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ABSTRACT

Mixed-Integer Linear Programming (MILP) is a powerful framework used to address a
wide range of NP-hard combinatorial optimization problems, often solved by Branch and
bound (B&B). A key factor influencing the performance of B&B solvers is the variable
selection heuristic governing branching decisions. Recent contributions have sought to
adapt reinforcement learning (RL) algorithms to the B&B setting to learn optimal branch-
ing policies, through Markov Decision Processes (MDP) inspired formulations, and ad
hoc convergence theorems and algorithms. In this work, we introduce B&B MDPs, a
principled vanilla MDP formulation for variable selection in B&B, allowing to leverage a
broad range of RL algorithms for the purpose of learning optimal B&B heuristics. Compu-
tational experiments validate our model empirically, as our branching agent outperforms
prior state-of-the-art RL agents on four standard MILP benchmarks.

1 INTRODUCTION

Mixed-Integer Linear Programming (MILP) is a subfield of combinatorial optimization (CO), a discipline
that aims at finding solutions to optimization problems with large but finite sets of feasible solutions.
Specifically, mixed-integer linear programming addresses CO problems that are NP-hard, meaning that no
polynomial-time resolution algorithm has yet been discovered to solve them. Mixed-integer linear programs
are used to solve efficiently a vast range of high-dimensional combinatorial problems, spanning from op-
erations research (Hillier & Lieberman, 2015) to the fields of deep learning (Tjeng et al., 2019), finance
(Mansini et al., 2015), computational biology (Gusfield, 2019), and fundamental physics (Barahona, 1982).
MILPs are traditionally solved using Branch and bound (B&B) (Land & Doig, 1960), an algorithm which
methodically explores the space of solutions by dividing the original problem into smaller sub-problems,
while ensuring the optimality of the final returned solution. Intensively developed since the 1980s (Bixby,
2012), MILP solvers based on the B&B algorithm are high-performing tools. In particular, they rely on com-
plex heuristics fine-tuned by experts on large heterogeneous benchmarks (Gleixner et al., 2021). Hence, in
the context of real-world applications, in which similar instances with slightly varying inputs are solved on
a regular basis, there is a huge incentive to reduce B&B total solving time by learning efficient tailor-made
heuristics. The branching heuristic, or variable selection heuristic, which determines how to iteratively par-
tition the space of solutions, has been found to be critical to B&B computational performance (Achterberg
& Wunderling, 2013). Over the last decade, many contributions have sought to harness the predictive power
of machine learning (ML) to learn better-performing B&B heuristics (Bengio et al., 2021; Scavuzzo et al.,
2024). By using imitation learning (IL) to replicate the behaviour of a greedy branching expert at lower
computational cost, Gasse et al. (2019) established a landmark result as they first managed to outperform a
solver relying on human-expert heuristics. Building on the works of Gasse et al. (2019) and He et al. (2014),
who proposed a Markov decision process (MDP) formulation for node selection in B&B, several contribu-
tions succeeded in learning efficient branching strategies by reinforcement (Etheve et al., 2020; Scavuzzo
et al., 2022; Parsonson et al., 2022), without surpassing the performance achieved by the IL approach. Yet,
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if the performance of IL heuristics are caped by that of the suboptimal branching experts they learn from, the
performance of RL branching strategies are, in theory, only bounded by the maximum score achievable. We
note that in order to cope with dire credit assignment problems (Pignatelli et al., 2023) induced by the sparse
reward model described in He et al. (2014), prior research has shifted away from the traditional Markov
decision process framework, finding it impractical to learn efficient branching strategies. Instead, Etheve
et al. (2020), Scavuzzo et al. (2022) and Parsonson et al. (2022) have adopted unconventional MDP inspired
formulations to model variable selection in B&B.
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Figure 1: Normalized scores in log scale
of IL, RL and random agents across the
Ecole benchmark Prouvost et al. (2020).

In this work, we show that despite improving the convergence
properties of RL algorithms, these alternative formulations in-
troduce approximations which undermine the asymptotic perfor-
mance of RL branching agents in the general case. In order to
address this issue, we introduce branch and bound Markov de-
cision processes (BBMDP), a principled vanilla MDP formula-
tion for variable selection in B&B, which preserves convergence
properties brought by previous contributions without sacrificing
optimality. Our new formulation allows to define a proper Bell-
man optimality operator, which in turns enables to unlock the full
potential of state-of-the-art approximate dynamic programming
algorithms (Hessel et al., 2017; Dabney et al., 2018; Farebrother
et al., 2024) for the purpose of learning optimal B&B branching
strategies. We evaluate our method on four classic MILP bench-
marks, achieving state-of-the art performance and dominating previous RL agents while narrowing the gap
with the IL approach of Gasse et al. (2019), as shown in Figure 1.

2 PROBLEM STATEMENT

2.1 MIXED-INTEGER LINEAR PROGRAMMING

We consider mixed-integer linear programs (MILPs), defined as:

P :

 min c⊤x
l ≤ x ≤ u
Ax ≤ b ; x ∈ Z|I| × Rn−|I|

with n the number of variables, m the number of linear constraints, l, u ∈ Rn the lower and upper bound
vectors, A ∈ Rm×n the constraint matrix, b ∈ Rm the right-hand side vector, c ∈ Rn the objective function,
and I the indices of integer variables. Throughout this document, we are interested in repeated MILPs of
fixed dimension {Pi = (Ai, bi, ci, li, ui)}i∈N which are understood as realizations of a random variable
following an unknown distribution p0 : Ω → Rm×n × Rm × Rn × Rn × Rn.

In order to solve MILPs efficiently, the B&B algorithm iteratively builds a binary tree (V, E) where each
node corresponds to a MILP, starting from the root node v0 ∈ V representing the original problem P0.
The incumbent solution x̄ ∈ Z|I| × Rn−|I| denotes the best feasible solution found at current iteration, its
associated value GUB = c⊤x̄ is called the global upper bound on the optimal value. The overall state of
the optimization process is thus captured by the triplet s = (V, E , x̄), we note S the set of all such triplets.1
Throughout the optimization process, B&B nodes are explored sequentially. We note C the set of visited or
closed nodes, and O the set of unvisited or open nodes, such that V = C ∪ O. Originally, O = {v0} and
C = ∅. At each iteration, the node selection policy ρ : S → O selects the next node to explore. Since ρ

1To account for early resolution steps where no incumbent solution has yet been found, we define a special value for
x̄, whose GUB = ∞. For the sake of simplicity, we make this implicit in the remainder of the paper.
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Figure 2: Solving a MILP by B&B using variable selection policy π and node selection policy ρ. Each node
vi represents a MILP derived from the original problem, each edge represents the bound adjustment applied
to derive child nodes from their parent. At each step, nodes oi ∈ O are re-indexed according to ρ.

necessarily defines a total order on nodes oi ∈ O, we can arrange indices such that o1 = ρ(s) denotes vt the
node currently explored at step t. Figure 2 illustrates how B&B operates on an example. At each iteration,
let x∗LP ∈ Rn be the optimal solution to the linear relaxation of Pt, the problem associated with vt:

• If Pt admits no solution, vt is marked as visited and the branch is pruned by infeasibility. If
x∗LP ∈ Rn exists, and GUB < c⊤x∗LP , no integer solution in the subsequent branch can improve
GUB, thus vt is marked as closed and the branch is pruned by bound. If x∗LP is not dominated by
x̄ and x∗LP is feasible (all integer variables in x∗LP ∈ Rn have integer values), a new incumbent
solution x̄ = x∗LP has been found. Hence GUB is updated and vt is marked as visited while the
branch is pruned by integrity.

