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Abstract

The natural language processing community001
has become increasingly interested in spurious002
correlations, and in methods for identifying003
and eliminating them. Gardner et al. (2021)004
argue that due to the compositional nature of005
language, all correlations between labels and006
individual input features are spurious. This007
paper analyzes this proposal in the context of008
a toy example, demonstrating three distinct009
conditions that can give rise to feature-label010
correlations through a simple PCFG. Linking011
the toy example to a structured causal model012
shows that (1) feature-label correlations can013
arise even when the label is invariant to inter-014
ventions on the feature, and (2) feature-label015
correlations may be absent even when the la-016
bel is sensitive to interventions on the feature.017
Because input features will be individually cor-018
related with labels except in very rare circum-019
stances, mitigation and stress tests should fo-020
cus on those correlations that are counterfactu-021
ally invariant under plausible causal models.022

1 Introduction023

Spurious correlations have increasingly preoccu-024

pied researchers in machine learning (Geirhos et al.,025

2020) and related fields, including natural language026

processing (Gururangan et al., 2018; McCoy et al.,027

2019, inter alia). However, the notion is frequently028

used without a formal definition. Gardner et al.029

(2021) propose a definition in terms of conditional030

probabilities: a feature Xi is spuriously correlated031

with the label Y unless P (Y | Xi) is uniform.032

The definition can be generalized from uniformity033

to independence (Xi ⊥⊥ Y ) without affecting the034

claims of the paper. They go on to argue that “in a035

language understanding problem, . . . all simple cor-036

relations between input features and output labels037

are spurious” (emphasis in the original). The prop-038

erty that individual input features should be inde-039

pendent of labels — which we will call marginally040

uninformative input features (UIF) — is treated as041
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was not︸ ︷︷ ︸
X2

too greasy︸ ︷︷ ︸
X3

Z Y

Figure 1: An instance from the toy model. The upper
part of the figure corresponds to fX , the function that
generates the text via a PCFG (see fig. 2): nodes corre-
spond to non-terminals in the grammar and edges rep-
resent context-free derivations. The lower part of the
figure corresponds to the causal model of the sentiment
Y and target Z. Here nodes correspond to variables
and edges correspond to causal relationships.

an assumption about the nature of language process- 042

ing and also as a desideratum that datasets should 043

satisfy: if the label can be predicted from input 044

features alone, then the dataset is too easy.1 045

The principle of UIF is based on the insight that 046

linguistic context can invert the semantics of any 047

subspan of a text (via, e.g., syntactic negation or 048

discourse relations). Furthermore, the frequency 049

of negation and other forms of semantic inversion 050

may vary across datasets and deployment settings. 051

A predictor that relies on, e.g., negation being rare, 052

cannot be said to have truly achieved competence 053

in the language processing task, and may perform 054

poorly in domains in which these high-level distri- 055

butional properties shift. 056

An especially provocative assertion of Gard- 057

ner et al. is that all correlations between labels 058

and individual input features have the same sta- 059

tus. In the sentence the pizza was amazing, sup- 060

1To formalize the UIF assumption, it is necessary to clarify
which features are “input features”: bytes, phonemes, word-
pieces, words, phrases, or sentences? The selection of input
features is a property of the model and not the dataset; one
could use character-level features for natural language infer-
ence or sentence-level features for sentiment analysis.
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pose that both pizza and amazing are correlated061

