GraphCoder: Enhancing Repository-Level Code Completion via Code
Context Graph-based Retrieval and Language Model

Anonymous ACL submission

Abstract

The performance of repository-level code com-
pletion depends upon the effective leverage
of both general and repository-specific knowl-
edge. Despite the impressive capability of
code LLMs in general code completion tasks,
they often exhibit less satisfactory perfor-
mance on repository-level completion due to
the lack of repository-specific knowledge in
these LLMs. To address this problem, we pro-
pose GraphCoder, a retrieval-augmented code
completion framework that leverages LLMs’
general code knowledge and the repository-
specific knowledge via a graph-based retrieval-
generation process. In particular, Graph-
Coder captures the context of completion target
through code context graph (CCG) that consists
of control-flow and data/control-dependence
between code statements, a more structured
way to capture the completion target context
than the sequence-based context used in exist-
ing retrieval-augmented approaches; based on
CCQG, GraphCoder further employs a coarse-to-
fine retrieval process to locate context-similar
code snippets with the completion target from
the current repository. Experimental results
show that: compared with the state-of-the-art
method RepoCoder, GraphCoder improves the
exact match metric by 5.93% on average.

1 Introduction

Code LLMs (large language models), such as
Codex (Chen et al., 2021), StarCoder (Li et al.,
2023a) and Code Llama (Roziere et al., 2023),
have demonstrated impressive capability in gen-
eral code completion tasks (Zheng et al., 2023; Zan
et al., 2023; Zhang et al., 2023b). Some of them
have been deployed as auto-completion plugins
(e.g., GitHub Copilot!, CodeGeeX?) in modern In-
tegrated Development Environments (IDEs), and
successfully streamline the real-world software de-
velopment activities to a certain degree.

"https://github.com/features/copilot
2https://codegeex.cn

However, compared with their performance in
general scenarios, code LLMs exhibit less satisfac-
tory performance in repository-level code comple-
tion tasks, due to the lack of repository-specific
knowledge in these LLMs (Zan et al., 2022; Tang
et al., 2023; Zhang et al., 2023a). Specifically,
the repository-specific knowledge (including code
style and intra-repository API usage) cannot be
well learned by or even inaccessible to code LLMs
during their pre-training and fine-tuning phases,
particularly for those newly created, personal pri-
vately owned, or confidential business reposito-
ries. One superficial remedy to this knowledge-lack
problem is to concatenate all the code files in the
repository as the prompt to LLMs in the situation
that the size of LLMs’ context window is continu-
ously growing. However, this kind of remedy puts
too much irrelevant information into the prompt,
bringing unnecessary confusion to LLMs and lead-
ing to degraded completion performance (Yoran
et al., 2023; Shi et al., 2023).

To mitigate the knowledge-lack problem men-
tioned above, several methods have been proposed
following the RAG pattern of retrieval-augmented
generation (Parvez et al., 2021; Lu et al., 2022;
Zhang et al., 2023a). For each completion task,
RAG first retrieves a set of context-similar code
snippets from the current repository, and then in-
jects these snippets into the prompt, with the hope
of improving the generation results of code LLMs;
these retrieved snippets play the role of augmenting
code LLLMs with the repository-specific knowledge
related to a completion task. As a result, the effec-
tiveness of RAG largely depends on how to define
the relevance between a code snippet and a com-
pletion task. Most existing RAG methods follow
the classical NLP style and locate a set of related
code snippets of a completion task by considering
sequence-based context similarity.

In this paper, we follow the RAG pattern for
repository-level code completion, but explore a

https://github.com/features/copilot
https://codegeex.cn

more structured style to locate relevant code snip-
pets of a completion task. Specifically, we propose
GraphCoder, a graph-based RAG code completion
framework. The key idea of GraphCoder is to cap-
ture the context of a completion task by leveraging
the structural information in the source code via
an artifact called code context graph (CCG). In
particular, a CCG is a statement-level multi-graph
that consists of a set of statements as vertices, as
well as three kinds of edges between statements,
namely control flow, and datalcontrol dependence.
The CCG contributes to improving retrieval ef-
fectiveness from three aspects: (1) Replacing se-
quence representation of code with structured rep-
resentation to capture more relevant statements of
the completion task; (2) Augmenting the lexical
similarity between the context of two statements
with structure-based similarity to identify deeply
matched statements of the completion target from
the repository; (3) Adopting a decay-with-distance
structural similarity to weight the different impor-
tance of context statements to the completion target.
Experiments based on eight real-world reposito-
ries demonstrate the effectiveness of GraphCoder:
GraphCoder more accurately locates code snippets
with a higher completion target hit rate (+5.22%
on average) and a higher exact match (+5.93% on
average) for code completion compared to the state-
of-the-art method RepoCoder.
To summarize, our main contributions are:

* A structured representation of source code CCG
(code context graph) to capture relevant long-
distance context for predicting the semantics of
code completion target;

* An approach GraphCoder to enhance the effec-
tiveness of retrieval by a coarse-to-fine process,
which considers both structural and lexical con-
text, as well as the dependence distance between
the completion target and the context;

« Extensive experiments® demonstrate that Graph-
Coder outperforms existing RAG frameworks
with higher hit rate and exact match value.

2 Basic Concepts

In this section, we introduce two concepts used in
GraphCoder, namely code context graph (CCQG)
and CCG slicing. The former is employed to trans-
form a code snippet into a structured representation

3The code and dataset are available at https://
anonymous . 4open.science/r/GraphCoder-627E.

(i.e., a set of statements as well as a set of structural
relationships between them). Given a statement
z in a CCG G, the latter is used to extract a G’s
subgraph that consists of x and x’s h-hop depended
elements as well as relationships between them.

2.1 Code Context Graph

A code context graph is the superimposition of
three kinds of graphs about source code: con-
trol flow graph (CFG), control dependence graph
(CDG), and data dependence graph (DDG). The lat-
ter two graphs together are commonly identified as
program dependence graph (Ferrante et al., 1987).