• Else, x∗LP admits fractional values for some integer variables. The branching heuristic π : S → I
selects a variable xb with fractional value x̂b, to partition the solution space. As a result, two child
nodes (v−, v+), with associated MILPs P− = Pt ∪ {xb ≤ ⌊x̂b⌋} and P

+
= Pt ∪ {xb ≥ ⌈x̂b⌉},

are added to the current node.2 Their linear relaxation is solved, before they are added to the set of
open nodes O and vt is marked as visited.

This process is repeated until O = ∅ and x̄ is returned. The dynamics of the B&B algorithm between
two branching decisions can be described by the function κρ : S × I → S, such that s′ = κρ(s, π(s)). By
design, B&B does not terminate before finding an optimal solution and proving its optimality. Consequently,
optimizing the performance of B&B on a distribution of MILP instances is equivalent to minimizing the
expected solving time of the algorithm. As Etheve (2021) evidenced, the variable selection strategy π is by
far the most critical B&B heuristic in terms of computational performance. In practice, the total number of
nodes of the B&B tree is used as an alternative metric to evaluate the performance of branching heuristics
π, as it is a hardware-independent proxy for computational efficiency. Under these circumstances, given a
fixed node selection strategy ρ, the optimal branching strategy π∗ associated with a distribution p0 of MILP
instances can be defined as:

π∗ = argmin
π

EP∼p0(|BB(π,ρ)(P )|) (1)

with |BB(π,ρ)(P )| the size of the B&B tree after solving P to optimality following strategies (π, ρ).

2.2 REINFORCEMENT LEARNING

We consider the setting of discrete-time, deterministic MDPs (Puterman, 2014) defined by the tuple
(S,A, T , p0,R). At each time step t, the agent observes st ∈ S the current state of the environment,
before executing action at ∈ A, and receiving reward rt = R(st, at). The Markov transition function

2x̂b denotes the value of xb in x∗
LP . We use the symbol ∪ to denote the refinement of the bound on xb in Pt.
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T : S × A → S models the dynamics of the environment. In particular, it satisfies the Markov property:
conditionally to st and at, st+1 is independent of all past visited states and actions. Given a trajectory start-
ing in state s0 sampled according to the initial distribution p0, the total gain is defined for all t ≥ 0 as Gt =∑∞

t′=t γ
t′−t · R(st′ , at′), with γ ∈ [0, 1]. The objective of an RL agent is to maximize the expected gain of

the trajectories yielded by its action selection policy π : S → A. This is equivalent to finding the policy max-
imizing value functions V π(st) = Eat′∼π(st′ )

[Gt] and Qπ(st, at) = R(st, at)+ γ ·V π(st+1). The optimal
Q-value function Q∗ indicates the highest achievable cumulated gain in the MDP. It satisfies the Bellman
optimality equationQ(s, a) = R(s, a)+γ ·maxa′∈AQ(T (s, a), a′), for (s, a) ∈ S×A. The optimal policy
is retrieved by acting greedily according to the learned Q-value function: π∗(s) = argmaxa∈AQ∗(s, a).

2.3 RELATED WORK

Following the seminal work by Gasse et al. (2019), few contributions have proposed to build more complex
neural network architectures based on transformers (Lin et al., 2022) and recurrence mechanisms (Seyfi et al.,
2023) to improve the performance of IL branching agents, with moderate success. In parallel, theoretical and
computational analysis (Bestuzheva et al., 2021; Sun et al., 2022) have shown that neural networks trained
by imitation could not rival the tree size performance achieved by strong branching (SB), the branching
expert used in Gasse et al. (2019). In fact, low tree sizes associated with SB turn out to be primarily due to
the formulation improvements resulting from the massive number of LPs solved in SB, not to the intrinsic
quality of the branching decisions themselves.

Since branching decisions are made sequentially, reinforcement learning appears as a natural candidate to
learn good branching policies. Etheve et al. (2020) and Scavuzzo et al. (2022) proposed the model of
TreeMDP, in which state si = (Pi, x

∗
LP,i, x̄i) consists in the MILP associated with node vi along with

the solution of its linear relaxation and the incumbent solution at vi. The actions available at si is the set
of fractional variables in x∗LP,i. Given (si, ai) the tree Markov transition function produces two child node
states (s−i , s

+
i ) that can be visited in any order. Crucially, when the B&B tree is explored in depth-first-search

(DFS), TreeMDP trajectories can be divided in independent subtrees, allowing to learn policies minimizing
the size of each subtree independently. This helps mitigate credit assignment issues that arise owing to the
length of episode trajectories. Subsequently, Parsonson et al. (2022) found the DFS node selection policy
to be highly detrimental to the computational performance of RL branching strategies. Assuming that RL
branching agents trained following advanced node selection strategies would perform better despite the lack
of theoretical guarantee, they proposed to learn from retrospective trajectories, diving trajectories built from
original TreeMDP episodes. In fact, Parsonson et al. (2022) found retrospective trajectories to alleviate the
partial observability induced by the “disordered” exploration of the tree and outperform prior RL agents.

A large body of work has proposed to learn, either by imitation or reinforcement, better-performing B&B
heuristics outside of variable selection (Nair et al., 2021; Paulus et al., 2022). RL contributions in primal
search (Sonnerat et al., 2022; Wu & Lisser, 2023) node selection (He et al., 2014; Etheve, 2021) and cut se-
lection (Tang et al., 2020; Song et al., 2020; Wang et al., 2023) have all relied on the TreeMDP framework to
train their agents, simply adapting the action set to the task at hand. Finally, machine learning applications
in combinatorial optimization are not limited to B&B. For example, in the context of routing or schedul-
ing problems where exact resolution rapidly becomes prohibitive, agents are trained to learn direct search
heuristics (Kool et al., 2019; Grinsztajn et al., 2022; Chalumeau et al., 2023) yielding high-quality feasible
solutions.

3 BRANCH AND BOUND MARKOV DECISION PROCESS

By using the current B&B node as the observable state, prior attempts to learn optimal branching strategies
have relied on the TreeMDP formalism to train RL agents. However, TreeMDPs are not MDPs, as they
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do not define a Markov process on the state random variable (for instance, a transition yields two states
and is hence not a stochastic process on the state variables). As a result, this forces Etheve et al. (2020)
and Scavuzzo et al. (2022) to redefine Bellman updates and derive ad hoc convergence theorems for TD(0),
value iteration, and policy gradient algorithms. In order to leverage broader theoretical results from the
reinforcement learning literature, we propose a description of variable selection in B&B as a proper Markov
decision process.

3.1 DEFINITION

The problem of finding an optimal branching strategy according to Equation (1) can be described as a
regular deterministic Markov decision process. To this end, we introduce Branch and bound Markov decision
processes (BBMDP) by making the tuple (S,A, T , p0,R) explicit, taking γ = 1 since episodes horizons
are bounded by the (finite) largest possible number of nodes:

• State space. S is the set of all B&B trees st = (Vt, Et, x̄t). Note that this includes intermediate
B&B trees, whose incumbent solutions x̄t are yet to be proven optimal.

