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ABSTRACT

Biological systems arise through evolutionary processes that effectively render all
biological data, at scales ranging from biomolecules to organisms, to be evolu-
tionarily related. This poses a challenge to assessments of model generalization,
as naive random splits do not safeguard against data leakage; all data points are in
some sense related, and their degree of relatedness lies on a continuum. To address
this challenge, various similarity metrics are typically used to cluster data prior to
splitting to ensure dissimilarity of resulting partitions. However, as we show in
this study, similarity thresholds that lead to well-behaved splits (large numbers
of homogeneously sized clusters) must invariably be too permissive, thus only
permitting assessment of weak generalization. Conversely, stringent thresholds
that could in principle enable assessment of strong generalization typically fail to
produce well-separated clusters, yielding one or a handful of very large clusters
that span the entire dataset. Here, we propose a new data splitting methodology
that optimally balances these competing considerations by relaxing the assump-
tion that all data points must be retained. Instead, through a principled and judi-
cious removal of highly central data points, our approach yields well-behaved data
splits that enable assessment of extreme generalization regimes. We demonstrate
its utility by investigating the impact of diverse proteins representations on protein
function prediction. Our experiments confirm the robustness of our new method-
ology and provide insights into the utility and behavior of protein representations
under previously untested regimes of sequence and structure generalization.

1 INTRODUCTION

Generalization to unseen data is a highly sought desideratum for machine learning models. It is
often assessed by holding out data from the training set that can be used specifically for post hoc
validation (Goodfellow et al., 2016). For data modalities conventionally used in machine learning,
such as human text or natural images, random data splits can be sufficient. Biological data, however,
has the property of being generated by a universal evolutionary process that connects all known life
on Earth. Different genes, cell types, and organisms lie on a continuum of similarities with one
another. When partitioned randomly, biological data points can become arbitrarily close across the
training/validation/test set divide, thereby inflating reported generalization performance and, more
generally, making it an uncontrolled downstream variable of the randomness of the underlying split.

To address this issue, clustering of biological data prior to splitting has become standard practice in
bioinformatics. This raises the question of which similarity metric, and numerical threshold, should
be used for clustering (e.g., 30% sequence identity is a standard choice for proteins). These choices
bring their own challenges however. If the similarity threshold is too permissive, the resulting splits
can be too easy, only testing generalization to nearby regions of data space. On the other hand, if they
are too strict, all data can collapse into one cluster, owing to the evolutionary relationships between
data points. This makes it difficult to create balanced data splits that permit machine learning.
This is particularly common when all forms of ”leakiness” are sought to be avoided, often formally
implemented using single linkage clustering. In such cases, the transitivity of evolution, where entity
A is related to B and B to C, makes A and C fall into the same cluster. Common approaches seeking
to prevent this by using more restrictive clustering approaches invariably lead to data leakage.
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Here, we introduce a methodology for constructing data splits that meet three desiderata: leakage-
free, well-balanced, and sufficiently separated to permit assessment of difficult generalization tasks.
Our approach is also fast and efficient and thus applicable to large biological datasets. It comes at the
cost of intentionally removing possibly high quality data points from all data partitions. Specifically,
we judiciously remove central data points that are similar to many other data points, fragmenting
the evolutionary structure of the underlying data space to generate well-separated clusters of homo-
geneous sizes. Partitioning data based on the resulting clusters results in well-behaved, leakage-free
splits. This approach is agnostic to the similarity metric or threshold used, by trading data loss for
improved partitions. We show under relevant testing regimes that the amount of data lost is minimal.

We demonstrate the utility of our approach by assessing the capacity of learned protein represen-
tations to capture sequence-structure-function relationships. We test generalization across both se-
quence and structure space and find the latter to be more challenging. Notably, the lowest sequence
similarity threshold is as difficult as the highest structure similarity threshold. This confirms the
hypothesis that traditional sequence splits can inadvertently leak data by missing evolutionary rela-
tionships that are only detectable structurally (proteins can have highly dissimilar sequences while
adopting similar structures). Our study thus provides new insights into the behavior of protein repre-
sentations. We also introduce a new approach for constructing biological datasets with applications
ranging from pathogenicity prediction to drug design.

2 RELATED WORK

2.1 PREVENTING LEAKAGE BETWEEN DATA SPLITS

Leakage in biological data is a widely recognized problem (Whalen et al., 2022). Random splits
have been shown to significantly inflate model performance, as demonstrated at both the single-
sequence level (Rao et al., 2019; Dallago et al., 2021) and in protein-protein interactions (Park &
Marcotte, 2012; Hamp & Rost, 2015; Bernett et al., 2024). However, the extent to which solving it
becomes increasingly difficult or even impossible as higher generalization capabilities are sought is
less well recognized. Multiple approaches to leakage prevention currently exist. One is temporal,
training models on date released prior to a cutoff data and evaluating on data released after it. CASP
(Critical Assessment of protein Structure Prediction) keeps target structures unreleased until after
model submissions (Kryshtafovych et al., 2023). This approach is also common among protein-
ligand modeling methods such as EquiBind (Stärk et al., 2022), TankBind (Lu et al., 2022), DiffDock
(Corso et al., 2022) and PoseBusters (Buttenschoen et al., 2024). While easy to implement, it does
not account for evolutionary similarity among proteins or chemical similarity among ligands.

Another approach uses known biophysical properties as a proxy for evolutionary or chemical sim-
ilarity. For instance, PoseBusters filters proteins and ligands based on their molecular weight or
atom content. DeepChem (Ramsundar et al., 2019) proposes data splits for small molecules based
on their fingerprints, scaffolds, and weights. Others directly rely on existing annotations of evolu-
tionary relationships between data points, facilitating splits based on known clusters. This approach
is common among protein modeling methods (Ingraham et al., 2019; Anand et al., 2022). Widely
used classification schemes include ECOD (Evolutionary Classification of protein Domains) (Cheng
et al., 2014) and CATH (Orengo et al., 1997), which derive evolutionary relationships based on se-
quence and structure, respectively. The approach can be effective at preventing leakage but often
incurs substantial data loss, as it is constrained by the size of the annotation database.

The perhaps most common approach is to explicitly perform an initial clustering step with a simi-
larity metric reflective of the data modality in question. Widely used protein clustering algorithms
include CD-Hit (Fu et al., 2012) and MMseqs2 (Steinegger & Söding, 2017) for sequences and
Foldseek (van Kempen et al., 2023) for structures. A representative exemplar of this approach is
MaSIF-site (Gainza et al., 2020; Sverrisson et al., 2021; Gainza et al., 2023), which clusters protein
sequences at 30% sequence identity and retains only the cluster representatives for training and test-
ing. While the approach effectively prevents leakage, it also discards 75% of the data. ProteinNet
(AlQuraishi, 2019) carries out the same type of clustering at varying levels of sequence identity
but is only applicable to data in the Protein Data Bank (Berman et al., 2000a). In contrast, Deep-
FRI (Gligorijević et al., 2021) distributes entire protein clusters between the training and test sets,
while FLIP (Dallago et al., 2021) uses both complete clusters and cluster representatives to con-
struct benchmarking datasets. DataSAIL (Joeres et al., 2023) formulates data splitting as a set of
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binary linear optimization problems to minimize similarity between splits, and applies its solution to
both single sequences and sequence clusters. Although relatively slow due its complexity and lack-
ing guarantees for strict separation, DataSAIL has the advantage of handling both 1D (e.g single
molecules) and 2D (e.g. protein-ligand pairs) data.

2.2 BREAKING EVOLUTIONARY RELATIONSHIPS

The fundamental problem unsolved by these prior approaches is the dense interconnectivity of the
underlying data, which becomes increasingly apparent with larger datasets and more stringent sim-
ilarity thresholds. For example, in ProteinFlow (Kozlova et al., 2023), proteins are clustered by
sequence identity, forming nodes in a graph connected by edges if a protein complex spans pro-
teins from different nodes. The connected components of the graph define the final set of clusters.
However, one large component, comprising approximately 20% of the dataset, is left unpartitioned,
making it difficult to create representative train/test splits. CCPart (Fernández-Dı́az et al., 2024)
also finds that connected component clustering typically produces one dominant cluster with most
sequences, but leaves it intact. Smaller clusters are assigned to the evaluation set, skewing it towards
the most disconnected regions of the protein space. While these approaches ensure strict separation
between clusters, essential for avoiding data leakage, they fail to address the imbalance caused by
the large, unpartitioned component.