with positive sentiment because the reviewers like062

pizza. There is an intuitive difference between063

these two correlations, because the modified sen-064

tence the movie was amazing should have the same065

label as the original, while the pizza was greasy066

should not. This intuition can be formalized us-067

ing the framework of causality, which has gen-068

erally treated spurious correlations as those that069

arise without a direct causal explanation (Simon,070

1954). Given a causal model of the data gener-071

ating process, we can compute the interventional072

distribution P (Y | do(X1 := x1), X2, X3), which073

corresponds to the distribution over Y in a data074

generating process in which the value of X1 is sur-075

gically set to x1 (Pearl, 1995; Peters et al., 2017;076

Feder et al., 2021).2 When such interventions do077

not affect Y for any given example, we say that078

Y and X1 are counterfactually invariant (Veitch079

et al., 2021). Violations of UIF are particularly080

troubling when they are accompanied by counter-081

factual invariance, because non-causal correlations082

often do not transfer to other domains (Schölkopf083

et al., 2012; Bühlmann, 2020).084

This paper uses a toy example to relate the UIF085

property to (1) the production probabilities in prob-086

abilistic context-free grammars (PCFGs), and (2)087

counterfactual invariance in structured causal mod-088

els. The connection to PCFGs provides additional089

motivation for the UIF criterion from the perspec-090

tive of domain generalization, while clarifying the091

scenarios that can give rise to violations of UIF,092

which Gardner et al. attribute too narrowly to “bias093

and priming effects” in annotators. The connection094

to counterfactual invariance highlights the ways in095

which these concepts do and do not align. Efforts096

to remove artifacts from the training and evalua-097

tion of NLP systems will be most productive when098

focused at the intersection of these two views of099

spurious correlations: violations of UIF for input100

features to which the label is counterfactually in-101

variant according to a causal model of the data.102

2 Toy Example103

Consider a simplified targeted sentiment analysis104

task (Mitchell et al., 2013), in which the sentiment105

is Y , the target is Z, and the sentences are all of the106

form (X1, X2, X3), with X1 specifying a target107

noun phrase, X2 a copula-like expression, and108

2Space does not permit a discussion of the distinction
between interventions and counterfactuals (see Pearl, 2009).

U :=NU (1)

(X1, X2, X3) :=fX(U,NX) (2)

Z :=fZ(X1, NZ) (3)

Y :=fY (X2, X3, NY ). (4)

Figure 2: Causal model for the toy example shown in
fig. 1. NU , NX , NY , NZ indicate independent noise
variables, and fX , fY , fZ indicate deterministic func-
tions that map from causes to effects (for more details
on the notation, see Peters et al., 2017).

X3 a predicative adjectival phrase. For example, 109

Y = POS, Z = PIZZA, X1 = the pizza, X2 = 110

turned out to be, X3 = crispy and delicious. We 111

will treat this data as generated from the causal 112

model shown in fig. 2. This causal model can be 113

summarized by two assertions: (1) the target Z is a 114

direct effect of only the span X1; (2) the sentiment 115

label Y is a direct effect of only the spans X2 and 116

X3. The function fX can represent any generative 117

model of text: an n-gram model, a grammar-based 118

formalism, a deep autoregressive network, etc. 119

Aside on the direction of causation. We treat 120

the text as the cause of the labels, rather than 121

the converse. This distinction is somewhat 122

vexed (Schölkopf et al., 2012; Jin et al., 2021). In 123

some cases the direction of causation is clear from 124

the task (e.g., table-to-text generation, summariza- 125

tion, and translation), but often the problem could 126

be framed in either direction: perhaps the writer 127

had the label in mind when producing the text, and 128

thus the text is an effect of the label; or perhaps it is 129

better to think of the annotator, who must read the 130

text to arrive at the label, regardless of the writer’s 131

intentions. When the labels cause the text, the no- 132

tion of counterfactual invariance can be restated in 133

terms of the invariance of text features to perturba- 134

tions on labels, e.g. P (X1 | do(Y := y), Z). As 135

the toy example is meant to serve only an exposi- 136

tory purpose, we leave elaboration of the relation- 137

ship of UIF to such models for future work. 138

2.1 Counterfactual invariance ; UIF 139

The causal model implies several counterfactual 140

invariance properties: intervention on X1 will not 141

affect Y , nor will intervention on X2 or X3 affect 142

Z. This is because X1 blocks the influence of X2 143

and X3 on Z, and vice versa for Y . Conversely, 144

(X3, Y ) are not counterfactually invariant in gen- 145
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eral because X3 is an ancestor of Y in the causal146

graph, and similarly for (X2, Y ) and (X1, Z).147

Counterfactual invariance does not imply that148

the associated input features are marginally unin-149

formative of the label. Consider a classical spurious150

correlation in which pizza tends to receive positive151

sentiment and sushi receives negative sentiment.152

This correlation is produced when fX encodes a153

PCFG with the top-level production:154

S → Z̃pizza Ỹ+ (1 + α)/4

Z̃sushi Ỹ− (1 + α)/4

Z̃pizza Ỹ− (1− α)/4
Z̃sushi Ỹ+ (1− α)/4,

(5)155

with the right column indicating the probability of156

each rule expansion and α ∈ [−1, 1].3 The nonter-157

minal symbols Z̃pizza, Z̃sushi, Ỹ+, Ỹ− are intention-158

ally chosen to correspond to the labels Z and Y .159

Subsequent rules in the grammar can then be de-160

signed to ensure that Z̃pizza usually produces values161

of X1 that make Z = PIZZA likely, and analo-162

gously for the other non-terminals and associated163

labels. The unification of PCFGs and structured164

causal models is shown in fig. 1.165

When α 6= 0, there may be an association be-166

tween X1 and (X2, X3). As a result, there exist167

(x1, x
′
1) such that,168

P (Y |X1 = x1)

