ∥𝑥★∥2𝑅2.

Reference
Random

with Replacement
Random

w/o Replacement

Evron et al. [2023] exp
(
− 𝑇

4𝑚∥𝑤★∥2𝑅2

)
—

Evron et al. [2025]
1
4√
𝑇

1
4√
𝑇

This paper (2025)
1
√
𝑇

1
√
𝑇

Continual binary classification is the setting of continual learning where the goal is to learn across
𝑚 ≥ 2 jointly separable tasks [e.g., Evron et al., 2025, 2023], where task 𝑗 is specified by a dataset

𝑆 𝑗 = {(𝑧 (𝑖) , 𝑦 (𝑖) )}
𝑛 𝑗

𝑖=1, 𝑧 (𝑖) ∈ ℝ𝑑 , 𝑦 (𝑖) ∈ {−1, +1},

and there exists a common separator 𝑥★ satisfying 𝑦 (𝑖) ⟨𝑧 (𝑖) , 𝑥★⟩ ≥ 1 for every example in every
task. At each iteration, the learner updates its weight vector by minimizing a weakly-regularized
classification loss on the current task. Concretely, the procedure is:

Algorithm 1 Regularized Continual Classification

Initialize 𝑥1 = 0.
For each iteration 𝑡 = 1, . . . , 𝑇 :

Sample a dataset 𝑆𝑡 uniformly from {𝑆 𝑗 }𝑚𝑗=1(with or without replacement).

𝑥𝑡+1 ← arg min
𝑥∈ℝ𝑑

∑︁
(𝑧,𝑦) ∈𝑆𝑡

𝑒−𝑦𝑥
𝑇 𝑧 + 𝜆

2
∥𝑥 − 𝑥𝑡 ∥

2

Output 𝑥𝑇

The performance of the algorithm is measured by its forgetting, defined as,

𝐹𝜏 (𝑥𝑇 ) =
1

2𝑇

𝑇∑︁
𝑡=1
∥𝑥𝑇 − Π𝜏 (𝑡 ) (𝑥𝑇 )∥.

We get the following result,

Corollary 6. Under a random ordering, with or without replacement, over 𝑚 jointly separable tasks,
the expected forgetting of the weakly-regularized Algorithm 1 (at 𝜆 → 0) after 𝑇 ≥ 1 iterations is
bounded as

𝔼𝜏

[
𝐹𝜏 (𝑥𝑇 )

]
≤ 18∥𝑥★∥2𝑅2

√
𝑇

.

As discussed in Evron et al. [2023], when the magnitude of the regularization 𝜆 goes to 0, this setting
can be reduced for the setting of projections on convex sets, which is detailed below.
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Projection Onto Convex Sets (POCS) is a method for solving a feasibility problem defined by 𝑚
closed convex sets {𝐶 𝑗 }𝑚𝑗=1 (e.g Boyd et al. [2003], Gubin et al. [1967]). At each iteration 𝑡 = 1, . . . , 𝑇 ,
we sample one constraint set index 𝜏(𝑡) ∼ Unif( [𝑚]) (with or without replacement) and project the
current iterate 𝑥𝑡 onto the set 𝐶𝜏 (𝑡). Namely,

Algorithm 2 Projections onto Convex Sets (POCS)

1: Initialize: 𝑥1 = 0
2: For 𝑡 = 1 to 𝑇 :
3: Sample 𝜏(𝑡) ∼ Unif( [𝑚]).
4: 𝑥𝑡+1 ← Π𝜏 (𝑡 ) (𝑥𝑡 ) ≜ arg min𝑥∈𝐶𝜏 (𝑡 ) ∥𝑥 − 𝑥𝑡 ∥
5: Output 𝑥𝑇

We assume
⋂𝑚

𝑗=1 𝐶 𝑗 ≠ ∅ (i.e. joint realizability), and measure performance by the average distance to
projections on all sets:

𝐹 (𝑤𝑇 ) =
1

2𝑚

𝑚∑︁
𝑗=1
∥𝑤𝑇 − Π 𝑗 (𝑤𝑇 )∥.

Using the reduction from SGD last-iterate bounds to sequential projections developed in Evron et al.
[2025], we can plug in Theorem 1 and get the following results for continual linear classification and
POCS,

Corollary 7. Consider 𝑚 arbitrary (nonempty) closed convex sets 𝐶1, . . . , 𝐶𝑚, initial point 𝑤1 ∈ ℝ𝑑

and assume a nonempty intersection
⋂𝑚

𝑗=1 𝐶 𝑗 ≠ ∅. Then, under a random ordering with or without
replacement, Algorithm 1 (and Algorithm 2) achieves,

𝔼𝜏

[ 1
2𝑚

𝑚∑︁
𝑗=1
∥𝑤𝑇 − Π 𝑗 (𝑤𝑇 )∥2

]
≤ 7
√
𝑇

min
𝑥∈⋂𝐶 𝑗

∥𝑥1 − 𝑥∥2.

The result given in Corollary 7, improves the best known parameter-independent rates for the loss
continual linear classification and POCS method from Evron et al. [2025]. (see Table 3). The proof
builds on our results for with and without-replacement SGD in the realizable setting (Theorems 1
and 3), combined with the reductions introduced by Evron et al. [2025, 2023],which relates last-iterate
guarantees of SGD to performance guarantees in those regimes.

A.1 Proof of Corollary 7

In the proof, we use the following lemmas from Evron et al. [2025].

Lemma 1 (Reduction 3 in Evron et al. [2025]). Consider 𝑚 arbitrary (nonempty) closed convex sets
𝐶1, . . . , 𝐶𝑚, initial point 𝑥1 ∈ ℝ𝑑 , and ordering 𝜏. Define 𝑓𝑖 (𝑥) = 1

2 ∥𝑥 − Π𝑖 (𝑥)∥2,∀𝑖 ∈ [𝑚]. Then,

(i) 𝑓𝑖 is convex and 1-smooth.

(ii) The POCS update is equivalent to an SGD step: 𝑥𝑡+1 = Π𝜏 (𝑡 ) (𝑥𝑡 ) = 𝑥𝑡 − ∇𝑥 𝑓𝜏 (𝑡 ) (𝑥𝑡 ).
Lemma 2 (From Proposition 17 in Evron et al. [2025]). Under a random ordering 𝜏 without
replacement, the iterates of Algorithm 2 (POCS) satisfy:

𝔼𝜏 [𝐹 (𝑥𝑡 )] =
𝑡

𝑇
𝔼𝜏 [𝐹𝜏 (𝑥𝑡 )] +

𝑇 − 𝑡
2𝑇

𝔼𝜏



𝑥𝑡 − Π𝜏 (𝑡 ) (𝑥𝑡 )


2

.

Proof of Corollary 7. Let 𝜏 be any random ordering, 𝑥1 ∈ ℝ𝑑 an initialization, and 𝑥1, . . . , 𝑥𝑇 be the
corresponding iterates produced by Algorithm 2. By Lemma 1, these are exactly the SGD iterates
produced when initializing at 𝑥1 and using a step size of 𝜂 = 1, on the 1-smooth loss sequence
𝑓𝜏 (1) , . . . , 𝑓𝜏 (𝑘 ) defined by:

𝑓𝑖 (𝑥) :=
1
2
∥𝑥 − Π𝑖 (𝑥))∥2.
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Since 𝑓𝑖 is convex and 1-smooth, we can apply Theorem 1 for 𝜂 = 1
𝛽

and get, for the with-replacement
case,

𝔼𝜏𝐹 (𝑥𝑇 ) ≤
3
√
𝑇

min
𝑥★∈⋂𝐶

∥𝑥1 − 𝑥★∥2,

where the minimum is since Theorem 1 is valid for any 𝑥★ ∈ ⋂
𝐶. For the without replacement case,

by combining Theorem 3 and Lemma 2,

𝔼𝜏𝐹 (𝑥𝑇 ) ≤
7
√
𝑇

min
𝑥★∈⋂𝐶

∥𝑥1 − 𝑥★∥2.

□

A.2 Proof of Corollary 6

In the proof, we use the following lemma from Evron et al. [2025].
Lemma 3 (Lemma 38 in Evron et al. [2025]). Consider SGD with step size 𝜂 ≤ 2/𝛽. For all 1 ≤ 𝑇 ,
the following holds:

𝔼𝐹𝜏 (𝑥𝑇 ) ≤ 2𝔼𝐹 (𝑥𝑇 ) +
4𝛽2𝜂∥𝑥1 − 𝑥★∥2

𝑇
.

Proof of Corollary 6. For the with-replacement case, the proof is implied by Corollary 7 and
Lemma 3. For the without replacement, the proof is implied by Corollary 7 and Theorem 3. □

B Average-iterate convergence of SGD in the low-noise regime

In this section we provide an average-iterate convergence guarantee for SGD with a fixed stepsize,
supporting any stepsize 𝜂 < 2/𝛽, and in particular, 𝜂 = 1/𝛽. The original analysis in this setting due
to Srebro et al. [2010] only allowed for stepsizes 𝜂 < 1/𝛽; more recently, a more refined analysis was
provided by Cortild et al. [2025] that supported large stepsizes 1/𝛽 ≤ 𝜂 < 2/𝛽, but at the price of a
bias term that grows exponentially with 𝑇 when 𝜂 > 1/𝛽.
Theorem 8. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧, Z
a distribution over 𝑍 , and denote 𝐹 (𝑥) := 𝔼𝑧∼𝑍 𝑓 (𝑥; 𝑧) . Assume there exists a minimizer 𝑥★ ∈
arg min𝑥∈ℝ𝑑 𝐹 (𝑥), and that 𝜎2

★ := 𝔼𝑧∼𝑍 ∥∇ 𝑓 (𝑥★; 𝑧)∥2 < ∞. Then, for 𝑇-steps SGD initialized at
𝑥1 ∈ ℝ𝑑 with step size 𝜂 < 2/𝛽, it holds that

𝔼[𝐹 (𝑥) − 𝐹 (𝑥★)] ≤ 2∥𝑥1 − 𝑥★∥2

(2 − 𝛽𝜂)𝜂𝑇 +
8𝜂𝜎2

★

(2 − 𝛽𝜂)2
,

where 𝑥 = 1
𝑇

∑𝑇
𝑡=1 𝑥𝑡 . In particular, when 𝜂 = min{ 1

𝛽
,
∥𝑥1−𝑥★∥√

4𝜎2
★𝑇
},

𝔼[𝐹 (𝑥) − 𝐹 (𝑥★)] ≤ 2𝛽∥𝑥1 − 𝑥★∥2

𝑇
+ 8∥𝑥1 − 𝑥★∥𝜎★√

𝑇
.