Definition 1 (Code Context Graph) A code con-
text graph G = (X, E, T, \) is a directed multi-
graph, where

e X = {x1, - ,xn} is the vertex set, each of
which represents a code statement;

o E={ey, - ,en} is the edge set; each edge is
a triple (xi,t,xj) where x;, v; € X, andt €T
denoting the edge type;

* T ={CF,CD, DD} is the edge type set, where
CF denotes the control-flow edge, C D the con-
trol dependence, and DD the data dependence;

*)\ is a function that maps each edge in F to its
type inT, i.e., fore = (x;,t,x;), A(e) =t.

Control flow graphs (CFG) provide a detailed
representation of the order in which statements are
executed (Allen, 1970; Gold, 2010; Long et al.,
2022). The vertices of CFG represent statements
and predicates. The edges indicate the transitions
of control between statements, including the se-
quential executions, jumps, and iterative loops.

Control dependence graphs (CDG) focus on
identifying the control dependencies between state-
ments, with edges emphasizing the direct influence
of one statement on the execution of another (Fer-
rante et al., 1987; Natour, 1988; Cytron et al., 1991).
Specifically, an edge exists between two statements
if one directly affects whether the other will be
executed, distinguishing it from the CFG.

Data dependence graphs (DDG) reflect the de-
pendencies arising from variable assignments and
references, where edges represent that there is a
variable defined in one statement is used by an-
other (Ferrante et al., 1987; Harrold et al., 1993).

https://anonym ous.4open.science/r/GraphCoder-627E
https://anonym ous.4open.science/r/GraphCoder-627E

I8 if self.is_decoder: 4 M
(. = oro > cur_key_val = self_attn_out[-1] \
FG ed: \
\E cur_key_val = self_attn_out[-1] edee \
7 > vl cross_attn_out = self.cross_attn() \
/ﬂ outputs = self_attn_out[1:-1] DDG edge / 8 Titin_mui, mEels, ikkEns, ‘\
/ (9 cross_past_key_val, ...) |
[
| else: - \ |
‘ i CDG edge >~E cross_cur_key_val = cross_attn_out[-1] /‘
\\ outputs = self_attn_out[1:] \ iy

\ 4
\B cross_past_key_val = past_key_val[-2:]

[7
| 8
\ 9 cross_past_key_val, ...) |

(+
“ (i%0] attn_out = cross_attn_out[0]
)

cross_attn_out = self.cross_attn(
attn_out, masks, hiddens,

~ outputs = outputs + cross_attn_out[1:-1]

1
1

vau 1

| 1

‘ 1

1

; O ,
/m cross_cur_key_val = cross_attn_out[-1] :
— 1

=

\ cur_key_val = cur_key_val + cross_cur_key_val @
CCG Slice

cur_key_val = self_attn_out[-1]
cross_attn_out = self.cross_attn(
attn_out, masks, hiddens,
cross_past_key_val, ...)
cross_cur_key_val = cross_attn_out[-1]
cur_key_val = cur_key_val + cross_cur_key_val

Context Sequence Slice

(S

Figure 1: An example of the code context graph (CCG) and its CCG slice with statement of interest z = 13.

2.2 CCG Slicing

Definition 2 (CCG Slice) Given a code context
graph G = (X,E,T,)\) and a statement of in-
terest & € X, the h-hop CCG slice of & in G with
maximum | statements, denoted as G' (%), is de-
fined by the output of Algorithm 1.

Algorithm 1: CCG Slicing

:CCG graph G = (X, E, T, \),
statement of interest T € X,
maximum hops h, and maximum
number of statements /.

Output : A CCG slicing graph G, ().

Initialize sets X¢p and Xpp as 0;

Input

—

2 Initialize the set Xop as {2} ;

3 Push 7 into an empty queue ¢;

4 while q is not empty do

s | @< q.pop();

6 if x exceeds h hops from z then break ;

7 Xor echu{x};

8 XDD<—XDDU{Z|(Z,DD,SU)€E};

9 Xep < Xep U{z|(2,CD,x) € E} ;

10 if\XCpUXCDUXDD\thhen break ;

1 for ze{z|(2,CF,z)€E,z¢ Xcr} do

12 if z has not been visited by q then
q.push(z) ;

13 end

14 end

15 G%(i’) “— G[XCF UXpp U XCD];

16 return G (%)

Algorithm 1 outlines the CCG slicing process to
capture the context of a given statement in graph
G. The key idea is to extract an induced subgraph
of G with vertices within h hops of control-flow
neighbors of x, along with the vertices they have
data/control dependence on, limited to a maximum
of [vertices. Starting from z (lines 2, 3, and 5), Al-
gorithm 1 first updates current visited control-flow

neighbors set X¢or (line 7), and then the adds its
data dependence (DD) in-neighbors to Xpp (line
8) and its control dependence(CD) in-neighbors
to Xcp (line 9). After that, Algorithm 1 pushes
its control-flow (CF) in-neighbors to queue for the
next traversing step (lines 11-13). The final output
of Algorithm 1 is the induced subgraph of G whose
vertex setis Xop U Xop U Xpp.

Fig. 1 provides an example of a code snippet
along with its corresponding CCG and a CCG slice.
The code snippet, comprising 13 lines, contains a
total of 11 statements, 11 C'F' edges, 9 DD edges,
and 4 C'D edges. Focusing on a statement of in-
terest (line 13), its one-hop CCG slice includes
all statements it has data/control dependence on
(lines 2, 12, and 13), as well as its one-hop control-
flow in-neighbor (line 12) and its in-neighbor’s
data/control dependence (lines 7-9). The context
sequence slice consists of all statements in the CCG
slice, ordered by line number.

3 GraphCoder

3.1 Overview

GraphCoder is a graph-based framework for
repository-level code completion tasks. In gen-
eral, a code completion task aims to predict
the next statement ¢ for a given context X
{z1, 29, -+ ,x,}. Fig. 2 gives an overview of
GraphCoder’s workflow. Given a code repository,
GraphCoder completes the given context through
three steps: database construction, code retrieval,
and code generation.

