
GraphCoder: Enhancing Repository-Level Code Completion via Code
Context Graph-based Retrieval and Language Model

Anonymous ACL submission

Abstract
The performance of repository-level code com-001
pletion depends upon the effective leverage002
of both general and repository-specific knowl-003
edge. Despite the impressive capability of004
code LLMs in general code completion tasks,005
they often exhibit less satisfactory perfor-006
mance on repository-level completion due to007
the lack of repository-specific knowledge in008
these LLMs. To address this problem, we pro-009
pose GraphCoder, a retrieval-augmented code010
completion framework that leverages LLMs’011
general code knowledge and the repository-012
specific knowledge via a graph-based retrieval-013
generation process. In particular, Graph-014
Coder captures the context of completion target015
through code context graph (CCG) that consists016
of control-flow and data/control-dependence017
between code statements, a more structured018
way to capture the completion target context019
than the sequence-based context used in exist-020
ing retrieval-augmented approaches; based on021
CCG, GraphCoder further employs a coarse-to-022
fine retrieval process to locate context-similar023
code snippets with the completion target from024
the current repository. Experimental results025
show that: compared with the state-of-the-art026
method RepoCoder, GraphCoder improves the027
exact match metric by 5.93% on average.028

1 Introduction029

Code LLMs (large language models), such as030

Codex (Chen et al., 2021), StarCoder (Li et al.,031

2023a) and Code Llama (Roziere et al., 2023),032

have demonstrated impressive capability in gen-033

eral code completion tasks (Zheng et al., 2023; Zan034

et al., 2023; Zhang et al., 2023b). Some of them035

have been deployed as auto-completion plugins036

(e.g., GitHub Copilot1, CodeGeeX2) in modern In-037

tegrated Development Environments (IDEs), and038

successfully streamline the real-world software de-039

velopment activities to a certain degree.040

1https://github.com/features/copilot
2https://codegeex.cn

However, compared with their performance in 041

general scenarios, code LLMs exhibit less satisfac- 042

tory performance in repository-level code comple- 043

tion tasks, due to the lack of repository-specific 044

knowledge in these LLMs (Zan et al., 2022; Tang 045

et al., 2023; Zhang et al., 2023a). Specifically, 046

the repository-specific knowledge (including code 047

style and intra-repository API usage) cannot be 048

well learned by or even inaccessible to code LLMs 049

during their pre-training and fine-tuning phases, 050

particularly for those newly created, personal pri- 051

vately owned, or confidential business reposito- 052

ries. One superficial remedy to this knowledge-lack 053

problem is to concatenate all the code files in the 054

repository as the prompt to LLMs in the situation 055

that the size of LLMs’ context window is continu- 056

ously growing. However, this kind of remedy puts 057

too much irrelevant information into the prompt, 058

bringing unnecessary confusion to LLMs and lead- 059

ing to degraded completion performance (Yoran 060

et al., 2023; Shi et al., 2023). 061

To mitigate the knowledge-lack problem men- 062

tioned above, several methods have been proposed 063

following the RAG pattern of retrieval-augmented 064

generation (Parvez et al., 2021; Lu et al., 2022; 065

Zhang et al., 2023a). For each completion task, 066

RAG first retrieves a set of context-similar code 067

snippets from the current repository, and then in- 068

jects these snippets into the prompt, with the hope 069

of improving the generation results of code LLMs; 070

these retrieved snippets play the role of augmenting 071

code LLMs with the repository-specific knowledge 072

related to a completion task. As a result, the effec- 073

tiveness of RAG largely depends on how to define 074

the relevance between a code snippet and a com- 075

pletion task. Most existing RAG methods follow 076

the classical NLP style and locate a set of related 077

code snippets of a completion task by considering 078

sequence-based context similarity. 079

In this paper, we follow the RAG pattern for 080

repository-level code completion, but explore a 081

1

https://github.com/features/copilot
https://codegeex.cn

more structured style to locate relevant code snip-082

pets of a completion task. Specifically, we propose083

GraphCoder, a graph-based RAG code completion084

framework. The key idea of GraphCoder is to cap-085

ture the context of a completion task by leveraging086

the structural information in the source code via087

an artifact called code context graph (CCG). In088

particular, a CCG is a statement-level multi-graph089

that consists of a set of statements as vertices, as090

well as three kinds of edges between statements,091

namely control flow, and data/control dependence.092

The CCG contributes to improving retrieval ef-093

fectiveness from three aspects: (1) Replacing se-094

quence representation of code with structured rep-095

resentation to capture more relevant statements of096

the completion task; (2) Augmenting the lexical097

similarity between the context of two statements098

with structure-based similarity to identify deeply099

matched statements of the completion target from100

the repository; (3) Adopting a decay-with-distance101

structural similarity to weight the different impor-102

tance of context statements to the completion target.103

Experiments based on eight real-world reposito-104

ries demonstrate the effectiveness of GraphCoder:105

GraphCoder more accurately locates code snippets106

with a higher completion target hit rate (+5.22%107

on average) and a higher exact match (+5.93% on108

average) for code completion compared to the state-109

of-the-art method RepoCoder.110

To summarize, our main contributions are:111

• A structured representation of source code CCG112

(code context graph) to capture relevant long-113

distance context for predicting the semantics of114

code completion target;115

• An approach GraphCoder to enhance the effec-116

tiveness of retrieval by a coarse-to-fine process,117

which considers both structural and lexical con-118

text, as well as the dependence distance between119

the completion target and the context;120

• Extensive experiments3 demonstrate that Graph-121

Coder outperforms existing RAG frameworks122

with higher hit rate and exact match value.123

2 Basic Concepts124

In this section, we introduce two concepts used in125

GraphCoder, namely code context graph (CCG)126

and CCG slicing. The former is employed to trans-127

form a code snippet into a structured representation128

3The code and dataset are available at https://
anonymous.4open.science/r/GraphCoder-627E.