Proof. We begin with a standard regret analysis. As 𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇ 𝑓𝑡 (𝑥𝑡 ),

∥𝑥𝑡+1 − 𝑥★∥2 = ∥𝑥𝑡 − 𝑥★∥2 − 2𝜂⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ + 𝜂2∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.
Rearranging, and summing for 𝑡 = 1, . . . , 𝑇 ,

𝑇∑︁
𝑡=1
⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ =

∥𝑥1 − 𝑥★∥2 − ∥𝑥𝑇+1 − 𝑥★∥2

2𝜂
+ 𝜂

2

𝑇∑︁
𝑡=1
∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.

Taking expectation and removing the ∥𝑥𝑇+1 − 𝑥★∥2 term,

𝑇∑︁
𝑡=1

𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ ≤
∥𝑥1 − 𝑥★∥2

2𝜂
+ 𝜂

2

𝑇∑︁
𝑡=1

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.
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By Young’s inequality, for any 𝜆 > 0

∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ (1 + 𝜆)∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2 + (1 + 1/𝜆)∥∇ 𝑓𝑡 (𝑥★)∥2.
A standard property of a convex and 𝛽-smooth function ℎ [e.g., Nesterov, 1998] is that for any
𝑥, 𝑦 ∈ ℝ𝑑 ,

1
𝛽
∥∇ℎ(𝑥) − ∇ℎ(𝑦)∥2 ≤ ⟨∇ℎ(𝑥) − ∇ℎ(𝑦), 𝑥 − 𝑦⟩.

Thus,

∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ 𝛽(1 + 𝜆)⟨∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★), 𝑥𝑡 − 𝑥★⟩ + (1 + 1/𝜆)∥∇ 𝑓𝑡 (𝑥★)∥2. (7)

Taking expectation and noting that since 𝑥★ is a minimizer of 𝐹 (𝑥), 𝔼∇ 𝑓𝑡 (𝑥★) = 0,

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ 𝛽(1 + 𝜆)𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ + (1 + 1/𝜆)∥∇ 𝑓𝑡 (𝑥★)∥2.
Plugging back to the regret analysis and rearranging,(

1 − 𝛽𝜂(1 + 𝜆)
2

) 𝑇∑︁
𝑡=1

𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ ≤
∥𝑥1 − 𝑥★∥2

2𝜂
+ 𝜂(1 + 1/𝜆)

2

𝑇∑︁
𝑡=1

𝔼∥∇ 𝑓𝑡 (𝑥★)∥2.

Setting 𝜆 =
2−𝛽𝜂
2𝛽𝜂 and noting that 𝔼∥∇ 𝑓𝑡 (𝑥★)∥2 = 𝜎2

★,

1
4
(2 − 𝛽𝜂)

𝑇∑︁
𝑡=1

𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ ≤
∥𝑥1 − 𝑥★∥2

2𝜂
+ 2 + 𝛽𝜂

2(2 − 𝛽𝜂) 𝜂𝜎
2
★𝑇. (8)

Thus, by a standard application of convexity and Jensen’s inequality,

𝔼[𝐹 (𝑥) − 𝐹 (𝑥★)] ≤ 2∥𝑥1 − 𝑥★∥2

(2 − 𝛽𝜂)𝜂𝑇 +
2(2 + 𝛽𝜂)
(2 − 𝛽𝜂)2

𝜂𝜎2
★ ≤

2∥𝑥1 − 𝑥★∥2

(2 − 𝛽𝜂)𝜂𝑇 +
8𝜂𝜎2

★

(2 − 𝛽𝜂)2
.

In particular, setting 𝜂 = min{ 1
𝛽
,
∥𝑥1−𝑥★∥√

4𝜎2
★𝑇
},

𝔼[𝐹 (𝑥) − 𝐹 (𝑥★)] ≤ 2𝛽∥𝑥1 − 𝑥★∥2

𝑇
+ 8∥𝑥1 − 𝑥★∥𝜎★√

𝑇
. □

C Last-iterate convergence of SGD in the strongly convex case

Here we show, for completeness, that in the low-noise strongly convex case, the last iterate of SGD
converges at a linear rate for any stepsize 0 < 𝜂 < 2/𝛽. Early results [Needell et al., 2014] achieved
convergence only for stepsizes 𝜂 < 1/𝛽, and in particular, did not explicitly give bounds for the
greedy choice 𝜂 = 1/𝛽. Cortild et al. [2025] has recently provided rates for any 0 < 𝜂 < 2/𝛽, under
the stronger assumption that 𝑓 (·, 𝑧) is strongly convex for (almost) all 𝑧 rather than in expectation.
We remark that achieving last-iterate bounds (as opposed to average-iterate bounds) in the strongly
convex case is entirely standard, and the only challenge here is to do so while accommodating large
stepsizes.
Theorem 9. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is convex and 𝛽-smooth for every 𝑧, letZ a
distribution over 𝑍 , and denote 𝐹 (𝑥) := 𝔼𝑧∼𝑍 𝑓 (𝑥; 𝑧). Assume that 𝐹 is 𝛼-strongly convex, minimized
at 𝑥★ = arg min𝑥∈ℝ𝑑 𝐹 (𝑥), and that 𝜎2

★ := 𝔼𝑧∼𝑍 ∥∇ 𝑓 (𝑥★; 𝑧)∥2 < ∞. Then, for 𝑇-step SGD initialized
at 𝑥1 ∈ ℝ𝑑 with stepsize 0 < 𝜂 < 2/𝛽, it holds that

𝔼∥𝑥𝑇+1 − 𝑥★∥2 ≤ exp
(
− 1

2𝜂(2 − 𝜂𝛽)𝛼𝑇
)
∥𝑥1 − 𝑥★∥2 +

8𝜂𝜎2
★

𝛼(2 − 𝜂𝛽)2
.

In particular:

(i) for the greedy stepsize 𝜂 = 1/𝛽, we obtain:

𝔼∥𝑥𝑇+1 − 𝑥★∥2 ≤ exp
(
−𝛼𝑇

2𝛽

)
∥𝑥1 − 𝑥★∥2 +

8𝜎2
★

𝛼𝛽
;
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(ii) when 𝜎2
★ = 0 (the interpolation regime), the bound is convergent for any 0 < 𝜂 < 2/𝛽 and

optimized when 𝜂 = 1/𝛽.

Proof. We follow the standard analysis of SGD: since 𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇ 𝑓𝑡 (𝑥𝑡 ),

∥𝑥𝑡+1 − 𝑥★∥2 = ∥𝑥𝑡 − 𝑥★∥2 − 2𝜂⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ + 𝜂2∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.

Using Eq. (7) we can bound, for any 𝜌 > 1,

∥𝑥𝑡+1 − 𝑥★∥2 ≤ ∥𝑥𝑡 − 𝑥★∥2 − 2𝜂⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩

+ 𝜂2
(
𝜌𝛽⟨∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★), 𝑥𝑡 − 𝑥★⟩ +

𝜌

𝜌 − 1
∥∇ 𝑓𝑡 (𝑥★)∥2

)
.

Taking expectations, we obtain

𝔼∥𝑥𝑡+1 − 𝑥★∥2 ≤ 𝔼∥𝑥𝑡 − 𝑥★∥2 − 2𝜂𝔼⟨∇𝐹 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩

+ 𝜂2
(
𝜌𝛽𝔼⟨∇𝐹 (𝑥𝑡 ) − ∇𝐹 (𝑥★), 𝑥𝑡 − 𝑥★⟩ +

𝜌

𝜌 − 1
𝜎2
★

)
= 𝔼∥𝑥𝑡 − 𝑥★∥2 − 𝜂

(
2 − 𝜌𝜂𝛽

)
𝔼⟨∇𝐹 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ +

𝜌

𝜌 − 1
𝜂2𝜎2

★.

On the other hand, since 𝐹 is 𝛼-strongly convex, we have ⟨∇𝐹 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩ ≥ 𝛼∥𝑥𝑡 − 𝑥★∥2. We then
obtain, whenever 2 − 𝜌𝜂𝛽 > 0, that

𝔼∥𝑥𝑡+1 − 𝑥★∥2 ≤
(
1 − 𝜂𝛼(2 − 𝜌𝜂𝛽)

)
𝔼∥𝑥𝑡 − 𝑥★∥2 +

𝜌

𝜌 − 1
𝜂2𝜎2

★.

Now set 𝜌 = 1/(𝜂𝛽) + 1/2 for which 1 < 𝜌 < 2/(𝜂𝛽) as required, as 𝜂 < 2/𝛽. We obtain

𝔼∥𝑥𝑡+1 − 𝑥★∥2 ≤
(
1 − 1

2𝜂𝛼(2 − 𝜂𝛽)
)
𝔼∥𝑥𝑡 − 𝑥★∥2 +

2 + 𝜂𝛽
2 − 𝜂𝛽𝜂

2𝜎2
★.