• Action space. A is the set of all integer variables indices I.
• Transition function: The Markov transition function is defined as T = κρ with κρ the branching

operation described in Section 2.1. Note that if the variable associated with at is not fractional in
x∗LP,t, then st+1 = T (st, at) = st as relaxing a variable that is not fractional has no impact on the
LP relaxation. Importantly, all states for which O = ∅ are terminal states.

• Starting states. Initial states are single node trees, where the root node is associated to a MILP
P0 drawn according to the distribution p0 defined in Section 2.1 (hence the use of p0 for both the
initial problem P0 and the MDP’s initial state s0).

• Reward model. We define R(s, a) = −2 for all transitions until episode termination. Since each
transition results in the addition of two B&B nodes, the overall value of a trajectory is the opposite
of the number of node added to the B&B tree from the root node, which is inline with the definition
of Equation (1).

Unlike in TreeMDP, the current state is defined as the state of the entire B&B tree, rather than merely the
current B&B node. The transition function returns a B&B tree whose open nodes are sorted according to
the node selection policy ρ, thus reflecting the true dynamics of the B&B algorithm, instead of a couple
of pseudo-states associated with former current node’s child nodes. Note that the definition above sets
BBMDPs among the specific class of MDPs called stochastic shortest path problems (Puterman, 2014).

3.2 LEARNING OPTIMAL BRANCHING STRATEGIES WITH BBMDPS

Like in TreeMDP, episode trajectories can be decomposed in independent subtree trajectories, to facilitate
RL agents training. Let us consider π a deterministic branching policy, we rewrite V π and Qπ to exhibit
their tree structure. Given a node v ∈ Vt, we note T (v) the subtree rooted in v. Noting M = O × Rn,
we define Wπ : S × M → R the W -value function that returns the opposite of the size of the subtree
rooted in oi ∈ Ot when branching according to policy π starting from state st until the episode termination.
Importantly, Wπ depends on x̄oi ∈ Rn, the incumbent solution when oi is processed by the branch and
bound algorithm. Then V π can be expressed as:

V π(st) = Qπ(st, π(st)) =
∑

oi∈Ot

Wπ(st, oi, x̄oi) (2)

To put it simply into words, the total number of nodes that will be added to the B&B tree past st is equal to
the sum of the sizes of all the subtrees T (oi) rooted in the open nodes of st. It is tempting to define W -value
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functions merely as functions of (oi, x̄oi) for oi ∈ Ot rather than functions of (st, oi, x̄oi), which comprises
the whole B&B tree. The rationale for such value functions is that the size of the subtree rooted in oi ∈ Ot,
for a given incumbent solution x̄oi , should be the same, regardless of the parents of oi, its position in the tree,
or the branching decisions taken in subtrees T (oj) for oj ∈ Ot and j ̸= i. It turns out, this last statement
does not always hold, quite counter-intuitively. Let us write τi the time steps at which the nodes oi ∈ Ot

are selected by the node selection strategy ρ.3 Now, consider for instance a node selection procedure ρ that
performs a breadth-first search through the tree. The number of nodes in T (oi) will depend strongly on
whether an improved incumbent solution x̄oi was found in the subtrees explored between st and sτi , and in
turn from the branching decisions taken in these subtrees. This example highlights the major issue of the
node selection strategy ρ, when one wishes to define subtree sizes based on (oi, x̄oi).

Consider now two open nodes oi and oj in Ot. Conversely to the previous example, if one can guarantee
that the subtree rooted in oj will be solved to optimality before oi is considered for expansion in the B&B
process, then the number of nodes in T (oi) will not be affected by the branching decisions taken at any
node under oj . In fact, if oj is solved to optimality, x̄oi will either not change if no feasible solution in
T (oj) improves GUB, or either be the best feasible solution of the MILP associated with oj , which does not
depend on the series of actions taken in T (oj). In other words, to make sure that the size of T (oi) does only
depend on the branching decisions taken in T (oi), all nodes oj ∈ Ot must have been either fully explored
or strictly unexplored at τi. Applying this argument recursively induces that the only node selection strategy
which enables predicting a subtree size only based on (oi, x̄oi), is a depth-first search (DFS) exploration of
the B&B tree. The same observation was made by Etheve et al. (2020) and Scavuzzo et al. (2022) previously.

Therefore, we consider ρ = DFS and write Wπ(M i
t ) the opposite of the size of T (oi) for oi ∈ Ot, with

M i
t = (oi, x̄oi) ∈ M. We can now derive a refined Bellman update to train branching agents in BBMDP.

Proposition 1. In BBMDP, the Bellman equation V π(st) = R(st, at) + V π(st+1) writes:

Wπ(M1
t ) = −2 +Wπ(M1

t+1) +Wπ(M2
t+1) (3)

Proof. (3) follows directly from injecting (2) in the Bellman equation, and observing that most terms in the
sums simplify as Wπ(M i

t ) =Wπ(M i+1
t+1 ) for i ≥ 2.

In the following, we define Qπ
† : M×A → R such that Qπ

† (M
1
t , a) = −2 +Wπ(M1

t+1) +Wπ(M2
t+1).

Note that if Wπ and Qπ
† are not strictly value functions, they naturally appear when applying Bellman

equations to BBMDP value functions under ρ = DFS. Importantly, we stress that in order to learn π∗, it
is not necessary to learn Q∗, as you can deduce π∗ from Q∗

† , which is both easier to manipulate as it only
depends on quantities observable at st, and easier to learn as it trains on much shorter trajectories. In fact,
π∗(s) = argmaxa∈A Q∗(s, a) = argmaxa∈A Q∗

†(M
1
s , a), with M1

s = (o1, x̄s) for o1 ∈ Os and s ∈ S.

3.3 Q-LEARNING

We now propose to learn π∗ by training a neural network to approximate Q∗
† with traditional temporal

difference (TD) algorithms. Consider a transition (s, a, r, s′) ∈ S × A × R × S . Applying the Bellman
optimality operator B∗, we obtain:

Q(s, a) = B∗(Q(s, a))
3⇐⇒ Q†(M

1
s , a) = −2 + max

a′, a′′∈A
Q†(M

1
s′ , a

′) +Q†(M
2
s′ , a

′′) (4)

with s′ = κρ(s, a). Our objective is to approximate, with a neural network qθ : M×A → R parameterized
by θ, the value Qπθ

† associated with policy πθ. Noting s(k) the state visited when following π for k− 1 steps

3Following our indexation of oi ∈ Ot, we have t = τ1 < ... < τi < ... < τ|Ot|.
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Figure 3: When applying TD(0), TreeMDP and BBMDP yield equivalent results, see 3a, 3b. However, when
minimizing the k-step temporal difference loss, the two methods diverge as exemplified in 3c, 3d.

after performing action a in s, we seek to minimize the k-step temporal difference loss:

LMSE(qθ, Q
πθ

† ) = E(s,a)∼πθ

(qθ(M
1
s , a)−

(
−2k +

k+1∑
i=1

max
a′∈A

Qπθ

† (M i
s(k) , a

′)

))2
 (5)

where we use qθ to bootstrap the values of (Qπθ

† (M i
s(k) , a))1≤i≤k+1. Following the work of Farebrother

et al. (2024) on training value functions via classification, we introduce a HL-Gauss cross-entropy loss
adapted to the B&B setting:

LCE(qθ, Q
πθ

† ) = E(s,a)∼πθ

[
qθ(M

1
s , a) · log phist

[(
−2k +

k+1∑
i=1

max
a′∈A

Qπθ

† (M i
s(k) , a

′)

)]]
(6)

where phist is the function encoding Q-values into histogram categorical distributions, see Appendix E for
complete description as well as theoretical motivation.