=
∑

X2,X3

P (Y | X2, X3)P (X2, X3 | X1 = x1)

6=
∑

X2,X3

P (Y | X2, X3)P (X2, X3 | X1 = x′1)

= P (Y |X1 = x′1),

(6)

169

creating a violation of UIF. The same argument can170

be applied to P (Z | X2) and P (Z | X3). UIF is171

also violated in P (Z | X1), P (Y | X2), and P (Y |172

X3), but for a different reason: these distributions173

are conditioned on the direct causal parents of the174

labels in fY and fZ . Manipulation of the data175

distribution to ensure that α = 0 (deconfounding176

Ỹ and Z̃) can remove only the violations of UIF177

induced by fX , but not those induced by the direct178

causal relationships encoded in fY and fZ .179

3The stochasticity of the grammar is encoded in the de-
terministic function fX through the noise variable NX . Let
NX ∼ Uniform(0, 1), and choose the first rule expansion of
S when NX < (1 + α)/4, the second rule expansion when
(1 + α)/4 ≤ NX < (1 + α)/2, and so on.

Discussion. The example shows how violations 180

to UIF can emerge via confounding, creating clas- 181

sical spurious correlations in the sense of Simon 182

(1954): informativeness despite counterfactual in- 183

variance. Such correlations are unlikely to be ro- 184

bust because it is not difficult to imagine a domain 185

in which the sign of α changes, impairing the per- 186

formance of predictors that have learned the spuri- 187

ous correlation. In contrast, feature-label correla- 188

tions that arise directly from the causal model, such 189

as (Z,X1), are only damaging under more extreme 190

forms of concept shift, in which the meanings of 191

the features themselves change.4 192

2.2 UIF ; Counterfactual Invariance 193

Violations of counterfactual invariance can occur 194

even when UIF is satisfied. To show this, we supply 195

two more productions for the grammar: 196

Ỹ+ → COP+ ADJP+ β+

COP− ADJP− 1− β+
(7) 197

Ỹ− → COP+ ADJP− β−

COP− ADJP+ 1− β−
(8) 198

Here the non-terminal COP+ produces a “posi- 199

tive” copula in X2 (is, was, is universally agreed 200

to be), COP− produces a negated copula in X2 201

(isn’t, wasn’t, was the furthest possible thing 202

from), ADJP+ produces positive-sentiment adjec- 203

tival phrases in X3 (great, delicious), and ADJP− 204

produces negative-sentiment adjectival phrases in 205

X3 (disappointing, totally unappetizing). There are 206

two special cases of interest: 207

• When β+ = β−, the probability of using a 208

negated copula is independent of Y , so X2 209

satisfies UIF with regard to Y , while X3 gen- 210

erally does not. 211

• When β+ = 1 − β−, the use of negation is 212

balanced to make the distribution over senti- 213

ment terms independent of Y , so X3 satisfies 214

UIF with Y , while X2 generally does not. 215

4This basic intuition is sometimes formalized as the prin-
ciple of sparse mechanism shift, which states that complex
causal systems are usually composed of smaller independent
parts, and that domain shifts typically affect only a few com-
ponents (Schölkopf et al., 2021). A related principle arises in
the context of natural language: distributional frequencies are
more likely to change across domains than categorical facts
about language. Biber (1991), for example, makes this argu-
ment explicitly in the analysis of register. In our model, the
implication is that the probabilistic rule expansions in fX are
more likely to change than the basic properties of the lexicon,
which govern which terminal symbols can be emitted by each
non-terminal.
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Combining these cases, both X2 and X3 satisfy216