Unfolding the recursion results with

𝔼∥𝑥𝑇+1 − 𝑥★∥2 ≤
(
1 − 1

2𝜂𝛼(2 − 𝜂𝛽)
)𝑇 ∥𝑥1 − 𝑥★∥2 +

4𝜂2𝜎2
★

2 − 𝜂𝛽

∞∑︁
𝑡=0

(
1 − 1

2𝜂𝛼(2 − 𝜂𝛽)
) 𝑡

≤ exp
(
− 1

2𝜂(2 − 𝜂𝛽)𝛼𝑇
)
∥𝑥1 − 𝑥★∥2 +

8𝜂𝜎2
★

𝛼(2 − 𝜂𝛽)2
. □

D Simpler last-iterate analysis for small stepsizes

Here we present an alternative analysis technique for the last-iterate convergence of SGD in the
low-noise regime with small stepsizes 𝜂 ≪ 1/𝛽, that in particular recovers the near-optimal rates in
the regime 𝜂 ≤ 1/(𝛽 log𝑇) established in Theorem 2. The proof technique builds upon the earlier
last-iterate approach of Shamir and Zhang [2013] and provides for a considerably simpler analysis;
however, for large stepsizes (i.e., 𝜂 = Ω(1/𝛽)), it yields inferior convergence rates as compared to the
more intricate analysis of Theorem 2.

Theorem 10. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧. Assume
there exists a minimizer 𝑥★ ∈ arg min𝑥∈ℝ𝑑 𝐹 (𝑥), and that 𝜎2

★ < ∞. Then, for 𝑇-steps SGD initialized
at 𝑥1 ∈ ℝ𝑑 with step size 0 < 𝜂 < 1/𝛽, where 𝑇 ≥ 3, we have the following last iterate guarantee:

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 16∥𝑥1 − 𝑥★∥2

𝜂𝑇1−(2−𝜂𝛽)𝛽𝜂 +
64𝜂

1 − 𝜂𝛽𝜎
2
★𝑇
(2−𝜂𝛽)𝛽𝜂 ln𝑇.

In particular, when 𝜂 = min
{
1/(𝛽 ln(𝑇)), ∥𝑥1 − 𝑥★∥/

√︁
𝜎2
★𝑇 ln(𝑇)

}
,

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 144𝛽 ln(𝑇)∥𝑥1 − 𝑥★∥2

𝑇
+

720𝜎∗∥𝑥1 − 𝑥★∥
√︁

ln(𝑇)
√
𝑇

.
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Note that the bound above becomes non-convergent as 𝜂𝛽→ 1, as opposed to the bound in Theorem 2,
and in the interpolation regime it is dominated by the latter: e.g., for 𝜂 = 1/(2𝛽) the bound above
yields a rate of 𝑇−1/4 compared to the 𝑇−3/4 rate in Theorem 2.

Proof. Let 𝑦 ∈ ℝ𝑑 . Since ⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑦⟩ ≥ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑦) and, by Young’s inequality, for every
𝜆 > 0, it holds that ∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ (1 + 𝜆)∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2 + (1 + 1/𝜆)∥∇ 𝑓𝑡 (𝑥★)∥2,

∥𝑥𝑡+1 − 𝑦∥2 = ∥𝑥𝑡 − 𝑦∥2 − 2𝜂⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑦⟩ + 𝜂2∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

≤ ∥𝑥𝑡 − 𝑦∥2 − 2𝜂( 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑦)) + (1 + 𝜆)𝜂2∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2 +
(
1 + 1

𝜆

)
𝜂2∥∇ 𝑓𝑡 (𝑥★)∥2.

Taking expectation and noting that 𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2 ≤ 2𝛽𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)], we get

𝔼∥𝑥𝑡+1 − 𝑦∥2 ≤ 𝔼∥𝑥𝑡 − 𝑦∥2 − 2𝜂𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑦)] + 2 (1+𝜆) 𝛽𝜂2𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)] +
(
1+ 1

𝜆

)
𝜂𝜎2

★

= 𝔼∥𝑥𝑡 − 𝑦∥2 − 2𝜂(1 − (1 + 𝜆) 𝛽𝜂)𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑦)]

+ 2(1 + 𝜆)𝛽𝜂2𝔼[ 𝑓𝑡 (𝑦) − 𝑓𝑡 (𝑥★)] +
(
1 + 1

𝜆

)
𝜂2𝜎2

★,

where 𝜎2
★ := 𝔼𝑧 ∥ 𝑓 (𝑥★; 𝑧)∥2. Summing for 𝑡 = 𝑇 − 𝑘, . . . , 𝑇 ,

𝔼∥𝑥𝑇+1 − 𝑦∥2 ≤ 𝔼∥𝑥𝑇−𝑘 − 𝑦∥2 − 2𝜂(1 − (1 + 𝜆) 𝛽𝜂)
𝑇∑︁

𝑡=𝑇−𝑘
𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑦)]

+ 2(1 + 𝜆)𝛽𝜂2
𝑇∑︁

𝑡=𝑇−𝑘
𝔼[ 𝑓𝑡 (𝑦) − 𝑓𝑡 (𝑥★)] +

(
1 + 1

𝜆

)
𝜂2 (𝑘 + 1)𝜎2

★.

Setting 𝑦 = 𝑤𝑇−𝑘 and rearranging, we obtain, since 𝔼 𝑓𝑡 (𝑥𝑇−𝑘) = 𝔼 𝑓𝑇−𝑘 (𝑥𝑇−𝑘) for 𝑡 ≥ 𝑇 − 𝑘 ,

(1 − (1 + 𝜆)𝜂𝛽)
𝑇∑︁

𝑡=𝑇−𝑘
𝔼[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥★)] ≤ (𝑘 + 1)𝔼[𝐹 (𝑥𝑇−𝑘) − 𝐹 (𝑥★)] + 1

2

(
1 + 1

𝜆

)
𝜂(𝑘 + 1)𝜎2

★.

Now, denoting 𝑆𝑘 = 1
𝑘+1

∑𝑇
𝑡=𝑇−𝑘 𝔼[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥★)] and noticing that 𝔼[𝐹 (𝑥𝑇−𝑘) − 𝐹 (𝑥★)] = (𝑘 +

1)𝑆𝑘 − 𝑘𝑆𝑘−1,

(1 − (1 + 𝜆)𝜂𝛽) 𝑆𝑘 ≤ (𝑘 + 1)𝑆𝑘 − 𝑘𝑆𝑘−1 +
1
2

(
1 + 1

𝜆

)
𝜂𝜎2

★.

Rearranging,

𝑆𝑘−1 ≤
(
1 + (1 + 𝜆)𝛽𝜂

𝑘

)
𝑆𝑘 +

𝜂

2𝑘

(
1 + 1

𝜆

)
𝜎2
★.

Unfolding the recursion and setting 𝜆 = 1 − 𝜂𝛽, we obtain

𝑆0 ≤ 𝑆𝑇−1

𝑇−1∏
𝑘=1

(
1 + (1 + 𝜆)𝛽𝜂

𝑘

)
+ 𝜂

2

(
1 + 1

𝜆

)
𝜎2
★

𝑇−1∑︁
𝑘=1

1
𝑘

𝑘−1∏
𝑠=1

(
1 + (1 + 𝜆)𝛽𝜂

𝑠

)
≤ 𝑆𝑇−1 exp

(
𝑇−1∑︁
𝑘=1

(1 + 𝜆)𝛽𝜂
𝑘

)
+ 𝜂

2

(
1 + 1

𝜆

)
𝜎2
★

𝑇−1∑︁
𝑘=1

1
𝑘

exp

(
𝑘−1∑︁
𝑠=1

(
(1 + 𝜆)𝛽𝜂

𝑠

))
≤ 𝑆𝑇−1 exp((1 + 𝜆)𝛽𝜂 ln(𝑒𝑇)) + 𝜂

2

(
1 + 1

𝜆

)
𝜎2
★

𝑇∑︁
𝑘=1

1
𝑘

exp((1 + 𝜆)𝛽𝜂 ln(𝑒𝑘))

≤
(
𝑆𝑇−1 +

𝜂

2

(
1 + 1

𝜆

)
𝜎2
★ ln(𝑒𝑇)

)
exp(2(1 + 𝜆)𝛽𝜂 ln(𝑒𝑇))

≤
(
𝑆𝑇−1 + 𝜂

(
1

1 − 𝜂𝛽

)
𝜎2
★ ln(𝑒𝑇)

)
(𝑒𝑇) (2−𝜂𝛽)𝛽𝜂 , (𝜆 = 1 − 𝜂𝛽,𝜂𝛽 < 1)
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where the third and fourth inequalities follow by
∑𝑁−1

𝑖=𝑛
1
𝑛
≤ 1 + ln(𝑁) = ln(𝑒𝑁). By applying

convexity and using the average-iterate convergence rate in Eq. (8), we know that

𝑆𝑇−1 =
1
𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹 (𝑥𝑡 ) − 𝐹 (𝑥★)] ≤ 1
𝑇
(2 − 𝛽𝜂)

𝑇∑︁
𝑡=1

𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩

≤ 2∥𝑥1 − 𝑥★∥2

𝜂𝑇
+ 2(2 + 𝛽𝜂)

2 − 𝛽𝜂
𝜂𝜎2

★ ≤
2∥𝑥1 − 𝑥★∥2

𝜂𝑇
+ 6𝜂𝜎2

★,

where the first and last inequalities use 𝜂 ≤ 1/𝛽. Then, we get

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] = 𝑆0 ≤
(

2∥𝑥1 − 𝑥★∥2

𝜂𝑇
+ 6𝜂𝜎2

★ +
𝜂

1 − 𝜂𝛽𝜎
2
★ ln(𝑒𝑇)

)
(𝑒𝑇) (2−𝜂𝛽)𝛽𝜂

≤ 16∥𝑥1 − 𝑥★∥2

𝜂𝑇1−(2−𝜂𝛽)𝛽𝜂 +
64𝜂

1 − 𝜂𝛽𝜎
2
★ ln(𝑇)𝑇 (2−𝜂𝛽)𝛽𝜂 .