To achieve well-balanced and disconnected splits, two recent approaches have introduced splitting
algorithms that remove sequences from the dataset. After an initial clustering step based on se-
quence identities calculated with MMseqs2 (Steinegger & Söding, 2017) or EMBOSS (Rice et al.,
2000), GraphPart (Teufel et al., 2023) iteratively assigns clusters to partitions. It then disconnects
them by iteratively reassigning or removing similar sequences across partitions according a heuris-
tic. Although this method enforces strict homology separation, it often leads to substantial or even
complete data loss, particularly at low sequence identity thresholds.

In the small molecule context, Lo-Hi (Steshin, 2023) shares our objective of breaking large clusters
of related entities. Specifically, it offers a solution based on Integer Linear Programming to the
Balanced Vertex Minimum k-Cut problem, an NP-hard problem (Cornaz et al., 2014; Balas & Souza,
2005; Schwartz, 2022) which aims to disconnect a graph into k partitions (e.g train and test) of
predefined sizes by removing the fewest possible nodes. While conceptually well-suited to the
challenge of disconnecting the sequence space into disjoint splits, the method tackles a complex
optimization problem and does not always converge to a solution. Moreover, the graph coarsening
step employed to speed up computations may cause information loss.

Like these approaches, our method starts with calculating similarity values for all pairs in the dataset.
Unlike them, however, we do not seek optimal cuts in the protein graph. Instead, we apply commu-
nity detection to identify biologically meaningful, densely connected groups of proteins. We then
iteratively disconnect these communities by removing the node in the largest cluster with the most
inter-community connections until all inter-community connections are gone, following the ”remove
until done” strategy from the second homology reduction algorithm in Hobohm et al. (1992). Cen-
tral to our approach is the idea that clusters preserve the structure of the underlying data. While
likely not theoretically optimal, the simplicity of our method, coupled with its implementation using
sparse numpy matrices, make it both extremely fast and effective in practice, with minimal data loss.

Additionally, similar to ProteinNet but unlike GraphPart and Lo-Hi, our method allows to include
clusters at varying similarity thresholds in the validation and test sets, eliminating the need to re-
run the pipeline for each threshold and without significantly increasing compute time. This enables
direct comparisons across different levels of generalization difficulty.

2.3 SEQUENCE VS. STRUCTURE-BASED METRICS IN PROTEIN DATA

Agnostic to the splitting strategy is the choice of similarity metric used to compare data points. In
this work we apply our methodology to the problem of protein function prediction, which requires
splitting data based on protein similarity metrics. To date, most assessments of protein models
are done based on sequence-based splits, even for celebrated protein structure prediction methods
(Abramson et al., 2024). This trend stems from the abundance of protein sequences in databases (uni,
2023) and sensitive profile-based search methods such as JackHMMer (Eddy, 2011) and MMseqs,
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which make it possible to detect very low levels of sequence similarity (>25% sequence identity).
More recently, SpanSeq (Ferrer Florensa et al., 2024) introduced a method for calculating a proxy
for sequence similarity for very long sequences through fast k-mer comparisons. In contrast, the
historical paucity of protein structures combined with the computationally demanding nature of
structure-based alignment methods such as TMAlign (Zhang & Skolnick, 2005) have limited the
adoption of structure similarity metrics.

Structures, however, are more conserved than sequences (Illergård et al., 2009), such that proteins
with very dissimilar sequences (substantially below 25% sequence identity) can be structurally sim-
ilar. Generalization across structure can thus be more challenging than generalization across se-
quence, and is especially pertinent for protein function prediction given the role that structure plays
in function. This also makes it an excellent testbed for our methodology. The dense connectivity
of protein space becomes most apparent when using structure-based metrics, making it difficult-to-
impossible to use with existing data partitioning methodologies if data leakage is to be avoided.

A recent study identified such leakage in protein interaction benchmarks (Bushuiev et al., 2024).
Using sequence-based partitioning of protein complexes similar to ProteinFlow (Kozlova et al.,
2023), the study found proteins with analogous interfaces and folds distributed across splits. The
authors recommended adopting structure-based splitting instead. This was done by ProteinShake
(Kucera et al., 2024) using structure-based clustering performed by Foldseek (van Kempen et al.,
2023). Other recent approaches include MaSIF-search (Gainza et al., 2020), which generated non-
redundant protein surface interaction datasets, and iDist (Bushuiev et al., 2023), which identified
near-duplicate protein-protein interfaces through graph representations. In these studies, structural
generalization is assessed at single and somewhat low difficulty levels. PINDER (Kovtun et al.,
2024) combined both sequence and structure similarity metrics using MMseqs and Foldseek to min-
imize interface similarity between splits. Similarly, PLINDER (Durairaj et al., 2024) proposed
protein-ligand interaction splits by integrating similarity metrics across multiple levels (protein,
pocket, ligand, and interaction) for both protein and ligand sequences and structures.

3 DATASET CONSTRUCTION METHOD

3.1 ASSUMPTIONS AND SETUP

We begin by assuming that an appropriate similarity metric exists for our dataset and task of interest.
We emphasize that our approach is agnostic to the specific choices made, although in practice the
final results will be sensitive to them. We construct a graph G to encode the data, where nodes
correspond to data points and edges to similarity scores of the nodes they connect. Because of the
dense connectivity of the underlying data space, even a binarized version of the graph, where edges
are removed below a certain threshold, would still result in a very large connected component.
Thus a naive but leakage-preventing clustering of the dataset would not yield usable splits. Our
task then is to identify a small number of nodes to remove such that the graph is disconnected
into a sufficiently larger number of homogeneously-sized components to permit the construction of
training/validation/test splits.

3.2 REMOVAL OF CENTRAL POINTS

Graph partitioning algorithms such as Kernighan–Lin (Kernighan & Lin, 1970) can find balanced
partitions in a graph under the constraint of minimizing the number of edges cut between nodes.
However, they do not provide a straightforward way to choose a minimal set of nodes to remove
to disconnect the graph into separate components. Finding this optimal set of nodes to remove to
obtain well-balanced, strictly separated partitions is NP-hard (Cornaz et al., 2014; Balas & Souza,
2005; Schwartz, 2022; Cornaz et al., 2019). There is also no guarantee that the resulting graph
components are densely connected.

Instead of successively partitioning G into smaller components, we adopt a bottom-up approach
(Algorithm 1) which we illustrate in Figure 1A. We start by employing the Leiden algorithm (Blon-
del et al., 2008; Traag et al., 2019), a method commonly used for analyzing large networks, to find
communities C within G. The number and size of communities can be tuned using the resolu-
tion parameter r. These communities are not disconnected from one another but are optimized to
have higher connectivity within their nodes than with external nodes. Next, we iteratively select the
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largest community c and remove the node v in c that has the most inter-community edges. When
there are no more inter-community edges in G, we finally extract G’s connected components K.
Systematically removing top connectors allows us to sever as many inter-community connections as
possible while removing only one node at a time. Additionally, focusing on the largest community to
remove highly central nodes helps us break the largest clusters first, while preserving the structure of
smaller communities. These two considerations enable us to efficiently disconnect the communities
with minimal data loss.

Our algorithm also has the advantage of being fast. The Leiden algorithm employs a greedy opti-
mization method, as does the process of iteratively removing nodes with high betweenness centrality,
which can become a bottleneck for large-scale datasets. To accelerate runtime, our implementation
exclusively perform computations over sparse matrices. In our experiments, encoding the adjacency
matrix M as a sparse array reduced the runtime from over an hour to just a few minutes for a dataset
of approximately 30,000 data points.

Algorithm 1 Identify and disconnect communities

1: Inputs: M : adjacency matrix of similarity scores, r: resolution for community detection
2: Outputs: K: connected components, G: graph, M : adjacency matrix
3:
4: def DisconnectCommunities(M : Array, r: float, thr: float)→ (List[int], Graph, Array):
5: Construct graph G from adjacency M at threshold thr
6: # Identify communities C
7: C ← Leiden algorithm(r)
8: # Disconnect communities C
9: while inter-community edges do

10: Find largest community c in C
11: Find node v with most inter-community edges in c
12: Remove v from G and M
13: end while
14: K ← connected components from G
15: return (K,G,M)

3.3 GENERATING DATA SPLITS

After clustering the data, we create data splits by sampling clusters for the validation and test sets
at increasing similarity thresholds T . We describe sampling procedure in Algorithm 2 and illustrate
it in Figure 1B. We essentially follow ProteinNet’s methodology. We cluster the data at the lowest
similarity threshold T [0] and randomly sample a fixed number n of clusters, which we split equally
between the validation and test sets. We then repeat the process at the next higher threshold. Finally,
the remaining proteins at the highest threshold constitute the training set. The key conceptual dif-
ference with ProteinNet is that we replace the initial clustering step with our own community-based
clustering approach. We find that performing the community detection and disconnection step once
at the lowest similarity threshold is sufficient to break the connectivity of the underlying evolutionary
space, eliminating the need to repeat it at higher thresholds.