(i.e., a set of statements as well as a set of structural 129

relationships between them). Given a statement 130

x in a CCG G, the latter is used to extract a G’s 131

subgraph that consists of x and x’s h-hop depended 132

elements as well as relationships between them. 133

2.1 Code Context Graph 134

A code context graph is the superimposition of 135

three kinds of graphs about source code: con- 136

trol flow graph (CFG), control dependence graph 137

(CDG), and data dependence graph (DDG). The lat- 138

ter two graphs together are commonly identified as 139

program dependence graph (Ferrante et al., 1987). 140

Definition 1 (Code Context Graph) A code con- 141

text graph G = (X,E, T, λ) is a directed multi- 142

graph, where 143

• X = {x1, · · · , xn} is the vertex set, each of 144

which represents a code statement; 145

• E = {e1, · · · , em} is the edge set; each edge is 146

a triple (xi, t, xj) where xi, xj ∈ X , and t ∈ T 147

denoting the edge type; 148

• T = {CF,CD,DD} is the edge type set, where 149

CF denotes the control-flow edge, CD the con- 150

trol dependence, and DD the data dependence; 151

• λ is a function that maps each edge in E to its 152

type in T , i.e., for e = (xi, t, xj), λ(e) = t. 153

Control flow graphs (CFG) provide a detailed 154

representation of the order in which statements are 155

executed (Allen, 1970; Gold, 2010; Long et al., 156

2022). The vertices of CFG represent statements 157

and predicates. The edges indicate the transitions 158

of control between statements, including the se- 159

quential executions, jumps, and iterative loops. 160

Control dependence graphs (CDG) focus on 161

identifying the control dependencies between state- 162

ments, with edges emphasizing the direct influence 163

of one statement on the execution of another (Fer- 164

rante et al., 1987; Natour, 1988; Cytron et al., 1991). 165

Specifically, an edge exists between two statements 166

if one directly affects whether the other will be 167

executed, distinguishing it from the CFG. 168

Data dependence graphs (DDG) reflect the de- 169

pendencies arising from variable assignments and 170

references, where edges represent that there is a 171

variable defined in one statement is used by an- 172

other (Ferrante et al., 1987; Harrold et al., 1993). 173

2

https://anonym ous.4open.science/r/GraphCoder-627E
https://anonym ous.4open.science/r/GraphCoder-627E

1 if self.is_decoder:

2 cur_key_val = self_attn_out[-1]

3 outputs = self_attn_out[1:-1]

4 else:

5 outputs = self_attn_out[1:]

6 cross_past_key_val = past_key_val[-2:]

7
8
9

cross_attn_out = self.cross_attn(
attn_out, masks, hiddens,
cross_past_key_val, ...)

10 attn_out = cross_attn_out[0]

11 outputs = outputs + cross_attn_out[1:-1]

12 cross_cur_key_val = cross_attn_out[-1]

13 cur_key_val = cur_key_val + cross_cur_key_val

CFG edge

DDG edge

CDG edge

Slicing

2 cur_key_val = self_attn_out[-1]

7
8
9

cross_attn_out = self.cross_attn(
attn_out, masks, hiddens,
cross_past_key_val, ...)

12 cross_cur_key_val = cross_attn_out[-1]

13 cur_key_val = cur_key_val + cross_cur_key_val

CCG Slice

cur_key_val = self_attn_out[-1]
cross_attn_out = self.cross_attn(

attn_out, masks, hiddens,
cross_past_key_val, ...)

cross_cur_key_val = cross_attn_out[-1]
cur_key_val = cur_key_val + cross_cur_key_val

Context Sequence Slice

Figure 1: An example of the code context graph (CCG) and its CCG slice with statement of interest x̃ = 13.

2.2 CCG Slicing174

Definition 2 (CCG Slice) Given a code context175

graph G = (X,E, T, λ) and a statement of in-176

terest x̃ ∈ X , the h-hop CCG slice of x̃ in G with177

maximum l statements, denoted as Gl
h(x̃), is de-178

fined by the output of Algorithm 1.179

Algorithm 1: CCG Slicing
Input :CCG graph G = (X,E, T, λ),

statement of interest x̃ ∈ X ,
maximum hops h, and maximum
number of statements l.

Output :A CCG slicing graph Gl
h(x̃).

1 Initialize sets XCD and XDD as ∅;
2 Initialize the set XCF as {x̃} ;
3 Push x̃ into an empty queue q;
4 while q is not empty do
5 x← q.pop();
6 if x exceeds h hops from x̃ then break ;
7 XCF ← XCF ∪ {x};
8 XDD ← XDD ∪ {z |(z,DD, x) ∈ E} ;
9 XCD ← XCD ∪ {z |(z, CD, x) ∈ E} ;

10 if |XCF ∪XCD∪XDD|≥ l then break ;
11 for z∈{z |(z, CF, x)∈E, z /∈XCF } do
12 if z has not been visited by q then

q.push(z) ;
13 end
14 end
15 Gl

h(x̃)← G[XCF ∪XDD ∪XCD];
16 return Gl

h(x̃)

Algorithm 1 outlines the CCG slicing process to180

capture the context of a given statement x̃ in graph181

G. The key idea is to extract an induced subgraph182

of G with vertices within h hops of control-flow183

neighbors of x̃, along with the vertices they have184

data/control dependence on, limited to a maximum185

of l vertices. Starting from x̃ (lines 2, 3, and 5), Al-186

gorithm 1 first updates current visited control-flow187

neighbors set XCF (line 7), and then the adds its 188

data dependence (DD) in-neighbors to XDD (line 189

8) and its control dependence(CD) in-neighbors 190

to XCD (line 9). After that, Algorithm 1 pushes 191

its control-flow (CF) in-neighbors to queue for the 192

next traversing step (lines 11-13). The final output 193

of Algorithm 1 is the induced subgraph of G whose 194

vertex set is XCF ∪XCD ∪XDD. 195

Fig. 1 provides an example of a code snippet 196

along with its corresponding CCG and a CCG slice. 197

The code snippet, comprising 13 lines, contains a 198

total of 11 statements, 11 CF edges, 9 DD edges, 199

and 4 CD edges. Focusing on a statement of in- 200

terest (line 13), its one-hop CCG slice includes 201

all statements it has data/control dependence on 202

(lines 2, 12, and 13), as well as its one-hop control- 203

flow in-neighbor (line 12) and its in-neighbor’s 204

data/control dependence (lines 7-9). The context 205

sequence slice consists of all statements in the CCG 206

slice, ordered by line number. 207

3 GraphCoder 208

3.1 Overview 209

GraphCoder is a graph-based framework for 210

repository-level code completion tasks. In gen- 211

eral, a code completion task aims to predict 212

the next statement ỹ for a given context X = 213

{x1, x2, · · · , xn}. Fig. 2 gives an overview of 214

GraphCoder’s workflow. Given a code repository, 215

GraphCoder completes the given context through 216

three steps: database construction, code retrieval, 217

and code generation. 218

• In the database construction step (Section 3.2), 219

GraphCoder constructs a key-value database that 220

maps each statement’s CCG slice to the state- 221

ment’s forward and backward l lines of code. 222

• In the code retrieval step (Section 3.3), Graph- 223

Coder takes a code completion context as in- 224

3

Code
Repository Repository CCG

Database Keys
vertex 1 CCG slice 1
vertex 2 CCG slice 2

... ...
vertex i CCG slice i

... ...

Database Values
vertex 1 context seq 1
vertex 2 context seq 2

... ...
vertex i context seq i

... ...