In particular, when 𝜂 = min
{
1/(𝛽 ln(𝑇)), ∥𝑥1 − 𝑥★∥/

√︁
𝜎2
★𝑇 ln(𝑇)

}
,

𝔼𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★) ≤ 144𝛽 ln(𝑇)∥𝑥1 − 𝑥★∥2

𝑇
+

720𝜎★∥𝑥1 − 𝑥★∥
√︁

ln(𝑇)
√
𝑇

. □

E Multiple minimizers in the low-noise regime

In this section we show that assuming 𝑓 (·; 𝑧) is convex and smooth for any 𝑧 ∈ 𝑍 , the variance at
the optimum 𝑥★ ∈ arg min𝑥∈ℝ𝑑 𝐹 (𝑥) (assuming one exists) is the same, no matter which optimum is
selected. Following is the result.
Theorem 11. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧, andZ
be a distribution over 𝑍 . Assume there exists a minimizer 𝑥★1 ∈ arg min𝑥∈ℝ𝑑 𝐹 (𝑥) := 𝔼𝑧∼Z 𝑓 (𝑥; 𝑧),
and that 𝔼𝑧∼Z [∥∇ 𝑓 (𝑥★1 ; 𝑧)∥2] < ∞. Then for any 𝑥★2 ∈ arg min𝑥∈ℝ𝑑 𝐹 (𝑥),

𝔼𝑧∼Z [∥∇ 𝑓 (𝑥★2 ; 𝑧)∥2] = 𝔼𝑧∼Z [∥∇ 𝑓 (𝑥★1 ; 𝑧)∥2] .

Proof. A standard property of a convex and 𝛽-smooth function ℎ [e.g., Nesterov, 1998] is that for
any 𝑥, 𝑦 ∈ ℝ𝑑 ,

1
𝛽
∥∇ℎ(𝑥) − ∇ℎ(𝑦)∥2 ≤ ⟨∇ℎ(𝑥) − ∇ℎ(𝑦), 𝑥 − 𝑦⟩.

Thus,
𝔼∥∇ 𝑓 (𝑥★1 ; 𝑧) − ∇ 𝑓 (𝑥★2 ; 𝑧)∥2 ≤ 𝛽𝔼⟨∇ 𝑓 (𝑥★1 ; 𝑧) − ∇ 𝑓 (𝑥★2 ; 𝑧), 𝑥★1 − 𝑥

★
2 ⟩

= 𝛽⟨∇𝐹 (𝑥★1 ), 𝑥
★
1 − 𝑥

★
2 ⟩ − 𝛽⟨∇𝐹 (𝑥★2 ), 𝑥

★
1 − 𝑥

★
2 ⟩

= 0,
where the last equality follows since 𝑥★1 , 𝑥

★
2 are minimizers of 𝐹 (𝑥). The random variable

∥∇ 𝑓 (𝑥★1 ; 𝑧) − ∇ 𝑓 (𝑥★2 ; 𝑧)∥2 is therefore non-negative and has expectation zero, implying that
∇ 𝑓 (𝑥★1 ; 𝑧) = ∇ 𝑓 (𝑥★2 ; 𝑧) almost surely and thus concluding our proof. □

F Technical lemmas

Lemma 4. Let 𝑐 ≥ 1, 𝛼 ∈ (0, 1), and 𝑛 ∈ ℕ. Then

(1 + 𝑐)−𝛼 +
𝑛∑︁
𝑖=1
(𝑖 + 𝑐)−𝛼 ≤ 1

1 − 𝛼 (𝑛 + 𝑐)
1−𝛼 .

Proof. As (𝑢 + 𝑐)−𝛼 is monotonically decreasing, bounding by integration,
𝑛∑︁
𝑖=1
(𝑖 + 𝑐)−𝛼 ≤

𝑛∑︁
𝑖=1

∫ 𝑖

𝑖−1
(𝑢 + 𝑐)−𝛼𝑑𝑢 =

∫ 𝑛

0
(𝑢 + 𝑐)−𝛼𝑑𝑢 =

1
1 − 𝛼

(
(𝑛 + 𝑐)1−𝛼 − 𝑐1−𝛼

)
.

We conclude by noting that for 𝑐 ≥ 1 and 𝛼 ∈ (0, 1), 𝑐1−𝛼/(1 − 𝛼) ≥ 𝑐−𝛼 ≥ (1 + 𝑐)−𝛼. □

20



Lemma 5. Let 𝑥 ≥ 1 and 𝛼 ∈ (0, 1). Then

𝑥−𝛼 − (𝑥 + 1)−𝛼 ≤ 𝛼

𝑥(𝑥 + 1)𝛼 .

Proof. The inequality follows directly from Bernoulli’s inequality, (1 + 𝑥)𝑟 ≤ 1 + 𝑟𝑥, which holds
for 𝑟 ∈ [0, 1] and 𝑥 ≥ −1. Using the inequality,

𝑥−𝛼 − (𝑥 + 1)−𝛼 = (𝑥 + 1)−𝛼
((

1 + 1
𝑥

)𝛼
− 1

)
≤ 𝛼

𝑥(𝑥 + 1)𝛼 . □

G Proofs of Section 2

In this section we give formal proofs of Theorems 1 and 2.

G.1 Regret analysis for stochastic convex smooth optimization

We first present a key lemma, which may be of independent interest. The lemma establish a regret
bound, which is an improved version of Lemma 2.1 of Zamani and Glineur [2023], specialized for
stochastic optimization with smooth objectives. The result holds in a general setting that accommo-
dates both with-replacement and without-replacement sampling schemes, under a unified sampling
assumption stated in the lemma.
Lemma 6. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧. Further, let
𝑧1, . . . , 𝑧𝑇 ∼ Z(𝑇) whereZ(𝑇) is a distribution over 𝑍𝑇 that satisfies the following: for any 𝑠 ≤ 𝑡,
conditioned on 𝑧1, . . . , 𝑧𝑠−1, it holds that 𝑧𝑠 and 𝑧𝑡 are identically distributed. Then for any 𝑥★ ∈ ℝ𝑑

and any weight sequence 0 < 𝑣0 ≤ 𝑣1 ≤ · · · ≤ 𝑣𝑇 , running SGD with initialization 𝑥1 ∈ ℝ𝑑 and
stepsize sequence 𝜂1, . . . , 𝜂𝑇 > 0,

𝑡 = 1, . . . , 𝑇 : 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇ 𝑓𝑡 (𝑥𝑡 ), where 𝑓𝑡 := 𝑓 (·; 𝑧𝑡 ),
it holds that

𝑇∑︁
𝑡=1

𝑐𝑡𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)] ≤
1
2
𝑣2

0∥𝑥1 − 𝑥★∥2 +
1
2

𝑇∑︁
𝑡=1

𝜂2
𝑡 𝑣

2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

− 1
2𝛽

𝑇∑︁
𝑡=1

𝜂𝑡𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2

)
,

where 𝑐𝑡 := 𝜂𝑡𝑣
2
𝑡 − (𝑣𝑡 − 𝑣𝑡−1)

∑𝑇
𝑠=𝑡 𝜂𝑠𝑣𝑠 .

Proof. Define 𝑦1, . . . , 𝑦𝑇 recursively by 𝑦0 = 𝑥★ and for 𝑡 ≥ 1:

𝑦𝑡 =
𝑣𝑡−1
𝑣𝑡

𝑦𝑡−1 +
(
1 − 𝑣𝑡−1

𝑣𝑡

)
𝑥𝑡 .

Observe that:

∥𝑥𝑡+1 − 𝑦𝑡+1∥2 =
𝑣2
𝑡

𝑣2
𝑡+1
∥𝑥𝑡+1 − 𝑦𝑡 ∥2 =

𝑣2
𝑡

𝑣2
𝑡+1
∥𝑥𝑡 − 𝜂𝑡∇ 𝑓𝑡 (𝑥𝑡 ) − 𝑦𝑡 ∥2

=
𝑣2
𝑡

𝑣2
𝑡+1

(
∥𝑥𝑡 − 𝑦𝑡 ∥2 − 2𝜂𝑡 ⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑦𝑡 ⟩ + 𝜂2

𝑡 ∥∇ 𝑓𝑡 (𝑥𝑡 )∥2
)
.

Thus, by rearranging, we obtain

𝜂𝑡𝑣
2
𝑡 ⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑦𝑡 ⟩ =

1
2
𝑣2
𝑡 ∥𝑥𝑡 − 𝑦𝑡 ∥2 −

1
2
𝑣2
𝑡+1∥𝑥𝑡+1 − 𝑦𝑡+1∥2 +

1
2
𝜂2
𝑡 𝑣

2
𝑡 ∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.

Summing over 𝑡 = 1, . . . , 𝑇 yields
𝑇∑︁
𝑡=1

𝜂𝑡𝑣
2
𝑡 ⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑦𝑡 ⟩ ≤

1
2
𝑣2

0∥𝑥1 − 𝑥★∥2 +
1
2

𝑇∑︁
𝑡=1

𝜂2
𝑡 𝑣

2
𝑡 ∥∇ 𝑓𝑡 (𝑥𝑡 )∥2, (9)
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where we used that

∥𝑥1 − 𝑦1∥ =
𝑣0
𝑣1
∥𝑥1 − 𝑦0∥ =

𝑣0
𝑣1
∥𝑥1 − 𝑥★∥.

On the other hand, 𝑦𝑡 can be written directly as a convex combination of 𝑥1, . . . , 𝑥𝑇 and 𝑥★, as
follows:

𝑦𝑡 =
𝑣0
𝑣𝑡
𝑥★ +

𝑡∑︁
𝑠=1

𝑣𝑠 − 𝑣𝑠−1
𝑣𝑡

𝑥𝑠 .