4 EXPERIMENTAL SETUP

4.1 FUNCTION PREDICTION TASK

We apply our community-based clustering approach to the two datasets introduced by DeepFRI
(Gligorijević et al., 2021), both derived from the Protein Data Bank (Berman et al., 2000b) and
commonly used to benchmark protein function prediction models (Lai & Xu, 2022; Zhang et al.,
2022; 2023). The Gene Ontology (GO) dataset (36,640 proteins) includes functional annotations
across three distinct ontologies: Biological Process (BP: 1,943 annotations), Cellular Component
(CC: 320), and Molecular Function (MF: 489). Models for each ontology are trained separately.
The Enzyme Commission (EC) dataset (19,198 proteins) focuses on predicting catalytic activity
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Algorithm 2 Generating data splits

1: Inputs: M : adjacency matrix of similarity scores, T : similarity thresholds, r: resolution for
community detection, n: number of clusters sampled per threshold for validation and test

2: Outputs: D: leakage-free data splits at thresholds T
3:
4: def SampleDataSplit(M : Array, T : List[float], r: float, n: int)→ Dict:
5: D ← {}
6: # Sort thresholds from lowest to highest
7: T ← sorted(T )
8: # Do community detection at the lowest threshold
9: thr ← T [0]

10: Remove edges ≤ thr in M
11: (K,G,M)← DisconnectCommunities(M , thr, r)
12: valthr, testthr ← randomly sample n clusters from K
13: D[thr]← (valthr, testthr)
14: Remove sampled nodes from G and M
15: # Iteratively sample clusters at increasing thresholds
16: for thr in T [1 :] do
17: Remove edges ≤ thr in G and M
18: K ← connected components from G
19: valthr, testthr ← randomly sample n clusters from K
20: D[thr]← (valthr, testthr)
21: Remove sampled nodes from G and M
22: end for
23: D[train]← remaining nodes
24: return D

of enzymes at the third and fourth levels of the EC classification, with each protein assigned 538
labels. All tasks are framed as multiple binary, non-exclusive classification tasks.

4.2 SEQUENCE & STRUCTURE-BASED SPLITS

The DeepFRI datasets were originally split into approximately 80% for the training set, and 10%
each for the validation and test sets. These splits were created by clustering protein sequences at vari-
ous sequence identity thresholds (30%, 40%, 50%, 70% and 95%) using CD-Hit. We introduce novel
splits based on sequence identity and the TM score, a measure of global structural similarity (Zhang
& Skolnick, 2004; Xu & Zhang, 2010), to compare generalization across sequence and structure
space. Pairwise sequence identities are calculated using MMseqs, where sequence identity is defined
as the number of identical aligned residues divided by the number of aligned columns, including in-
ternal gaps (--alignment_mode 3). Structural alignments and TM scores are obtained using
Foldseek’s implementation of TM-align (Zhang & Skolnick, 2005) (--alignment_type 1).

For each similarity metric, we randomly assign clusters to the validation and test sets at five thresh-
olds, between 30%-90% for sequence identity and 50%-90% for the TM score. We exclude lower
thresholds because 30% sequence identity and 50% TM roughly correspond to the level where pro-
teins are assumed to become randomly similar, and below which MMseqs and Foldseek lose sensi-
tivity. We construct 20 splits per dataset (EC and GO) and similarity metric, evaluating models on
the top 10 splits with the closest 80:10:10 train-validation-test ratio. For any dataset and similarity
metric, results are averaged over these 10 splits. More details on split construction and statistics are
provided in Appendix I.1.

4.3 METRICS FOR PROTEIN FUNCTION PREDICTION MODELS

Model performance is evaluated using two standard metrics from CAFA (Critical Assessment of
Functional Annotation) (Radivojac et al., 2013; Jiang et al., 2016; Zhou et al., 2019): the protein-
centric Fmax, and the label-centric area under the precision-recall curve (AUPRC). The Fmax score,
defined as the harmonic mean of precision and recall at an optimal prediction threshold, measures
how well labels are assigned to proteins. AUPRC evaluates how well proteins are assigned to labels.
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Figure 1: Overview of the dataset construction method. (A) We cluster data by representing the
dataset as a graph, where nodes represent data points, and edges are weighted by their similarity
score. We identify communities of highly related points and iteratively disconnect them by removing
top connectors. (B) Strategy for sampling data splits for increasing similarity thresholds thri. At
the lowest threshold thr0, we cluster proteins using our community-based based approach. Next,
we iteratively sample clusters for the validation and test sets by extracting the graph connected
components. The remaining points at the highest threshold thrm constitute the training set.

Following (Gligorijević et al., 2021), we compute Fmax and AUPRC by averaging precision and
recall over all proteins and over all functional annotations, respectively. Additionally, we introduce
a cluster-based variant of the Fmax score, called Fmax-cluster, to evaluate performance over clusters
rather than individual proteins. Precision and recall are averaged across clusters, addressing cluster
size imbalances, which are not controlled for in our data splits. Formulas are provided in Appendix
F.1.

4.4 MODELS

Our dataset construction pipeline provides an ideal framework for probing protein representations
under different generalization regimes. We benchmark representations from two state-of-the art pro-
tein language models, ESM2-650M (Lin et al., 2022) and Ankh (Elnaggar et al., 2023), from struc-
ture prediction model AlphaFold (Jumper et al., 2021), from graph-based protein structure encoder
GearNet-Edge (Zhang et al., 2022), and from sequence and structure-based encoder ESM-GearNet.
Details on how these representations were obtained are provided in Appendix F.2. We find that train-
ing small, single-layer neural networks yields results comparable to or slightly better than previously
reported state-of-the-art results on the original sequence-based DeepFRI splits (Zhang et al., 2023).
Models are initialized with a random seed, and results are aggregated over both data splits and model
seeds, with error bars representing the standard deviation. We train models until convergence and
select the best checkpoint for evaluation by averaging the Fmax and AUPRC scores across all simi-
larity thresholds. A distinct set of hyperparameters is tuned for each protein representation on the
original DeepFRI split and applied to all new splits. Details on our hyperparameters are provided in
Appendix F.3. Figure 2 summarizes our experimental setup.
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Figure 2: Overview of the experimental setup. We train simple feedforward neural networks on
various sequence and structure-based protein representations, and evaluate them on novel sequence
and structure-based across increasing levels of generalization difficulty, indicated by thri.

5 RESULTS ON THE DATASET CONSTRUCTION

5.1 DATA LEAKAGE FROM TRADITIONAL CLUSTERING

In Figure 5, we assess the proportion of ”leaky” proteins in the original DeepFRI test sets, defined as
those with a higher sequence identity to proteins in the training set than the maximum threshold. At
low sequence identity levels, this proportion is remarkably high, with nearly 80% of leaky proteins
in the EC dataset and 55% in the GO dataset at the 30% sequence identity threshold. Even at the
highest threshold of 95%, a notable proportion of test proteins remain leaky. Figure 6 demonstrates
that leaky proteins are, on average, significantly more similar to the training set than permitted.
For instance, in the GO dataset, the average sequence identity of leaky proteins at the 50% sequence
identity threshold is 76%, indicating that they are 50% more related to the training set than expected.
This results from creating the splits using CD-Hit clustering, which does not ensure strict separation
between clusters.

5.2 BREAKING PROTEIN INTERCONNECTIVITY

Figure 3 shows how our community-based clustering approach effectively partitions the protein
structure space at low similarity levels (TM score = 0.5). After disconnecting the graph based on
communities, the previously large connected component is fragmented into clusters of homogeneous
sizes. In the EC dataset, the size of the largest component decreases from 73% to 1% of the entire
dataset at the 0.5 TM threshold, and from 27% to 0.4% at the 30% sequence identity threshold.
Similarly, in the GO dataset, the size of the largest component drops from 64% to 1% at the 0.5 TM
threshold and from 27% to 0.4% at the 30% sequence identity threshold. Figures 7 and 8 illustrate
the impact of the community-based clustering at various thresholds of sequence identity and TM
scores. The dominant component is larger in the structural space than in the sequence space, likely
due to the continuous nature of the local geometry of protein structures, as previously noted for
structures from the Protein Data Bank (Skolnick et al., 2009). The resulting cluster distributions,
visualized in Figures 9 and 10, still follow an inverse power law distributions but exhibit clusters of
comparable sizes, facilitating the creation of well-balanced splits.

