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ABSTRACT

Multi-Layer Perceptrons (MLPs) achieve high accuracy but are hindered by a large
number of parameters, leading to significant memory and power consumption.
While Kolmogorov-Arnold Networks (KANs) address this by using learnable
functions instead of weight matrices, their B-spline implementations are compli-
cated in hardware designs. To overcome this limitation, we propose a novel hard-
ware framework for Chebyshev-KANs, leveraging the recursive properties and nu-
merical stability of Chebyshev polynomials. Our core component, the ChebyUnit,
efficiently generates polynomial bases and reuses coefficients from on-chip stor-
age to perform lightweight inner product operations in a streaming fashion. This
approach significantly reduces external memory access (DDR traffic) and resource
utilization while maintaining high throughput. Our Verilog implementation on a
Xilinx ZCU102 FPGA demonstrates over 90% reductions in LUT, FF, and DSP
utilization compared to a baseline high-level synthesis (HLS) design, all while
preserving excellent approximation accuracy. These findings confirm the prac-
tical efficiency of Chebyshev-KANs, positioning them as a promising solution
for interpretable and energy-efficient neural networks, particularly in resource-
constrained edge AI applications.

1 INTRODUCTION

Despite the remarkable advances driven by deep learning models in fields such as image classifi-
cation, speech recognition, and natural language processing, their increasing size and complexity,
as exemplified by models with hundreds of billions of parameters[6], have led to a significant es-
calation in computational and memory demands. Traditional Multi-Layer Perceptrons (MLPs), a
foundational neural network architecture, achieve high accuracy at the cost of massive parameter
counts. This characteristic makes them particularly resource-intensive, requiring extensive mem-
ory access and consuming considerable energy, thereby limiting their viability for deployment in
resource-constrained environments such as mobile and edge devices. In response, Kolmogorov-
Arnold Networks (KANs)[7][9] were introduced to replace the static weight matrices of MLPs
with learnable functional bases. This innovative approach not only drastically reduces the num-
ber of parameters while maintaining comparable accuracy but also enhances model interpretability
due to the clear mathematical nature of its bases. Nevertheless, standard KAN implementations,
often relying on B-spline functions, suffer from complex recursive operations that are challeng-
ing to efficiently map onto hardware. To overcome this, we propose an FPGA-based accelerator
for a Chebyshev-KAN, which takes advantage of the numerical stability and recursive simplicity of
Chebyshev polynomials[13]. Our design not only inherits the parameter efficiency and interpretabil-
ity of KANs but also incorporates weight reuse strategies to minimize memory traffic and resource
utilization, including Look-Up Tables (LUTs) and Digital Signal Processors (DSPs). Implemented
in Verilog, our accelerator for Chebyshev-KAN demonstrates substantial performance and efficiency
gains, making it a highly promising solution for energy-efficient edge AI applications.
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2 RELATED WORKS

2.1 KOLMOGOROV ARNOLD NETWORKS

In this work, we adopt the Kolmogorov-Arnold representation[9] , which states that any continuous
multivariate function can be written as

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
(1)

From equation (1), ϕq,p and Φq are univariate continuous functions. The theorem provides a con-
structive scheme for expressing a complicated function as a combination of one-dimensional func-
tions. In this representation, the high-dimensional functions can be controlled by analyzing their
behavior through single-variable components. For its core, the result states that a function of many
variables can be written as a finite sum of terms, each depending on the interpretation of control
points . This decomposition is broadly useful in mathematics and applied science because it stream-
lines both theoretical analysis and practical computation for multivariate models. It shows that
continuous multivariate functions are not more sophisticated than univariate functions since they
can be composed of one-variable functions. Moreover, we have turned this mathematics theorem
into hardware architecture in the following section.

For a layer l with input width nl and output width nl+1, KAN replaces edge weights with univariate
edge functions. The j-th output coordinate is the sum of those edge activations. In the matrix form,
the “product” denotes applying each univariate function to the corresponding input and summation
along the rows. Then, for layer-L KAN with layer widths (n0, . . . , nL) and a scalar output nL = 1,
the network can be written as the following sum of the edge function (3).

xl+1,j =

nl∑
i=1

x̃l,j,i =

nl∑
i=1

ϕl,j,i(xl,i), j = 1, · · · , nl+1 (3)

In matrix form, this represents as follows

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
. . .

