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Abstract

The goal of test-time adaptation is to adapt a source-pretrained model to a con-
tinuously changing target domain without relying on any source data. Typically,
this is either done by updating the parameters of the model (model adaptation)
using inputs from the target domain or by modifying the inputs themselves (input
adaptation). However, methods that modify the model suffer from the issue of
compounding noisy updates whereas methods that modify the input need to adapt
to every new data point from scratch while also struggling with certain domain
shifts. We introduce an approach that leverages a pre-trained diffusion model to
project the target domain images closer to the source domain and iteratively updates
the model via pseudo-label ensembling. Our method combines the advantages
of model and input adaptations while mitigating their shortcomings. Our experi-
ments on CIFAR-10C demonstrate the superiority of our approach, outperforming
the strongest baseline by an average of 1.7% across 15 diverse corruptions and
surpassing the strongest input adaptation baseline by an average of 18%.

1 Introduction

Supervised deep learning algorithms often assume that the data used for training (source) and testing
(target) follow the same ideal pattern, where they are independent and identically distributed (IID).
However, in real-world situations, this ideal rarely holds true. Even small differences or changes
in data distribution can seriously affect the performance of these models [Quionero-Candela et al.,
2009]. This becomes a major challenge when using supervised learning for tasks that involve data
with different distributions. To deal with shifts in data distribution, adaptation methods typically use
the target data to continuously improve and update their predictions.

Typically, adaptation techniques combat the problem of distribution shift by jointly optimizing on the
source and the target distributions during training [Ganin et al., 2016, Hoffman et al., 2018, Saenko
et al., 2010]. These methods exhibit strong performance when the shifts in the target domain are
well-understood and predefined. However, they tend to falter when faced with the arrival of an entirely
new and previously unseen target domain. This underscores the imperative need for development of
test-time adaptation, a technique that adapts the model at inference time without relying on the source
data and without interrupting the inference process. Broadly speaking, there are two orthogonal ways
of performing test-time adaptation. First, model adaptation [Wang et al., 2022, 2020, Chen et al.,
2022, Liang et al., 2020] wherein the model is updated iteratively during inference without using test
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labels. Second, Input adaptation [Gao et al., 2022] wherein the input is modified to match the source
distribution. Model adaptation helps to continually adapt to changing distributions but may suffer
from noisy updates depending on the amount of distribution shift. Moreover, input adaptation must
adapt to each example from scratch and sometimes struggle with certain distribution shifts.

Our proposed method, D-TAPE (Diffusion-infused Test-time Adaptation via Pseudo-label Ensem-
bling), seamlessly integrates the strengths of model and input adaptation while minimizing their
weaknesses. Utilizing a source domain-trained diffusion model, we align target images more closely
with the source domain. However, a direct application of a pre-trained diffusion model risks losing
class information. To rectify this, we implement a low-pass filtering technique, akin to [Choi et al.,
2021], enabling class-preserving projections. Our model then iteratively updates by ensembling
pseudo-labels from both the projected and original test images, offering dynamic adaptability to
sudden domain shifts. D-TAPE outperforms existing state-of-the-art approaches like CoTTA [Wang
et al., 2022], TENT [Wang et al., 2020], and DDA [Gao et al., 2022]. We also illustrate how D-TAPE
effectively brings the input data closer to the source domain compared to the corrupted images, as
evidenced by a reduction in theA-distance [Ben-David et al., 2006]. We anticipate that this study will
serve as a catalyst for the broader adoption and exploration of diffusion models in future test-time
adaptation research.