CCG Slicing

Context Sequence
Extraction

Context
Database

Code Completion
Context

Coarse-grained Code Retriever

Fine-grained Code Re-Ranker

Sliced
Query CCG Query Context

Sequence

Coarse-grained
Query Result

Fine-grained
Query Result

LLM Prompt TemplatePredicted
Statement

① Database Construction

② Code Retrieval

③ Code Generation

Figure 2: An illustration of GraphCoder framework.

put and retrieves a set of similar code snippets225

through a coarse-to-fine grained process. In the226

coarse-grained sub-process, GraphCoder filters227

out top-k candidate code snippets based on the228

similarity of context sequence slice; in the fine-229

grained sub-process, the candidate snippets are230

re-ranked by a decay-with-distance structural231

similarity measure.232

• In the code generation step (Section 3.4), Graph-233

Coder generates a prompt by concatenating the234

fine-grained query result and the code comple-235

tion context, and then feeds the prompt into an236

LLM, waiting for the LLM to return a predicted237

statement ỹ of the code completion context.238

3.2 Database Construction239

Given a code repository, we establish a key-value240

database D. For each statement xi in the code241

repository, a key-value is generated and stored in242

D: the key is xi’s CCG slice Gl
h(xi), and the value243

is xi’s forward and backward l lines of code, i.e.,244

{xi−l/2, · · · , xi, xi+l/2} centered around xi.245

3.3 Code Retrieval246

The code retrieval step takes a code completion247

context X as input, and outputs a set of code snip-248

pets, through three sub-steps: query CCG construc-249

tion, coarse-grained code retrieval, and fine-grained250

code re-ranking.251

Query CCG Construction. GraphCoder ini-252

tially extracts the sliced query CCG of the comple-253

tion target. Specifically, GraphCoder converts the 254

given context X to its CCG representation G. A 255

dummy vertex ỹ is then added to G to represent 256

the statement to be predicted. An assumption is 257

made that there exists a control-flow edge from the 258

last statement xn in X to the statement to be pre- 259

dicted ỹ. The sliced query CCG is then obtained 260

by slicing from ỹ, denoted as Gl
h(ỹ). 261

Coarse-Grained Code Retrieval. Given a sliced 262

query CCG Gl
h(ỹ), the coarse-grained retrieval step 263

outputs the top-k most similar results in D based 264

on coarse-grained similarity. The coarse-grained 265

similarity(CSim) between Gl
h(ỹ) and a key Gl

h(x) 266

in D is calculated as follows: 267

CSim(Gl
h(ỹ), G

l
h(x)) = sim(X l

h(ỹ), X
l
h(x)) 268

where X l
h(ŷ) and X l

h(xi) denotes the context se- 269

quence slice based on Gl
h(ŷ) and Gl

h(xi), respec- 270

tively. sim denotes any similarity measure appli- 271

cable to code sequences, including sparse retriever 272

BM25 (Robertson et al., 2009), Jaccard index (Jac- 273

card, 1912) based on the bag-of-words model, as 274

well as dense retrievers like similarity of embed- 275

dings from CodeBERT (Feng et al., 2020) and 276

GraphCodeBERT (Guo et al., 2020). 277

Fine-Grained Code Re-Ranking. In this step, 278

GraphCoder re-ranks the coarse-grained query re- 279

sult based on the decay-with-distance subgraph edit 280

distance. The subgraph edit distance (SED) is the 281

minimum cost of transforming one graph into a 282

subgraph of another one through a series of edit 283

operations (Zeng et al., 2009; Ranjan et al., 2022). 284

The subgraph edit operations include the deletion 285

and the substitution of vertex or edges. For a vertex 286

v and an edge e in Gl
h(ŷ), the edit cost function 287

c(·) is defined as follows: 288

• Vertex deletion cost c(v) = 1; 289

• Vertex substitution cost c(v,u) = 1− sim(v,u); 290

• Edge deletion cost c(e) = 1; 291

• Edge substitution cost c(e, e′) = 1λ(e) ̸=λ(e′). 292

where sim denotes any similarity measure for code 293

sequences, and the substitution cost of the dummy 294

vertex ỹ for any other vertex is assumed to be 0. 295

Since the subgraph edit distance problem is NP- 296

hard (Zeng et al., 2009; He and Singh, 2006), we 297

calculate it by extending the quadratic-time greedy 298

assignment (GA) algorithm (Riesen et al., 2015a,b) 299

with a decay-with-distance factor. Specifically, we 300

first obtain an alignment A between the vertices 301

4

in Gl
h(ŷ) and Gl

h(x) by the GA algorithm (Riesen302

et al., 2015a). The aligned vertex pairs in A re-303

flects the vertex substitution relationship between304

X l
h(ŷ) and X l

h(x). For a vertex v in Gl
h(ŷ), we305

denote the A(v) as its aligned vertex in Gl
h(x).306

Let XA be {v | v ∈ X l
h(ŷ), (v, u) ∈ A}, EA be307

{e | e = (v, t, u) ∈ Gl
h(ỹ), (A(v), t′,A(u)) ∈308

Gl
h(x)}, and h(v, ỹ) be the number of hops from ỹ309

to v, the decay-with-distance SED determined by310

A is calculated in Algorithm 2.311

Algorithm 2: Decay-with-distance SED

Input :Graphs Gl
h(ŷ) and Gl

h(x) as well
as a decay-with-distance factor γ.

Output :Decay-with-distance SED between
Gl

h(ŷ) and Gl
h(x).

1 SED ← 0;
2 for v ∈ XA do
3 SED ← SED + γh(v,ỹ)c(v,A(v));
4 end
5 for v ∈ X l

h(ŷ) \XA do
6 SED ← SED + γh(v,ỹ)c(v);
7 end
8 for e = (v, t, u) ∈ EA do
9 SED ← SED + γh(v,ỹ)c(e,A(e));

10 end
11 for e = (v, t, u) ∈ El

h(ŷ) \ EA do
12 SED ← SED + γh(v,ỹ)c(e);
13 end
14 return SED;

