
CAST: Causal Modeling of Time-Varying Treatment
Effects on Head and Neck Cancer

Everest Yang1,2∗, Ria Vasishtha1,3, Luqman K. Dad4, Lisa A. Kachnic4, Andrew Hope5,
Eric Wang1, Xiao Wu6, Yading Yuan4, 7, David J. Brenner1, Igor Shuryak1

1 Center for Radiological Research, Columbia University Irving Medical Center, USA
2 Department of Computer Science, Brown University, USA

3 Department of Applied Mathematics, Columbia University, USA
4 Department of Radiation Oncology, Columbia University Irving Medical Center, USA

5 Department of Radiation Oncology, Princess Margaret Cancer Centre, Canada
6 Department of Biostatistics, Columbia University Irving Medical Center, USA

7 Data Science Institute, Columbia University, USA

Abstract

Causal machine learning (CML) is quickly gaining recognition in medical research
because it offers better strategies to estimate treatment effects from complex real-
world data, helping guide treatment optimization. Causal survival forests (CSF) are
a powerful CML method for estimating heterogeneous treatment effects in survival
outcomes, which are essential for informed healthcare decision-making. However,
CSF only estimates effects at a fixed horizon, rather than at multiple time points.
We introduce Causal Analysis for Survival Trajectories (CAST), a novel extension
of CSF that models treatment effects as continuous parametric and non-parametric
effect trajectories over time. Applied to the RADCURE dataset [1] of 2,651 head
and neck cancer patients, CAST reveals how the effects of chemotherapy (added to
radiotherapy) evolve over time at the population and individual levels. By capturing
the temporal dynamics of treatment response, CAST can help clinicians determine
when and for which patient subgroups treatment benefits are maximized.

1 Introduction

Methodological gap: Traditional statistical and machine learning models are based on correlations,
making them unsuitable to answer the causal questions critical to clinical research [2, 3]. Causal
machine learning (CML) addresses this by modeling causal effects to estimate individualized or
subgroup-specific treatment responses [4]. Causal survival forests (CSF) extend CML to survival
outcomes and flexibly estimate heterogeneous treatment effects - critical for medical applications -
but estimate effects only at a fixed time, missing how effects evolve over time [5, 6, 7].

Proposed approach: We present CAST (Causal Analysis for Survival Trajectories), which extends
causal survival forests to model treatment effects continuously over time. Combining parametric and
non-parametric methods, CAST models the full trajectory of treatment response (Figure 1), which
is key to understanding the complex and time-varying effects of cancer therapy [8, 9, 10]. Figure 1
includes imaging for context, though only clinical and treatment data were modeled here. Because all
patients received radiotherapy, the treatment being modelled is chemotherapy yes/no only.

Clinical motivation: We apply CAST to head and neck squamous cell carcinoma (HNSCC), a cancer
with increased incidence [11] and changing demographics due to HPV. HPV-related tumors, more
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common in younger patients, differ in radiosensitivity and prognosis [12, 13, 14], highlighting the
need for individualized treatment. Treatment typically combines chemotherapy and radiation with
responses that vary between patients and manifest gradually [15, 16, 17, 18, 19].

Figure 1: Overview of the CAST framework

2 Related Work

Recent CML methods estimate individual treatment effects (ITE) from time-to-event data [20, 21],
but typically do so at discrete time points. This is particularly limiting in oncology, where treatment
effects evolve through different biological phases driven by tumor response and toxicity [22, 23]. The
response to treatment in HNSCC is highly heterogeneous, influenced by factors such as HPV status,
gender, and stage of the disease [24, 25, 26]. Traditional survival models (e.g. Cox proportional
hazards) assume constant effects over time, while more flexible models like RSF or DeepSurv improve
risk prediction, but do not isolate causal effects [27, 28, 29]. CAST provides a unified framework to
capture the full response trajectory.