2 Prior Work

Test Time Adaptation: The goal of test-time adaptation is to adapt a source-pretrained model to a
continuously changing target domain without relying on any source data. To that end, the landscape
of Test Time Adaptation can broadly be segmented into two paradigms namely Model Adaptation
and Input Adaptation. In the realm of Model Adaptation, particularly in source-free and test-time
settings, various methodologies have emerged. For instance, models like TENT [Wang et al., 2020],
SHOT [Liang et al., 2020], and MEMO [Zhang et al., 2021] employ unsupervised loss minimization
techniques specifically tailored to target data distributions. Alternatively, some strategies resort to the
generation of pseudo labels via a range of innovative techniques such as a conjugate pseudo-label
function [Goyal et al., 2022], weight-averaged teacher models [Wang et al., 2022], and nearest
neighbor soft-voting mechanisms [Chen et al., 2022]. These pseudo-labels serve as scaffolding for
self-training procedures, effectively amplifying the model’s generalization capabilities. In contrast,
Input Adaptation strategies predominantly leave the model untouched and only update the input
examples from the target domain. Among these, Diffusion Driven Adaptation [Gao et al., 2022]
stands out for its application of a diffusion model trained on source data, thereby enabling more
effective test-time adaptation.

Diffusion Modelling: Diffusion modeling serves as a pivotal approach in generative techniques,
relying on a two-step process that initially introduces noise into data, followed by a denoising phase.
Seminal works such as DDPM [Ho et al., 2020] and DDIM [Song et al., 2020] have been instrumental
in establishing the framework of this field. An advanced extension is Guided Diffusion [Dhariwal
and Nichol, 2021], which leverages class labels to enhance the quality of generated images. Since we
do not have access to test labels, we employ DDPM models that have been specifically trained on the
CIFAR10 dataset for projecting target images closer to the source domain.

3 Methodology

Diffusion with Interpolated Latent Refinement: Initially, a diffusion model is pre-trained to
generate images from the source distribution. Then, at test-time, we run the forward process on the
domain-shifted input image by iteratively adding Gaussian noise N times, resulting in a sequence
x0, . . . , xN . We subsequently apply a modified reverse process to project the image closer to the
source domain, using the diffusion model trained to maximize the likelihood of the source data.
Initially, we sample x̂g

N−1 ∼ pθ(x
g
N−1|x

g
N = xN ) from the reverse denoising process of the diffusion

model. Since the diffusion model is not explicitly conditioned to preserve class information, we
apply the low-pass filter h() from ILVR [Choi et al., 2021] to the sampled x̂g

N−1 to constrain the
low-frequency features of x̂g

N−1 to be equal to that of xN−1 in the same manner as Gao et al. [2022].
This is a sequence of downsampling and upsampling operations that helps preserve the high-level
image structure and hence the class information. However, downsampling results in blurring for
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Figure 1: Illustration of our complete adaptation mechanism. Given an image from the target
distribution, we first apply our interpolated latent refinement procedure to project the image closer to
the source distribution. Then we use a student-teacher framework and update the models by using an
ensemble of pseudo-labels generated by the teacher using both the original and projected test image.

low-resolution images. To mitigate this effect, we interpolate the filtered image h(x̂g
N−1) with the

original sample x̂g
N−1 to generate xg

N−1. This is fed back into the diffusion model and the process is
repeated to generate xg

N−2 and so on. We provide the exact algorithm below.

Model Adaptation via Pseudo-label ensembling: Under the self-training framework, the model
weights are adapted using some form of the model predictions themselves. Given a pre-trained
model, fθ() we follow a strategy similar to that used in CoTTA [Wang et al., 2022] to adapt the
model weights. We store two copies of the original model - a student fθs() and a teacher fθt(). The
teacher generates pseudo-labels that provide supervision to update the student model. The weights
of the teacher themselves are adapted by exponential moving average using the student weights.
We incorporate the diffusion model output xg

0 in both student predictions ŷS = g(x0, x
g
0, θS) and

pseudo-labels ŷT = g(x0, x
g
0, θT ) where the function g is a combination of a conditional ensembling

scheme and logit averaging. We provide ablations for these choices in Table 3. Mathematically,

g(x0, x
g
0, θ) =


fθ(x0) if maxc fθT (x0) > maxc fθT (x

g
0)

fθ(x0)+fθT (xg
0)

2 otherwise

We additionally generate student predictions on augmented versions of the inputs x′
0 and x′g

0 , and
denote ŷ′S = g(x′

0, x
′g
0 , θS). The loss used to update the student is L = −

∑
c
0.5ycT (log ŷ

c
S +log ŷ

′c
S ).