Using a standard property of convex and smooth functions [e.g., Nesterov, 1998], for any 𝑥 ∈ ℝ𝑑 ,

⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥⟩ ≥ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥) +
1

2𝛽
∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥)∥2.

Hence, as 𝑣𝑠 ≥ 𝑣𝑠−1,

⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑦𝑡 ⟩ =
𝑡∑︁

𝑠=1

𝑣𝑠 − 𝑣𝑠−1
𝑣𝑡

⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥𝑠⟩ +
𝑣0
𝑣𝑡
⟨∇ 𝑓𝑡 (𝑥𝑡 ), 𝑥𝑡 − 𝑥★⟩

≥
𝑡∑︁

𝑠=1

𝑣𝑠 − 𝑣𝑠−1
𝑣𝑡

(
𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑠) +

1
2𝛽
∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2

)
+ 𝑣0
𝑣𝑡

(
𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★) +

1
2𝛽
∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2

)
= 𝑓𝑡 (𝑥𝑡 ) −

𝑡∑︁
𝑠=1

𝑣𝑠 − 𝑣𝑠−1
𝑣𝑡

𝑓𝑡 (𝑥𝑠) −
𝑣0
𝑣𝑡

𝑓𝑡 (𝑥★) +
1

2𝛽

𝑡∑︁
𝑠=1

𝑣𝑠 − 𝑣𝑠−1
𝑣𝑡

∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2

+ 𝑣0
2𝛽𝑣𝑡

∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2.

Multiplying by 𝜂𝑡𝑣
2
𝑡 and plugging back to Eq. (9),

1
2
𝑣2

0∥𝑥1 − 𝑥★∥2 +
1
2

𝑇∑︁
𝑡=1

𝜂2
𝑡 𝑣

2
𝑡 ∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≥

𝑇∑︁
𝑡=1

𝜂𝑡𝑣𝑡

(
𝑣𝑡 𝑓𝑡 (𝑥𝑡 ) −

𝑡∑︁
𝑠=1
(𝑣𝑠 − 𝑣𝑠−1) 𝑓𝑡 (𝑥𝑠) − 𝑣0 𝑓𝑡 (𝑥★)

)
+ 1

2𝛽

𝑇∑︁
𝑡=1

𝜂𝑡𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2

)
=

𝑇∑︁
𝑡=1

𝜂𝑡𝑣𝑡

(
𝑣𝑡 ( 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)) −

𝑡∑︁
𝑠=1
(𝑣𝑠 − 𝑣𝑠−1) ( 𝑓𝑡 (𝑥𝑠) − 𝑓𝑡 (𝑥★))

)
+ 1

2𝛽

𝑇∑︁
𝑡=1

𝜂𝑡𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2

)
.

Taking expectation, noting that for all 𝑡 ≥ 𝑠, 𝔼 𝑓𝑡 (𝑥𝑠) − 𝑓𝑡 (𝑥★) = 𝔼 𝑓𝑠 (𝑥𝑠) − 𝑓𝑠 (𝑥★) (since 𝑓𝑡 , 𝑓𝑠 are
identically distributed condition on 𝑥𝑠 and 𝑥★ is fixed), and rearranging the terms,

1
2
𝑣2

0∥𝑥1 − 𝑥★∥2 +
1
2

𝑇∑︁
𝑡=1

𝜂2
𝑡 𝑣

2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≥

𝑇∑︁
𝑡=1

𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)]
(
𝜂𝑡𝑣

2
𝑡 − (𝑣𝑡 − 𝑣𝑡−1)

𝑇∑︁
𝑠=𝑡

𝜂𝑠𝑣𝑠

)
+ 1

2𝛽

𝑇∑︁
𝑡=1

𝜂𝑡𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2

)
.

We conclude by rearranging the terms and plugging 𝑐𝑡 . □

G.2 Proof of Theorem 1

We now give the formal proof of Theorem 1. In addition to Lemma 6, we will use the following
lemma, which handles the cross terms 𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 which are introduced by the regret
bound of Lemma 6. See Appendix G.4 for the proof.
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Lemma 7. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧. Further, let
𝑧1, . . . , 𝑧𝑇 ∼ Z(𝑇) whereZ(𝑇) is a distribution over 𝑍𝑇 that satisfies the following: for any 𝑠 ≤ 𝑡,
conditioned on 𝑧1, . . . , 𝑧𝑠−1, it holds that 𝑧𝑠 and 𝑧𝑡 are identically distributed. Let 𝛼 ∈ (0, 1

2 ), let
𝑣𝑡 = (𝑇 − 𝑡 + 2)−𝛼 for any 𝑡 ∈ [𝑇 − 1], and let 𝑣𝑇 = 𝑣𝑇−1. Then for any 𝑥★ ∈ ℝ𝑑 , running SGD with
initialization 𝑥1 ∈ ℝ𝑑 and stepsize sequence 𝜂1, . . . , 𝜂𝑇 > 0,

𝑡 = 1, . . . , 𝑇 : 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇ 𝑓𝑡 (𝑥𝑡 ), where 𝑓𝑡 := 𝑓 (·; 𝑧𝑡 ),

it holds that
𝑇∑︁
𝑡=1

𝑣𝑡

( 𝑡∑︁
𝑠=1
(𝑣𝑠−𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )−∇ 𝑓𝑡 (𝑥𝑠)∥2+𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )−∇ 𝑓𝑡 (𝑥★)∥2

)
≥ (1−2𝛼)𝑣2

𝑇𝔼∥∇ 𝑓𝑇 (𝑥𝑇 )−∇ 𝑓𝑇 (𝑥★)∥
2+

𝑇−1∑︁
𝑡=1

(
(1−4𝛼)𝑣2

𝑡 +(𝑣𝑡 − 𝑣𝑡−1)
𝑇∑︁
𝑠=𝑡

𝑣𝑠

)
𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )−∇ 𝑓𝑡 (𝑥★)∥2.

We proceed to prove Theorem 1.

Proof of Theorem 1. Let 𝛼 ∈ (0, 1
2 ), 𝑣𝑡 = (𝑇 − 𝑡 + 2)−𝛼 for 𝑡 ∈ [𝑇 − 1], 𝑣𝑇 = 𝑣𝑇−1, and denote

𝑓𝑡 (𝑥) := 𝑓𝑡 (𝑥) − ⟨∇ 𝑓𝑡 (𝑥★), 𝑥⟩ such that ∇ 𝑓𝑡 (𝑥) = ∇ 𝑓𝑡 (𝑥) − ∇ 𝑓𝑡 (𝑥★). By Lemma 6 with fixed stepsize
𝜂𝑡 = 𝜂 and weights 0 < 𝑣1 ≤ · · · ≤ 𝑣𝑇 , which is applicable under with-replacement sampling,

1
2
𝑣2

0∥𝑥1 − 𝑥★∥2 +
1
2

𝑇∑︁
𝑡=1

𝜂2𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≥

𝑇∑︁
𝑡=1

𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)]
(
𝜂𝑣2

𝑡 − (𝑣𝑡 − 𝑣𝑡−1)
𝑇∑︁
𝑠=𝑡

𝜂𝑣𝑠

)
+ 1

2𝛽

𝑇∑︁
𝑡=1

𝜂𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
,

where we substituted ∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠) = ∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠). Dividing by 𝜂, plugging 𝑣𝑇 = 𝑣𝑇−1,
and denoting 𝑎𝑡 = (𝑣𝑡 − 𝑣𝑡−1)

∑𝑇
𝑠=𝑡 𝑣𝑠 ,

𝑣2
0

2𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≥ 𝑣2

𝑇𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] +
𝑇−1∑︁
𝑡=1

𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)] (𝑣2
𝑡 − 𝑎𝑡 )

+ 1
2𝛽

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
.

The technical Lemmas 4 and 5, which are proved in Appendix F, state that for any 𝑐 ≥ 1, 𝛼 ∈ (0, 1),
and 𝑛 ∈ ℕ, it holds that (1 + 𝑐)−𝛼 + ∑𝑛

𝑖=1 (𝑖 + 𝑐)−𝛼 ≤ 1
1−𝛼 (𝑛 + 𝑐)

1−𝛼, and that for any 𝑥 ≥ 1, and
𝛼 ∈ (0, 1), it holds that 𝑥−𝛼 − (𝑥 + 1)−𝛼 ≤ 𝛼

𝑥 (𝑥+1)𝛼 . Using these, for 𝑡 < 𝑇 ,

𝑎𝑡 ≤
𝛼

(𝑇 − 𝑡 + 2) (𝑇 − 𝑡 + 3)𝛼 ·
1

1 − 𝛼 (𝑇 − 𝑡 + 2)1−𝛼 ≤ 𝛼

1 − 𝛼𝑣
2
𝑡 ≤ 𝑣2

𝑡 ,

where we used the fact that 𝛼 ∈ (0, 1
2 ). Hence, we can apply the standard inequality for convex

smooth functions [e.g., Nesterov, 1998], ∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★)∥2 ≤ 2𝛽( 𝑓𝑡 (𝑥𝑡 ) − ⟨∇ 𝑓𝑡 (𝑥★), 𝑥𝑡 − 𝑥★⟩),
and after taking expectation and substituting ∇ 𝑓𝑡 (𝑥𝑡 ) = ∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥★), for any 𝑡 ∈ [𝑇],

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ 2𝛽𝔼[( 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★) − ⟨∇𝐹 (𝑥★), 𝑥𝑡 − 𝑥★⟩)] = 2𝛽𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)], (10)

where we used that 𝑓𝑡 is independent of 𝑥𝑡 and 𝑥★ is a minimizer of 𝐹 (𝑥), obtaining that

𝑣2
0

2𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≥ 𝑣2

𝑇𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] +
1

2𝛽

𝑇−1∑︁
𝑡=1

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 (𝑣2
𝑡 − 𝑎𝑡 )

+ 1
2𝛽

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
.
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Plugging Lemma 7 (and substituting ∇ 𝑓𝑡 (𝑥) − ∇ 𝑓𝑡 (𝑥★) = ∇ 𝑓𝑡 (𝑥𝑡 )),

𝑣2
0

2𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≥ 𝑣2

𝑇𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] +
1

2𝛽

𝑇−1∑︁
𝑡=1

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 (𝑣2
𝑡 − 𝑎𝑡 )

+ 1
2𝛽

(
(1 − 2𝛼)𝑣2

𝑇𝔼∥∇ 𝑓𝑇 (𝑥𝑇 )∥
2 +

𝑇−1∑︁
𝑡=1

(
(1 − 4𝛼)𝑣2

𝑡 + (𝑣𝑡 − 𝑣𝑡−1)
𝑇∑︁
𝑠=𝑡

𝑣𝑠

)
𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
.