5.3 LIMITED DATA LOSS

Unless typical clustering methods, our approach trades-off data loss for better-behaved, strictly sep-
arated splits. For the EC dataset, we lose an average of 1.4% of the data using sequence identity
as the similarity metric and 12.4% with the TM score. Similarly, in the GO dataset, 1.4% of the
data is removed under sequence similarity, and 11.1% under structural similarity. Data loss is higher
for structural similarity but remains acceptable, allowing for sufficiently large splits for training and
evaluation. Given the greater structural connectivity among proteins, it is inevitable that more pro-
teins need to be removed to effectively partition the structure space. Data loss is comparable across
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.

Pre removal Post removal

Figure 3: Graph visualization of the protein space before (A) and after (B) partitioning it with our
clustering method. The graph represents the enzyme (EC) dataset at the TM=50% threshold. Nodes
correspond to proteins. Edges connect protein pairs when their TM score is above 50%.

datasets, likely due to both being derived from the same protein space, the Protein Data Bank. We
also find that the sets of nodes removed by the community-based disconnection step is highly similar
across random seeds, indicating that our method consistently removes the top connecting nodes, or
hubs, in the data. Detailed statistics on the dataset splits can be found in Appendix I.2.

6 BIOLOGICAL INSIGHTS

6.1 GENERALIZATION IS HARDER IN STRUCTURE SPACE

The need for structure-based splits arises from the fact that proteins with highly similar structures
can have vastly dissimilar sequences (Figure 12). Figure 13 shows a density plot illustrating the
distributions of sequence identities and TM scores in the EC dataset. Notably, high-density regions
appear both at high sequence identity and TM thresholds, as well as in areas where TM scores are
high while sequence identities remain low.

Confirming our intuition that generalization to new structures is more challenging than to unseen
sequences, Figures 4 and 14 illustrate model performance across various similarity thresholds. Our
findings align with previous observations that structure-based splits are more difficult than sequence-
based splits (Kucera et al., 2024). However, in our case, the difference in performance across sim-
ilarity thresholds is more pronounced due to better separation of the evaluation sets. In contrast,
model performance on the original DeepFRI splits (Figure 15) remains flatter across thresholds,
indicating the presence of similar proteins within the sets at these thresholds.

Cellular Component shows a smaller drop in performance between sequence and structure splits, in-
dicating that predicting cellular localization is largely independent of protein structure. For the other
tasks, the highest TM threshold (0.9) nearly as challenging as the lowest sequence similarity thresh-
old (30%), often regarded as the point below which proteins are randomly related. Performance at
the 50%, 60% and 70% TM thresholds is very similar, indicating that models struggle to generalize
to structures which are typically deemed similar - protein structures are usually considered randomly
related below the 0.5 TM score (Zhang & Skolnick, 2005).

Additionally, we find that performance is consistently slightly lower when evaluated with Fmax-
cluster compared to Fmax (Figures 4 vs 14), suggesting that results may be overestimated when
cluster effects are not accounted for. When calculated at the individual cluster level (Figures 16-18),
Fmax scores significantly increase between the 0.7 and 0.8 TM thresholds, reflecting trends observed
when results are averaged across clusters. Furthermore, the distribution of Fmax scores tends to be
bimodal, indicating that some clusters are much harder than others, even at high thresholds. This
disparity likely arises from the varying distances of these clusters are from the training set.
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EC BP

CC MF

Figure 4: Results on the new sequence and structure splits with the Fmax-cluster metric.

6.2 REPRESENTATIONS FROM LANGUAGE MODEL PERFORM CONSISTENTLY BETTER

As reported in Appendix G, our single-layer models trained on diverse protein representations
achieve competitive results with state-of-the-art methods (Zhang et al., 2023). To the best of our
knowledge, Ankh superior performance establishes a new state-of-the-art for the EC and MF ontolo-
gies. Interestingly, our results highlight the comparatively strong performance of protein language
models across all similarity thresholds, whereas structure-based representations demonstrate poorer
performance, even in structure-based splits. This suggests that structural representations may not en-
code the high-level features necessary for predicting functional characteristics, instead being more
specialized in capturing structural details. In contrast, protein language models have been shown to
effectively capture both rich functional and structural features (Rives et al., 2021; Lin et al., 2022).

7 CONCLUSION

We introduce a fast and methodology for constructing leakage-free, well-balanced, and sufficiently
separated data splits. Our approach involves two main steps: first, identifying densely connected
nodes within a dataset graph; second, strategically removing hub nodes to fragment the evolutionary
structure of the data space. While applied here to proteins, this methodology is data-agnostic and can
be extended to other data types, such as DNA/RNA or small molecules, provided a similarity matrix
can be computed. We demonstrate its effectiveness by evaluating learned protein representations for
function prediction, revealing that structure-based splits present a significantly more challenging test
than sequence-based splits, and highlighting that protein function prediction remains an unsolved
task. Our source code and data splits are available at a public GitHub repository.
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A DATA LEAKAGE IN THE DEEPFRI SPLITS

Here, we show how more permissive clustering approaches can cause significant data leakage be-
tween data splits. We estimate data leakage between the training and validation sets in the DeepFRI
splits, which were constructed with CD-HIT clustering. For each sequence identity cutoff, we iden-
tify the proteins in the test set that are more similar to proteins in the training set than the identity
cutoff. We call these proteins leaky. Figure 5 illustrates the proportion of leaky proteins in the
test set across different cutoff identity thresholds. Data leakage is substantial at all thresholds, with
particularly high levels at lower sequence identities. Additionally, we show the average similarity
between these leaky proteins and the training data in Figure 6. We find that the average sequence
identity of leaky protein pairs can significantly exceed the specified cutoff threshold. For example, at
the 50% sequence identity cutoff, the average sequence identity of leaky protein pairs is 68% in the
EC dataset and 76% in the GO dataset, surpassing the allowed cutoff by 36% and 52%, respectively.
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Figure 5: Proportion of proteins in the original DeepFRI test set that are more similar to the training
set than the sequence identity cutoff threshold.
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Figure 6: Average sequence identity of leaky protein pairs between the training and test sets in the
original DeepFRI splits.

Data leakage may arise from the sequence alignment process used by CD-HIT, which might be less
effective than MMseqs2. However, we believe that much of the leakage results from the posterior
clustering stage, which may prioritize increasing the number of clusters at the expense of their
separation. Similarly, in MMseqs2, the default clustering mode groups remote homologs together
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(the connected component mode), likely due to its tendency to produce too few and overly large
clusters.

B EFFECT OF REMOVING CENTRAL POINTS ON THE CLUSTER DISTRIBUTION

Disconnecting the protein space. Figures 8 and 7 illustrate how our community-based clustering
approach efficiently fragments the protein space into homogeneously sized components at various
similarity thresholds by removing highly central points. In our experiments, we set the resolution
parameter r for community detection to 2 (refer to the Leiden algorithm in Algorithm 1), as this value
provides the optimal balance between generating more clusters and minimizing protein removal.

TM = 0.5 TM = 0.7 TM = 0.9A.

B.

sequence identity = 0.3 sequence identity = 0.5 sequence identity = 0.7C.

D.

Post
removal

Pre
removal

Sequence identity thresholds

Sequence 
identity = 0.3

Sequence 
identity = 0.5

Sequence
identity = 0.7

Figure 7: Graph visualization of the EC dataset at increasing sequence identity cutoff thresholds,
pre (top row) and post (bottom row) central points removal. Each node represents a protein, and two
proteins are connected if their similarity score is superior to the given sequence identity cutoff.
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TM = 0.5 TM = 0.7 TM = 0.9A.
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Figure 8: Graph visualization of the EC dataset at increasing TM score cutoff thresholds, pre (top
row) and post (bottom row) central points removal. Each node represents a protein, and two proteins
are connected if their similarity score is superior to given TM score cutoff.
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Cluster distributions. Here, we provide a quantitative visualization of the distributions of con-
nected components before and after removing top connectors from the data. Figure 9 illustrates how
the largest components represent a much smaller proportion of the dataset following the community
disconnection step. Figure 10 displays the sorted distribution of cluster sizes on a logarithmic scale
before and after this process.

Pre community
detection

Post community
disconnection

GO

EC

Figure 9: Effect of removing central points on cluster proportions in the EC and GO datasets. Col-
ored rectangles correspond to the proportion that clusters of a certain size s represent in the overall
dataset. Circles are proportional to the average cluster size.

EC

Pre community
detection

Post community
disconnection

GO

Figure 10: Effect of removing central points on cluster sizes in the EC and GO datasets.
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C EFFECT OF REMOVING CENTRAL POINTS ON MODEL PERFORMANCE

In Figure 11, we compare model performance across identical sequence identity thresholds for the
DeepFRI splits and our splits. We observe that performance is more sensitive to similarity thresholds
in our splits, which is desirable for evaluating model generalizability. In contrast, the DeepFRI splits
show closer results across similarity thresholds, indicating the presence of similar, leaky proteins
between the test subsets at different difficulty levels.