3 Methodology

Causal Machine Learning Framework: Our approach uses a CML framework to isolate treatment
effects beyond traditional correlational methods. CML allows us to understand the causal impact
of interventions [30] with the goal of dissecting how treatments shape survival outcomes across
patient subgroups. Given the observational, non-randomized nature of our clinical data, we rely on
the following assumptions:

• Unconfoundedness: Treatment assignment is independent of potential outcomes conditional
on observed covariates (also called ignorability or no unmeasured confounding)

• Positivity (Overlap): Every subject has a non-zero probability of receiving each treatment
• Consistency: A subject’s observed outcome under their received treatment equals their

potential outcome for that treatment
• Non-interference: The treatment of one subject does not affect the outcome of another

subject.

To address selection bias in observational data, we modelled propensity scores using elastic net
logistic regression: ê(X) = P (W = 1|X) with hyperparameters optimized through 10-fold cross-
validation. Patients with extreme propensity scores (outside [0.10, 0.90]) were trimmed to ensure
overlap between treatment groups. See Appendix C.1 for balance diagnostics.
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3.1 CAST: Causal Analysis for Survival Trajectories

The theoretical foundation of CAST rests on modeling the effect trajectory as a function of time. Our
target estimand is the conditional average treatment effect (CATE) at time t, given covariates X:

τ(x, t) = E[Y (1, t)− Y (0, t) | X = x] (1)

where Y (w, t) represents the potential outcome at time t under treatment w, and x denotes the
covariates of an individual. We consider two types of time-varying estimands: the difference
in restricted mean survival time (RMST) and the difference in survival probability (SP) between
treatment groups. Unlike prior methods that estimate effects at fixed time points, CAST models
treatment effects as smooth functions of time. We used a smoothing spline to estimate the continuous
effect trajectory, and a quadratic fit to derive interpretable metrics.

3.1.1 Parametric Modeling Component

Our parametric modeling component employs a quadratic function: τ(t) = β0 + β1t + β2t
2 to

capture the rise and fall of treatment effects. The parameters are estimated using weighted least
squares:

min
β0,β1,β2

∑
t

w(t)(τ̂(t)− (β0 + β1t+ β2t
2))2 (2)

where w(t) = 1/σ2(t) are weights based on the variance of the effect estimates at each time
point. This approach yields clinically interpretable parameters, including the peak effect time
(tpeak = −β1/2β2), the maximum effect magnitude (τ(tpeak)), and the treatment effect half-life,
defined as the time it takes for the effect to diminish by 50% from its peak.

These parameters directly quantify key clinical aspects of the treatment response: when the maximum
benefit occurs, how large that benefit is, and how quickly it diminishes—information critical for
clinical decision-making that traditional methods cannot provide. See Appendix C.3 for fitted
coefficients and summary statistics from the parametric model.

3.1.2 Non-parametric Modeling Component

Our non-parametric component employs cross-validated smoothing splines:

τ(t) = g(t), where g = argmin
f

{∑
t

w(t) (τ̂(t)− f(t))
2
+ λ

∫
f ′′(t)2 dt

}
(3)

where λ is selected via cross-validation. This approach adapts to the data without imposing a prede-
termined functional form, revealing subtle inflection points in the effect trajectory that correspond to
biological phase transitions in the treatment response.

We calculate the first and second derivatives of the fitted spline to identify key features of the treatment
effect trajectory: local maxima and minima where g′(t) = 0, acceleration and deceleration phases
based on sign changes in g′′(t), and inflection points where g′′(t) = 0. The non-parametric model
complements the parametric fit by capturing complex, less predictable patterns, especially during
later follow-up periods, when biological processes like accelerated repopulation and late toxicities
may cause deviations from the smooth quadratic trend.

Theoretical Guarantees: See Appendix A for theorem statements establishing the consistency of
CAST parametric and nonparametric estimators, along with full algorithmic implementations.

4 Experiments

Data and Preprocessing: We used 2,651 patients from the publicly available RADCURE dataset,
focusing on head and neck squamous cell carcinoma. We filtered incomplete records, standardized
variables, and computed radiotherapy dose features using established radiobiological models [31].
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The assignment of treatment (yes / no chemotherapy) was modeled by elastic net logistic regression,
with overlap trimming to reduce confounding. The cohort was split into 75/25 for training / testing.
See Appendix B for full hyperparameter settings, preprocessing and propensity modeling details, and
sensitivity analyses.