...
ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl

(·)


︸ ︷︷ ︸

Φl

xl (4)

f(x) =

nL−1∑
iL−1=1

ϕL−1,iL,iL−1

 nL−2∑
iL−2=1

· · ·

(
n2∑

i2=1

ϕ2,i3,i2

(
n1∑

i1=1

ϕ1,i2,i1

(
n0∑

i0=1

ϕ0,i1,i0(xi0)

)))
(5)

KANs were proposed to address the limitations of MLPs in parameter efficiency and interpretability.
Instead of using fixed node activations, KANs put learnable univariate functions which are typically
B-spline parameterized on edges. Therefore, each weight becomes a small function that adapts to
the data, increasing the flexibility of the model. This design is inspired by the Kolmogorov-Arnold
representation, which turns edge parameters into learnable functions and improves adaptability com-
pared to fixed activations in MLPs.

From the perspective of hardware design, previous studies on KANs have emphasized their com-
pactness. KANs can achieve an accuracy comparable to that of MLPs while using fewer parame-
ters, suggesting potential savings in storage and data movement. However, straightforward imple-
mentations of the B-spline evaluation are computationally intensive and consume lots of hardware
resources[15]. Related hardware-focused research on KANs further highlights this challenge: recur-
sive and nonlinear B-spline evaluations are implemented complicatedly from the hardware point of
view and significantly retard the acceleration. It shows that direct LUT-mapping of B-splines incurs
substantial LUT/MUX /decoder overhead on edge devices; hardware-aware quantization is required
to be cost-efficiency.
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Finally, early FPGA studies comparing KAN and MLP indicate that while KANs can be more
parameter-efficient, straightforward KAN accelerators may consume significantly more LUT and
DSP resources than MLPs if basis evaluation and memory layout are not optimized. This highlights
the importance of discreet KAN-hardware design.

2.2 CHEBYSHEV POLYNOMIAL

The Chebyshev polynomial basis can be defined by the polynomial form[13] :

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2 (6)

The Chebyshev Kolmogorov–Arnold Network (Chebyshev-KAN) is a novel architecture designed
to improve the efficiency and accuracy of nonlinear function approximation. By combining
Kolmogorov-Arnold theorem with Chebyshev polynomials, Chebyshev-KAN offers advantages
over traditional MLPs. While MLPs require many parameters and often suffer from inactive neu-
rons, Chebyshev-KAN assigns learnable activation functions to edges, allowing the model to achieve
lower parameter counts while maintaining or even improving accuracy.

Since edge functions are explicit and one-dimensional, they can be visualized and analyzed di-
rectly. This gives Chebyshev-KAN better interpretability than MLPs, especially in scientific and
engineering applications to understand learned transformations. In terms of numerical stability and
approximation accuracy, Chebyshev polynomials are renowned for their fast convergence and sta-
ble approximation. By integrating these polynomials into KANs, the network can achieve higher
approximation accuracy, which, in turn, directly optimizes hardware deployment.

Besides, the network can be expressed as

ybo =

input dim∑
i=1

degree∑
j=0

Tbij · Cioj (7)

We compute the layer output y by contracting the Chebyshev-basis tensor T with the learnable coeffi-
cient tensor C via Einstein summation (einsum), where i indicates the input dimensions and j indexes
the degree of the Chebyshev polynomials. This operation combines the polynomial bases with the
learned coefficient to produce the final output layer y. In short, it copies numerous Chebyshev- basis
along the input tensor and then sums over the degree index to produce the output so that each input-
multiply weight can be retrieved from the Chebyshev curve. Prior hardware efforts mainly target
B-spline KAN and hardware-aware quantization, whereas our design builds a Chebyshev-basis KAN
on FPGA with lightweight tensor generation and on-chip reuse, avoiding large LUT/MUX fabrics.
Additionally, we have tried to convert the theory into hardware architecture and will elaborate the
hardware system in the next section.