Additionally, we note that performance on the EC dataset is higher in the DeepFRI splits compared
to our splits, which is expected due to leakage between the training and validation sets. We observe
the opposite trend for the GO dataset (BP, CC, and MF), likely due to the randomness of the splitting
strategy. Specifically, the DeepFRI split for the GO dataset seems unusually challenging, which ac-
counts for the lower performance. This effect might have been mitigated by averaging over multiple
splits, but unlike our approach, DeepFRI used only a single data split.

Figure 11: Comparison of model performance on DeepFRI splits and our splits.

D SEQUENCE VS STRUCTURE SIMILARITY

We hypothesized that i) generalizing to structures would be more challenging than to sequences,
and ii) that existing sequence-based splits may not accurately reflect performance on structure-based
splits, as proteins with high structural similarity can exhibit significantly different sequences. Figure
12 illustrates this with an example from the EC dataset.

To assess the correlation between sequence identity and structural similarity, Figure 13 presents a
density plot of the distributions of TM scores and sequence identities for all protein pairs in the
EC dataset. Interestingly, many protein pairs exhibiting high structural similarity (TM score around
0.9) have low sequence identity (around 30%). In contrast, there are very few pairs with highly
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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:::::::::::.:::::::::::::::::::::::::::::::::::::: :::::::::::::::: :
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A.

B.

sequence identity = 0.296

TM = 0.924

ETDCPFLPPQ-P--FR-GKRNEPKYLKYVVETISQVLGVPEAKVDEATTENARRIFLEVKE--------
:::::::::: :  :. .:::::::::::::::::::::::::::::::::::::::..          
ESDAPYLLPRSLRPKPKSGRNEPAFLPEVLREVALHRGESAEHTAAHTTATARDFFQLP--AENHHHWS

Figure 12: Sequence and structural alignments of two enzymes with highly similar structures yet
dissimilar sequence. Red is for 3RCM-A, a TatD family hydrolase, and blue is for 1J6O-A, a
TatD-related deoxyribonuclease. (A) Structural alignment, computed with TMAlign. (B) Sequence
alignment, computed with MMseqs2.

dissimilar structures (TM score around 0.5) that share high sequence identity. This finding suggests
that the TM score may be a more suitable metric for creating challenging train/test splits, aligning
with recommendations from (Bushuiev et al., 2024).
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Figure 13: Density plot of TM scores and sequence identities for all protein pairs in the EC dataset.
Sequence identities and TM scores were calculated using MMseqs2 and Foldseek, respectively, with
a minimum sequence coverage and structure coverage of 80%.
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E COMPLEXITY ANALYSIS

We estimate the complexity of our method by breaking it down into two main steps:

• Detecting communities: We use the Leiden algorithm, which is known for efficiently
detecting high-quality communities in large networks. It has been demonstrated to cluster
a graph with 10 million nodes and 200 million edges in just over three minutes, with a
near-linear runtime in the number of edges. For sparse graphs like those considered here,
the number of edges is approximately proportional to the number of nodes, allowing us to
estimate the complexity as O(n log n), where n is the number of nodes.

• Disconnecting communities: In this step, the algorithm processes each community (up
to n communities). For any given community C, the complexity primarily comes from
removing the inter-community edges caused by the removal of the top connector v in C.
The number of such connections is at most n. Thus, the overall complexity for this step is
upper-bounded by O(n2).

Combined, the overall complexity of our method is estimated to be quadratic in the number of
samples, or O(n2).

F ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

F.1 METRICS

We compute the protein-centric Fmax score and label-centric AUPRC score according to the defini-
tions provided by CAFA.

Fmax score: Protein-centric Fmax corresponds to the maximum F1 score over thresholds t ∈ [0, 1]:

Fmax = max
t

(
2
p(t) · r(t)
p(t) + r(t)

)
(1)

where, for any given threshold t and protein i, precision p(t) is averaged over all proteins, M(t),
with at least one positive label, and recall r(t) is averaged over the total number of proteins N :


p(t) = 1

M(t)

∑
i pi(t)

r(t) = 1
N

∑
i ri(t)

(2)

and

M(t) =
∑

i 1[
∑

l 1[l ∈ Pi(t)] > 0] (3)

where l is a label, Pi(t) is the set of labels predicted as positive for protein i at threshold t, and 1 is
the indicator function.

For any given protein i at threshold t, precision pi(t) and recall ri(t) are given by


pi(t) =

∑
l 1[l∈Pi(t)∩Ti]∑

l 1[l∈Pi(t)]

ri(t) =
∑

l 1[l∈Pi(t)∩Ti]∑
l 1[l∈Ti]

(4)

where Ti is the set of positive labels for protein i.
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AUPRC score: Label-centric AUPRC, the area under the precision-recall curve, is obtained by
calculating precision p(t) and recall r(t) over labels l for all thresholds t:

AUPRC = AUCt [p(t), r(t)]

=
∑K−2

k=0 (r(tk+1)− r(tk)) · p(tk+1)
(5)

Precision and recall are calculated following Equation 2, with proteins i replaced by labels l:
p(t) = 1

M(t)

∑
l pl(t)

r(t) = 1
L

∑
l rl(t)

(6)

where L is the total number of labels, and
M(t) =

∑
l 1[

∑
i 1[i ∈ Pl(t)] > 0] (7)

Similarly as in Equation 4 (with proteins i replaced by labels l):
pl(t) =

∑
i 1[i∈Pl(t)∩Tl]∑

i 1[i∈Pl(t)]

rl(t) =
∑

i 1[i∈Pl(t)∩Tl]∑
i 1[i∈Tl]

(8)

Fmax-cluster score: We introduce Fmax-cluster, a variant of the Fmax score designed to account
for cluster size imbalance. Instead of being averaged across proteins, precision and recall are first
separately calculated for each cluster c ∈ C, then averaged across clusters:


p(t) = 1

M(t)

∑
c∈C pc(t)

r(t) = 1
|C|

∑
c∈C rc(t)

(9)

where precision pc(t) and recall rc(t) are calculated across proteins i in cluster c:


pc(t) =

1
Mc(t)

∑
i∈c pi(t)

rc(t) =
1
Nc

∑
i∈c ri(t)

(10)

with
Mc(t) =

∑
i∈c 1[

∑
l 1[l ∈ Pi(t)] > 0] (11)

F.2 INPUT PROTEIN REPRESENTATIONS

We probe representations extracted from the following sequence and structure-based encoders.

ESM2-650M (Lin et al., 2022) ESM2-650M is a popular protein language model based on the
transformer encoder (Vaswani et al., 2017) and trained with the BERT masked language modeling
objective (Devlin et al., 2018). We extract the residue-level representation from the last layer.

Ankh (Elnaggar et al., 2023) Ankh, another masked protein language model, is based on the T5
architecture (Raffel et al., 2020). In contrast to the ESM2 model series, Ankh places less emphasis
on model scaling and instead focuses on carefully tuning its hyperparameters. As with ESM2, we
extract the residue-level representation from the last layer.

AlphaFold2 (Jumper et al., 2021) AlphaFold2 is a state-of-the art protein structure prediction
model based on two intertwined blocks of transformers. The first block, called the Evoformer,
learns dependencies between residues by processing raw multiple sequence alignments. The Evo-
former returns an abstract representation which the second transformer block, the Structure module,
transforms into residue positions. We extract the protein representation returned by the Evoformer
module after it has gone through 3 iteration cycles.
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GearNet-Edge (Zhang et al., 2022) GearNet-Edge is a graph-based protein structure encoder
which encodes spatial information in the edges of protein residue graphs. GearNet-Edge was pre-
trained with various self-supervised task. We select the model trained with the multiview contrastive
learning objective, as it was reported to outperform other GearNet models on the EC and GO pre-
diction tasks (Zhang et al., 2022) and extract the residue-level representation.

ESM-GearNet (Zhang et al., 2023) ESM-GearNet is a hybrid sequence and structure-based en-
coder, obtained by fusing ESM2 and GearNet. It aims to generate richer protein representations
by leveraging signal from both sequence and structure. As previously, we extract the residue-level
representation learned by the model.

We emphasize that the goal of this paper is not to outperform baselines on existing benchmarks, but
to study the behavior of various protein representations derived from sequence and structure under
different data splitting regimes. Nevertheless, a simple experiment to enhance performance could
involve probing representations extracted from different layers of the aforementioned models. For
example, previous studies on BERT language models indicate that the last layer does not consistently
yield superior predictive performance (Rogers et al., 2021).