Rearranging the terms and using the definition of 𝑎𝑡 ,

𝑣2
𝑇𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤

𝑣2
0

2𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 −

1
𝛽

𝑇−1∑︁
𝑡=1
(1 − 2𝛼)𝑣2

𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

−
𝑣2
𝑇

2𝛽
(1 − 2𝛼)𝔼∥∇ 𝑓𝑇 (𝑥𝑇 )∥2.

By Eq. (10), −(1 − 2𝛼)𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤ − 1−2𝛼
2𝛽 𝔼∥∇ 𝑓𝑇 (𝑥𝑇 )∥2. Adding to the above display,

2𝛼𝑣2
𝑇𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤

𝑣2
0

2𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

− 1
𝛽

𝑇∑︁
𝑡=1
(1 − 2𝛼)𝑣2

𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.
(11)

As 𝑥★ ∈ arg min𝑥∈ℝ𝑑 𝑓 (𝑥; 𝑧) for every 𝑧 ∈ 𝑍 , ∇ 𝑓𝑡 (𝑥𝑡 ) = ∇ 𝑓 (𝑥𝑡 ), and by setting 𝛼 =
2−𝛽𝜂

4 ∈ (0, 1
2 ),

2 − 𝛽𝜂

2
𝑣2
𝑇𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤

𝑣2
0

2𝜂
∥𝑥1 − 𝑥★∥2.

Substituting 𝑣0 = (𝑇 + 2)−𝛼 and 𝑣𝑇 = 3−𝛼 and rearranging,

𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤
32𝛼∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂) (𝑇 + 2)2𝛼
.

Hence, substituting 𝛼 =
2−𝛽𝜂

4 and since 2𝛼 ≤ 1,

𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤
3∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂) (𝑇 + 2)1−𝛽𝜂/2
≤ 3∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂)𝑇1−𝛽𝜂/2 . (12)

We conclude by noting that 𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] = 𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)]. □

G.3 Proof of Theorem 2

Note that Lemmas 6 and 7 used to prove Theorem 1 hold without the assumption that 𝑥★ is the
minimizer of each function. Hence, the argument in the proof of Theorem 1 up to the point of Eq. (11)
is applicable in the setting of Theorem 2, showing that

2𝛼𝑣2
𝑇𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤

𝑣2
0

2𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

2

𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

− 1
𝛽

𝑇∑︁
𝑡=1
(1 − 2𝛼)𝑣2

𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2.
(13)

Let 𝜖 = 1 − 2𝛼 − 𝛽𝜂

2 > 0, restricting 𝛼 < (2 − 𝛽𝜂)/4. By Young’s inequality,

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 = 𝔼
[
∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 + 2⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥★)⟩ + ∥∇ 𝑓𝑡 (𝑥★)∥2

]
≤

(
1 + 2𝜖

𝛽𝜂

)
𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 +

(
1 + 𝛽𝜂

2𝜖

)
𝔼∥∇ 𝑓𝑡 (𝑥★)∥2.
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Thus, as 𝜖 = 1 − 2𝛼 − 𝛽𝜂

2 , for any 𝑡 ∈ [𝑇],

𝜂

4
𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤

𝜂

4
𝑣2
𝑡

((
1 + 2𝜖

𝛽𝜂

)
𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 +

(
1 + 𝛽𝜂

2𝜖

)
𝔼∥∇ 𝑓𝑡 (𝑥★)∥2

)
=
𝜂

4
𝑣2
𝑡

2 − 4𝛼
𝛽𝜂

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 +
𝜂

4

(
1 + 𝛽𝜂

2𝜖

)
𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥★)∥2

=
1

2𝛽
𝑣2
𝑡 (1 − 2𝛼)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 +

𝜂

4

(
1 + 𝛽𝜂

2𝜖

)
𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥★)∥2.

Plugging back to Eq. (13) and substituting 𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] = 𝔼[ 𝑓 (𝑥𝑇 ) − 𝑓 (𝑥★)],

𝛼𝑣2
𝑇𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤

𝑣2
0

4𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

4

(
1 + 𝛽𝜂

2𝜖

) 𝑇∑︁
𝑡=1

𝑣2
𝑡𝔼∥∇ 𝑓𝑡 (𝑥★)∥2

=
𝑣2

0
4𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

4

(
1 + 𝛽𝜂

2𝜖

)
𝜎2
★

𝑇∑︁
𝑡=1

𝑣2
𝑡 ,

where the last equality follows from 𝔼∥∇ 𝑓𝑡 (𝑥★)∥2 = 𝔼𝑧∼Z ∥∇ 𝑓 (𝑥★; 𝑧)∥2 = 𝜎2
★. Lemma 4, which

is proved in Appendix F, state that for any 𝑐 ≥ 1, 𝛼 ∈ (0, 1), and 𝑛 ∈ ℕ, it holds that (1 + 𝑐)−𝛼 +∑𝑛
𝑖=1 (𝑖 + 𝑐)−𝛼 ≤ 1

1−𝛼 (𝑛 + 𝑐)
1−𝛼 . Hence,

𝑇∑︁
𝑡=1

𝑣2
𝑡 ≤

1
1 − 2𝛼

(𝑇 + 1)1−2𝛼 ≤ 1
1 − 2𝛼

(𝑇 + 2)1−2𝛼 .

Thus,

𝛼𝑣2
𝑇𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤

𝑣2
0

4𝜂
∥𝑥1 − 𝑥★∥2 +

𝜂

(
1 + 𝛽𝜂

2𝜖

)
𝜎2
★(𝑇 + 2)1−2𝛼

4(1 − 2𝛼) .

Substituting 𝑣𝑇 = 3−𝛼 ≥ 1/
√

3 (since 𝛼 < 1
2 ), 𝑣0 = (𝑇 + 2)−𝛼, and 𝛼 =

2−𝛽𝜂−2𝜖
4 , and rearranging,

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 3∥𝑥1 − 𝑥★∥2

(2 − 𝛽𝜂 − 2𝜖)𝜂(𝑇 + 2)1−
𝛽𝜂

2 −𝜖
+

3𝜂𝜎2
★(𝑇 + 2)

𝛽𝜂

2 +𝜖

(2 − 𝛽𝜂 − 2𝜖)𝜖 .

Now set 𝛼 =
2−𝛽𝜂

4 − 2−𝛽𝜂
4 log2 (𝑇+2)

∈ (0, 1
2 ), for which 𝜖 =

2−𝛽𝜂
2 log2 (𝑇+2)

, and note that (𝑇 + 2) 𝜖 ≤
(𝑇 + 2)1/log2 (𝑇+2) ≤ 2 and (2 − 𝛽𝜂 − 2𝜖) ≥ 2−𝛽𝜂

2 as 𝑇 ≥ 2. Thus,

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 12∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂) (𝑇 + 2)1−
𝛽𝜂

2
+

24𝜂𝜎2
★(𝑇 + 2)

𝛽𝜂

2 log2 (𝑇 + 2)
(2 − 𝛽𝜂)2

≤ 12∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂)𝑇1− 𝛽𝜂

2
+

48𝜂𝜎2
★𝑇

𝛽𝜂

2 log2 (𝑇 + 2)
(2 − 𝛽𝜂)2

,

where that last inequality follows by 𝑇 ≥ 2 and 𝛽𝜂 < 2. The second claim, for when

𝜂 = min

{
1

𝛽 log2 (𝑇)
,

∥𝑥1 − 𝑥★∥
𝜎★

√︁
𝑇 log2 (𝑇 + 2)

}
≤ 1

𝛽
, (as log2 (𝑇) ≥ 1 since 𝑇 ≥ 2)

follows by noting that 𝑇𝛽𝜂/2 ≤ 𝑇1/2 log2 (𝑇 ) =
√

2 < 2, so that

𝔼[𝐹 (𝑥𝑇 ) − 𝐹 (𝑥★)] ≤ 12∥𝑥1 − 𝑥★∥2

𝜂𝑇1− 𝛽𝜂

2
+ 48𝜂𝜎2

★𝑇
𝛽𝜂

2 log2 (𝑇 + 2)

≤
24𝛽∥𝑥1 − 𝑥★∥2 log2 (𝑇)

𝑇
+

120𝜎★∥𝑥1 − 𝑥★∥
√︁

log2 (𝑇 + 2)
√
𝑇

. □
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G.4 Proof of Lemma 7

Let 𝑓𝑡 (𝑥) := 𝑓𝑡 (𝑥) − ⟨∇ 𝑓𝑡 (𝑥★), 𝑥⟩ and note that ∇ 𝑓𝑡 (𝑥) = ∇ 𝑓𝑡 (𝑥) − ∇ 𝑓𝑡 (𝑥★). Hence, as

∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 = ∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 + ∥∇ 𝑓𝑡 (𝑥𝑠)∥2 − 2⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩,
it holds that

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
=

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑣𝑡𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 +

𝑡∑︁
𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)

(
𝔼∥∇ 𝑓𝑡 (𝑥𝑠)∥2 − 2𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩

))
.