3.4 Code Generation312

After obtaining a set of retrieved code snippets,313

GraphCoder employs an external LLM as a black314

box to generate the next statement of the given code315

completion context X . Following the commonly-316

used practice (Zhang et al., 2023a) of retrieval-317

augmented prompt formatting (Appendix C), we318

arrange the retrieval code snippets in ascending sim-319

ilarity order, each of which is accompanied with its320

original path file; then these arranged code snippets321

are concatenated by the code completion context322

X as the final prompt of the LLM.323

4 Experimental Setup324

4.1 Dataset: RepoEval-Updated325

The dataset RepoEval-Updated is used in our exper-326

iments for repository-level code completion eval-327

uation. In particular, RepoEval-Updated is de-328

rived from another dataset RepoEval (Zhang et al.,329

2023a), which consists of a set of repository-level330

code completion tasks constructed from a collec- 331

tion of GitHub Python repositories created between 332

2022-01-01 and 2023-01-01. RepoEval-Updated 333

refreshes RepoEval by removing those repositories 334

created before 2022-03-31 and adding more recent 335

repositories created after 2023-01-01, in order to 336

avoid data leakage for most existing code LLMs 337

whose training data is released before 2023. Those 338

newly-added repositories are selected following the 339

same criteria as RepoEval; the details are shown in 340

Table 4 in Appendix B. 341

RepoEval-Updated includes two kinds of com- 342

pletion tasks, namely API-level and line-level tasks; 343

each of them consists of 1600 test cases. A line- 344

level task is generated by randomly removing a 345

code line from repository and encapsulating its 346

forward code snippet as a completion task. An 347

API-level task is generated in a similar way except 348

that the removed code line includes at least one 349

intra-repository defined API invocation. 350

4.2 Evaluation Metrics 351

Metrics for the retrieval. Following the estab- 352

lished practice for RAG (Gao et al., 2023), we em- 353

ploy hit@k to assess the retrieval performance. In 354

addition, we also employ two rank-related metrics: 355

Mean Average Precision (MAP) (Cormack and Ly- 356

nam, 2006; Hirsch and Hofer, 2023) and Area Un- 357

der the Curve (AUC) (Zuva and Zuva, 2012). 358

Metrics for the completion. Following previous 359

studies (Lu et al., 2022; Liu et al., 2023), we evalu- 360

ate the completion performance using two metrics: 361

Exact Match (EM) and Edit Similarity (ES). 362

4.3 Methods for Comparison 363

No RAG. This method simply feeds the code com- 364

pletion context into an LLM and takes the output 365

of the LLM as the predicted next statement. 366

Vanilla RAG. Given a completion context, this 367

method retrieves a set of similar code snippets from 368

a repository via a fixed-size sliding window and in- 369

vokes an LLM to obtain a predicted next statement. 370

Shifted RAG. This method is similar to vanilla 371

RAG, except that it returns the code snippet in the 372

subsequent window that is more likely to include 373

the invocation example of target code. This method 374

is also mentioned in ReAcc (Lu et al., 2022). 375

RepoCoder (Zhang et al., 2023a). A sliding 376

window-based method that locates the completion 377

target through an iterative retrieval and generation 378

process. In each iteration, RepoCoder retrieves 379

5

the most similar code snippets based on the code380

LLMs’ generation results from the last iteration.381

4.4 Implementation Details382

Code Retrieval. To ensure a fair comparison, we383

use the same measure to compute the similarity384

between code sequences across different methods385

for comparison. Specifically, we employ a sparse386

bag-of-words model, known for its effectiveness387

in retrieving similar code snippets (Lu et al., 2022;388

Zhang et al., 2023a), a model which transforms389

code snippets into sets of tokens and calculates390

similarity using the Jaccard Index (Jaccard, 1912).391

Code Generation. To avoid data leakage, we ex-392

clude in our consideration those LLMs without a393

explicit training data timestamp or a timestamp af-394

ter 2023-01-01. Among the remaining LLMs, we395

select 5 LLMs with diverse code understanding ca-396

pabilities: GPT-3.5-Turbo-Instruct 4, StarCoder (Li397

et al., 2023a), and CodeGen2 models (1B, 7B, and398

16B) (Nijkamp et al., 2023).399

The detailed hyper-parameter settings related to400

the code retrieval and code generation are described401

in the Appendix C.402

5 Experimental Results403

5.1 Retrieval Effectiveness404

Overall Performance. Table 1 shows the re-405

trieval results across different retrieval frameworks.406

GraphCoder framework with the coarse-to-fine re-407

trieval process outperforms other baselines in the408

majority of cases for both API-level and line-level409

code completion tasks. This result demonstrates410

the benefits of utilizing the structural context ex-411

tracted based on CCG for locating relevant code412

snippets to the completion target. By comparing413

Shifted RAG with Vanilla RAG, we can conclude414

that there is a position gap between the most similar415

code snippets and the intended completion target.416

RepoCoder shows the highest hit@1 except for417

GraphCoder. However, the retrieval performance418

of RepoCoder depends largely on the generation419

capabilities of LLMs. The RepoCoder results in420

Table 1 is the average results of the five LLMs421

used. Based on the generation result of CodeGen2-422

1B, RepoCoder achieves a hit@1 of 18.93%, while423

StarCoder results in a higher value of 25.06%.424

Ablation Study. To further understand how the425

coarse-grained and the fine-grained retrieval con-426

4https://platform.openai.com/docs/models/
gpt-3-5-turbo

hit@1 hit@5 MAP AUC
API-level

Vanilla RAG 6.81 14.88 10.18 10.04
Shifted RAG 12.19 18.75 15.29 13.34
RepoCoder 21.48 34.50 26.88 26.72

GraphCoder-C 26.63 32.56 29.19 26.14
GraphCoder-F 25.44 30.06 27.44 26.05
GraphCoder 29.00 34.75 31.41 26.79

Line-level
Vanilla RAG 9.44 18.38 13.34 13.21
Shifted RAG 15.95 23.63 19.37 17.47
RepoCoder 24.53 32.25 28.24 25.92

GraphCoder-C 26.81 31.98 29.23 24.12
GraphCoder-F 17.88 21.06 19.33 17.69
GraphCoder 27.44 32.56 29.77 25.10

Table 1: Experimental results on retrieval effectiveness,
which are formatted as percentages (%). GraphCoder-C
and GraphCoder-F are variants of GraphCoder, where
GraphCoder-C includes only coarse-grained retrieval,
and GraphCoder-F includes only fine-grained retrieval.

0.25 0.50 0.75 1.00

26.5

27.0

27.5

28.0

28.5

29.0

hi
t@

1
(%

)

API-level
Line-level

0.25 0.50 0.75 1.00
32.0

33.0

34.0

35.0

hi
t@

5
(%

)

API-level
Line-level

0.25 0.50 0.75 1.00
29.0

29.5

30.0

30.5

31.0

31.5

M
AP

 (%
)

API-level
Line-level

0.25 0.50 0.75 1.00

25.0

25.5

26.0

26.5

27.0

27.5

AU
C

(%
)

API-level
Line-level

Figure 3: GraphCoder retrieval effectiveness with the
variation of hyper-parameter γ, where γ is the decay-
with-distance factor in the fine-grained re-ranking step.

tribute to GraphCoder performance, we conduct 427

an ablation experiment. The results are shown in 428

Table 1, where GraphCoder-C and GraphCoder- 429

F represents the GraphCoder variants with only 430

the coarse-grained and the fine-grained retrieval, 431

respectively. As seen from Table 1, the coarse- 432

grained retrieval plays a significant role in Graph- 433

Coder. Moreover, adding the fine-grained retrieval 434

process proves beneficial after the coarse-grained 435

process filters out several candidate snippets. How- 436

ever, when relying solely on fine-grained similarity, 437

GraphCoder-F yields a lower hit rate. 438

Hyper-Parameter Sensitivity. In Fig. 3, we 439

demonstrate the sensitivity of GraphCoder to its 440

6

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo

GPT3.5 StarCoder15B CodeGen2-1B CodeGen2-7B CodeGen2-16B

EM ES EM ES EM ES EM ES EM ES
API-level

No RAG 24.62 53.21 11.81 35.77 20.75 49.93 24.00 52.97 24.50 53.23
Vanilla RAG 31.31 51.98 33.50 51.89 23.69 50.06 26.62 52.25 26.62 52.37
Shifted RAG 36.69 60.98 10.25 27.29 22.69 47.28 24.81 48.26 24.25 47.07
RepoCoder 33.12 53.48 34.38 57.09 29.38 54.64 30.88 55.86 31.25 56.87