3.4 BBMDP VS TREEMDP

As it evacuates the core MDP notions of temporality and sequentiality, TreeMDP fails to describe variable
selection in B&B accurately in the general case. This is illustrated in Figure 3: although the TreeMDP
model is a valid approximation of BBMDP when training an RL agent to minimize the one-step temporal
difference, it produces inconsistent learning schemes when considering a multi-step temporal difference
loss. In fact, applying Etheve (2021) tree Bellman operator repeatedly yields trees that cannot be produced
by a B&B algorithm explored in DFS.

Hence, BBMDP leverages the results established in Etheve et al. (2020) and Scavuzzo et al. (2022)–in
DFS, acting according to a policy minimizing the size of the subtree rooted in the current B&B node is
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equivalent to acting according to a global optimal policy–all while preserving MDP properties. Crucially,
BBMDP allows to harness RL algorithms that are not compatible with the TreeMDP framework, such as k-
step temporal difference, TD(λ), or any RL algorithms using MCTS as policy improvement operator (Grill
et al., 2020). In the same fashion, BBMDP can be applied to augment the pool of RL algorithms available
for learning improved cut selection and primal search heuristics, simply by adapting the action set and the
reward model to the task at hand.

4 EXPERIMENTS

We now compare our branching agent against prior IL and RL approaches. For our experiments, we use
the open-source solver SCIP 8.0.3 (Bestuzheva et al., 2021) as backend MILP solver, along with the Ecole
library (Prouvost et al., 2020) both for instance generation and environment simulation. We will make our
code available upon publication.

4.1 EXPERIMENTAL SETUP

Benchmarks We consider four standard MILP benchmarks for learning branching strategies: set covering,
combinatorial auctions, maximum independent set and multiple knapsack problems. We train and test on
instances of same dimensions as Gasse et al. (2019), see Appendix A. As to SCIP configuration, we set
the time limit to one hour, disable restart, and deactivate cut generation beyond root node. All the other
parameters are left at their default value.

Baselines We compare our DQN-BBMDP agent against DQN-TreeMDP (DQN-tMDP) (Etheve et al.,
2020) and REINFORCE-TreeMDP (PG-tMDP) (Scavuzzo et al., 2022) agents. We also compare against
the IL expert from Gasse et al. (2019), and against DQN-Retro (Parsonson et al., 2022) the current state-
of-the-art RL branching agent. More details on these baselines can be found in Appendix D. Finally, we
report the performance of reliability pseudo cost branching (RPB), the default branching heuristic used in
SCIP, strong branching (Applegate et al., 1995), the greedy expert from which the IL agent learns from, and
random branching, which randomly selects a fractional variable.

4.2 TRAINING

Network architecture Following prior works, we use the bipartite graph representation introduced by
Gasse et al. (2019) augmented by the features proposed in Parsonson et al. (2022) to represent B&B nodes.
Additionally, we use the Gasse et al. (2019) graph convolutional architecture to parameterize our Q-value
network, see Appendix C for a more detailed description.

Learning algorithm We train our Q-learning agent following a lightened version of Rainbow-DQN (Hes-
sel et al., 2017), see Appendix B for a comprehensive description. Contrary to DQN-tMDP and DQN-Retro,
we train our agent using the HL-Gauss cross-entropy loss described in section 3.3.

Training & evaluation Models are trained on easy instances of each benchmark separately, and evaluated
on easy, medium and hard instances. Validation curves can be found in Appendix G. For evaluation, we
report the node and time performance over 100 easy test instances unseen during training, as well as on 100
medium and 100 hard transfer instances of higher dimensions, see Table 3 in Appendix A. At evaluation,
performance scores are averaged over 5 seeds. Importantly, when comparing a machine learning (IL or
RL) branching strategy with a standard SCIP heuristic such as RPB or SB, time performance is the only
relevant criterion. In fact, when implementing one of its own branching rules, SCIP triggers a series of
techniques strengthening the current MILP formulation. If these techniques effectively reduce the number

8
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Set Covering Comb. Auction Max. Ind. Set Mult. Knapsack Norm. Score
Method Node Time Node Time Node Time Node Time Node Time

Presolve − 4.74 − 0.90 − 1.78 − 0.20 − −
Random 3289 5.94 1111 2.16 386.8 2.01 733.5 0.55 995 374

SB 35.8 12.93 28.2 6.21 24.9 45.87 161.7 0.69 36 2358
RPB 62.0 2.27 20.2 1.77 19.5 2.44 289.5 0.53 51 253

IL 133.8 0.90 83.6 0.73 40.1 0.44 272.0 1.02 82 113
IL-DFS 136.4 0.74 95.5 0.67 69.4 0.56 472, 8 1.54 114 129

PG-tMDP 649.4 2.32 168.0 0.94 153.6 0.92 436.9 1.57 233 206
DQN-tMDP 175.8 0.83 203.3 1.11 168.0 1.00 266.4 0.73 151 136
DQN-Retro 183.0 1.14 103.2 0.78 223.0 1.81 250.3 0.67 137 160

DQN-BBMDP 152.3 0.77 97.9 0.62 103.2 0.69 236.6 0.66 100 100

Easy instances (Test)

Set Covering Comb. Auction Max. Ind. Set Mult. Knapsack Norm. Score
Method Node Time Node Time Node Time Node Time Node Time

Presolve - 12.3 - 2.67 - 5.16 - 0.46 − −
Random 271632 842 317235 749 215879 2102 93452 70.6 5555 2737

SB 672.1 398 389.6 255 169.9 2172 1709 12.5 9 1425
RPB 3309 48.4 1376 14.77 3368 90.0 30620 22.1 62 90

IL 2610 23.1 1309 9.8 1882.0 37.6 9747 46.5 39 55
IL-DFS 3103 22.5 1802 11.1 3501 55.5 43224 177 75 93

PG-tMDP 44649 221 6001 30.7 3133 39.5 35614 165 298 233
DQN-tMDP 8632 71.3 20553 116 45634 477 22631 65.1 439 445
DQN-Retro 6100 59.4 2908 18.4 119478 1863 27077 79.5 494 662

DQN-BBMDP 5651 46.4 2273 11.8 7168 81.3 37098 109 100 100

Medium instances (Transfer)

Table 1: Performance comparison of branching agents on four standard MILP benchmarks. For each method,
we report total number of B&B nodes, presolve time and total solving time outside of presolve. Lower
is better, red indicates best agent overall, blue indicates best among RL agents. Presolve is common to
all methods. Following prior works, we report geometrical mean over 100 easy instances unseen during
training and over 100 higher-dimensional medium instances. Norm. Score denotes the aggregate average
performance obtained by each agent across the four MILP benchmarks, normalized by the score of DQN-
BBMDP.

of nodes to visit, they incur computational overhead which ultimately increases SCIP overall solving time.
This renders node comparisons between ML and non-ML branching strategies negligible relative to solving
time evaluations, as observed by Gamrath & Schubert (2018); Scavuzzo et al. (2022).