UIF with Y when β+ = β− = 1
2 , meaning that217

negated and non-negated copula are equally likely218

and are independent of Y .219

Discussion. UIF is violated not only by con-220

founding, as discussed in the previous section, but221

also in mild settings that do not meet any reason-222

able definition of bias: unless β+ = β− = 1/2223

then at least one of X2 and X3 is marginally infor-224

mative of Y . Furthermore, UIF has no impact on225

the counterfactual invariance of X2 and X3 on Y .226

Neither is counterfactually invariant even when the227

generative model is parametrized to make UIF hold228

for all input features (see also Pearl, 2009, page229

185). This is because the overall sentiment can230

be directly affected by adding or removing nega-231

tion and by flipping the polarity of the sentiment-232

carrying adjective.233

3 Conclusions234

In the toy example, violations of UIF arise from235

three distinct phenomena: confounding between236

the sentiment and the target (α 6= 0, leading to237

X1 6⊥⊥ Y ); confounding between the sentiment238

and the use of negation (β+ 6= β−, leading to239

X2 6⊥⊥ Y ); and lack of a perfect balance in the prob-240

ability of negation between positive- and negative-241

sentiment examples (β+ 6= 1 − β−, leading to242

X3 6⊥⊥ Y .) The conditions required to satisfy UIF243

are thus progressively less plausible as we move244

fromX1 toX3, and full UIF is achieved only in the245

perfectly balanced case of α = 0, β+ = β− = 1
2 .246

The number of such constraints will increase with247

the size of the grammar, making UIF vanishingly248

rare in more general settings. Note that this general249

conclusion follows from the PCFG analysis, and250

can be derived without reference to causality.251

The toy example also demonstrates the discon-252

nect between the UIF view of spurious correlations253

and the causal view: counterfactual invariance does254

not imply UIF because X1 can be marginally in-255

formative of Y even when X1 and Y are counter-256

factually invariant (these are the artifacts that we257

want to remove); UIF does not imply counterfac-258

tual invariance because both X2 and X3 can be259

uninformative of Y even when Y is sensitive to260

interventions on both features. From a theoretical261

perspective, it is unsurprising that these two views262

diverge, because UIF is a purely observational cri-263

terion while counterfactual invariance requires an264

explicit causal model. Indeed, this relationship is265

discussed in depth by Pearl (2009, §6.3), albeit out- 266

side the context of language. The two perspectives 267

can be seen as complementary, in that violation of 268

UIF is a necessary but insufficient condition for a 269

spurious correlation in the causal sense. 270

It is of course possible to quibble with the causal 271

model presented here, and in real applications it is 272

likely impractical to construct full causal models 273

of language. How then can we use causal insights 274

to go beyond sensitivity analysis to design better 275

benchmarks and more robust language understand- 276

ing systems? In some cases it is possible to elabo- 277

rate partial causal models of a task, with associated 278

invariance properties: for example, the sentiment of 279

a movie review should be invariant to (though not 280

independent of) the identities of the actors in the 281

movie. Several existing approaches can be viewed 282

as instantiations of partial causal models: for ex- 283

ample, data augmentation, causally-motivated reg- 284

ularizers, stress tests, and “worst-subgroup” perfor- 285

mance metrics (and associated robust optimizers) 286

can be seen as enforcing or testing task-specific in- 287

variance properties that provide robustness against 288

known distributional shifts (e.g., Lu et al., 2020; 289

Ribeiro et al., 2020; Kaushik et al., 2021; Koh et al., 290

2021; Veitch et al., 2021). Such approaches gener- 291

ally require domain knowledge about the linguistic 292

and causal properties of the task at hand — or to 293

put it more positively, they make it possible for 294

such domain knowledge to be brought to bear. 295

A final observation, pertaining to both UIF and 296

counterfactual invariance, is the parallel treatment 297

of X2 (the copula) and X3 (the adjectival phrase). 298

From a lexical semantic perspective, only X3 is 299

directly associated with the sentiment, while X2 300

plays a functional role by potentially reversing X3. 301

It may therefore seem undesirable to learn a corre- 302

lation between X2 and Y , and preferable to attach 303

that relationship exclusively toX3. Yet neither UIF 304

nor counterfactual invariance is capable of making 305

such a distinction. While it is possible to enforce 306

uninformativeness onX2 heuristically, e.g. by sam- 307

pling or augmenting the data to ensure β+ = β−, 308

those same heuristics could be applied to enforce 309

uninformativeness on X3 by making β+ = 1− β−. 310

Singling out X2 requires additional justification. 311

Such a principle might be found in the multitask 312

setting, in which we prefer feature-label informa- 313

tiveness to be sparse, with each feature directly 314

informing only a few labels. 315
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