4 Experimental Setup and Results

Datasets and Evaluation Methodology: We train our models on the CIFAR10 [Krizhevsky
et al., 2009] train set and evaluated on CIFAR10-C [Hendrycks and Dietterich, 2019]. CIFAR10-C
comprises of 15 different corruptions at 5 different severity levels. We evaluate the continuous
adaptability of the models using the approach used in [Wang et al., 2022, Gan et al., 2022] which can
briefly described as follows: We arrange the corruption types in the same order as demonstrated in
Table 1 and perform inference on the model using batches of test images with a severity level of 5
for each corruption type. This process results in inference on 15 times the size of the clean test data.
We exclusively use images with a severity level of 5 to introduce sudden distribution shifts in the
batches. We report error rates for each corruption type and calculate the mean error rate across all 15
corruptions. We also provide details and results on a different setting namely gradual TTA in 2
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Algorithm 1 Generation using Diffusion
1: Input: Reference image x0

2: Output: Generated image xg
0

3: N : diffusion range, ϕD(·): low-pass filter of scale D
4: Sample xN ∼ q(xN |x0) ▷ perturb input
5: xg

N ← xN

6: for t← N to 1 do
7: x̂g

t−1 ∼ pθ(x
g
t−1|x

g
t ) ▷ unconditional proposal

8: x̂g
0 ← 1

ᾱt
xg
t − 1

ᾱt−1ϵθ(x
g
t , t)

9: xg
t−1 ← x̂g

t−1 − w∇xt∥ϕD(x0)− ϕD(x̂g
0)∥2

10: xg
t−1 ← αxg

t−1 + (1− α)x̂g
t−1

11: end for
12: return xg

0

Baselines: We compare D-TAPE to the following test-time adaptation methods.
TENT [Wang et al., 2020]: Minimizes model prediction entropy on test data using the model’s own
predictions as pseudo labels, updating only normalization parameters.
CoTTA [Wang et al., 2022]: Utilizes a weight-averaged teacher model for pseudo-label generation
and updates a student network. It also incorporates augmentation-averaged pseudo labels for low-
confidence test inputs and restores a fraction of model weights to their original values.
AdaContrast [Chen et al., 2022]: Maintains a memory queue of target features and predictions with
a momentum model. Generates pseudo-labels for using a combination of cross-entropy loss and
contrastive loss to update the model.
DDA [Gao et al., 2022]: Employs a diffusion process to transform test images back to the source do-
main, using the output as predictions. No parameter updates occur during testing, and a low-frequency
filter retains class information during diffusion. Following the approach of Wang et al. [2022], we em-
ploy a pre-trained WideResNet-28-10 [Zagoruyko and Komodakis, 2016] from RobustBench [Croce
et al., 2020] as the backbone for all baselines on CIFAR10-C.

Results Discussion: Our method outperforms the strongest baseline which is CoTTA on 14 out
of the 15 corruptions while beating it by an average of 1.7% across all 15 corruptions (Table 1).
Additionally, our method also beats DDA which only modifies the input by an average of 18% across
all corruptions. This underscores the effectiveness of our method.
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Source 72.33 65.71 72.92 46.95 54.33 34.76 42.01 25.09 41.30 26.01 9.31 46.71 26.59 58.45 30.30 43.52
DDA 33.09 30.38 38.18 49.51 33.61 37.94 41.28 19.70 24.18 39.10 11.22 61.24 25.38 30.95 19.47 33.02
TENT 24.79 20.48 28.54 14.54 32.27 16.05 13.88 20.21 20.45 17.77 11.17 15.20 24.06 19.96 25.38 20.32

AdaContrast 29.19 22.50 30.09 13.85 32.82 14.00 12.10 16.47 14.73 14.31 8.04 9.83 22.11 17.76 19.95 18.52
COTTA 24.30 21.43 25.91 11.72 27.90 12.33 10.66 14.84 13.82 12.36 7.54 10.76 18.23 13.61 17.68 16.21

D-TAPE (Ours) 19.29 17.19 22.58 11.54 22.73 11.94 10.05 14.13 12.98 12.15 8.17 10.58 16.87 12.70 14.54 14.50

Table 1: Classification error rate (%) for the standard CIFAR10-to-CIFAR10-C time adaptation task
in the sudden setting. Evaluated on WideResNet-28 with the severity level 5.