* In the database construction step (Section 3.2),
GraphCoder constructs a key-value database that
maps each statement’s CCG slice to the state-
ment’s forward and backward [lines of code.

* In the code retrieval step (Section 3.3), Graph-
Coder takes a code completion context as in-

(1) Database Construction

CCG Slicing Database Keys
vertex 1/ CCG slice 1

vertex 2| CCG slice 2

DA
vertex i ! CCG slice i
1y L |,
Code

Repository Repository CCG Database Values

vertex 1 :con(exl seq 1
Context Sequence . vertex 2, context seq 2

Extraction

Context
Database

-
vertex i ! context seq i

(2 Code Retrieval

| 0 Coarse-grained Code Retriever |

T
T 72— F

Coarse-grained
S Query Result
. Sliced *-
Code Completion Query CCG Query Context
Context l Sequence

| ,0 Fine-grained Code Re-Ranker |
I

(3) Code Generation

ELO B
LLM

Predicted Prompt Template
Statement

Fine-grained
Query Result

Figure 2: An illustration of GraphCoder framework.

put and retrieves a set of similar code snippets
through a coarse-to-fine grained process. In the
coarse-grained sub-process, GraphCoder filters
out top-k candidate code snippets based on the
similarity of context sequence slice; in the fine-
grained sub-process, the candidate snippets are
re-ranked by a decay-with-distance structural
similarity measure.

* In the code generation step (Section 3.4), Graph-
Coder generates a prompt by concatenating the
fine-grained query result and the code comple-
tion context, and then feeds the prompt into an
LLM, waiting for the LLM to return a predicted
statement y of the code completion context.

3.2 Database Construction

Given a code repository, we establish a key-value
database D. For each statement x; in the code
repository, a key-value is generated and stored in
D: the key is x;’s CCG slice G!, (z;), and the value
is x;’s forward and backward [lines of code, i.e.,
{wi_i/2,+++ , @i Tiqy2} centered around ;.

3.3 Code Retrieval

The code retrieval step takes a code completion
context X as input, and outputs a set of code snip-
pets, through three sub-steps: query CCG construc-
tion, coarse-grained code retrieval, and fine-grained
code re-ranking.

Query CCG Construction. GraphCoder ini-
tially extracts the sliced query CCG of the comple-

tion target. Specifically, GraphCoder converts the
given context X to its CCG representation G. A
dummy vertex ¥ is then added to G to represent
the statement to be predicted. An assumption is
made that there exists a control-flow edge from the
last statement x,, in X to the statement to be pre-
dicted . The sliced query CCG is then obtained
by slicing from §, denoted as G (7).

Coarse-Grained Code Retrieval. Given a sliced
query CCG G (7)), the coarse-grained retrieval step
outputs the top-£ most similar results in D based
on coarse-grained similarity. The coarse-grained
similarity(C'Sim) between G', (i) and akey G, ()
in D is calculated as follows:

CSim(Gy,(7), Gy (x)) = sim(X}, (), X}, (x)

where X (9) and X} (z;) denotes the context se-
quence slice based on G, (7)) and G!, (z;), respec-
tively. sim denotes any similarity measure appli-
cable to code sequences, including sparse retriever
BM25 (Robertson et al., 2009), Jaccard index (Jac-
card, 1912) based on the bag-of-words model, as
well as dense retrievers like similarity of embed-
dings from CodeBERT (Feng et al., 2020) and
GraphCodeBERT (Guo et al., 2020).

Fine-Grained Code Re-Ranking. In this step,
GraphCoder re-ranks the coarse-grained query re-
sult based on the decay-with-distance subgraph edit
distance. The subgraph edit distance (SED) is the
minimum cost of transforming one graph into a
subgraph of another one through a series of edit
operations (Zeng et al., 2009; Ranjan et al., 2022).
The subgraph edit operations include the deletion
and the substitution of vertex or edges. For a vertex
v and an edge e in G (), the edit cost function
¢(+) is defined as follows:
* Vertex deletion cost c(v) = 1;
* Vertex substitution cost c(v,u) = 1 — sim(v,u);
* Edge deletion cost ¢(e) = 1;
* Edge substitution cost c(e, ¢') = 1y(¢)xa(er)-
where sim denotes any similarity measure for code
sequences, and the substitution cost of the dummy
vertex g for any other vertex is assumed to be 0.
Since the subgraph edit distance problem is NP-
hard (Zeng et al., 2009; He and Singh, 2006), we
calculate it by extending the quadratic-time greedy
assignment (GA) algorithm (Riesen et al., 2015a,b)
with a decay-with-distance factor. Specifically, we
first obtain an alignment A between the vertices

in G! (9) and G', (z) by the GA algorithm (Riesen
et al., 2015a). The aligned vertex pairs in A re-
flects the vertex substitution relationship between
X! () and X! (z). For a vertex v in G' (), we
denote the A(v) as its aligned vertex in G, (z).
Let X4 be {v|v € X}(9), (v,u) € A}, E4 be
{ele = (vt,u) € Gh(@), (Alv). 1, Aw)) €
G! ()}, and (v, §) be the number of hops from §
to v, the decay-with-distance SED determined by
A is calculated in Algorithm 2.

Algorithm 2: Decay-with-distance SED

Input :Graphs G! (4) and G! () as well
as a decay-with-distance factor .
Output : Decay-with-distance SED between
G! (9) and G! ().
1 SED + 0;
2 forv € X4 do
3 ‘ SED « SED + "9 ¢(v, A(v));
4 end
s for v € X} () \ X4 do
6 | SED <« SED +~""c(v);
7 end
8
9

fore = (v,t,u) € E4 do

‘ SED « SED +~"9)¢(e, A(e));
10 end

u fore = (v,t,u) € E\(9) \ E do

12 ‘ SED < SED +~y"Mvi)c(e);

13 end

14 return SED;

3.4 Code Generation

After obtaining a set of retrieved code snippets,
GraphCoder employs an external LLM as a black
box to generate the next statement of the given code
completion context X. Following the commonly-
used practice (Zhang et al., 2023a) of retrieval-
augmented prompt formatting (Appendix C), we
arrange the retrieval code snippets in ascending sim-
ilarity order, each of which is accompanied with its
original path file; then these arranged code snippets
are concatenated by the code completion context
X as the final prompt of the LLM.