F.3 MODEL HYPERPARAMETERS

We train simple, fully-connected neural networks on the protein function prediction tasks. The
models can be described as follows: Output = Wout · Dropout(ReLU(Wh · x + bh) + bout, p),
where Wh is the weight matrix of the hidden layer, Wout is the weight matrix of the output layer,
bh and bout are the biases of the hidden and output layers, respectively, ReLU is the activation
function, and dropout is applied with probability p to the activation output. The output layer has
nclass dimension, where nclass is the size of the label one-hot vector for the given ontology.

Table summarizes the set of hyperparameters we select for each protein representation after tuning
models on the original DeepFRI splits. Choosing the appropriate combination of batch size and
learning rate is critical for successful training. Additionally, a moderate level of dropout proves
beneficial. Regarding model size, we opt for the minimum hidden dimension where performance
plateaus. Our experiments show that larger hidden dimensions enable faster training but do not
necessarily improve performance, and come with increased memory requirements.

Table 1: Model hyperparameters

DESCRIPTION / REPRESENTATION ANKH ESM2-650M ESM-GEARNET GEARNET-EDGE ALPHAFOLD

DIMENSION OF REPRESENTATION 1536 1280 4352 3072 384
HIDDEN LAYER DIMENSION 1536 1280 1024 1024 1536
LEARNING RATE 0.003 0.003 0.001 0.0001 0.0005
DROPOUT 0.3 0.3 0.3 0.3 0.3
BATCH SIZE 128 128 128 128 128
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G ADDITIONAL RESULTS ON EC AND GO PREDICTION

In this section, we present more results for the EC and GO prediction tasks. To facilitate future
benchmarking efforts, results for all models and data splits can be found in Tables 2-13.

Results on the new splits. Similarly to Figure 4 illustrates how protein representations struggle to
generalize on structure-based splits compared to sequence-based splits. The results appear slightly
inflated, and the variance is more pronounced when evaluating performance using theFmax (aver-
aged over proteins) compared to the Fmax-cluster (averaged over protein clusters). This emphasizes
the value of a cluster-based metric in performance assessment. The trends observed across splits
and similarity thresholds are consistent for the label-centric AUPRC score and are even more pro-
nounced.

Results on the original DeepFRI splits. Figure 15 shows the Fmax and AUPRC scores for the
original, sequence-based DeepFRI splits. The increase in performance between lower and higher
similarity thresholds is less pronounced than in our own sequence-based splits. We identify several
potential reasons behind this difference, all related to the methodology employed to build the test
set.

First, as detailed in A, the DeepFRI splits exhibit significant leakage between the training and test
sets. Second, in the DeepFRI splits, proteins from low sequence identity subsets are included in
subsets at higher thresholds, meaning that the test subsets are not independent and that performance
at any given similarity cutoff will closely resemble performance at the preceding cutoff. Addition-
ally, the number of proteins added to the test set varies across sequence identity cutoffs, leading to
inconsistent representation of similarity thresholds in the final results. Overall, these issues hinder
fair comparisons between sequence identity thresholds in the DeepFRI splits and may account for
the comparable performance observed across thresholds compared to our splits. Note that we do
not report results using the Fmax-cluster for the original DeepFRI splits, as cluster information is not
available in the dataset.
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EC
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MF

CC

Fmax AUPRC

Figure 14: Fmax and AUPRC on EC and GO prediction. Models are separately trained to predict
the three ontologies of the GO dataset: Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF). Results on the structure-based splits are shown with dashed lines (TM
thresholds between 0.5 and 0.9); results on the sequence-based with solid lines (sequence identity
thresholds between 0.3 and 0.9).
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Figure 15: Fmax and AUPRC on the original, sequence identity-based DeepFRI splits.
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Table 2: Fmax-cluster on EC prediction.

SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.15 0.23 0.28 0.76 0.36 0.31 0.37 0.5 0.55 0.59
ESM 0.14 0.2 0.29 0.78 0.36 0.43 0.48 0.63 0.67 0.71
ESM-GEARNET 0.14 0.22 0.28 0.81 0.38 0.54 0.6 0.71 0.76 0.8
AF-SEVO 0.22 0.29 0.4 0.84 0.49 0.62 0.67 0.78 0.81 0.83
GEARNET-EDGE 0.39 0.39 0.61 0.87 0.69 0.67 0.72 0.81 0.84 0.86

Table 3: Fmax on EC prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.22 0.28 0.22 0.33 0.37 0.38 0.4 0.52 0.56 0.6 0.61 0.65 0.78 0.8 0.83
ESM 0.19 0.23 0.19 0.28 0.36 0.52 0.57 0.69 0.72 0.76 0.64 0.68 0.8 0.82 0.85
ESM-GEARNET 0.25 0.27 0.25 0.35 0.4 0.62 0.67 0.76 0.81 0.84 0.67 0.72 0.82 0.84 0.87
AF-SEVO 0.3 0.34 0.3 0.48 0.54 0.69 0.73 0.82 0.85 0.87 0.73 0.77 0.86 0.87 0.89
GEARNET-EDGE 0.46 0.47 0.46 0.68 0.7 0.72 0.77 0.85 0.88 0.89 0.77 0.81 0.88 0.89 0.91

Table 4: AUPRC on EC prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.09 0.12 0.09 0.16 0.21 0.19 0.18 0.3 0.3 0.45 0.48 0.44 0.61 0.66 0.76
ESM 0.08 0.12 0.08 0.16 0.22 0.35 0.35 0.5 0.48 0.64 0.51 0.5 0.64 0.69 0.78
ESM-GEARNET 0.1 0.13 0.1 0.19 0.26 0.53 0.51 0.64 0.64 0.79 0.58 0.57 0.7 0.75 0.82
AF-SEVO 0.19 0.23 0.19 0.33 0.4 0.66 0.63 0.7 0.7 0.84 0.65 0.64 0.75 0.79 0.85
GEARNET-EDGE 0.4 0.38 0.4 0.61 0.67 0.69 0.67 0.75 0.72 0.87 0.7 0.69 0.77 0.83 0.87
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Table 5: Fmax-cluster on BP prediction.

SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.15 0.23 0.28 0.76 0.36 0.31 0.37 0.5 0.55 0.59
ESM 0.14 0.2 0.29 0.78 0.36 0.43 0.48 0.63 0.67 0.71
ESM-GEARNET 0.14 0.22 0.28 0.81 0.38 0.54 0.6 0.71 0.76 0.8
AF-SEVO 0.22 0.29 0.4 0.84 0.49 0.62 0.67 0.78 0.81 0.83
GEARNET-EDGE 0.39 0.39 0.61 0.87 0.69 0.67 0.72 0.81 0.84 0.86

Table 6: Fmax on BP prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.32 0.35 0.32 0.44 0.46 0.37 0.38 0.48 0.52 0.55 0.36 0.37 0.44 0.46 0.49
ESM 0.28 0.33 0.28 0.41 0.43 0.45 0.45 0.6 0.64 0.66 0.37 0.37 0.45 0.47 0.49
ESM-GEARNET 0.32 0.35 0.32 0.44 0.45 0.48 0.48 0.63 0.68 0.71 0.37 0.38 0.45 0.48 0.5
AF-SEVO 0.37 0.4 0.37 0.5 0.51 0.53 0.54 0.69 0.73 0.75 0.4 0.4 0.48 0.5 0.52
GEARNET-EDGE 0.36 0.39 0.36 0.57 0.58 0.55 0.57 0.72 0.76 0.77 0.42 0.42 0.5 0.52 0.54

Table 7: AUPRC on BP prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.07 0.11 0.07 0.15 0.17 0.09 0.09 0.13 0.17 0.21 0.13 0.12 0.15 0.18 0.22
ESM 0.06 0.09 0.06 0.13 0.13 0.16 0.16 0.25 0.28 0.34 0.13 0.13 0.15 0.18 0.22
ESM-GEARNET 0.08 0.11 0.08 0.16 0.17 0.22 0.22 0.32 0.35 0.41 0.15 0.15 0.17 0.19 0.24
AF-SEVO 0.11 0.15 0.11 0.23 0.25 0.32 0.32 0.4 0.43 0.5 0.17 0.17 0.19 0.22 0.26
GEARNET-EDGE 0.16 0.19 0.16 0.33 0.36 0.37 0.38 0.48 0.5 0.56 0.21 0.22 0.23 0.26 0.31

Table 8: Fmax-cluster on CC prediction.

SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.15 0.23 0.28 0.76 0.36 0.31 0.37 0.5 0.55 0.59
ESM 0.14 0.2 0.29 0.78 0.36 0.43 0.48 0.63 0.67 0.71
ESM-GEARNET 0.14 0.22 0.28 0.81 0.38 0.54 0.6 0.71 0.76 0.8
AF-SEVO 0.22 0.29 0.4 0.84 0.49 0.62 0.67 0.78 0.81 0.83
GEARNET-EDGE 0.39 0.39 0.61 0.87 0.69 0.67 0.72 0.81 0.84 0.86

Table 9: Fmax on CC prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.49 0.56 0.49 0.61 0.59 0.51 0.57 0.62 0.65 0.65 0.46 0.48 0.53 0.58 0.58
ESM 0.47 0.53 0.47 0.57 0.58 0.55 0.58 0.64 0.68 0.68 0.46 0.49 0.54 0.58 0.58
ESM-GEARNET 0.51 0.57 0.51 0.62 0.61 0.57 0.6 0.67 0.71 0.72 0.47 0.49 0.54 0.58 0.58
AF-SEVO 0.51 0.59 0.51 0.64 0.63 0.59 0.62 0.7 0.74 0.75 0.47 0.49 0.55 0.59 0.58
GEARNET-EDGE 0.51 0.56 0.51 0.66 0.65 0.61 0.65 0.74 0.77 0.78 0.49 0.51 0.56 0.6 0.59
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Table 10: AUPRC on CC prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.17 0.25 0.17 0.32 0.33 0.18 0.24 0.25 0.3 0.35 0.19 0.18 0.24 0.28 0.33
ESM 0.16 0.25 0.16 0.31 0.32 0.24 0.28 0.34 0.39 0.44 0.19 0.19 0.24 0.29 0.33
ESM-GEARNET 0.18 0.27 0.18 0.36 0.36 0.29 0.32 0.41 0.45 0.52 0.19 0.2 0.24 0.29 0.33
AF-SEVO 0.22 0.32 0.22 0.41 0.4 0.36 0.4 0.48 0.51 0.58 0.19 0.2 0.25 0.3 0.33
GEARNET-EDGE 0.31 0.38 0.31 0.54 0.55 0.4 0.46 0.56 0.6 0.66 0.23 0.25 0.29 0.35 0.38

Table 11: Fmax-cluster on MF prediction.

SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.15 0.23 0.28 0.76 0.36 0.31 0.37 0.5 0.55 0.59
ESM 0.14 0.2 0.29 0.78 0.36 0.43 0.48 0.63 0.67 0.71
ESM-GEARNET 0.14 0.22 0.28 0.81 0.38 0.54 0.6 0.71 0.76 0.8
AF-SEVO 0.22 0.29 0.4 0.84 0.49 0.62 0.67 0.78 0.81 0.83
GEARNET-EDGE 0.39 0.39 0.61 0.87 0.69 0.67 0.72 0.81 0.84 0.86

Table 12: Fmax on MF prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.4 0.43 0.4 0.5 0.5 0.48 0.51 0.62 0.66 0.68 0.46 0.47 0.58 0.6 0.62
ESM 0.36 0.4 0.36 0.47 0.48 0.57 0.59 0.72 0.76 0.77 0.47 0.48 0.59 0.62 0.64
ESM-GEARNET 0.38 0.41 0.38 0.5 0.51 0.61 0.64 0.76 0.8 0.82 0.49 0.5 0.61 0.64 0.66
AF-SEVO 0.46 0.5 0.46 0.63 0.62 0.67 0.71 0.81 0.85 0.86 0.53 0.54 0.64 0.67 0.69
GEARNET-EDGE 0.52 0.51 0.52 0.72 0.73 0.69 0.72 0.82 0.86 0.87 0.56 0.58 0.68 0.7 0.72

Table 13: AUPRC on MF prediction.

DEEPFRI SEQUENCE IDENTITY TM SCORE

MODELS 0.3 0.4 0.5 0.7 0.95 0.3 0.4 0.5 0.7 0.9 0.5 0.6 0.7 0.8 0.9

ANKH 0.15 0.17 0.15 0.24 0.27 0.23 0.24 0.37 0.39 0.47 0.32 0.32 0.4 0.46 0.51
ESM 0.14 0.19 0.14 0.26 0.28 0.38 0.37 0.54 0.54 0.63 0.33 0.34 0.41 0.48 0.53
ESM-GEARNET 0.16 0.21 0.16 0.28 0.31 0.46 0.47 0.61 0.61 0.71 0.36 0.37 0.43 0.5 0.55
AF-SEVO 0.22 0.25 0.22 0.39 0.42 0.6 0.6 0.7 0.69 0.8 0.4 0.41 0.46 0.53 0.58
GEARNET-EDGE 0.38 0.39 0.38 0.59 0.64 0.62 0.64 0.74 0.72 0.83 0.43 0.46 0.49 0.57 0.62
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H ADDITIONAL CLUSTER-BASED RESULTS

Here, we evaluate model performance on individual clusters in the EC dataset. In contrast to results
measured with the Fmax-cluster (Figure 4), we do not report aggregate scores over all protein clusters.
Figures 16-18 show that both the Fmax score (on top) and the AUPRC score (below) exhibit bimodal
distributions across all protein representations and similarity thresholds. Models frequently predict
individual clusters either very well or very poorly, highlighting varying difficulty levels among pro-
tein families. This pattern is particularly evident for clusters with fewer members, which, as shown
in Figures 9 and 10, constitute a significant portion of the overall cluster population. The pronounced
performance differences likely stem from the distance of some clusters to the training set. For ex-
ample, certain clusters at the 90% similarity threshold may exhibit a very low similarity (e.g 30%)
to the training set, resulting in a decline in performance.

Furthermore, we find no significant difference in performance between sequence-based and
structure-based representations.

We also compare the behavior of the Fmax score and AUPRC score across clusters of varying sizes
in Figure 19. Interestingly, while the Fmax score remains relatively stable, the AUPRC score shows
a negative correlation with cluster size. This suggests that the AUPRC may not be the most suitable
metric for evaluating model performance on individual clusters.

Figure 16: Distributions of Fmax and AUPCR scores for all individual clusters in the EC prediction
task. Results are aggregated across all models and dataset seeds.
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Figure 17: Distributions of Fmax and AUPCR scores for individual clusters with more than 5 mem-
bers in the EC prediction task.

Figure 18: Distributions of Fmax and AUPCR scores for individual clusters with more than 15 mem-
bers in the EC prediction task.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 19: Fmax and AUPCR scores for individual clusters as a function of cluster size in the EC
prediction task. (A): results for TM thresholds, (B): sequence identity thresholds. ρ is the Spearman
correlation between the score values and the cluster sizes.
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I DETAILS ON THE DATA SPLITS

In this section, we provide a detailed description of our sequence-based and structure-based data
splits.

I.1 SIMILARITY SCORES

Pairwise sequence identities are calculated using MMseqs2 (Steinegger & Söding, 2018), which
performs local alignments of sequences. TM scores between protein structure pairs are obtained
using Foldseek with the TMAlign option (van Kempen et al., 2023). Foldseek first prefilters similar
protein pairs based on their structural motifs and then realigns the structures with a fast implemen-
tation of TM-align for improved accuracy. We set the target coverage to 80% or both MMseqs2 and
Foldseek, without specifying minimum values for sequence identity or TM score. The following
parameter values are used:

• MMseqs2: -cov-mode 1 -c 0.8 -alignment_mode 3 -evalue=0.001
-sensitivity 7.5 -min-seq-id 0.

• Foldseek: -cov-mode 1 -c 0.8 -alignment_mode 3 -evalue=0.001
-sensitivity 7.5 -tm_thresh 0 -lddt_threshold 0 -tmalign_fast 1
-alignment_type 1

I.2 DATA SPLIT STATISTICS

We provide an overview of the EC and GO data splits in Table 14, along with detailed statistics for
each split in Tables 15-18. For each dataset and similarity metric, we evaluated models on 10 of the
20 sampled data splits, selecting those that best matched the 80:10:10 train:val ratio. However, we
systematically include all 20 data seeds in our tables to allow users to aggregate performance over
additional seeds or utilize train:val splits with varying ratios. The data seeds used in our experiments
are as follows:

• EC, sequence identity: 1, 5, 20, 6, 2, 7, 13, 3, 12, 4
• EC, TM score: 3, 13, 10, 4, 8, 15, 19, 7, 17, 14
• GO, sequence identity: 1, 4, 2, 11, 6, 17, 3, 9, 18, 7
• GO, TM score: 18, 9, 1, 12, 7, 11, 5, 13, 14, 16

Table 14: Dataset splits overview

CLASSIFICATION SIMILARITY METRIC THRESHOLDS # CLUSTERS PER THRESHOLD
VALIDATION TEST

EC SEQUENCE IDENTITY 0.3, 0.4, 0.5, 0.7, 0.9 175 175
TM SCORE 0.5, 0.6, 0.7, 0.8, 0.9 48 48

GO SEQUENCE IDENTITY 0.3, 0.4, 0.5, 0.7, 0.9 350 350
TM SCORE 0.5, 0.6, 0.7, 0.8, 0.9 100 100
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Table 15: Statistics for the sequence-based EC dataset