Gradual TTA: Unlike the sudden setting, here we make use of all the severity levels. Like the
sudden setting, we generate a permutation of all the different types of corruptions and for each type
we sample batches with severity in the following order 1→ 2→ 3→ 4→ 5→ 4→ 3→ 2→ 1
on which we do inference, update weights and then go to the next type of corruption in the same
ordering of severity. Note that we do not reset the weights to the pre-trained values anywhere in
between. For each type of corruption, the average error on its images is the indicator of performance.
D-TAPE outperforms the strongest baseline by ∼ 1% on average across 15 corruptions and improves
massively over the best input adaptation technique which is DDA (Table 2).
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Model Gradual CIFAR-10C

Source 43.52
DDA 33.02
TENT 24.56

AdaContrast 15.78
CoTTA 13.99
D-TAPE 13.09

Table 2: Mean results over different types of corruption over the gradual CIFAR10-C at level 5
corruption, we report error percentage for each method.

Ablations We perform ablations to demonstrate the importance of using conditional ensembling
and logit averaging in the pseudo-label ensembling phase of D-TAPE and report the results in Table 3.
We notice that without conditional ensembling, our performance on fog and contrast drastically
decreases. This is expected since diffusion fails to project the images closer to the source for these
corruptions as seen in Figure 2. We also observe that without logit averaging our performance drops
slightly in the case of noises as well where we expect the best performance. Logit averaging helps us
to defend against the rare cases where diffusion fails to retain the same object in the image.

Conditional Ensembling Logit Averaging gauss shot impulse fog contrast mean

✗ ✗ 26.19 24.9 33.76 33.69 41.19 23.68
✗ ✓ 19.70 18.10 23.79 16.79 17.37 16.02
✓ ✗ 20.21 18.57 24.26 14.73 14.14 16.03
✓ ✓ 19.29 17.19 22.58 12.15 10.58 14.50

Table 3: Ablation on two components of our model, conditional ensembling and logit averaging.
Mean is over 15 noises

Does Diffusion help? To answer the question of whether using diffusion helps or not, we use
A-distance [Ben-David et al., 2006] to quantify shifts in distribution. We follow Ben-David et al.
[2006] and train a linear classifier to separate the two domains for computing the A-distance. We
observe that, on average, the generated images closely match the clean image distribution, with
particularly close alignment in the case of gaussian, shot, and impulse noises. However, for fog and
contrast, the A-distance slightly increases for generated images.(Figure 2). We believe this happens
because our interpolated latent refinement scheme retains low frequency noises. We report all the
A-distance values in Table 4 which indicate that diffusion is beneficial for almost all corruptions.

Figure 2: A-distance between the CIFAR-10C dataset and the original CIFAR-10 dataset, and A-
distance between generated images and original CIFAR-10 dataset. Mean is over 15 noises
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.1 A-distance

We report the A-distance values for all the 15 corruptions in Table 4

CIFAR10-C Generated

gauss 1.17 0.42
shot 1.12 0.43
impulse 1.36 0.55
defocus 0.95 0.92
glass 0.60 0.50
motion 0.75 0.65
zoom 0.79 0.73
snow 1.51 1.48
frost 1.39 1.36
fog 0.99 1.00
brightness 1.65 1.62
contrast 1.29 1.31
elastic 0.70 0.60
pixelate 1.21 0.85
jpeg 0.58 0.50
mean 1.07 0.86

Table 4: We report the A-distance between CIFAR10-C and CIFAR10 images and also between the
images generated using our interpolated latent refinement scheme and CIFAR10 images

.2 Hyperparameter Details

We perform N = 1000 steps of the diffusion process, use α = 0.9 which is decided using the FID
score of the generated images. During the model adaptation stage, we use a learning rate of 1e− 3,
batch size of 200, Adam optimizer with a β = 0.9 and we use 1 optimizer step. We use a momentum
of 0.999 to update the teacher via exponential averaging.
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