4 Experimental Setup

4.1 Dataset: RepoEval-Updated

The dataset RepoEval-Updated is used in our exper-
iments for repository-level code completion eval-
uvation. In particular, RepoEval-Updated is de-
rived from another dataset RepoEval (Zhang et al.,
2023a), which consists of a set of repository-level

code completion tasks constructed from a collec-
tion of GitHub Python repositories created between
2022-01-01 and 2023-01-01. RepoEval-Updated
refreshes RepoEval by removing those repositories
created before 2022-03-31 and adding more recent
repositories created after 2023-01-01, in order to
avoid data leakage for most existing code LLMs
whose training data is released before 2023. Those
newly-added repositories are selected following the
same criteria as RepoEval; the details are shown in
Table 4 in Appendix B.

RepoEval-Updated includes two kinds of com-
pletion tasks, namely API-level and line-level tasks;
each of them consists of 1600 test cases. A line-
level task is generated by randomly removing a
code line from repository and encapsulating its
forward code snippet as a completion task. An
API-level task is generated in a similar way except
that the removed code line includes at least one
intra-repository defined API invocation.

4.2 Evaluation Metrics

Metrics for the retrieval. Following the estab-
lished practice for RAG (Gao et al., 2023), we em-
ploy hit@Qk to assess the retrieval performance. In
addition, we also employ two rank-related metrics:
Mean Average Precision (MAP) (Cormack and Ly-
nam, 2006; Hirsch and Hofer, 2023) and Area Un-
der the Curve (AUC) (Zuva and Zuva, 2012).
Metrics for the completion. Following previous
studies (Lu et al., 2022; Liu et al., 2023), we evalu-
ate the completion performance using two metrics:
Exact Match (EM) and Edit Similarity (ES).

4.3 Methods for Comparison

No RAG. This method simply feeds the code com-
pletion context into an LLM and takes the output
of the LLM as the predicted next statement.
Vanilla RAG. Given a completion context, this
method retrieves a set of similar code snippets from
a repository via a fixed-size sliding window and in-
vokes an LLLM to obtain a predicted next statement.
Shifted RAG. This method is similar to vanilla
RAG, except that it returns the code snippet in the
subsequent window that is more likely to include
the invocation example of target code. This method
is also mentioned in ReAcc (Lu et al., 2022).
RepoCoder (Zhang et al., 2023a). A sliding
window-based method that locates the completion
target through an iterative retrieval and generation
process. In each iteration, RepoCoder retrieves

the most similar code snippets based on the code
LLMs’ generation results from the last iteration.

4.4 Implementation Details

Code Retrieval. To ensure a fair comparison, we
use the same measure to compute the similarity
between code sequences across different methods
for comparison. Specifically, we employ a sparse
bag-of-words model, known for its effectiveness
in retrieving similar code snippets (Lu et al., 2022;
Zhang et al., 2023a), a model which transforms
code snippets into sets of tokens and calculates
similarity using the Jaccard Index (Jaccard, 1912).
Code Generation. To avoid data leakage, we ex-
clude in our consideration those LLMs without a
explicit training data timestamp or a timestamp af-
ter 2023-01-01. Among the remaining LL.Ms, we
select 5 LLMs with diverse code understanding ca-
pabilities: GPT-3.5-Turbo-Instruct 4, StarCoder (Li
et al., 2023a), and CodeGen2 models (1B, 7B, and
16B) (Nijkamp et al., 2023).

The detailed hyper-parameter settings related to
the code retrieval and code generation are described
in the Appendix C.

5 Experimental Results

5.1 Retrieval Effectiveness

Overall Performance. Table 1 shows the re-
trieval results across different retrieval frameworks.
GraphCoder framework with the coarse-to-fine re-
trieval process outperforms other baselines in the
majority of cases for both API-level and line-level
code completion tasks. This result demonstrates
the benefits of utilizing the structural context ex-
tracted based on CCG for locating relevant code
snippets to the completion target. By comparing
Shifted RAG with Vanilla RAG, we can conclude
that there is a position gap between the most similar
code snippets and the intended completion target.
RepoCoder shows the highest hit@1 except for
GraphCoder. However, the retrieval performance
of RepoCoder depends largely on the generation
capabilities of LLMs. The RepoCoder results in
Table 1 is the average results of the five LLMs
used. Based on the generation result of CodeGen2-
1B, RepoCoder achieves a hit@1 of 18.93%, while
StarCoder results in a higher value of 25.06%.

Ablation Study. To further understand how the
coarse-grained and the fine-grained retrieval con-

4https ://platform.openai.com/docs/models/
gpt-3-5-turbo

hit@l hit@5 MAP AUC
API-level
Vanilla RAG 6.81 14.88 10.18 10.04
Shifted RAG 12.19 1875 1529 13.34
RepoCoder 2148 3450 26.88 26.72
GraphCoder-C 26.63 32.56 29.19 26.14
GraphCoder-F 25.44 30.06 27.44 26.05
GraphCoder 29.00 34.75 31.41 26.79
Line-level
Vanilla RAG 944 1838 13.34 13.21
Shifted RAG 1595 23.63 19.37 17.47
RepoCoder 24.53 3225 2824 2592
GraphCoder-C ~ 26.81 3198 29.23 24.12
GraphCoder-F 17.88 21.06 19.33 17.69
GraphCoder 2744 32.56 29.77 25.10

Table 1: Experimental results on retrieval effectiveness,
which are formatted as percentages (%). GraphCoder-C
and GraphCoder-F are variants of GraphCoder, where
GraphCoder-C includes only coarse-grained retrieval,
and GraphCoder-F includes only fine-grained retrieval.