2.3 FPGA ACCELERATORS DESIGN

Early FPGA accelerators for DNN focus on CONV+FC (convolution and full-connected) layers,
because they dominate both parameter counts and arithmetic. A canonical breakdown on VGG-11
shows that CONV+FC contribute 99 percentage of weights and operations; similarly, RNNs are
largely FC-dominated, so most systems target these two kernels [3].

A typical accelerator system connects a host CPU and an FPGA: the host issues commands over
PCIe/Ethernet/AXI, and each side keeps its own external DDR; SoC platforms (Xilinx Zynq) co-
locate host and FPGA in one package. Designs usually place the NN accelerator on the FPGA and
orchestrate it from the host.

The central bottleneck is memory. Although FPGAs have registers/BRAM on-chip, capacity is
small relative to modern models (common networks use 100–1000 MB; large FPGAs provide 50
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MB on-chip). Consequently, designs must stream from external DDR, and DDR bandwidth and
energy dominate overall performance/efficiency.

On the compute side, FPGAs expose hundreds to thousands of DSPs, reaching up to 10 TFLOP/s
on high-end parts; by contrast, low-end devices such as Xilinx XC7Z020 deliver only 20 GFLOP/s,
which constrains real-time workloads.

For non-convolutional models such as KAN/Chebyshev-KAN, we adopt fixed-point quantization to
maximize DSP utilization (f, P, η) , schedule on-chip buffers to minimize DDR traffic, and orga-
nize computation around recurrence-based basis generation plus einsum-style contraction to keep
W low and the design on the compute, not memory.(throughput IPS = (f * P * η) / W, f for working
frequency of the computation units, P for number of computation units in the hardware design, η for
utilization of the computation and W for Workload for each inference)[4]

3 HARDWARE IMPLEMENTATION APPROACH

In this work, the hardware implementation was carried out using Verilog hardware description lan-
guage (HDL) and Xilinx Vivado de- sign suite. Verilog provides precise control over datapaths,
timing, and logic, making it well-suited for FPGA deployment. Vivado offers an integrated flow
for simulation, synthesis, and implementation, along with timing analysis, resource utilization, and
power reporting. Our designed modules are parameterizable, where the input and output dimensions
and hidden layer sizes can be flexibly adjusted at the HDL level, so a single register-transfer level
(RTL) design can support different network architectures with minimal modification. The accelera-
tor was implemented from ChebyUnit inner-product operations up to full network interconnections
and deployed on a Xilinx MPSoC UltraScale+ ZCU102 platform with a 100 MHz clock frequency
and fixed-point data type which is configurable bit-width.

3.1 ACTIVATION UNIT DESIGN

The Activation Unit is the fundamental hardware block in a Chebyshev-KAN. It computes the output
of a single neuron by generating Chebyshev basis values, multiplying them with stored coefficients
(controlling points), and accumulating the corresponding results. Conceptually, the unit transforms
one input value into its neuron-level contribution, which can later be combined with other neurons
to form the output of the network layer. To make this design practical for FPGA, the Activation
Unit is built as a parameterizable and reusable module. Key parameters such as input dimension,
polynomial degree, data bit width, and fixed point precision can be adjusted at the HDL level. With
these configurable options and parameters, the same hardware block can support different network
sizes and accuracy requirements while balancing resource utilization and performance. Since this
Activation Unit is specifically constructed with Chebyshev polynomials as its basis functions, it will
hereafter be referred to as the ChebyUnit and this name will be used consistently throughout the
remainder of this work. Figure 1 illustrates the internal datapath of the ChebyUnits. It is mainly
composed of three main components: Chebyshev Tensor Function Generator, Control Point Line
Buffer and Inner Product Computation.

Figure 1: ChebyUnit, single PE structure

3.1.1 CHEBYSHEV TENSOR FUNCTION EVALUATION

The first stage of the ChebyUnits is the Chebyshev Tensor Function Generator, which produces
the polynomial basis values needed for neuron computation. Given an input data x, the module
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computes all Chebyshev terms T0(x), T1(x),. . . ,Td(x) based on the recursive relation mentioned
above. In hardware, this recursion is translated into a streaming datapath: The input data x is first
registered and its scaled value (2x) is obtained by a one-bit left shift, which is stored for reuse in
subsequent computations. This approach eliminates the need to use DSP slices for repeated multi-
plications by 2, thereby saving valuable multiplier resources for other operations. Multiplications in
Chebyshev polynomials are mapped to FPGA DSP slices and the simple shift is efficiently handled
by basic logic resources.