GraphCoder-C 40.62 62.23 34.75 58.42 33.94 58.96 37.19 62.14 38.56 62.79
GraphCoder-F 38.50 61.08 33.94 58.12 33.12 59.04 37.06 62.12 37.44 62.60
GraphCoder 40.94 62.74 35.56 58.60 35.44 60.45 38.69 63.79 40.12 64.68

Line-level
No RAG 30.13 56.39 15.12 37.93 24.62 51.92 31.25 57.50 31.69 57.45
Vanilla RAG 33.31 52.90 33.00 52.91 31.56 54.51 36.06 58.47 36.06 57.48
Shifted RAG 43.63 65.32 14.62 30.88 29.56 51.45 33.12 52.83 31.75 50.44
RepoCoder 34.19 54.19 34.25 52.62 33.62 56.51 38.50 60.15 38.19 59.37

GraphCoder-C 43.63 65.44 34.81 53.45 38.94 62.65 43.75 66.57 44.69 66.76
GraphCoder-F 39.12 62.32 29.63 51.26 33.94 59.04 39.19 63.32 40.06 64.15
GraphCoder 44.37 65.63 34.12 53.52 39.25 62.72 43.78 66.84 44.81 67.06

Table 2: Experimental results on the code completion effectiveness. The values presented are formatted as
percentages (%). GPT3.5 refers to GPT3.5-Turbo-Instruct. GraphCoder-C and GraphCoder-F are variants, with
GraphCoder-C including only coarse-grained retrieval, and GraphCoder-F including only fine-grained retrieval.

hyperparameter γ, which is the dependence dis-441

tance shrink factor in the fine-grained retrieval. A442

lower γ places more emphasis on the local struc-443

ture of the completion target. From Fig. 3, we444

can conclude that the effectiveness of fine-grained445

re-ranking tends to increase as γ decreases.446

5.2 Code Completion447

Overall Performance. Table 2 shows the code448

completion results of the five methods. It can be449

observed that GraphCoder exhibits a significant450

improvement on both the API-level and line-level451

code completion tasks compared to No RAG com-452

pletion and baseline RAG methods. The improve-453

ment is more significant on GPT3.5-Turbo-Instruct454

and CodenGen2 series models compared to Star-455

Coder, since StarCoder often wrongly encapsulates456

the predicted next statement into the code com-457

ment, thus influencing the EM metric. Compared458

to the vanilla RAG, GraphCoder increases the EM459

values on API-level and line-level tasks by 9.80%460

and 7.27% on average, respectively. This observa-461

tion emphasizes the effectiveness of GraphCoder’s462

retrieval in repository-level code completion sce-463

narios. Furthermore, compared with other slid-464

ing window-based RAG methods (Vanilla RAG,465

Shifted RAG, and RepoCoder), GraphCoder ex-466

hibits superior performance with higher EC and467

ES. Notably, an observation from Table 2 indicates 468

that Shifted RAG’s shifting approach does not nec- 469

essarily enhance No RAG completion performance. 470

However, shifting all retrieved code snippets with- 471

out considering their content may lead to the re- 472

trieval of totally irrelevant code snippets, introduc- 473

ing potential confusion for the code LLMs. 474

Ablation Study. In Table 2, we also give the 475

ablation study results of the two components in 476

GraphCoder by evaluating the code completion per- 477

formance separately with only the coarse-grained 478

(GraphCoder-C) and fine-grained (GraphCoder- 479

F) retrieval steps. Similar to the results in Ta- 480

ble 1, the superior performance of GraphCoder 481

mainly benefits from the coarse-grained retrieval 482

step. While the fine-grained re-ranking process 483

does contribute to a slight improvement in comple- 484

tion results, its significance becomes more evident 485

when the context window is smaller. This is illus- 486

trated by the larger gap between GraphCoder-C and 487

GraphCoder, particularly in the CodeGen2 models. 488

5.3 Efficiency 489

To investigate the retrieval efficiency of Graph- 490

Coder and sliding window-based methods, we com- 491

pare their end-to-end retrieval running time per 492

completion task in Table 3. Specifically, the end- 493

to-end retrieval running time comprises the time 494

7

API-level Line-level
runtime (sec) runtime (sec)

Sliding window-based RAG
- Stride = 1 1.3138 1.2059
- Stride = 5 0.2623 0.2617
- Stride = 10 0.1344 0.1296
GraphCoder
- Coarse 0.7822 0.8039
- Fine 0.0247 0.0235
- Overall 0.8069 0.8274

Table 3: The end-to-end retrieval time per completion
task in seconds for GraphCoder and sliding window-
based methods (i.e., Vanilla RAG, Shifted RAG, and
RepoCoder) with varied strides.