—o— APl-level

Gx\e_e —4— Line-level
—6-

34.0 4 g S}

@275 Q\“\S\]
< 2704 33.0 A

26.5 A‘\(I\A\A*\A\A\A A\A’A_A/A\A—A\A\A\A
025 o. 50 0.75 1.00 025 050 075 1.00

Y
—o— APl-level

1 —A— Line-level
S 26.5 1 {\\%
8 26.0 A

T T T T
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Y Y

—— API-level 35.0 4
28.5 1 —A— Line-level

hit@5 (%)

—6— APl-level
31.01 —A— Line-level

M
NN
© v
o u
! s ! |
/ ?
‘j)
|
Al
N N
g u
o u

Figure 3: GraphCoder retrieval effectiveness with the
variation of hyper-parameter -, where + is the decay-
with-distance factor in the fine-grained re-ranking step.

tribute to GraphCoder performance, we conduct
an ablation experiment. The results are shown in
Table 1, where GraphCoder-C and GraphCoder-
F represents the GraphCoder variants with only
the coarse-grained and the fine-grained retrieval,
respectively. As seen from Table 1, the coarse-
grained retrieval plays a significant role in Graph-
Coder. Moreover, adding the fine-grained retrieval
process proves beneficial after the coarse-grained
process filters out several candidate snippets. How-
ever, when relying solely on fine-grained similarity,
GraphCoder-F yields a lower hit rate.

Hyper-Parameter Sensitivity. In Fig. 3, we
demonstrate the sensitivity of GraphCoder to its

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo

GPT3.5 StarCoder15B CodeGen2-1B CodeGen2-7B CodeGen2-16B
EM ES EM ES EM ES EM ES EM ES
API-level
No RAG 24.62 5321 11.81 3577 20.75 4993 2400 5297 2450 53.23
Vanilla RAG 31.31 5198 3350 51.89 23.69 50.06 26.62 5225 2662 5237
Shifted RAG 36.69 6098 10.25 2729 22.69 4728 2481 4826 2425 47.07
RepoCoder 33.12 5348 3438 57.09 2938 54.64 3088 5586 3125 56.87
GraphCoder-C 40.62 62.23 34.75 58.42 3394 5896 37.19 62.14 38.56 62.79
GraphCoder-F 38.50 61.08 33.94 58.12 33.12 59.04 37.06 62.12 3744 62.60
GraphCoder 40.94 62.74 35.56 58.60 3544 6045 38.69 63.79 40.12 64.68
Line-level
No RAG 30.13 56.39 15.12 3793 2462 5192 3125 5750 31.69 5745
Vanilla RAG 3331 5290 33.00 5291 31.56 5451 36.06 5847 36.06 5748
Shifted RAG 43.63 6532 14.62 30.88 29.56 5145 33.12 5283 31.75 5044
RepoCoder 3419 54.19 3425 5262 33.62 5651 3850 60.15 3819 59.37
GraphCoder-C 43.63 65.44 34.81 5345 3894 62.65 4375 66.57 44.69 66.76
GraphCoder-F 39.12 62.32 29.63 51.26 33.94 59.04 39.19 6332 40.06 64.15
GraphCoder 44.37 65.63 34.12 53.52 39.25 6272 43.78 6684 4481 67.06

Table 2: Experimental results on the code completion effectiveness. The values presented are formatted as
percentages (%). GPT3.5 refers to GPT3.5-Turbo-Instruct. GraphCoder-C and GraphCoder-F are variants, with
GraphCoder-C including only coarse-grained retrieval, and GraphCoder-F including only fine-grained retrieval.

hyperparameter -y, which is the dependence dis-
tance shrink factor in the fine-grained retrieval. A
lower v places more emphasis on the local struc-
ture of the completion target. From Fig. 3, we
can conclude that the effectiveness of fine-grained
re-ranking tends to increase as y decreases.

5.2 Code Completion

Overall Performance. Table 2 shows the code
completion results of the five methods. It can be
observed that GraphCoder exhibits a significant
improvement on both the API-level and line-level
code completion tasks compared to No RAG com-
pletion and baseline RAG methods. The improve-
ment is more significant on GPT3.5-Turbo-Instruct
and CodenGen2 series models compared to Star-
Coder, since StarCoder often wrongly encapsulates
the predicted next statement into the code com-
ment, thus influencing the EM metric. Compared
to the vanilla RAG, GraphCoder increases the EM
values on API-level and line-level tasks by 9.80%
and 7.27% on average, respectively. This observa-
tion emphasizes the effectiveness of GraphCoder’s
retrieval in repository-level code completion sce-
narios. Furthermore, compared with other slid-
ing window-based RAG methods (Vanilla RAG,
Shifted RAG, and RepoCoder), GraphCoder ex-
hibits superior performance with higher EC and

ES. Notably, an observation from Table 2 indicates
that Shifted RAG’s shifting approach does not nec-
essarily enhance No RAG completion performance.
However, shifting all retrieved code snippets with-
out considering their content may lead to the re-
trieval of totally irrelevant code snippets, introduc-
ing potential confusion for the code LLMs.

Ablation Study. In Table 2, we also give the
ablation study results of the two components in
GraphCoder by evaluating the code completion per-
formance separately with only the coarse-grained
(GraphCoder-C) and fine-grained (GraphCoder-
F) retrieval steps. Similar to the results in Ta-
ble 1, the superior performance of GraphCoder
mainly benefits from the coarse-grained retrieval
step. While the fine-grained re-ranking process
does contribute to a slight improvement in comple-
tion results, its significance becomes more evident
when the context window is smaller. This is illus-
trated by the larger gap between GraphCoder-C and
GraphCoder, particularly in the CodeGen2 models.