# PROTEINS SPLIT RATIO (%) # UNIQUE LABELS
SEED TOTAL TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST

1 18919 15173 1799 1947 80.2 9.51 10.29 538 460 480
2 18929 15253 1811 1865 80.58 9.57 9.85 538 471 472
3 18928 15337 1777 1814 81.03 9.39 9.58 538 456 466
4 18925 15436 1823 1666 81.56 9.63 8.8 538 473 444
5 18912 15208 1798 1906 80.41 9.51 10.08 538 456 477
6 18928 15232 2038 1658 80.47 10.77 8.76 538 472 464
7 18924 15256 1832 1836 80.62 9.68 9.7 538 477 466
8 18931 15635 1551 1745 82.59 8.19 9.22 538 447 458
9 18936 14807 2211 1918 78.19 11.68 10.13 538 482 469

10 18923 15698 1567 1658 82.96 8.28 8.76 538 459 440
11 18920 14659 1985 2276 77.48 10.49 12.03 538 475 486
12 18925 15352 1666 1907 81.12 8.8 10.08 538 443 481
13 18914 15259 1933 1722 80.68 10.22 9.1 538 460 452
14 18927 14500 1900 2527 76.61 10.04 13.35 538 472 493
15 18927 15488 1732 1707 81.83 9.15 9.02 538 465 444
16 18923 14476 2262 2185 76.5 11.95 11.55 538 484 491
17 18918 15542 1647 1729 82.15 8.71 9.14 538 458 456
18 18933 15771 1465 1697 83.3 7.74 8.96 538 453 433
19 18913 15461 1606 1846 81.75 8.49 9.76 538 441 468
20 18919 15054 1981 1884 79.57 10.47 9.96 538 474 462

Table 16: Statistics for the TM-based EC dataset

# PROTEINS SPLIT RATIO (%) # UNIQUE LABELS
SEED TOTAL TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST

1 16839 11811 2707 2321 70.14 16.08 13.78 538 502 498
2 16771 14281 1595 895 85.15 9.51 5.34 538 461 367
3 16823 13245 1699 1879 78.73 10.1 11.17 538 479 467
4 16824 13794 1397 1633 81.99 8.3 9.71 538 428 456
5 16751 10659 2692 3400 63.63 16.07 20.3 538 504 509
6 16818 12555 2392 1871 74.65 14.22 11.12 538 494 474
7 16729 14135 1369 1225 84.49 8.18 7.32 538 436 409
8 16879 13896 1486 1497 82.33 8.8 8.87 538 418 441
9 16831 10996 3524 2311 65.33 20.94 13.73 538 521 489

10 16829 13148 1721 1960 78.13 10.23 11.65 538 455 475
11 16805 10776 2957 3072 64.12 17.6 18.28 538 510 503
12 16743 12477 2613 1653 74.52 15.61 9.87 538 502 481
13 16828 13736 1908 1184 81.63 11.34 7.04 538 467 415
14 16876 14338 1371 1167 84.96 8.12 6.92 538 422 418
15 16832 12938 1619 2275 76.87 9.62 13.52 538 452 491
16 16859 11075 3311 2473 65.69 19.64 14.67 538 519 502
17 16809 12619 1884 2306 75.07 11.21 13.72 538 474 493
18 16852 14471 1315 1066 85.87 7.8 6.33 538 420 393
19 16838 12725 1554 2559 75.57 9.23 15.2 538 454 501
20 16727 12461 2322 1944 74.5 13.88 11.62 538 494 480
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Table 17: Statistics for the sequence-based GO dataset

# PROTEINS SPLIT RATIO (%) # UNIQUE LABELS
BP CC MF

SEED TOTAL TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST

1 36113 28941 3544 3628 80.14 9.81 10.05 1942 1900 1905 320 314 315 489 470 475
2 36128 29111 3455 3562 80.58 9.56 9.86 1943 1917 1918 320 319 315 489 481 478
3 36116 29281 3474 3361 81.07 9.62 9.31 1943 1891 1892 320 317 307 489 476 475
4 36124 29038 3463 3623 80.38 9.59 10.03 1943 1914 1906 320 309 315 489 466 476
5 36120 28266 4097 3757 78.26 11.34 10.4 1943 1917 1903 320 319 316 489 478 483
6 36097 28593 3796 3708 79.21 10.52 10.27 1943 1917 1911 320 316 314 488 467 483
7 36107 28442 3907 3758 78.77 10.82 10.41 1939 1924 1908 319 313 317 488 483 481
8 36123 29357 3241 3525 81.27 8.97 9.76 1943 1913 1919 320 316 318 489 477 480
9 36119 28462 3915 3742 78.8 10.84 10.36 1943 1924 1916 320 316 318 489 474 473

10 36136 29458 3233 3445 81.52 8.95 9.53 1942 1890 1906 320 317 316 489 480 478
11 36128 28676 3487 3965 79.37 9.65 10.97 1943 1926 1908 320 311 313 489 470 478
12 36134 29625 3260 3249 81.99 9.02 8.99 1943 1912 1906 320 314 316 488 476 478
13 36131 28165 4211 3755 77.95 11.65 10.39 1943 1931 1923 320 319 319 489 482 477
14 36119 27906 4134 4079 77.26 11.45 11.29 1939 1927 1911 320 319 317 488 478 479
15 36118 29454 3409 3255 81.55 9.44 9.01 1943 1896 1929 320 313 314 489 478 476
16 36136 27322 4734 4080 75.61 13.1 11.29 1940 1932 1921 320 318 318 488 480 479
17 36122 29247 3340 3535 80.97 9.25 9.79 1943 1912 1924 320 316 317 489 482 475
18 36119 29337 3691 3091 81.22 10.22 8.56 1943 1918 1917 320 318 313 489 479 479
19 36126 29466 3274 3386 81.56 9.06 9.37 1943 1914 1870 320 314 313 489 486 473
20 36112 27898 3780 4434 77.25 10.47 12.28 1942 1906 1922 320 316 317 489 477 481

Table 18: Statistics for the TM-based GO dataset

# PROTEINS SPLIT RATIO (%) # UNIQUE LABELS
BP CC MF

SEED TOTAL TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST

1 32606 24942 3289 4375 76.5 10.09 13.42 1942 1830 1854 320 304 307 487 436 432
2 32618 26175 2843 3600 80.25 8.72 11.04 1942 1836 1801 320 301 304 486 407 426
3 32507 27050 2638 2819 83.21 8.12 8.67 1943 1793 1770 320 291 301 488 414 407
4 32640 27242 2881 2517 83.46 8.83 7.71 1943 1769 1772 317 290 301 488 419 409
5 32644 24797 3588 4259 75.96 10.99 13.05 1942 1828 1851 317 300 306 486 429 422
6 32577 26678 3562 2337 81.89 10.93 7.17 1940 1868 1809 320 308 298 481 416 419
7 32476 27090 2908 2478 83.42 8.95 7.63 1943 1783 1756 320 297 300 489 403 398
8 32612 26479 2637 3496 81.19 8.09 10.72 1943 1690 1813 320 304 305 487 387 415
9 32641 23739 5374 3528 72.73 16.46 10.81 1937 1903 1865 317 315 300 482 446 424

10 32749 26277 2853 3619 80.24 8.71 11.05 1943 1810 1804 320 307 301 489 401 421
11 32578 22764 4892 4922 69.88 15.02 15.11 1940 1902 1891 319 302 308 481 434 448
12 32687 25556 2790 4341 78.18 8.54 13.28 1943 1818 1839 320 301 312 489 421 423
13 32421 26283 3535 2603 81.07 10.9 8.03 1942 1873 1713 320 300 295 488 427 395
14 32494 25214 4114 3166 77.6 12.66 9.74 1941 1858 1830 319 299 302 485 445 410
15 32439 25146 3175 4118 77.52 9.79 12.69 1943 1794 1809 320 290 296 489 390 428
16 32491 24510 4332 3649 75.44 13.33 11.23 1941 1860 1821 320 303 306 487 426 426
17 32432 26906 2746 2780 82.96 8.47 8.57 1943 1776 1788 318 297 295 488 407 400
18 32480 27325 2200 2955 84.13 6.77 9.1 1943 1777 1823 320 284 289 488 411 416
19 32540 25965 2886 3689 79.79 8.87 11.34 1943 1803 1821 320 306 306 486 404 421
20 32764 24676 3947 4141 75.31 12.05 12.64 1942 1868 1855 320 306 307 486 424 427
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