(14)

Next, we will focus on the summations of 𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩. Rearranging,
𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩ =
𝑇∑︁
𝑠=1

𝑇∑︁
𝑡=𝑠

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩

=

𝑇−1∑︁
𝑠=1

𝑇∑︁
𝑡=𝑠

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩,

where the last inequality follows by 𝑣𝑇 = 𝑣𝑇−1. For 𝑡 ∈ [𝑇] and 𝑠 ∈ [𝑇 − 1], let

𝜆𝑡 ,𝑠 = 𝑐 · ((𝑇 − 𝑠 + 1)−0.5 − (𝑇 − 𝑠 + 2)−0.5)
(𝑇 − 𝑡 + 1)−0.5 · 𝑣𝑡

𝑣𝑠 − 𝑣𝑠−1
,

where 𝑐 > 0 will be determined later. Noting that 𝑣𝑡 ≥ 𝑣𝑡−1 and using Young’s inequality,
𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩ ≤
1
2

𝑇−1∑︁
𝑠=1

𝑇∑︁
𝑡=𝑠

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)
(
𝜆𝑡 ,𝑠𝐺̃

2
𝑡 +

𝐺̃2
𝑠

𝜆𝑡 ,𝑠

)
, (15)

where 𝐺̃2
𝑡 := 𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2, such that 𝐺̃2

𝑠 = 𝔼∥∇ 𝑓𝑠 (𝑥𝑠)∥2 = 𝔼∥∇ 𝑓𝑡 (𝑥𝑠)∥2 as for 𝑠 ≤ 𝑡, 𝑓𝑡 and 𝑓𝑠 are
identically distributed conditioned on 𝑥𝑠 . Denoting 𝜆𝑡 ,𝑇 = 0,

𝑇−1∑︁
𝑠=1

𝑇∑︁
𝑡=𝑠

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝜆𝑡 ,𝑠𝐺̃2
𝑡 =

𝑇∑︁
𝑠=1

𝑇∑︁
𝑡=𝑠

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝜆𝑡 ,𝑠𝐺̃2
𝑡 =

𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝜆𝑡 ,𝑠𝐺̃2
𝑡

≤ 𝑐

𝑇∑︁
𝑡=1

𝐺̃2
𝑡 𝑣

2
𝑡 (𝑇 − 𝑡 + 1)0.5

𝑡∑︁
𝑠=1
((𝑇 − 𝑠 + 1)−0.5 − (𝑇 − 𝑠 + 2)−0.5)

≤ 𝑐

𝑇∑︁
𝑡=1

𝐺̃2
𝑡 𝑣

2
𝑡 ,

(16)
and

𝑇−1∑︁
𝑠=1

𝑇∑︁
𝑡=𝑠

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)
𝐺̃2

𝑠

𝜆𝑡 ,𝑠
=

1
𝑐

𝑇−1∑︁
𝑠=1

(𝑣𝑠 − 𝑣𝑠−1)2

(𝑇 − 𝑠 + 1)−0.5 − (𝑇 − 𝑠 + 2)−0.5 𝐺̃
2
𝑠

𝑇∑︁
𝑡=𝑠

(𝑇 − 𝑡 + 1)−0.5

≤ 2
𝑐

𝑇−1∑︁
𝑠=1

(𝑣𝑠 − 𝑣𝑠−1)2

(𝑇 − 𝑠 + 1)−0.5 − (𝑇 − 𝑠 + 2)−0.5 𝐺̃
2
𝑠 (𝑇 − 𝑠 + 1)0.5

=
2
𝑐

𝑇−1∑︁
𝑠=1

𝐺̃2
𝑠 (𝑣𝑠 − 𝑣𝑠−1)2

(𝑇 − 𝑠 + 1) (𝑇 − 𝑠 + 2)0.5

(𝑇 − 𝑠 + 2)0.5 − (𝑇 − 𝑠 + 1)0.5

=
2
𝑐

𝑇−1∑︁
𝑠=1

𝐺̃2
𝑠 (𝑣𝑠 − 𝑣𝑠−1)2 (𝑇 − 𝑠 + 1) (𝑇 − 𝑠 + 2)0.5 ((𝑇 − 𝑠 + 2)0.5 + (𝑇 − 𝑠 + 1)0.5)

≤ 4
𝑐

𝑇−1∑︁
𝑠=1

𝐺̃2
𝑠 (𝑣𝑠 − 𝑣𝑠−1)2 (𝑇 − 𝑠 + 2)2,
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where we bounded
𝑇∑︁
𝑡=𝑠

(𝑇 − 𝑡 + 1)−0.5 ≤ 1 +
𝑇−1∑︁
𝑡=𝑠

∫ 𝑡+1

𝑡

(𝑇 − 𝑢 + 1)−0.5𝑑𝑢 = 1 +
∫ 𝑇

𝑠

(𝑇 − 𝑢 + 1)−0.5𝑑𝑢

≤ 2(𝑇 − 𝑠 + 1)0.5.

Note that by Lemma 5,

(𝑣𝑠 − 𝑣𝑠−1)2 ≤
(

𝛼

(𝑇 − 𝑠 + 2) (𝑇 − 𝑠 + 3)𝛼

)2
=

𝛼2𝑣2
𝑠−1

(𝑇 − 𝑠 + 2)2
.

Thus,

𝑇−1∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)
𝐺̃2

𝑠

𝜆𝑡 ,𝑠
≤ 4𝛼2

𝑐

𝑇−1∑︁
𝑠=1

𝐺̃2
𝑠𝑣

2
𝑠−1 ≤

4𝛼2

𝑐

𝑇−1∑︁
𝑠=1

𝐺̃2
𝑠𝑣

2
𝑠 . (𝑣𝑠 ≥ 𝑣𝑠−1)

Together with Eq. (16), plugging to Eq. (15) and setting 𝑐 = 2𝛼,

𝑇∑︁
𝑡=1

𝑡∑︁
𝑠=1

𝑣𝑡 (𝑣𝑠 − 𝑣𝑠−1)𝔼⟨∇ 𝑓𝑡 (𝑥𝑡 ),∇ 𝑓𝑡 (𝑥𝑠)⟩ ≤ 𝛼𝑣2
𝑇𝐺̃

2
𝑇 +

𝑇−1∑︁
𝑡=1

2𝛼𝑣2
𝑡 𝐺̃

2
𝑡 .

Returning to Eq. (14),

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
≥

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑣𝑡 𝐺̃

2
𝑡 +

𝑡∑︁
𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝐺̃2

𝑠

)
− 2𝛼𝑣2

𝑇𝐺̃
2
𝑇 −

𝑇−1∑︁
𝑡=1

4𝛼𝑣2
𝑡 𝐺̃

2
𝑡 ,

where we used the fact that 𝔼∥∇ 𝑓𝑡 (𝑥𝑠)∥2 = 𝔼∥∇ 𝑓𝑠 (𝑥𝑠)∥2 = 𝐺̃2
𝑠 for 𝑠 ≤ 𝑡 as 𝑓𝑡 and 𝑓𝑠 are identically

distributed conditioned on 𝑥𝑠 (which implies that 𝑓𝑡 , and 𝑓𝑠 are identically distributed conditioned in
𝑥𝑠). Rearranging the terms,

𝑇∑︁
𝑡=1

𝑣𝑡

(
𝑡∑︁

𝑠=1
(𝑣𝑠 − 𝑣𝑠−1)𝔼∥∇ 𝑓𝑡 (𝑥𝑡 ) − ∇ 𝑓𝑡 (𝑥𝑠)∥2 + 𝑣0𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2

)
≥ (1 − 2𝛼)𝑣2

𝑇𝐺̃
2
𝑇 +

𝑇−1∑︁
𝑡=1

(
(1 − 4𝛼)𝑣2

𝑡 + (𝑣𝑡 − 𝑣𝑡−1)
𝑇∑︁
𝑠=𝑡

𝑣𝑠

)
𝐺̃2

𝑡 ,

where again we used the fact that 𝑣𝑇 = 𝑣𝑇−1. We conclude by substituting 𝐺̃2
𝑡 = 𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 and

∇ 𝑓𝑡 (𝑥) = ∇ 𝑓𝑡 (𝑥) − ∇ 𝑓𝑡 (𝑥★). □

H Proofs of Section 3.1

H.1 Proof of Theorem 3

The proof is based on the following two lemmas. The first is a convergence bound for 𝔼[ 𝑓𝑇 (𝑥𝑇 ) −
𝑓𝑇 (𝑥★)], which is an extension of Theorem 1 to SGD with sampling without replacement. Note
that 𝔼 𝑓𝑇 (𝑥𝑇 ) is not equal to 𝔼 𝑓 (𝑥𝑇 ) (in general) when sampling without replacement due to the
correlations between 𝑓𝑇 and 𝑥𝑇 .
Lemma 8. Let 𝑓 : ℝ𝑑 × 𝑍 → ℝ be such that 𝑓 (·; 𝑧) is 𝛽-smooth and convex for every 𝑧. Assume
Z(𝑇) is a distribution over 𝑍𝑇 that satisfies the following: For 𝑧1, . . . , 𝑧𝑇 ∼ Z(𝑇), conditioned
on 𝑧1, . . . , 𝑧𝑠−1, for 𝑠 ≤ 𝑡 it holds that 𝑧𝑠 and 𝑧𝑡 are identically distributed. Assume there exists a
joint minimizer 𝑥★ ∈ ∩𝑧∈𝑍 arg min𝑥∈ℝ𝑑 𝑓 (𝑥; 𝑧). Then, for SGD on 𝑧1, . . . , 𝑧𝑇 ∼ Z(𝑇) initialized at
𝑥1 ∈ ℝ𝑑 with step size 𝜂 < 2/𝛽;

𝑡 = 1, . . . , 𝑇 : 𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇ 𝑓𝑡 (𝑥𝑡 ), where 𝑓𝑡 := 𝑓 (·; 𝑧𝑡 ),
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where 𝑇 ≥ 2, we have the following last iterate guarantee:

𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤
3∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂)𝑇1− 𝛽𝜂

2
.