5.3 Efficiency

To investigate the retrieval efficiency of Graph-
Coder and sliding window-based methods, we com-
pare their end-to-end retrieval running time per
completion task in Table 3. Specifically, the end-
to-end retrieval running time comprises the time

API-level
runtime (sec)
Sliding window-based RAG

Line-level
runtime (sec)

- Stride = 1 1.3138 1.2059
- Stride =5 0.2623 0.2617
- Stride = 10 0.1344 0.1296
GraphCoder

- Coarse 0.7822 0.8039
- Fine 0.0247 0.0235
- Overall 0.8069 0.8274

Table 3: The end-to-end retrieval time per completion
task in seconds for GraphCoder and sliding window-
based methods (i.e., Vanilla RAG, Shifted RAG, and
RepoCoder) with varied strides.

needed for converting code sequences into bag-
of-words embedding (via a local tokenizer) and
searching for the top-k code snippets based on their
corresponding similarity measure. Since Vanilla
RAG, Shifted RAG, and RepoCoder are all sliding
window-based methods with the same embedding
and searching similarity measure, we present their
average retrieval time in Table 3.

It can be observed that GraphCoder outperforms
sliding window-based methods in terms of time
efficiency when the stride is set to 1. As the sliding
window’s stride increases, the number of code snip-
pets in the database decreases, leading to less time
spent by sliding window-based methods for larger
strides. Therefore, GraphCoder exhibits lower effi-
ciency compared to sliding window-based methods
with larger strides (5 and 10), mainly because of
GraphCoder’s larger statement-level database. De-
spite this, from a cost-effective perspective, Graph-
Coder remains an affordable option.

6 Related Work

Repository-Level Code Completion. The task of
repository-level code completion is gaining signifi-
cant attention for intelligent software development
in real-world scenarios (Liao et al., 2023; Ding
etal., 2022; Shrivastava et al., 2023a,b; Zhang et al.,
2023a). Various training or fine-tuning based meth-
ods, including n-grams (Tu et al., 2014) and Trans-
formers (Svyatkovskiy et al., 2020; Ding et al.,
2022), have been proposed to integrate reposi-
tory context into language models (LMs). How-
ever, challenges persist due to the dynamic na-
ture of repository-level features driven by contin-
uous project development. To address this lim-
itation, retrieval-augmented LMs have been pro-
posed (Tang et al., 2023; Khandelwal et al., 2019;

Luetal., 2022; Zhang et al., 2023a). Khandelwal et
al. (Khandelwal et al., 2019) and Tang et al. (Tang
et al., 2023) propose a post-processing framework
that adjusts the probability for the next token output
by LMs with repository-level token frequency. Nev-
ertheless, these methods are sensitive to manually
selected interpolated weights. With the emergence
of code LLMs demonstrating remarkable code com-
prehension capabilities, several approaches (Lu
et al., 2022; Zhang et al., 2023a; Liao et al., 2023)
have adopted a pre-processing strategy, that re-
trieves relevant snippets and adds them into LLMs’
prompt. However, existing works only consider the
context as a code sequence format without consid-
ering structural dependencies among statements.
Retrieval-Augmented Generation for LLMs.
Large language models (LLMs) have demonstrated
impressive capabilities in understanding both nat-
ural language and code, such as the GPT (Brown
et al., 2020; Achiam et al., 2023), the LLama (Tou-
vron et al., 2023), and the GLM series (Zeng et al.,
2022; Du et al., 2022). However, LLMs exhibit
limited performance in handling domain-specific
queries that are beyond the knowledge of its train-
ing data (Kandpal et al., 2023). To address this
problem, one of the effective practices is retrieval-
augmented generation (RAG), which is a frame-
work first introduced by Lewis et al. (Lewis et al.,
2020). To better locate the relevant information
to the the target answer, several approaches have
been proposed, such as introducing a hypothetical
questions (Li et al., 2023b) and adopting language
model to rewrite the query (Ma et al., 2023).

7 Conclusion

In this paper, we propose GraphCoder, a graph-
based code completion framework for repository-
level tasks. GraphCoder uses a code context graph
(CCQ) to capture the completion target’s relevant
context. The CCG is a statement-level multi-graph
with control flow and data/control dependence
edges. The retrieval is done through coarse-to-fine
steps, involving filtering candidate code snippets
and re-ranking them using a decay-with-distance
structural similarity measure. After that, Graph-
Coder employs pre-trained language models to gen-
erate the next lines based on the retrieved snippets.
Experimental results demonstrate GraphCoder’s ef-
fectiveness, significantly improving the completion
target hit rate for retrieval and achieving higher
exact match values in the code completion.

Limitations

While this paper boasts numerous merits, it also
bears some limitations.

Limited Effectiveness for Repositories With Few
Code Duplication. Although we have proved
the effectiveness of GraphCoder based on exten-
sive experiments, there may exist potential threats
to GraphCoder when the downstream evaluation
repositories contain relatively low code duplica-
tion. This is primarily because low duplication will
significantly reduce the recall rate during the re-
trieval phase of GraphCoder. To clearly delineate
the performance boundaries, we offer a more de-
tailed analysis on the impact of code duplication
for GraphCoder’s efficacy in Appendix A.

Limited Time Efficiency for Larger Repository.
GraphCoder has demonstrated exceptional superi-
ority in various repo-level code completion tasks
compared to its baselines. Yet, as repository size
increases, the graph-based traits in GraphCoder
would result in comparatively lower retrieval effi-
ciency, as detailed in Section 5.3. So, we plan to
expand GraphCoder in the future, with the objec-
tive of enhancing its effectiveness without compro-
mising on efficiency.

Limited Exploration for Various Languages
Models. Indeed, we are keen to use more
recent newly released code LLMs, such as
CodeLlama (Roziere et al., 2023) and DeepSeek-
Coder (Guo et al., 2024), to verify the effective-
ness of GraphCoder. Regrettably, these recent mod-
els pose a data leakage risk to RepoEval (Zhang
et al., 2023a) and even our newly constructed
RepoEval-Updated. Therefore, we meticulously se-
lect five suitable code LLMs without data leakage
risk to validate GraphCoder’s effectiveness, includ-
ing OpenAI’s GPT-3.5, StarCoder 15B, CodeGen2
1B, 7B and 16B, for the fairness of experiments.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Frances E Allen. 1970. Control flow analysis. ACM
Sigplan Notices, 5(7):1-19.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Gordon V Cormack and Thomas R Lynam. 2006. Sta-
tistical precision of information retrieval evaluation.
In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 533-540.

Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N
Wegman, and F Kenneth Zadeck. 1991. Efficiently
computing static single assignment form and the
control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS),
13(4):451-490.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad,
Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang.
2022. Cocomic: Code completion by jointly mod-
eling in-file and cross-file context. arXiv preprint
arXiv:2212.10007.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-335.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1536-1547.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren.
1987. The program dependence graph and its use in
optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 9(3):319-349.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Robert Gold. 2010. Control flow graphs and code cov-
erage. International Journal of Applied Mathematics
and Computer Science, 20(4):739-749.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
In International Conference on Learning Representa-
tions.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence.

Mary Jean Harrold, Brian Malloy, and Gregg Rothermel.
1993. Efficient construction of program dependence
graphs. ACM SIGSOFT Software Engineering Notes,
18(3):160-170.

Huahai He and Ambuj K Singh. 2006. Closure-tree: An
index structure for graph queries. In 22nd Interna-
tional Conference on Data Engineering (ICDE’06),
pages 38-38. IEEE.

Thomas Hirsch and Birgit Hofer. 2023. The map metric
in information retrieval fault localization. In 2023
38th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 1480—
1491. IEEE.

Paul Jaccard. 1912. The distribution of the flora in the
alpine zone. 1. New phytologist, 11(2):37-50.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge. In In-

ternational Conference on Machine Learning, pages
15696-15707. PMLR.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
tischel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Xinze Li, Zhenghao Liu, Chenyan Xiong, Shi Yu,
Yu Gu, Zhiyuan Liu, and Ge Yu. 2023b. Structure-
aware language model pretraining improves dense
retrieval on structured data. arXiv preprint
arXiv:2305.19912.

Dianshu Liao, Shidong Pan, Qing Huang, Xiaoxue Ren,
Zhenchang Xing, Huan Jin, and Qinying Li. 2023.
Context-aware code generation framework for code
repositories: Local, global, and third-party library
awareness. arXiv preprint arXiv:2312.05772.

Tianyang Liu, Canwen Xu, and Julian McAuley.
2023. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint
arXiv:2306.03091.

10

Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang,
Qinxiang Cao, and Yong Yu. 2022. Multi-view graph
representation for programming language process-
ing: An investigation into algorithm detection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 5792-5799.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6227-6240.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

IA Natour. 1988. On the control dependence in the
program dependence graph. In Proceedings of the
1988 ACM sixteenth annual conference on Computer
science, pages 510-519.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023. Codegen?2:
Lessons for training llms on programming and natu-
ral languages. arXiv preprint arXiv:2305.02309.

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval
augmented code generation and summarization. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2719-2734.

Rishabh Ranjan, Siddharth Grover, Sourav Medya,
Venkatesan Chakaravarthy, Yogish Sabharwal, and
Sayan Ranu. 2022. Greed: A neural framework
for learning graph distance functions. Advances in
Neural Information Processing Systems, 35:22518-
22530.

Kaspar Riesen, Miquel Ferrer, and Horst Bunke. 2015a.
Approximate graph edit distance in quadratic time.
IEEE/ACM transactions on computational biology
and bioinformatics, 17(2):483-494.

Kaspar Riesen, Miquel Ferrer, Andreas Fischer, and
Horst Bunke. 2015b. Approximation of graph edit
distance in quadratic time. In Graph-Based Repre-
sentations in Pattern Recognition: 10th IAPR-TC-
15 International Workshop, GbRPR 2015, Beijing,
China, May 13-15, 2015. Proceedings 10, pages 3—
12. Springer.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-389.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schirli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-

national Conference on Machine Learning, pages
31210-31227. PMLR.

Disha Shrivastava, Denis Kocetkov, Harm de Vries,
Dzmitry Bahdanau, and Torsten Scholak. 2023a. Re-
pofusion: Training code models to understand your
repository. arXiv preprint arXiv:2306.10998.

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-
low. 2023b. Repository-level prompt generation for
large language models of code. In International Con-
ference on Machine Learning, pages 31693-31715.
PMLR.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
Code generation using transformer. In Proceedings
of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 1433—-1443.

Ze Tang, Jidong Ge, Shangqing Liu, Tingwei Zhu, Tong-
tong Xu, Liguo Huang, and Bin Luo. 2023. Do-
main adaptive code completion via language mod-
els and decoupled domain databases. In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 421-433. IEEE.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.
2014. On the localness of software. In Proceedings
of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 269—
280.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint
arXiv:2310.01558.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and
Jian-Guang Lou. 2022. CERT: continual pre-training
on sketches for library-oriented code generation. In
Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, 1JCAI 2022,
Vienna, Austria, 23-29 July 2022, pages 2369-2375.
ijcai.org.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Wang Yongji, and Jian-
Guang Lou. 2023. Large language models meet
NL2Code: A survey. In Proceedings of the 61st An-
nual Meeting of the Association for Computational

11

Linguistics (Volume 1: Long Papers), pages 7443—
7464, Toronto, Canada. Association for Computa-
tional Linguistics.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. GIlm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jian-
hua Feng, and Lizhu Zhou. 2009. Comparing stars:
On approximating graph edit distance. Proceedings
of the VLDB Endowment, 2(1):25-36.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023a. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 2471-2484. Association for Computational
Linguistics.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023b.
Unifying the perspectives of nlp and software engi-
neering: A survey on language models for code.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen.
2023. A survey of large language models for code:
Evolution, benchmarking, and future trends.

Keneilwe Zuva and Tranos Zuva. 2012. Evaluation
of information retrieval systems. International jour-

nal of computer science & information technology,
4(3):35.