needed for converting code sequences into bag-495

of-words embedding (via a local tokenizer) and496

searching for the top-k code snippets based on their497

corresponding similarity measure. Since Vanilla498

RAG, Shifted RAG, and RepoCoder are all sliding499

window-based methods with the same embedding500

and searching similarity measure, we present their501

average retrieval time in Table 3.502

It can be observed that GraphCoder outperforms503

sliding window-based methods in terms of time504

efficiency when the stride is set to 1. As the sliding505

window’s stride increases, the number of code snip-506

pets in the database decreases, leading to less time507

spent by sliding window-based methods for larger508

strides. Therefore, GraphCoder exhibits lower effi-509

ciency compared to sliding window-based methods510

with larger strides (5 and 10), mainly because of511

GraphCoder’s larger statement-level database. De-512

spite this, from a cost-effective perspective, Graph-513

Coder remains an affordable option.514

6 Related Work515

Repository-Level Code Completion. The task of516

repository-level code completion is gaining signifi-517

cant attention for intelligent software development518

in real-world scenarios (Liao et al., 2023; Ding519

et al., 2022; Shrivastava et al., 2023a,b; Zhang et al.,520

2023a). Various training or fine-tuning based meth-521

ods, including n-grams (Tu et al., 2014) and Trans-522

formers (Svyatkovskiy et al., 2020; Ding et al.,523

2022), have been proposed to integrate reposi-524

tory context into language models (LMs). How-525

ever, challenges persist due to the dynamic na-526

ture of repository-level features driven by contin-527

uous project development. To address this lim-528

itation, retrieval-augmented LMs have been pro-529

posed (Tang et al., 2023; Khandelwal et al., 2019;530

Lu et al., 2022; Zhang et al., 2023a). Khandelwal et 531

al. (Khandelwal et al., 2019) and Tang et al. (Tang 532

et al., 2023) propose a post-processing framework 533

that adjusts the probability for the next token output 534

by LMs with repository-level token frequency. Nev- 535

ertheless, these methods are sensitive to manually 536

selected interpolated weights. With the emergence 537

of code LLMs demonstrating remarkable code com- 538

prehension capabilities, several approaches (Lu 539

et al., 2022; Zhang et al., 2023a; Liao et al., 2023) 540

have adopted a pre-processing strategy, that re- 541

trieves relevant snippets and adds them into LLMs’ 542

prompt. However, existing works only consider the 543

context as a code sequence format without consid- 544

ering structural dependencies among statements. 545

Retrieval-Augmented Generation for LLMs. 546

Large language models (LLMs) have demonstrated 547

impressive capabilities in understanding both nat- 548

ural language and code, such as the GPT (Brown 549

et al., 2020; Achiam et al., 2023), the LLama (Tou- 550

vron et al., 2023), and the GLM series (Zeng et al., 551

2022; Du et al., 2022). However, LLMs exhibit 552

limited performance in handling domain-specific 553

queries that are beyond the knowledge of its train- 554

ing data (Kandpal et al., 2023). To address this 555

problem, one of the effective practices is retrieval- 556

augmented generation (RAG), which is a frame- 557

work first introduced by Lewis et al. (Lewis et al., 558

2020). To better locate the relevant information 559

to the the target answer, several approaches have 560

been proposed, such as introducing a hypothetical 561

questions (Li et al., 2023b) and adopting language 562

model to rewrite the query (Ma et al., 2023). 563

7 Conclusion 564

In this paper, we propose GraphCoder, a graph- 565

based code completion framework for repository- 566

level tasks. GraphCoder uses a code context graph 567

(CCG) to capture the completion target’s relevant 568

context. The CCG is a statement-level multi-graph 569

with control flow and data/control dependence 570

edges. The retrieval is done through coarse-to-fine 571

steps, involving filtering candidate code snippets 572

and re-ranking them using a decay-with-distance 573

structural similarity measure. After that, Graph- 574

Coder employs pre-trained language models to gen- 575

erate the next lines based on the retrieved snippets. 576

Experimental results demonstrate GraphCoder’s ef- 577

fectiveness, significantly improving the completion 578

target hit rate for retrieval and achieving higher 579

exact match values in the code completion. 580

8

Limitations581

While this paper boasts numerous merits, it also582

bears some limitations.583

Limited Effectiveness for Repositories With Few584

Code Duplication. Although we have proved585

the effectiveness of GraphCoder based on exten-586

sive experiments, there may exist potential threats587

to GraphCoder when the downstream evaluation588

repositories contain relatively low code duplica-589

tion. This is primarily because low duplication will590

significantly reduce the recall rate during the re-591

trieval phase of GraphCoder. To clearly delineate592

the performance boundaries, we offer a more de-593

tailed analysis on the impact of code duplication594

for GraphCoder’s efficacy in Appendix A.595

Limited Time Efficiency for Larger Repository.596

GraphCoder has demonstrated exceptional superi-597

ority in various repo-level code completion tasks598

compared to its baselines. Yet, as repository size599

increases, the graph-based traits in GraphCoder600

would result in comparatively lower retrieval effi-601

ciency, as detailed in Section 5.3. So, we plan to602

expand GraphCoder in the future, with the objec-603

tive of enhancing its effectiveness without compro-604

mising on efficiency.605

Limited Exploration for Various Languages606

Models. Indeed, we are keen to use more607

recent newly released code LLMs, such as608

CodeLlama (Roziere et al., 2023) and DeepSeek-609

Coder (Guo et al., 2024), to verify the effective-610

ness of GraphCoder. Regrettably, these recent mod-611

els pose a data leakage risk to RepoEval (Zhang612

et al., 2023a) and even our newly constructed613

RepoEval-Updated. Therefore, we meticulously se-614

lect five suitable code LLMs without data leakage615

risk to validate GraphCoder’s effectiveness, includ-616

ing OpenAI’s GPT-3.5, StarCoder 15B, CodeGen2617

1B, 7B and 16B, for the fairness of experiments.618

References619

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama620
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,621
Diogo Almeida, Janko Altenschmidt, Sam Altman,622
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.623
arXiv preprint arXiv:2303.08774.624

Frances E Allen. 1970. Control flow analysis. ACM625
Sigplan Notices, 5(7):1–19.626

Tom Brown, Benjamin Mann, Nick Ryder, Melanie627
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind628

Neelakantan, Pranav Shyam, Girish Sastry, Amanda 629
Askell, et al. 2020. Language models are few-shot 630
learners. Advances in neural information processing 631
systems, 33:1877–1901. 632

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 633
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 634
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 635
Greg Brockman, et al. 2021. Evaluating large 636
language models trained on code. arXiv preprint 637
arXiv:2107.03374. 638

Gordon V Cormack and Thomas R Lynam. 2006. Sta- 639
tistical precision of information retrieval evaluation. 640
In Proceedings of the 29th annual international ACM 641
SIGIR conference on Research and development in 642
information retrieval, pages 533–540. 643

Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N 644
Wegman, and F Kenneth Zadeck. 1991. Efficiently 645
computing static single assignment form and the 646
control dependence graph. ACM Transactions on 647
Programming Languages and Systems (TOPLAS), 648
13(4):451–490. 649

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, 650
Murali Krishna Ramanathan, Ramesh Nallapati, 651
Parminder Bhatia, Dan Roth, and Bing Xiang. 652
2022. Cocomic: Code completion by jointly mod- 653
eling in-file and cross-file context. arXiv preprint 654
arXiv:2212.10007. 655

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 656
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm: 657
General language model pretraining with autoregres- 658
sive blank infilling. In Proceedings of the 60th An- 659
nual Meeting of the Association for Computational 660
Linguistics (Volume 1: Long Papers), pages 320–335. 661

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 662
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 663
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 664
pre-trained model for programming and natural lan- 665
guages. In Findings of the Association for Computa- 666
tional Linguistics: EMNLP 2020, pages 1536–1547. 667

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 668
1987. The program dependence graph and its use in 669
optimization. ACM Transactions on Programming 670
Languages and Systems (TOPLAS), 9(3):319–349. 671

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 672
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen 673
Wang. 2023. Retrieval-augmented generation for 674
large language models: A survey. arXiv preprint 675
arXiv:2312.10997. 676

Robert Gold. 2010. Control flow graphs and code cov- 677
erage. International Journal of Applied Mathematics 678
and Computer Science, 20(4):739–749. 679

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 680
Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey 681
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode- 682
bert: Pre-training code representations with data flow. 683
In International Conference on Learning Representa- 684
tions. 685

9

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai686
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,687
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-688
feng Liang. 2024. Deepseek-coder: When the large689
language model meets programming – the rise of690
code intelligence.691

Mary Jean Harrold, Brian Malloy, and Gregg Rothermel.692
1993. Efficient construction of program dependence693
graphs. ACM SIGSOFT Software Engineering Notes,694
18(3):160–170.695

Huahai He and Ambuj K Singh. 2006. Closure-tree: An696
index structure for graph queries. In 22nd Interna-697
tional Conference on Data Engineering (ICDE’06),698
pages 38–38. IEEE.699