In particular, when 𝜂 = 1
𝛽

, 𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤ 3𝛽 ∥𝑥1−𝑥★∥2√
𝑇

.

The second is a without-replacement generalization upper bound in the smooth realizable setting
established in Lemma 34 of Evron et al. [2025].
Lemma 9 (Evron et al. [2025]). For without-replacement SGD Eq. (4) with step size 𝜂 ≤ 2/𝛽, for all
2 ≤ 𝑇 ≤ 𝑛, we have that the following holds:

𝔼𝜋

[
1

𝑇 − 1

𝑇−1∑︁
𝑡=1

𝑓 (𝑥𝑇 ; 𝜋𝑡 ) − 𝑓 (𝑥★; 𝜋𝑡 )
]
≤ 2𝔼𝜋 [ 𝑓 (𝑥𝑇 ; 𝜋𝑇 ) − 𝑓 (𝑥★; 𝜋𝑇 )] +

4𝛽2𝜂∥𝑥1 − 𝑥★∥2

𝑇
.

We note that the above statement is a minor adjustment of the original one, and follows from the last
line of the proof given by Evron et al. [2025].

Proof of Theorem 3. By Lemma 9, we have for all 𝑇 ≤ 𝑛:

𝔼𝐹𝑍 (𝑥𝑇 ) − 𝐹𝑍 (𝑥★)

= 𝑇−1
𝑛

𝔼

[
1

𝑇−1

𝑇−1∑︁
𝑡=1

𝑓 (𝑥𝑇 ; 𝜋𝑡 ) − 𝑓 (𝑥★; 𝜋𝑡 )
]
+ 𝑛−𝑇+1

𝑛
𝔼

[
𝑓 (𝑥𝑇 ; 𝜋𝑇 ) − 𝑓 (𝑥★; 𝜋𝑇 )

]
≤ 𝔼

[
1

𝑇−1

𝑇−1∑︁
𝑡=1

𝑓 (𝑥𝑇 ; 𝜋𝑡 ) − 𝑓 (𝑥★; 𝜋𝑡 )
]
+ 𝔼

[
𝑓 (𝑥𝑇 ; 𝜋𝑇 ) − 𝑓 (𝑥★; 𝜋𝑇 )

]
≤ 3𝔼

[
𝑓 (𝑥𝑇 ; 𝜋𝑇 ) − 𝑓 (𝑥★; 𝜋𝑇 )

]
+ 4𝛽2𝜂∥𝑥1 − 𝑥★∥2

𝑇
.

Now, since 𝜋 is a uniformly random permutation, 𝜋1, . . . , 𝜋𝑇 satisfy that conditioned on 𝜋1, . . . , 𝜋𝑠−1,
we have that 𝜋𝑠 , 𝜋𝑡 are identically distributed for 𝑠 ≤ 𝑡, as both are uniform over 𝑍 \ {𝑧1, . . . 𝑧𝑠−1}.
Hence Lemma 8 applies, and we have the that,

𝔼[ 𝑓 (𝑥𝑇 ; 𝜋𝑇 ) − 𝑓𝑇 (𝑥★; 𝜋𝑇 )] ≤
3∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂) (𝑇 + 2)1−
𝛽𝜂

2
.

Combining both upper bounds, the result follows. □

H.2 Proof of Lemma 8

The proof is identical to the proof of Theorem 1, beside the following points:

1. Lemmas 6 and 7 are applied under the general sampling scheme of Lemma 8, which is the
same sampling scheme of Lemmas 6 and 7, instead of under the with-replacement sampling
assumption of Theorem 1.

2. The bound 𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ 2𝛽𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)], which is established in Eq. (10) using
the with-replacement assumption, is established instead using the realizability assumption
(under which ∇ 𝑓𝑡 (𝑥★) = 0) by the following argument,

𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 = 𝔼∥∇ 𝑓𝑡 (𝑥𝑡 )∥2 ≤ 2𝛽𝔼[( 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)] = 2𝛽𝔼[ 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑥★)] .

As the rest of the argument does not exploit the with-replacement assumption up to (and including)
Eq. (12), Eq. (12) holds and

𝔼[ 𝑓𝑇 (𝑥𝑇 ) − 𝑓𝑇 (𝑥★)] ≤
3∥𝑥1 − 𝑥★∥2

𝜂(2 − 𝛽𝜂)𝑇1− 𝛽𝜂

2
.

The second inequality follows immediately by setting 𝜂 = 1
𝛽

. □
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I Proofs of Sections 3.2 and 3.3

I.1 Lemmas from Evron et al. [2025]

The proofs in this section use the following lemmas from Evron et al. [2025].

Lemma 10 (Analogous to Reduction 2 in Evron et al. [2025]). In the realizable case, under any
ordering 𝜏, the block Kaczmarz method is equivalent to SGD with a step size of 𝜂 = 𝑐, applied w.r.t. a
convex, 1-smooth least squares objective:

{
𝑓𝑖 (𝑥) ≜ 1

2 ∥𝐴
+
𝑖
(𝐴𝑖𝑥 − 𝑏𝑖)∥2

}𝑚
𝑖=1. That is, the iterates

𝑥1, . . . , 𝑥𝑇 of Eq. (5) and SGD with step-size 𝜂 = 𝑐 coincide.

Lemma 11 (Lemma 6 in Evron et al. [2025]). Consider any realizable task collection such that
𝐴𝑖𝑥

★ = 𝑏𝑖 for all 𝑖 ∈ [𝑚]. Define 𝑓𝑖 (𝑥) = 1
2 ∥𝐴

+
𝑖
(𝐴𝑖𝑥 − 𝑏𝑖)∥2. Then, ∀𝑖 ∈ [𝑚], 𝑥 ∈ ℝ𝑑

(i) Upper bound: 1
2 ∥𝐴𝑖𝑥 − 𝑏𝑖 ∥2 ≤ 𝑅2 𝑓𝑖 (𝑥) .

(ii) Gradient: ∇𝑥 𝑓𝑖 (𝑥) = 𝐴+
𝑖
𝐴𝑖𝑤 − 𝐴+

𝑖
𝑏𝑖 .

(iii) Convexity and Smoothness: 𝑓𝑖 is convex and 1-smooth.

I.2 Proof of Corollary 4

Now, we can turn to the proof of Corollary 4.

Proof of Corollary 4. First, for the with-replacement setting, let 𝜏 be a random with-replacement
ordering, and let 𝑥1, . . . , 𝑥𝑇 denote the iterates generated by Eq. (5). By Lemma 10, these iterates
coincide with those of SGD initialized at 𝑤1, using step size 𝜂 = 𝑐, on the sequence of loss functions
𝑓𝜏 (1) , . . . , 𝑓𝜏 (𝑇 ) , where

𝑓𝑖 (𝑥) :=
1
2
∥𝐴+𝑖 𝐴𝑖 (𝑥 − 𝑥★)∥2.

Moreover, by Lemma 11, for any 𝑥 ∈ ℝ𝑑 , 𝐹 satisfies:

𝐹 (𝑥) ≤ 𝑅2𝔼𝑖∼Unif( [𝑚] ) 𝑓𝑖 (𝑥).

Thus, it suffices to analyze last-iterate convergence of with-replacement SGD on 𝐹. Again by
Lemma 11, each 𝑓𝑖 is 1-smooth. so we may invoke Theorem 1. This theorem guarantees that after
𝑇 ≥ 1 gradient steps with step size 𝜂 = 𝑐, it holds that,

𝔼𝑖∼Unif( [𝑚] ) 𝑓𝑖 (𝑥) ≤
3∥𝑥1 − 𝑥★∥2

𝜂𝑇1−𝑐𝛽/2 .

Combining this with the earlier inequality yields:

𝔼𝜏𝐹 (𝑥𝑇 ) ≤
3𝑅2∥𝑥★∥2

𝜂𝑇1−𝑐𝛽/2 .

For the without-replacement case, the proof is analogous and is obtained by using Theorem 3 instead
of Theorem 1 (the constant in the bound will be 13 instead of 3).

□

I.3 Proof of Corollary 5

We use the following lemma from Evron et al. [2025].

Lemma 12 (Reduction 1 in Evron et al. [2025]). In the realizable case, under any ordering 𝜏,
continual linear regression learned to convergence is equivalent to the block Kaczmarz method with
𝑐 = 1. That is, the iterates 𝑥1, . . . , 𝑥𝑇 of Eqs. (5) and (6) coincide.

Now, we can turn to the proof of Corollary 4. We prove for 𝑥𝑇 and the bounds for 𝑥𝑇+1 can be
obtained by another sampling from the distribution.
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Proof of Corollary 5. By Lemma 12, for 𝑐 = 1, the iterates of Eqs. (5) and (6) concide. Then, by
Corollary 4, we get that in both regimes, with and without replacement, it holds that,

𝔼𝜏𝐹 (𝑥𝑇 ) ≤
13𝑅2∥𝑥★∥2
√
𝑇

.

For the forgetting, in the with-replacement case, by Lemma 3, we get that,

𝔼𝜏𝐹𝜏 (𝑥𝑇 ) ≤
30𝑅2∥𝑥★∥2
√
𝑇

.

In the without-replacement case, by Lemmas 8 and 9, we get that,

𝔼𝜏𝐹𝜏 (𝑥𝑇 ) ≤
10𝑅2∥𝑥★∥2
√
𝑇

.

□
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide complete and correct proofs for all the results presented. Ad-
ditionally, the assumptions used in each proof are explicitly stated in the corresponding
theorem.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is theoretical and conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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