A Influence of Code Duplication on
GraphCoder Effectiveness

To analyze the impact of code duplication in a
repository on the performance of GraphCoder, we
present in Fig. 4 the correlation between the repos-
itory’s duplication ratio and the improvement in
Exact Match (EM) achieved by GraphCoder when
compared to No RAG. The repository’s duplication
ratio represents the proportion of duplicated code
lines to the total number of code lines in a repos-
itory. The EM improvement value represents the
difference between GraphCoder and in-file comple-
tion (No RAG) based on GPT-3.5-Turbo-Instruct.
The results in Fig. 4 indicate that as the dupli-
cation ratio increases, GraphCoder’s effectiveness
becomes more significant, particularly in line-level
code completion tasks. In the diffusers repository
which has the highest duplication ratio, Graph-
Coder exhibits the most significant EM improve-
ment on both the API-level and line-level task. In

https://aclanthology.org/2023.acl-long.411
https://aclanthology.org/2023.acl-long.411
https://aclanthology.org/2023.acl-long.411
http://arxiv.org/abs/2311.07989
http://arxiv.org/abs/2311.07989
http://arxiv.org/abs/2311.07989
http://arxiv.org/abs/2311.10372
http://arxiv.org/abs/2311.10372
http://arxiv.org/abs/2311.10372

0.5 1.0
—©— APl-level EM
—A— Line-level EM
0.4 Duplication ratio 0.8
©
= 031 0.6 g
o >
B o
S
)

_% 0.2 0.4 g
3 G
0.1 A 0.2
0.0 T T T T T T T T 0.0

& & & &° & & N ©
& N S ks S it
be\\ \Se,’l’ é}fb {KL} ,?}\Q & i {{\Q
SF & R S
<o W
Repository

Figure 4: Correlation between the repository’s dupli-
cation ratio and the improvement in EM achieved by
GraphCoder when compared to No RAG.

the devchat repository with few code duplication,
the effectiveness of GraphCoder is limited. How-
ever, this tendency is not consistently observed;
for example, compared with fortuna, GraphCoder
achieves higher EM on API-level task despite hav-
ing a lower code duplication ratio in the NeMo-
Aligner repository.

B Repositories in RepoEval-Updated

The dataset used in our experiments, RepoEval-
Updated, includes eight real-world open-source
GitHub repositories’. This dataset is derived from
the RepoEval benchmark (Zhang et al., 2023a) by
removing the repositories created before March
31, 2022 and add more recently repositories cre-
ated after January 1, 2023 to ensure no overlap
with the training data of advanced code LLMs re-
leased in 2023. The newly added repositories are
selected based on the same criteria as RepoEval:
open-source license, non-fork original repositories,
over 100 stars, over 80% of files written in Python,
and explicit unit tests. The details of the selected
repositories are shown in Table 4.

To generate the line-level completion test tasks,
we randomly select 200 code lines from each repos-
itory, adhering to criteria that the target completion
lines are non-repetitive, not code comments, and
contain at least 5 tokens (Zhang et al., 2023a). Rec-
ognizing a shortage of intra-repository APIs invo-
cations in the devchat repository, we construct 100
test samples specifically for devchat. For the larger

5h'ctps ://github.com

12

repository metagpt, we randomly select 300 test
samples, while other repositories each provide 200
test samples, thus forming 1600 api-level comple-
tion test samples in total.

C Hyper-Parameter Settings

Following established practice in code comple-
tion (Zhang et al., 2023a), we fill the LLMs’ con-
text window by two parts: the retrieved code snip-
pets, and the completion context. Each part occu-
pies half of the context window. The maximum
number of retrieved code snippets is 10. The maxi-
mum number of tokens in the generated completion
is set to 100. For sliding window-based approaches
(Vanilla RAG, Shifted RAG and RepoCoder), we
fix the window size as 20 lines and a default sliding
stride of 1. For GraphCoder, its graph maximum
hop h is set to 5, the maximum number of state-
ments [is set to 20, and the decay-with-distance
factor is set to 0.1.

An example of the prompt template employed in
GraphCoder is shown in Fig. 5.

https://github.com

Repo name GitHub Link Created at ~ Stars #Files Size
devchat* devchat-ai/devchat 2023-04-17 270 40 0.5MB
NeMo-Aligner* NVIDIA/NeMo-Aligner 2023-09-01 119 54 1.6MB
fortuna awslabs/fortuna 2022-11-17 826 168 1.9MB
TaskWeaver* microsoft/TaskWeaver 2023-09-11 4035 113 3.0MB
diffusers huggingface/diffusers 2022-05-30 20854 305 6.2MB
ACE opendilab/ACE 2022-11-23 230 425 6.8MB
metagpt* geekan/MetaGPT 2023-06-30 34140 374 17.9MB
nerfstudio nerfstudio-project/nerfstudio 2022-05-31 7959 157 54.5MB

Table 4: Statistics of repositories in RepoEval-Updated. * corresponds to the newly added repositories to the original
benchmark. All the newly added repositories are archived on 2024-01-05. #Files indicates the number of Python
files in the repository. Statistics are accurate as of February 2024.

Here are some relevant code fragments from other files of the repo: Retrieved Code

P Shnippets

The below code fragment can be found in:

huggingface_diffusers/examples/research_projects/multi_subject_dreambooth/train_multi_subject_dreambooth.py
S

use_fast=False,

)

#

import correct text encoder class

text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
#

Load scheduler and models

noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = text_encoder_cls.from_pretrained(

args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision

)

vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(

args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision

)

#

vae.requires_grad_(False)

if not args.train_text_encoder:

text_encoder.requires_grad_(False)

#

if args.enable_xformers_memory_efficient_attention:

B e

Based on above, complete the next statement of the following codes:
Load the tokenizer
if args.tokenizer_name: Code Comp|eti0n
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) Context
elif args.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,

import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = text_encoder_cls.from_pretrained(

args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision

)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(Predicted
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision Statement
)

Figure 5: An example showing the prompt format employed in GraphCoder.

13

https://github.com/devchat-ai/devchat
https://github.com/NVIDIA/NeMo-Aligner
https://github.com/awslabs/fortuna
https://github.com/microsoft/TaskWeaver
https://github.com/huggingface/diffusers
https://github.com/opendilab/ACE
https://github.com/geekan/MetaGPT
https://github.com/nerfstudio-project/nerfstudio