4.3 RESULTS

Computational results obtained on the four benchmarks are presented in Table 1. Additional performance
metrics as well as further computational results on higher-dimensional instances are provided in Appendix
H. On easy instances, DQN-BBMDP consistently obtains best performance among RL agents, while also
outperforming IL-DFS agent. When compared against prior state-of-the-art DQN-Retro, DQN-BBMDP
achieves an aggregate average 27% reduction of total number of node and 38% reduction of solving time
outside presolve across the four Ecole benchmarks, see Figure 1. Contrary to Parsonson et al. (2022), we
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DQN-BBMDP DQN-TreeMDP DQN-BBMDP w.o. HL-Gauss DQN-BBMDP w.o. DFS
k = 1 158.9 175.8(+10%) 169, 4 (+7%) 156.2 (−2%)
k = 3 152.3(−4%) 178.9 (+13%) 172.3 (+8%) 150.1 (−5%)

Table 2: Ablation impact of BBMDP, HL-Gauss loss and DFS. We remove one component one at the time,
and evaluate corresponding versions on 100 easy set covering instances after training for 200, 000 gradient
steps as described in 4.2.

find DQN-Retro to yield performance comparable to DQN-tMDP. Remarkably, all RL agents outperform
the SCIP solver on 3 out of 4 benchmarks in terms of solving time. Although Gasse et al. (2019) IL agent
remains the most efficient branching agent, the node gap between RL and IL across all four benchmarks has
been more than halved, as shown in Figure 1.

On medium instances, DQN-BBMDP also dominates among RL agents, although it is outperformed by
PG-tMDP on maximum independent set instances and by DQN-Retro on multiple knapsack instances. The
aggregate performance gap between DQN-BBMDP and other RL baselines is notably wider on medium
instances, which aligns with the advantages of using a principled MDP formulation over TreeMDP. In fact,
DQN-BBMDP is the first RL agent to demonstrate robust generalization capabilities on medium instances,
outperforming SCIP on 3 out of 4 benchmarks.

4.4 ABLATION STUDY

We perform an ablation study on easy set covering instances to separate the performance gain associated
with BBMDP and the HL-Gauss classification loss. Since BBMDP and TreeMDP yield strictly equivalent
learning schemes when minimizing one-step temporal difference, see Figure 3, we evaluate the performance
gap between one-step and k-step TD learning for both DQN-BBMDP and DQN-TreeMDP.

As shown in Table 2, we find that the bulk of the performance gain is brought by the use of a cross-entropy
loss. Nonetheless, we find that the use of a multi-step TD loss improves the performance of DQN-BBMDP,
while it undermines the performance of DQN-TreeMDP. This further supports the adoption of BBMDP
for learning branching strategies by reinforcement in the future. Following Parsonson et al. (2022), we
also evaluate the cost of opting for depth-first search instead of best estimate search, SCIP’s default node
selection policy, when learning branching strategies. Contrary to their work, we find DFS not to be restrictive
in practice in terms of performance. We further investigate theses discrepancies in Appendix F.

5 CONCLUSION AND PERSPECTIVES

Combinatorial optimization has proven to be a challenging setting for RL algorithms, including beyond the
field of mixed-integer linear programming (Berto et al., 2023). Not only are RL agents rather consistently
outperformed by human-expert CO heuristics or IL agents trained to mimic these experts, but their applica-
tion has also been limited so far to fairly easy problem instances. In this work, we showed the theoretical
and practical limits of the concept of TreeMDP for learning optimal branching strategies in MILP. Intro-
ducing BBMDP, we proposed a rigorous description of variable selection in B&B which we found to yield
better performance than prior RL agents on the Ecole benchmark. We believe that building on a robust
MDP formulation of variable selection in B&B is key to achieve substantial acceleration of solving time for
higher-dimensional MILPs in the future. In fact, agents trained by reinforcement have proven in the past to
be able to defeat human knowledge in combinatorial settings such as board games (Silver et al., 2017; Schrit-
twieser et al., 2020). Through our contribution, we built a theoretical framework that enables the adaptation
of model-based MCTS RL algorithms for the purpose of learning optimal branching strategies.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our training algorithms, experimental setups, and network architectures
in Section 4 and Appendix C. Furthermore, we provide all experiments details, including a full list of hyper-
parameters, in Appendix B. We shared in the supplementary material an anonymized version of our code
to reproduce the main experiments. We will share our open-source implementation to the community upon
publication to facilitate future extensions.
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APPENDIX

A INSTANCE DATASET

Instance datasets used for training and evaluation are decribed in Table 3. We trained and tested on instances
of same dimensions as Gasse et al. (2019), Scavuzzo et al. (2022) and Parsonson et al. (2022). As a reminder,
the size of action set A is equal to the number of integer variables in P . Consequently, action set sizes in the
Ecole benchmark range from 30 to 480 for easy instances, from 50 to 980 for medium instances, and from
100 to 1480 for hard instances.

Parameter value # Int. variables
Benchmark Generation method Parameters Easy Medium Hard Easy Medium Hard

Combinatorial
auction Leyton-Brown et al. (2000) Items

Bids
100
500

200
1000

300
1500 100 200 270

Set covering Balas & Ho (1980) Items
Sets

500
1000

1000
1000

2000
1000 100 130 160

Maximum
independent set Bergman et al. (2016) Nodes 500 1000 1500 480 980 1480

Multiple
knapsack Fukunaga (2011) Items

Knapsacks
100

6
100
12

100
18 30 50 100

Table 3: Instance size for each benchmark. Performance is evaluated on test instances that match the size
of the training instances, as well as on larger instances, to further assess the generalization capacity of our
agents. Last three columns indicate the approximate number of integer variables after presolve, both for
train (easy) and transfer (medium and hard) instances.

B TRAINING PIPELINE

DQN Implementation In Algorithm 1, we provide a description of DQN-BBMDP training pipeline. Our
DQN implementation includes several Rainbow-DQN features (Hessel et al., 2017): double DQN (Van Has-
selt et al., 2016), n-step learning and prioritized experience replay (PER) Schaul (2015). Moreover, as
DQN-BBMDP learns distributions representing Q-values, it integrates elements of Bellemare et al. (2017).

Algorithm 1 DQN-BBMDP

for t = 0...N − 1 do
Draw randomly an instance P ∼ p0.
Solve P by acting following a combined ϵ-greedy and Boltzman exploration according to qθt .
Collect transitions along the generated tree (si, ai,

∑k
j=1 ri+j , si+k) and store them into a replay

buffer Breplay.
Update θt using the loss described in (6) on transition batches drawn from Breplay.

end for

Exploration We train our agents following Boltzmann and ϵ-greedy exploration combined. Concretely,
agents select actions uniformly from A with probability ϵ, while following a Boltzmann exploration strategy
with temperature τ for the remaining probability 1− ϵ. The decay rates for ϵ and τ are listed in Table 4.
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Module Training parameter Value

Batch size 128
Optimizer Adam

Q-learning Learning rate lr 5× 10−5

Discount factor γ 1.0
Agent steps per network update 10

Replay buffer Buffer minimum size |Breplay|init 20× 103

Buffer maximum capacity |Breplay|max 100× 103

PER α 0.6
PER βinit 0.4

Prioritized experience replay PER βfinal 1.0
βinit → βfinal learner steps 100× 103

Minimum experience priority 10−3

Soft target network update τnet 10−4

n-step DQN k 3

Start exploration probability ϵinit 1.0
Minimum exploration probability ϵmin 2.5× 10−2

Exploration ϵ-decay 10−4

Start temperature τinit 1.0
Minimum temperature τmin 10−3

τ -decay 10−5

zmin -1
HL-Gauss zmax 16

(only for DQN-BBMDP) mb 18
σ 0.75

Table 4: Training parameters for all DQN branching agents. For DQN-Retro, we take γ = 0.99 as in
Parsonson et al. (2022).