Once computed, the tensor values are passed one by one, starting from T0(x) up to Td(x). This
streaming output allows the next modules, such as the control point buffer and inner-product unit—to
begin processing immediately, improving overall throughput without waiting for all terms to finish.

All computations are performed in fixed-point arithmetic, with parameterizable bit-width and frac-
tional precision. This flexibility allows the designer to adjust numerical precision according to re-
source constraints: a larger bit-width increases accuracy but consumes more LUTs and DSPs, while
smaller sizes improve area and power efficiency. To ensure numerical stability, custom arithmetic
functions handle saturation and overflow, preventing computational error under limited precision.
By organizing the computation as a datapath—input scaling, iteratively updating, temporary stor-
age, and streaming output—the Chebyshev tensor function evaluation module delivers a compact
and efficient hardware block. As a result, the module is compact and resource-efficient, making it a
suitable basis for the subsequent stages of the ChebyUnits.

3.1.2 CONTROL POINT STORAGE

The Control Point Line Buffer serves as an intermediate buffer that manages trained parameters
during inference. After the model parameters are transferred from external DDR memory to the
FPGA through the Direct Memory Access(DMA) interface, they are temporarily stored in this
module before computation begins. The storage depth is defined as degree+ 1, which corresponds
to the number of coefficients required to evaluate the Chebyshev polynomial basis functions.
During computation, these stored control points are sequentially read out and multiplied with
the corresponding polynomial values streamed from the evaluation layer, forming the Multiply
Accumulate(MAC) operations that drive the network.

From a hardware implementation perspective, the Control Point Line Buffer is realized using
LUT-based distributed RAM. Since control points are repeatedly accessed during inference,
pre-storing them locally avoids repeated DDR fetches, thereby reducing data transfer overhead
between memory and FPGA fabric,enhancing the data reuse. This design ensures fast, low-latency
access to coefficients and minimizes stalling in the computation pipeline.

3.2 CHEBYSHEV KAN NETWORK

Based on the previously introduced ChebyUnit, the Chebyshev KAN Network organizes multiple
units in parallel according to the hidden number parameter. This parameter directly determines
how many ChebyUnits are instantiated within the network. According to the Kolmogorov–Arnold
representation theorem, the maximum required number of hidden units is bounded by twice the input
dimension plus one. However, in practice, it is not always necessary to allocate the full number
of units. Instead, the hidden number can be flexibly determined based on the characteristics of the
dataset, aiming to achieve good performance with a minimal number of unit. As illustrated in Figure
2, our design enables parallel evaluation of inner product computations. Such structure emphasizes
parallel computation, where multiple polynomial expansions are processed simultaneously, thereby
improving the throughput and scalability of the overall system.

The control point parameters, trained offline and stored in DDR, are transferred to the FPGA
through the DMA engine via the Advanced eXtensible Interface (AXI) Stream (AXIS) interface.
These parameters are then distributed by a custom-designed bus structure, which delivers the
incoming data to the LUTbased storage inside each ChebyUnit. Using a finite-state machine (FSM)
controls this process, determining both the data flow path and whether a given ChebyUnit should
accept the incoming data. This mechanism ensures that each ChebyUnit receives the correct set of
control points while maintaining efficient data movement across the parallel structure.
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Figure 2: Chebyshev Network Architeture

Once the control points are fully loaded and stored in the ChebyUnit, the system proceeds
with the inference phase by feeding input data into the network. To ensure that all variables are
applied synchronously to the model, and given the limitation on the number of data bits transferred
through the DMA interface, the serial input stream from DMA is first buffered in a linebuffer.
This linebuffer is implemented using BRAM on the FPGA, temporarily holding the input stream
before releasing it in parallel form. In this way, the design guarantees synchronized delivery of
inputs to the network while efficiently overcoming the bitwidth constraint of the DMA interface.
As illustrated in Figure 3, this process is part of the overall processing-system/programmable-logic
(PS/PL) integration, where external DDR provides data, DMA engines manage streaming through
AXI interfaces, and the custom hardware intellectual-property (IP) performs the Chebyshev-KAN
computation. The results are then streamed back to DDR via a symmetric DMA path. This
system-level setup provides the foundation for the input and output buffers described in the next
section.