Thomas Hirsch and Birgit Hofer. 2023. The map metric700
in information retrieval fault localization. In 2023701
38th IEEE/ACM International Conference on Au-702
tomated Software Engineering (ASE), pages 1480–703
1491. IEEE.704

Paul Jaccard. 1912. The distribution of the flora in the705
alpine zone. 1. New phytologist, 11(2):37–50.706

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric707
Wallace, and Colin Raffel. 2023. Large language708
models struggle to learn long-tail knowledge. In In-709
ternational Conference on Machine Learning, pages710
15696–15707. PMLR.711

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke712
Zettlemoyer, and Mike Lewis. 2019. Generalization713
through memorization: Nearest neighbor language714
models. arXiv preprint arXiv:1911.00172.715

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio716
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-717
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-718
täschel, et al. 2020. Retrieval-augmented generation719
for knowledge-intensive nlp tasks. Advances in Neu-720
ral Information Processing Systems, 33:9459–9474.721

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas722
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc723
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.724
2023a. Starcoder: may the source be with you!725
arXiv preprint arXiv:2305.06161.726

Xinze Li, Zhenghao Liu, Chenyan Xiong, Shi Yu,727
Yu Gu, Zhiyuan Liu, and Ge Yu. 2023b. Structure-728
aware language model pretraining improves dense729
retrieval on structured data. arXiv preprint730
arXiv:2305.19912.731

Dianshu Liao, Shidong Pan, Qing Huang, Xiaoxue Ren,732
Zhenchang Xing, Huan Jin, and Qinying Li. 2023.733
Context-aware code generation framework for code734
repositories: Local, global, and third-party library735
awareness. arXiv preprint arXiv:2312.05772.736

Tianyang Liu, Canwen Xu, and Julian McAuley.737
2023. Repobench: Benchmarking repository-level738
code auto-completion systems. arXiv preprint739
arXiv:2306.03091.740

Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang, 741
Qinxiang Cao, and Yong Yu. 2022. Multi-view graph 742
representation for programming language process- 743
ing: An investigation into algorithm detection. In 744
Proceedings of the AAAI Conference on Artificial 745
Intelligence, volume 36, pages 5792–5799. 746

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung- 747
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc: 748
A retrieval-augmented code completion framework. 749
In Proceedings of the 60th Annual Meeting of the 750
Association for Computational Linguistics (Volume 751
1: Long Papers), pages 6227–6240. 752

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, 753
and Nan Duan. 2023. Query rewriting for retrieval- 754
augmented large language models. arXiv preprint 755
arXiv:2305.14283. 756

IA Natour. 1988. On the control dependence in the 757
program dependence graph. In Proceedings of the 758
1988 ACM sixteenth annual conference on Computer 759
science, pages 510–519. 760

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil- 761
vio Savarese, and Yingbo Zhou. 2023. Codegen2: 762
Lessons for training llms on programming and natu- 763
ral languages. arXiv preprint arXiv:2305.02309. 764

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, 765
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval 766
augmented code generation and summarization. In 767
Findings of the Association for Computational Lin- 768
guistics: EMNLP 2021, pages 2719–2734. 769

Rishabh Ranjan, Siddharth Grover, Sourav Medya, 770
Venkatesan Chakaravarthy, Yogish Sabharwal, and 771
Sayan Ranu. 2022. Greed: A neural framework 772
for learning graph distance functions. Advances in 773
Neural Information Processing Systems, 35:22518– 774
22530. 775

Kaspar Riesen, Miquel Ferrer, and Horst Bunke. 2015a. 776
Approximate graph edit distance in quadratic time. 777
IEEE/ACM transactions on computational biology 778
and bioinformatics, 17(2):483–494. 779

Kaspar Riesen, Miquel Ferrer, Andreas Fischer, and 780
Horst Bunke. 2015b. Approximation of graph edit 781
distance in quadratic time. In Graph-Based Repre- 782
sentations in Pattern Recognition: 10th IAPR-TC- 783
15 International Workshop, GbRPR 2015, Beijing, 784
China, May 13-15, 2015. Proceedings 10, pages 3– 785
12. Springer. 786

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 787
probabilistic relevance framework: Bm25 and be- 788
yond. Foundations and Trends® in Information Re- 789
trieval, 3(4):333–389. 790

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 791
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 792
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 793
Code llama: Open foundation models for code. arXiv 794
preprint arXiv:2308.12950. 795

10

http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan796
Scales, David Dohan, Ed H Chi, Nathanael Schärli,797
and Denny Zhou. 2023. Large language models can798
be easily distracted by irrelevant context. In Inter-799
national Conference on Machine Learning, pages800
31210–31227. PMLR.801

Disha Shrivastava, Denis Kocetkov, Harm de Vries,802
Dzmitry Bahdanau, and Torsten Scholak. 2023a. Re-803
pofusion: Training code models to understand your804
repository. arXiv preprint arXiv:2306.10998.805

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-806
low. 2023b. Repository-level prompt generation for807
large language models of code. In International Con-808
ference on Machine Learning, pages 31693–31715.809
PMLR.810

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,811
and Neel Sundaresan. 2020. Intellicode compose:812
Code generation using transformer. In Proceedings813
of the 28th ACM Joint Meeting on European Software814
Engineering Conference and Symposium on the Foun-815
dations of Software Engineering, pages 1433–1443.816

Ze Tang, Jidong Ge, Shangqing Liu, Tingwei Zhu, Tong-817
tong Xu, Liguo Huang, and Bin Luo. 2023. Do-818
main adaptive code completion via language mod-819
els and decoupled domain databases. In 2023 38th820
IEEE/ACM International Conference on Automated821
Software Engineering (ASE), pages 421–433. IEEE.822

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-823
bert, Amjad Almahairi, Yasmine Babaei, Nikolay824
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti825
Bhosale, et al. 2023. Llama 2: Open founda-826
tion and fine-tuned chat models. arXiv preprint827
arXiv:2307.09288.828

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.829
2014. On the localness of software. In Proceedings830
of the 22nd ACM SIGSOFT International Symposium831
on Foundations of Software Engineering, pages 269–832
280.833

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan834
Berant. 2023. Making retrieval-augmented language835
models robust to irrelevant context. arXiv preprint836
arXiv:2310.01558.837

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu838
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and839
Jian-Guang Lou. 2022. CERT: continual pre-training840
on sketches for library-oriented code generation. In841
Proceedings of the Thirty-First International Joint842
Conference on Artificial Intelligence, IJCAI 2022,843
Vienna, Austria, 23-29 July 2022, pages 2369–2375.844
ijcai.org.845

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,846
Bingchao Wu, Bei Guan, Wang Yongji, and Jian-847
Guang Lou. 2023. Large language models meet848
NL2Code: A survey. In Proceedings of the 61st An-849
nual Meeting of the Association for Computational850

Linguistics (Volume 1: Long Papers), pages 7443– 851
7464, Toronto, Canada. Association for Computa- 852
tional Linguistics. 853