Reward model In section 3.1, we defined R(s, a) = −2 for all transition, so that the overall value of a
trajectory matched the size of the B&B tree. In practice, all negative constant reward model yield equivalent
optimal policies in BBMDP, therefore, we chose to implement R(s, a) = −1 for all RL baselines in order
to allow clearer comparison between BBMDP and TreeMDP agents.

Training parameters Table 4 provides the list of hyperparameters used to train DQN agents on the Ecole
benchmarks. To allow fair comparisons, when applicable, we keep SCIP parameters, training parameters
and network architectures fixed for all DQN-agents.

C NEURAL NETWORK

State representation Following the works of Gasse et al. (2019), MILPs are best represented by bipartite
graphs G = (VG , CG , EG) where VG denotes the set of variable nodes, CG denotes the set of constraint nodes,
and EG denotes the set of edges linking variable and constraints nodes. Nodes vG ∈ VG and cG ∈ CG are
connected if the variable associated with vG appears in the constraint associated with cG . Given a MILP P ,
defined as in section 2.1, its associate bipartite representation G has |G| = |VG | + |CG | = n + m nodes.
We use bipartite graphs to represent M ∈ M as described in Section 3.2. In our experiments, IL and
PG-tMDP agents use the list of features of Gasse et al. (2019) to represent variable nodes, constraint nodes
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and edges, while DQN-BBMDP, DQN-TreeMDP and DQN-Retro agents also make use of the additional
features introduced by Parsonson et al. (2022).

Network architecture All RL agents utilize the graph convolutional network architecture described in
Scavuzzo et al. (2022) and Parsonson et al. (2022). In DQN-BBMDP, the architecture differs slightly, with
the final layer outputting distribution vectors in Rmb instead of scalar values in R.

D BASELINES

Imitation learning We trained and tested IL agents using the official Ecole re-implementation of Gasse
et al. (2019) shared at https://github.com/ds4dm/learn2branch-ecole/tree/main.

DQN-TreeMDP Since there is no publicly available implementation of Etheve et al. (2020), we re-
implemented DQN-TreeMDP and trained it on the four Ecole benchmarks, using when applicable the same
network architectures and training parameters as in DQN-BBMDP and DQN-Retro. We share implementa-
tion and trained network weights to the community.

PG-tMDP We used the official implementation of Scavuzzo et al. (2022) to evaluate PG-TreeMDP.
For each benchmark, we used the tMDP+DFS network weights shared at https://github.com/
lascavana/rl2branch.

DQN-Retro As Parsonson et al. (2022) only trained on easy set covering instances, we took inspira-
tion from the official implementation shared at https://github.com/cwfparsonson/retro_
branching to train and evaluate DQN-Retro agents on the four Ecole benchmarks. Importantly, we trained
and tested DQN-Retro following a BeFS node selection strategy, see Appendix F for more details. We share
our re-implementation and trained network weights with the community.

E HL-GAUSS LOSS

As they investigated the uneven success met by complex neural network architectures such as Transform-
ers in supervised versus reinforcement learning, Farebrother et al. (2024) found that training agents using a
cross-entropy classification objective significantly improved the performance and scalability of value-based
RL methods. However, replacing mean squared error regression with cross-entropy classification requires
methods to transform scalars into distributions and distributions into scalars. Farebrother et al. (2024) found
the Histogram Gaussian loss (HL-Gauss) (Imani & White, 2018), which exploits the ordinal structure struc-
ture of the regression task by distributing probability mass on multiple neighboring histogram bins, to be a
reliable solution across multiple RL benchmarks. Concretely, in HL-Gauss, the support of the value func-
tion Z ⊂ R is divided in mb bins of equal width forming a partition of Z . Bins are centered at zi ∈ Z for
1 ≤ i ≤ mb, we use η = (zmax − zmin)/mb to denote their width. Given a scalar z ∈ Z , we define the
random variable Yz ∼ N (µ = z, σ2) and note respectively ϕYz and ΦYz its associate probability density
and cumulative distribution function. z can then be encoded into a histogram distribution on Z using the
function phist : R → [0, 1]mb . Explicitly, phist computes the aggregated mass of ϕYz on each bin:

phist(z) = (pi(z))1≤i≤mb
with pi(z) =

∫ zi+
η
2

zi− η
2

ϕYz (y)dy = ΦYz (zi +
η

2
)− ΦYz (zi −

η

2
)

Conversely, histogram distributions (pi)1≤i≤mb
such as the ones outputted by agents’ value networks can

be converted to scalar simply by computing the expectation: z =
∑mb

i=1 pi · zi.

17

https://github.com/ds4dm/learn2branch-ecole/tree/main
https://github.com/lascavana/rl2branch
https://github.com/lascavana/rl2branch
https://github.com/cwfparsonson/retro_branching
https://github.com/cwfparsonson/retro_branching


799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

BBMDP is a challenging setting to adapt HL-Gauss, as the support for value functions spans over
several order of magnitude. In practice, we observe that for easy instances of the Ecole benchmark,
Z = [−106,−2]. Since value functions predict the number of node of binary trees built with B&B, it seems
natural to choose bins centered at zi = −2i to partition Z . In order to preserve bins of equal size, we
consider distributions on the support ψ(Z) with ψ(z) = log2(−z) for z ∈ Z , such that ψ(Z) is efficiently
partitioned by bins centered at zi = i for 1 ≤ i ≤ mb. Thus, in BBMDP histograms distributions are given
by phist(z) = (pi ◦ψ(z))1≤i≤mb

for z ∈ Z , and can be converted back to Z through z =
∑mb

i=1 pi ·ψ−1(zi)
with ψ−1(z) = −2z .

F BBMDP VS RETRO BRANCHING

In their work, Parsonson et al. (2022) proposed to train RL agents on retrospective trajectories built from
TreeMDP episodes, in order to leverage the state-of-the art node selection policies implemented in MILP
solvers. When reproducing their work, we found several discrepancies with the results they stated. First,
the performance gap between DQN-Retro and DQN-TreeMDP (Etheve et al., 2020) turned out to be much
narrower than expected. On easy set covering instances, the only benchmark on which the two agents are
compared in Parsonson et al. (2022), we even found DQN-TreeMDP to perform better. Second, Parsonson
et al. (2022) found that adopting a best-first-search (BeFS) node selection strategy at evaluation time greatly
improved the performance of DQN-TreeMDP on easy set covering instances, indicating that abandoning
DFS during training could be beneficial. However, in our experiments, we observed a 20% performance
drop when replacing DFS by BeFS at evaluation time. After thorough examination of both Parsonson et al.
(2022)’s article and implementation, we found that the baseline labeled as DQN-TreeMDP (FMSTS-DFS in
their article) was quite distant from the branching agent originally described in Etheve et al. (2020). In fact,
in Parsonson et al. (2022), the Etheve et al. (2020) branching agent is not trained on TreeMDP trajectories,
but on retrospective trajectories built from TreeMDP episodes, using a DFS construction heuristic. There-
fore, Parsonson et al. (2022) could not conclude on the superiority of retro branching over TreeMDP, nor
could they assess the limitations of DFS-based RL agents. In contrast, our contribution provides compelling
evidence that, while DFS is generally expected to hinder the training performance of RL agents due to its
reputation as a suboptimal node selection policy, the theoretical guarantees brought by DFS in BBMDP
enable to surpass prior state-of-the-art non-DFS agents. We believe this is because optimizing the node
selection policy has less influence on tree size performance compared to optimizing the variable selection
policy, as evidenced by Etheve (2021).
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G VALIDATION CURVES