Figure 3: PS and PL configuration

6
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4 EXPERIMENTS AND IMPLEMENTATION RESULTS

4.1 SETUPS

Using the open-source project provided by SynodicMonth on GitHub[14], we obtain trained parame-
ters of the Chebyshev KAN model, along with its curve fitting results and a performance comparison
against a conventional MLP neural network in terms of convergence speed. This setup enables us to
compare the numerical results generated in PyTorch with those obtained from hardware simulation,
ensuring that our architecture reproduces the intended computations. The overall workflow is de-
scribed as follows: In the PyTorch part, the required trained coefficients (Cioj , as mentioned in 2.2)
are extracted from the model. These coefficients are then applied to the hardware part, where the
computations are performed. Validation is also conducted using Vivado through simulation, synthe-
sis, and implementation. Finally, the design is deployed on the Xilinx MPSoC UltraScale+ ZCU102
platform, where the actual power consumption and resource utilization are measured[1]. This pro-
cess enables us to evaluate both the feasibility of hardware implementation and the consistency
between software-based and hardware-based computations.

4.2 RESULTS

For the following experiment, the input data is defined within the range of [-1, 1]. The test result is
visualized using Excel for clarity.

For the target function :

f(x, y) = e(x
2+y2) · sin

(
2π(x2 + y2)

)
It is carried out with an input dimensionality of 2, a polynomial degree of 8, 4 hidden units, and
coefficients represented in the Q16.16 format (32 bits). Note that due to the limited number of test
data points, the plotted results may appear less smooth when visualized in Excel. Nevertheless,
even with the current sampling density, numerical verification confirms that the computed values are
correct and consistent with the expected results.

Figure 4: Target Function Implementation Figure 5: Training Result

From the experiment, it verifies the accuracy of our hardware implementation. The computations
perform in hardware are consistent with the expected outputs, which demonstrates that the design
is reliable and reproduces the intended numerical behavior. On the other hand, the dominant factor
influencing precision is the fixed-point format to influence the precision of the hardware results is
the fixed-point format, namely the number of bits used to represent the data. The bit-width directly
determines the resolution and dynamic range of numerical representation, thereby imposing a fun-
damental trade-off between resource utilization and computational precision. A higher number of
bits improves the approximation capability of target functions, but at the cost of increased hardware
resources such as logic units, registers, and power consumption. In contrast, reducing the bit-width
lowers resource requirements but limits the system’s ability to precisely capture numerical varia-
tions. These observations highlight the importance of carefully selecting an appropriate fixed-point
format when implementing learning models in hardware, as it significantly impacts both efficiency
and performance.
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4.3 RESOURCE AND POWER ANALYSIS

To better highlight the efficiency of our design, we report both the hardware resource utilization
and the percentage reduction compared to the HLS baseline[15]. It is worth mentioning that the
architecture of the HLS implementation differs from ours, as it is based on B-spline to construct
each learnable activation functions of the KAN[9]. Table 1 presents the actual resource utilization
for each case, while Table 2 reports the reduction percentage, calculated as : [1] : The utilization of
resources in HLS implementation[15].

In Table 2, our method achieves significant reductions in LUTs, FFs, and DSPs, with sav-
ings exceeding 90% in datasets such as Dry Bean and Mushroom. The Chebyshev-based design
(abbreviated as Chebyshev in Table 1), due to its simpler function expression compared to the
B-spline based design (abbreviated as B-spline in Table 1), requires fewer hardware resources,
especially DSPs, and thus holds a significant advantage in hardware computation. Furthermore, as
shown in Table 1, our design consistently achieves a latency of 13 cycles and demonstrates better
stability in power consumption. Even for larger model sizes, our approach exhibits lower power
usage. To sum up, these results indicate that our method delivers better energy efficiency and data
transfer performance.