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 854
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 855
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: 856
An open bilingual pre-trained model. arXiv preprint 857
arXiv:2210.02414. 858

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jian- 859
hua Feng, and Lizhu Zhou. 2009. Comparing stars: 860
On approximating graph edit distance. Proceedings 861
of the VLDB Endowment, 2(1):25–36. 862

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 863
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 864
Weizhu Chen. 2023a. Repocoder: Repository-level 865
code completion through iterative retrieval and gen- 866
eration. In Proceedings of the 2023 Conference on 867
Empirical Methods in Natural Language Process- 868
ing, EMNLP 2023, Singapore, December 6-10, 2023, 869
pages 2471–2484. Association for Computational 870
Linguistics. 871

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, 872
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023b. 873
Unifying the perspectives of nlp and software engi- 874
neering: A survey on language models for code. 875

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen 876
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen. 877
2023. A survey of large language models for code: 878
Evolution, benchmarking, and future trends. 879

Keneilwe Zuva and Tranos Zuva. 2012. Evaluation 880
of information retrieval systems. International jour- 881
nal of computer science & information technology, 882
4(3):35. 883

A Influence of Code Duplication on 884

GraphCoder Effectiveness 885

To analyze the impact of code duplication in a 886

repository on the performance of GraphCoder, we 887

present in Fig. 4 the correlation between the repos- 888

itory’s duplication ratio and the improvement in 889

Exact Match (EM) achieved by GraphCoder when 890

compared to No RAG. The repository’s duplication 891

ratio represents the proportion of duplicated code 892

lines to the total number of code lines in a repos- 893

itory. The EM improvement value represents the 894

difference between GraphCoder and in-file comple- 895

tion (No RAG) based on GPT-3.5-Turbo-Instruct. 896

The results in Fig. 4 indicate that as the dupli- 897

cation ratio increases, GraphCoder’s effectiveness 898

becomes more significant, particularly in line-level 899

code completion tasks. In the diffusers repository 900

which has the highest duplication ratio, Graph- 901

Coder exhibits the most significant EM improve- 902

ment on both the API-level and line-level task. In 903

11

https://aclanthology.org/2023.acl-long.411
https://aclanthology.org/2023.acl-long.411
https://aclanthology.org/2023.acl-long.411
http://arxiv.org/abs/2311.07989
http://arxiv.org/abs/2311.07989
http://arxiv.org/abs/2311.07989
http://arxiv.org/abs/2311.10372
http://arxiv.org/abs/2311.10372
http://arxiv.org/abs/2311.10372

devc
hat

Tas
kW

eav
er

meta
gpt

nerf
stu

dio

NeM
o-AlignerACE

for
tuna

diffu
ser

s

Repository

0.0

0.1

0.2

0.3

0.4

0.5
Du

pl
ica

tio
n

ra
tio

API-level EM
Line-level EM
Duplication ratio

0.0

0.2

0.4

0.6

0.8

1.0

EM
 im

pr
ov

em
en

t
Figure 4: Correlation between the repository’s dupli-
cation ratio and the improvement in EM achieved by
GraphCoder when compared to No RAG.

the devchat repository with few code duplication,904

the effectiveness of GraphCoder is limited. How-905

ever, this tendency is not consistently observed;906

for example, compared with fortuna, GraphCoder907

achieves higher EM on API-level task despite hav-908

ing a lower code duplication ratio in the NeMo-909

Aligner repository.910

B Repositories in RepoEval-Updated911

The dataset used in our experiments, RepoEval-912

Updated, includes eight real-world open-source913

GitHub repositories5. This dataset is derived from914

the RepoEval benchmark (Zhang et al., 2023a) by915

removing the repositories created before March916

31, 2022 and add more recently repositories cre-917

ated after January 1, 2023 to ensure no overlap918

with the training data of advanced code LLMs re-919

leased in 2023. The newly added repositories are920

selected based on the same criteria as RepoEval:921

open-source license, non-fork original repositories,922

over 100 stars, over 80% of files written in Python,923

and explicit unit tests. The details of the selected924

repositories are shown in Table 4.925

To generate the line-level completion test tasks,926

we randomly select 200 code lines from each repos-927

itory, adhering to criteria that the target completion928

lines are non-repetitive, not code comments, and929

contain at least 5 tokens (Zhang et al., 2023a). Rec-930

ognizing a shortage of intra-repository APIs invo-931

cations in the devchat repository, we construct 100932

test samples specifically for devchat. For the larger933

5https://github.com

repository metagpt, we randomly select 300 test 934

samples, while other repositories each provide 200 935

test samples, thus forming 1600 api-level comple- 936

tion test samples in total. 937

C Hyper-Parameter Settings 938

Following established practice in code comple- 939

tion (Zhang et al., 2023a), we fill the LLMs’ con- 940

text window by two parts: the retrieved code snip- 941

pets, and the completion context. Each part occu- 942

pies half of the context window. The maximum 943

number of retrieved code snippets is 10. The maxi- 944

mum number of tokens in the generated completion 945

is set to 100. For sliding window-based approaches 946

(Vanilla RAG, Shifted RAG and RepoCoder), we 947

fix the window size as 20 lines and a default sliding 948

stride of 1. For GraphCoder, its graph maximum 949

hop h is set to 5, the maximum number of state- 950

ments l is set to 20, and the decay-with-distance 951

factor is set to 0.1. 952

An example of the prompt template employed in 953

GraphCoder is shown in Fig. 5. 954

12

https://github.com

Repo name GitHub Link Created at Stars #Files Size
devchat* devchat-ai/devchat 2023-04-17 270 40 0.5MB
NeMo-Aligner* NVIDIA/NeMo-Aligner 2023-09-01 119 54 1.6MB
fortuna awslabs/fortuna 2022-11-17 826 168 1.9MB
TaskWeaver* microsoft/TaskWeaver 2023-09-11 4035 113 3.0MB
diffusers huggingface/diffusers 2022-05-30 20854 305 6.2MB
ACE opendilab/ACE 2022-11-23 230 425 6.8MB
metagpt* geekan/MetaGPT 2023-06-30 34140 374 17.9MB
nerfstudio nerfstudio-project/nerfstudio 2022-05-31 7959 157 54.5MB

Table 4: Statistics of repositories in RepoEval-Updated. * corresponds to the newly added repositories to the original
benchmark. All the newly added repositories are archived on 2024-01-05. #Files indicates the number of Python
files in the repository. Statistics are accurate as of February 2024.

Retrieved Code
Snippets

Code Completion
Context

Predicted
Statement

Figure 5: An example showing the prompt format employed in GraphCoder.

13

https://github.com/devchat-ai/devchat
https://github.com/NVIDIA/NeMo-Aligner
https://github.com/awslabs/fortuna
https://github.com/microsoft/TaskWeaver
https://github.com/huggingface/diffusers
https://github.com/opendilab/ACE
https://github.com/geekan/MetaGPT
https://github.com/nerfstudio-project/nerfstudio