We trained our agents on one GPU NVIDIA A100 with 40GB of VRAM. We present validation curves
for DQN-BBMDP, DQN-TreeMDP and DQN-Retro in Figure 4. For each benchmark we trained for 200k
gradient steps, which took approximately 2 days for combinatorial auction instances, 3 days for set covering
instances, 5 days for multiple knapsack instances and 7 days for maximum independent set instances.
As shown in Figure 4, DQN-BBMDP training was interrupted before final convergence on 3 out of 4
benchmarks, hinting that performance could likely be improved by training for more steps.
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Figure 4: Validation curves for DQN-BBMDP, DQN-Retro and DQN-tMDP agents, in log scale. Through-
out training, agents are evaluated on 20 validation instances after each batch of 100 training instances solved.
Note that on the multiple knapsack benchmark, none of the agents reach convergence.
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H FURTHER COMPUTATIONAL RESULTS

In this section, we include further computational results on instances of the Ecole benchmark. Table 5
provides computational results for harder instance benchmarks, as defined in Appendix A. Hard instances
are solved within a time limit of 10 minutes. Since most instances cannot be solved within the time limit,
we report final gaps and primal dual integrals averaged over 100 instances. The gap g is defined as the
normalized difference between (primal) global upper bound GUB and (dual) global lower bound GLB such
that:

g =
|GUB −GLB|

min(|GUB|, |GLB|) ,

while the primal-dual integral is defined as the integral of g with respect to running time. Among RL agents,
DQN-Retro achieves the best performance across the four hard instance benchmarks, despite exhibiting the
worst performance across the four medium instance benchmarks, as show in Table 1. We believe this to be
due to the use of final gap and primal-dual integral as performance metrics. In fact, contrary to other RL
agents, DQN-Retro is not trained to minimize B&B tree size. Instead, DQN-Retro learns variable selection
strategies yielding the shortest diving trajectories, hence strategies favoring primal-dual gap reduction over
tree size minimization. As a result, the DQN-Retro agent manages to achieve the best final gap and primal
dual integral performance in average, all while solving fewer instances to optimality than other RL agents
on hard instance benchmarks, as illustrated in Table 6. More importantly, we observe that while the IL
expert demonstrates reasonable generalization capability, achieving performance comparable to SCIP on
hard instance benchmarks, all RL baselines perform poorly, with none managing to outperform the random
agent across the four benchmarks. This underscores the limited generalization capacity of current model-free
RL agents to higher-dimensional instances, and highlights the need to adapt model-based RL approaches to
the B&B setting, by leveraging the BBMDP framework. Indeed, model-based MCTS RL approaches have
previously demonstrated the ability to surpass human expertise in combinatorial tasks such as board games
(Schrittwieser et al., 2020).

Table 6 provides additional performance metrics to compare the different baselines across easy, medium and
hard instance benchmarks. For each benchmark, we report the number of wins and the average rank of each
baseline across 100 evaluation instances. The number of wins is defined as the number of instances where
a baseline solves a MILP problem faster than any other baseline. When multiple baselines fail to solve an
instance to optimality within the time limit, their performance is ranked based on final dual gap.

Finally, Table 7 recapitulates the computational results presented in Table 1, and provides for each baseline
the per-benchmark standard deviation over five seeds, as well as the fraction of test instances solved to
optimality within the time limit.
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Set Covering Comb. Auction Max. Ind. Set Mult. Knapsack Norm. Score
Method Gap Integral Gap Integral Gap Integral Gap Integral Gap Integral

Random 12.5% 30221 1.53% 263389 2.80% 12148 0.019% 485 65 50
SB 16.4% 38691 1.90% 342652 6.93% 29712 0.277% 2978 215 122

RPB 5.1% 17229 0.07% 15687 2.25% 10198 0.017% 822 29 30

IL 4.9% 16997 0.13% 62793 1.66% 8769 0.052% 1666 43 48
IL-DFS 14.2% 35167 0.63% 183110 3.35% 16282 0.133% 2428 109 84

PG-tMDP 19.6% 40566 1.90% 327659 2.51% 12810 0.098% 2518 113 93
DQN-tMDP 18.8% 307117 2.60% 392797 3.77% 15701 0.019% 1021 95 98
DQN-Retro 10.0% 189758 1.58% 225552 2.82% 12305 0.049% 1285 76 74

DQN-BBMDP 18.5% 303313 1.80% 308803 3.75% 16670 0.056% 1452 100 100

Hard instances (Test)

Table 5: Computational results on hard instance benchmarks. For each method, we report the final gap as
well as the primal-dual integral at the end of the solving time, averaged over 100 instances. Lower is better,
red indicates best agent overall, blue indicates best among RL agents. Norm. Score denotes the aggregate
average performance obtained by each agent across the four MILP benchmarks, normalized by the score of
DQN-BBMDP.
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Easy Medium Hard
Method Solved Wins Rank Solved Wins Rank Solved Wins Rank

RPB 100/100 8/100 5.7 100/100 10/100 3.3 27/100 35/100 1.83

IL 100/100 1/00 3.8 100/100 29/100 1.8 27/100 49/100 1.54
IL-DFS 100/100 35/100 2.1 100/100 58/100 1.7 29/100 16/100 3.75

PG-tMDP 100/100 0/100 6.6 78/100 0/100 6.8 1/100 0/100 6.34
DQN-tMDP 100/100 11/100 2.9 96/100 0/100 5.0 5/100 0/100 5.84
DQN-Retro 100/100 1/100 4.9 98/100 0/100 5.1 6/100 0/100 3.37

DQN-BBMDP 100/100 44/100 1.9 100/100 3/100 4.2 8/100 0/100 5.34

Set covering
Easy Medium Hard

Method Solved Wins Rank Solved Wins Rank Solved Wins Rank

RPB 100/100 14/100 6.2 100/100 14/100 3.51 90/100 76/100 1.28

IL 100/100 3/100 3.5 100/100 47/100 1.7 80/100 20/100 1.94
IL-DFS 100/100 9/100 2.6 100/100 20/100 2.5 71/100 4/100 3.18

PG-tMDP 100/100 0/100 5.2 100/100 0/100 5.8 29/100 0/100 5.56
DQN-tMDP 100/100 0/100 5.5 100/100 0/100 6.5 2/100 0/100 6.58
DQN-Retro 100/100 6/100 3.6 100/100 1/100 4.6 27/100 0/100 4.00