Dataset Model
size Type Freq

(MHz)
Hardware Resources Power

(W)
Latency

LUTs FFs DSPs Cycle Time
(ns)

Moons 2,2,1 B-spline

100

17877 8622 120 0.717 128 1280
Chebyshev 9888 12150 40 3.034 13 130

Wine 13,4,3 B-spline 146843 74741 960 1.349 688 6880
Chebyshev 30154 22104 324 3.293 13 130

Dry Bean 16,2,7 B-spline 1677558 734544 9111 14.802 1896 18960
Chebyshev 27359 25198 256 3.271 13 130

Mushroom 8,24,2 B-spline 3112275 1337291 16299 - 3434 34340
Chebyshev 80393 38985 1088 3.809 13 130

Table 1: Actual Resource Utilization Under Different Datasets and Implementations types

- : Power consumption is not included, as the hardware requirements surpass the FPGA board
capacity described in [15].

Dataset LUTs Reduction FFs Reduction DSPs Reduction Latency Reduction
Moons 44.69% - 66.67% 89.84%
Wine 79.47% 70.43% 66.25% 98.11%

Dry Bean 98.37% 96.57% 97.19% 99.31%
Mushroom 97.42% 97.08% 93.32% 99.62%

Table 2: Utilization and Latency Reduction Result

- : In a small-scale model, the synthesizer often implements temporary buffers directly with flip-flops
instead of other larger memory blocks.

For the case of the (2,2,1) model size, the pie chart (Figure 6) presents the distribution of power
consumption between different components[10]. In the pie chart, values without the label ”static”
correspond to dynamic power consumption. It can be observed that the Processing System (PS Dy-
namic) dominates the overall power consumption, representing the primary source of energy dissipa-
tion. In contrast, the contributions from the programmable logic domain, including signals, clocks,
logic elements, Block Random Access Memory (BRAM), and DSP blocks, are comparatively minor.
This observation suggests that the power of internal signal activities within the programmable logic
is comparatively small. Despite their small contribution to power, the Programmable Logic (PL)
components efficiently handle complex computations, highlighting their effectiveness and energy
efficiency.
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Figure 6: Power Consumption Distribution of the (2,2,1) Model Size

5 DISCUSSION AND CONCLUSION

In this work, we built an FPGA-based accelerator for Chebyshev-Kolmogorov Arnold Networks
(Chebyshev-KAN) to deal with the challenge of running models that are parameter-efficient but
not always hardware-friendly, especially in energy-constrained settings. Using the recursive struc-
ture and numerical stability of Chebyshev polynomials, we proposed the modular ChebyUnit de-
sign, which dramatically reduces LUT, FF, and DSP usage while keeping good approximation
accuracy[11; 8]. Our experiments on the Xilinx ZCU102 confirm that the design works as expected
and delivers substantial energy savings—over 90% compared to a straightforward HLS baseline.

What really stands out is the trade-off between precision and efficiency. Wider fixed-point formats
enhance accuracy but increase DSP and BRAM cost, while narrower formats save resources at the
cost of fidelity. This suggests that a single precision scheme is suboptimal. Future work should
explore adaptive or mixed-precision strategies, where network components use different precisions
based on error sensitivity [5; 2], enabling better accuracy–efficiency trade-offs.

Scalability is another important takeaway. The modular ChebyUnit allows the design to scale with
input sizes and network depths, but memory bandwidth and on-chip storage become bottlenecks.
To address this, we incorporate weight reuse, enabling coefficients to be shared across computations
[12]. This reduces redundant memory transfers, reduces resource demand, and maintains throughput
without raising hardware cost. Combined with memory scheduling and compression, weight reuse
offers a practical path for scaling Chebyshev-KAN accelerators.

Beyond architectural efficiency, the proposed accelerator is highly suitable for edge AI applications.
Using functional bases reduces parameters, computation, and memory traffic, leading to lighter
hardware. The ChebyUnit further minimizes DSP usage, and local coefficient storage cuts off-chip
access. Together, these factors reduce power consumption, making the design attractive for IoT
devices, biomedical tasks such as medical image segmentation [4], and real-time sensing systems.
In short, with fewer parameters and lower energy use, Chebyshev-KAN is a promising candidate for
efficient, interpretable edge AI.

Of course, there are still limitations. Our tests focused on function approximation and small datasets;
real-world workloads in vision, speech, or time-series tasks will be more demanding. Precision
settings were manually tuned, suggesting the need for systematic quantization strategies. Moreover,
evaluation was limited to a single FPGA (ZCU102); broader testing across FPGAs or ASICs would
provide a more complete performance picture.