DQN-BBMDP 100/100 74/100 1.5 100/100 18/100 2.9 21/100 0/100 5.47

Combinatorial Auction
Easy Medium Hard

Method Solved Wins Rank Solved Wins Rank Solved Wins Rank

RPB 100/100 9/100 5.7 100/100 7/100 4.5 9/100 6/100 2.56

IL 100/100 72/100 1.6 100/100 36/100 1.7 20/100 70/100 1.31
IL-DFS 100/100 10/100 2.4 100/100 0/100 3.2 19/100 0/100 5.17

PG-tMDP 100/100 0/100 4.9 100/100 57/100 1.8 29/100 24/100 3.17
DQN-tMDP 100/100 1/100 4.8 85/100 0/100 6.1 0/100 0/100 6.01
DQN-Retro 100/100 6/100 5.4 22/100 0/100 6.7 0/100 0/100 3.56

DQN-BBMDP 100/100 2/100 3.3 95/100 0/100 4.2 1/100 0/100 6.22

Maximum Independent Set
Easy Medium Hard

Method Solved Wins Rank Solved Wins Rank Solved Wins Rank

RPB 100/100 88/100 1.4 100/100 60/100 1.9 91/100 53/100 2.21

IL 100/100 1/100 4.5 100/100 6/100 3.4 86/100 15/100 3.78
IL-DFS 100/100 1/100 5.8 98/100 0/100 6.0 65/100 1/100 5.19

PG-tMDP 100/100 0/100 6.0 98/100 5/100 5.0 67/100 3/100 4.98
DQN-tMDP 100/100 1/100 3.5 99/100 14/100 3.5 91/100 14/100 3.32
DQN-Retro 100/100 3/100 3.5 98/100 9/100 3.8 72/100 6/100 4.15

DQN-BBMDP 100/100 6/100 3.3 100/100 6/100 4.3 75/100 8/100 4.37

Multiple Knapsack

Table 6: Additional performance metrics for each baseline on easy, medium and hard instance benchmarks,
see Appendix A for instance details. For each benchmark, we report the number of wins, and the average
rank of each baseline across the 100 evaluation instances. We also report for each baseline the fraction of test
instances solved to optimality within time limit. The number of wins is defined as the number of instances
where a baseline solves a MILP problem faster than all other baselines. When multiple baselines fail to solve
an instance to optimality within time limit, their performance is ranked based on final dual gap.

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

Easy Medium
Method Nodes Time Solved Nodes Time Solved

Random 3289± 4.2% 5.9± 4.3% 100/100 270365± 9.5% 811± 7.9% 60/100
SB 35.8± 0.0% 12.93± 0.0% 100/100 672.1± 0.0% 398± 0.2% 82/100

RPB 62.0± 0.0% 2.27± 0.0% 100/100 3309± 0.0% 48.4± 0.1% 100/100

IL 133.8± 1.0% 0.90± 4.8% 100/100 2610± 0.7% 23.1± 1.5% 100/100
IL-DFS 136.4± 1.8% 0.74± 5.3% 100/100 3103± 2.0% 22.5± 3.1% 100/100

PG-tMDP 649.4± 0.7% 2.32± 2.4% 100/100 44649± 3.7% 221± 4.1% 78/100
DQN-tMDP 175.8± 1.1% 0.83± 4.5% 100/100 8632± 4.9% 71.3± 5.8% 96/100
DQN-Retro 183.0± 1.2% 1.14± 4.1% 100/100 6100± 4.2% 59.4± 4.2% 98/100

DQN-BBMDP 152.3± 0.6% 0.77± 5.6% 100/100 5651± 2.2% 46.4± 3.3% 100/100

Set covering
Easy Medium

Method Nodes Time Solved Nodes Time Solved

Random 1111± 4.3% 2.16± 6.6% 100/100 354650± 6.7% 814± 7.1% 64/100
SB 28.2± 0.0% 6.21± 0.1% 100/100 389.6± 0.0% 255± 0.2% 88/100

RPB 20.2± 0.0% 1.77± 0.1% 100/100 1376± 0.0% 14.77± 0.1% 100/100

IL 83.6± 0.8% 0.73± 7.3% 100/100 1309± 1.6% 9.8± 2.2% 100/100
IL-DFS 95.5± 0.9% 0.67± 7.3% 100/100 1802± 2.0% 11.1± 1.8% 100/100

PG-tMDP 168.0± 2.8% 0.94± 6.0% 100/100 6001± 2.7% 30.7± 2.4% 100/100
DQN-tMDP 203.3± 4.2% 1.11± 4.0% 100/100 20553± 3.8% 116± 3.9% 100/100
DQN-Retro 103.2± 1.2% 0.78± 7.5% 100/100 2908± 1.7% 18.4± 2.7% 100/100

DQN-BBMDP 97.9± 1.2% 0.62± 8.5% 100/100 2273± 1.9% 11.8± 2.0% 100/100

Combinatorial auction
Easy Medium

Method Nodes Time Solved Nodes Time Solved

Random 386.8± 5.4% 2.01± 4.8% 100/100 215879± 6.7% 2102± 6.2% 25/100
SB 24.9± 0.0% 45.87± 0.4% 100/100 169.9± 0.2% 2172± 0.9% 15/100

RPB 19.5± 0.0% 2.44± 0.4% 100/100 3368± 0.0% 90.0± 0.2% 100/100

IL 40.1± 3.45% 0.44± 3.1% 100/100 1882± 4.0% 37.6± 3.2% 100/100
IL-DFS 69.4± 6.5% 0.56± 4.8% 100/100 3501± 2.7% 55.5± 2.6% 100/100

PG-tMDP 153.6± 5.0% 0.92± 2.6% 100/100 3133± 4.6% 39.5± 3.8% 100/100
DQN-tMDP 168.0± 5.6% 1.00± 3.4% 100/100 45634± 7.4% 477± 5.1% 85/100
DQN-Retro 223.0± 4.1% 1.81± 3.6% 100/100 119478± 6.1% 1863± 4.8% 22/100

DQN-BBMDP 103.2± 9.3% 0.69± 6.8% 100/100 7168± 5.3% 81.3± 4.2% 95/100

Maximum independent set
Easy Medium

Method Nodes Time Solved Nodes Time Solved

Random 733.5± 13.0% 0.55± 6.9% 100/100 93452± 14.3% 70.6± 9.2% 99/100
SB 161.7± 0.0% 0.69± 0.1% 100/100 1709± 0.5% 12.5± 0.9% 100/100

RPB 289.5± 0.0% 0.53± 0.2% 100/100 30260± 0.0% 22.14± 0.2% 100/100

IL 272.0± 12.9% 1.02± 8.5% 100/100 9747± 7.5% 46.5± 6.6% 100/100
IL-DFS 472.8± 13.0% 1.54± 9.0% 100/100 43224± 9.0% 177± 8.6% 98/100

PG-tMDP 436.9± 21.2% 1.57± 16.9% 100/100 35614± 14.3% 165± 15.4% 98/100
DQN-tMDP 266.4± 7.2% 0.73± 4.6% 100/100 22631± 8.6% 65.1± 5.5% 99/100
DQN-Retro 250.3± 9.5% 0.67± 5.0% 100/100 27077± 8.8% 79.5± 6.2% 98/100

DQN-BBMDP 236.6± 6.4% 0.66± 2.7% 100/100 37098± 7.0% 109± 4.9% 100/100

Multiple knapsack

Table 7: Computational performance comparison on four MILP benchmarks. Following prior works, we
report geometrical mean over 100 instances, averaged over 5 seeds, as well as per-benchmark standard
deviations. 23
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