Overall, this work shows that Chebyshev-KAN is not only theoretically elegant but also practically
deployable. FPGAs, with their flexibility and energy efficiency, offer a promising pathway for in-
terpretable and resource-efficient neural networks at the edge. We envision AI systems that are
accurate, efficient, and transparent, while remaining adaptable to real-world constraints.

9
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Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–Arnold networks, April 2024. URL
https://arxiv.org/abs/2404.19756.

[10] Fuad Mammadzada. Design of a kolmogorov-arnold network hardware accelerator. Master’s
thesis, Lund University, Department of Electrical and Information Technology, June 2025.
Supervisors: Dr. Joachim Rodrigues, Masoud Nouripayam, Kristoffer Westring. Examiner:
Dr. Pietro Andreani.

[11] Elie Nicolas, Rafic Ayoubi, and Samir Berjaoui. Chebyshev approximation tech-
nique: Analysis and applications. International Journal of Electrical and Computer
Engineering, 2024. URL https://www.bohrium.com/paper-details/
chebyshev-approximation-technique-analysis-and-applications/
1030325950128062485-2679.

[12] Sai Krishna Oppu, Anil Kumar, and Venkatesh Rao. Fpga-orthopoly: A
hardware implementation of orthogonal polynomials. In 2024 International
Conference on Field-Programmable Logic and Applications (FPL), pp. 421–
428. IEEE, 2024. URL https://www.bohrium.com/paper-details/
fpga-orthopoly-a-hardware-implementation-of-orthogonal-polynomials/
812788746691805185-3886.

[13] S. S. Sidharth, R. Gokul, K. P. Anas, and A. R. Keerthana. Chebyshev Polynomial-Based
Kolmogorov–Arnold Networks: An efficient architecture for nonlinear function approxima-
tion, June 2024. URL https://arxiv.org/abs/2406.07200. arXiv:2406.07200.

10

https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd
https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd
https://arxiv.org/abs/1712.08934
https://arxiv.org/abs/2309.01945
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2404.19756
https://www.bohrium.com/paper-details/chebyshev-approximation-technique-analysis-and-applications/1030325950128062485-2679
https://www.bohrium.com/paper-details/chebyshev-approximation-technique-analysis-and-applications/1030325950128062485-2679
https://www.bohrium.com/paper-details/chebyshev-approximation-technique-analysis-and-applications/1030325950128062485-2679
https://www.bohrium.com/paper-details/fpga-orthopoly-a-hardware-implementation-of-orthogonal-polynomials/812788746691805185-3886
https://www.bohrium.com/paper-details/fpga-orthopoly-a-hardware-implementation-of-orthogonal-polynomials/812788746691805185-3886
https://www.bohrium.com/paper-details/fpga-orthopoly-a-hardware-implementation-of-orthogonal-polynomials/812788746691805185-3886
https://arxiv.org/abs/2406.07200


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

[14] SynodicMonth. Chebykan: Kolmogorov-arnold networks using chebyshev polynomials.
https://github.com/SynodicMonth/ChebyKAN. GitHub repository, accessed:
2025-09-17.

[15] Van Duy Tran, Tran Xuan Hieu Le, Thi Diem Tran, Hoai Luan Pham, Vu Trung Duong
Le, Tuan Hai Vu, Van Tinh Nguyen, and Yasuhiko Nakashima. Exploring the Limita-
tions of Kolmogorov–Arnold Networks in Classification: Insights to software training and
hardware implementation, July 2024. URL https://arxiv.org/abs/2407.17790.
arXiv:2407.17790.

11

https://github.com/SynodicMonth/ChebyKAN
https://arxiv.org/abs/2407.17790

	Introduction
	Related Works
	Kolmogorov Arnold Networks
	Chebyshev Polynomial
	FPGA Accelerators Design

	Hardware Implementation Approach
	Activation Unit Design
	Chebyshev Tensor Function Evaluation
	Control Point Storage

	Chebyshev KAN Network

	Experiments and Implementation Results
	Setups
	Results
	Resource and Power Analysis

	Discussion and conclusion