Implementation & Heterogeneity Analysis: We used causal survival forests with Nelson-Aalen
estimators to address right-censoring [32, 33], training models at 12–120 month horizons with 5,000
trees and doubly robust estimation using standardized covariates and propensity scores. Uncertainty
was quantified via the infinitesimal jackknife. To analyze heterogeneity, we computed approximate
SHAP values (1,000 Monte Carlo samples, ϵ = 0.01), normalized to reflect deviations from the mean.
HPV status and smoking history emerged as key predictors of chemotherapy response.

Validation Methods: We validated treatment effects using robustness checks, including dummy
outcome tests (20 permutations), adding irrelevant covariates correlated with treatment but not
outcome, negative control tests with random treatment assignments, and random noise injection. All
refutation tests yielded null or stable effects. Additional visualizations are provided in Appendix C.4.

5 Results

CAST reveals a time-varying chemotherapy benefit that rises post-treatment, peaks between 48–60
months, and declines thereafter (Figure 2). This pattern is consistent across both the parametric and
non-parametric models, suggesting a peak in benefit between 50 and 65 months with gradual tapering
due to recurrence, long-term toxicity, or competing risks. On the testing set, chemotherapy increased
survival probability by 15.2± 6.0% at 36 months and 15.0± 6.7% at 60 months, with RMST gains
of 3.6± 1.4 and 7.1± 2.6 months, respectively.

Individualized effect distributions: Individual treatment effects varied across patients. While most
experienced moderate benefit, CAST identified a long right tail of high responders and a subset with
near-zero or negative effects.

Figure 2: Comparison of time-varying treatment effect models using CAST. The red curve shows
the parametric estimate with 95% CIs; the blue curve shows the non-parametric spline. Black dots
denote average treatment effects ± standard errors on the survival probability scale.

Subgroup variation: Correlation matrices and SHAP analyses identified smoking pack-years as the
strongest negative predictor of chemotherapy benefit, with HPV positivity and older age showing
modest positive associations. Further SHAP visualizations are provided in Appendix C.2.

6 Conclusion

CAST reveals clinically significant chemotherapy patterns: strong short- to mid-term benefits that
decline over time, likely due to recurrence or delayed toxicity [34]. These findings support adaptive
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monitoring and strategies to maintain therapeutic effects. CAST also exposes treatment heterogeneity,
with HPV status and smoking as key modifiers, and a modest age inflection near 50–60 years. Rather
than replacing existing survival tools, CAST complements them by modeling continuous-time effects
and capturing patient-level variation. Although currently limited to binary treatments, the framework
can extend to dose, multiarm, and longitudinal designs. Beyond cancer, CAST applies to settings with
evolving treatment effects—such as infectious disease interventions—to pinpoint critical windows,
tailor care, and adapt strategies.
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inevitably raises ethical considerations. By bringing ML methods to oncology research, we strive
to advance personalized medicine and treatment strategies. However, our estimates are based on
observational data and may be biased by unmeasured confounding. While the dataset includes a
comprehensive description of variables including age, sex, smoking history, and HPV status, it omits
race, ethnicity, and socioeconomic status data. These factors are key to understanding structural
barriers to healthcare that could possibly affect outcomes. This risks amplifying existing biases in
the data. ML models in oncology must be used cautiously and should not replace clinical judgment,
but rather act as a supplement. Our findings require further clinical validation before integration into
decision-making workflows.
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A Theoretical Justification of CAST

We provide formal justification for the consistency and identifiability of the time-varying treatment
effect estimator τ̂(t) used in the CAST framework.

A.1 Problem Setting

Let D = {(Xi,Wi, Ti, δi)}ni=1 be a dataset of n i.i.d. samples where: - Xi ∈ Rp is a vector of
observed covariates, - Wi ∈ {0, 1} is a binary treatment indicator, - Ti is the observed event or
censoring time, - δi ∈ {0, 1} is the event indicator (1 if the event occurred, 0 if censored).

Let Y (w, t) denote the potential outcome (e.g., survival status at time t) under treatment w ∈ {0, 1}.
We define the time-varying Conditional Average Treatment Effect (CATE) as:

τ(x, t) := E[Y (1, t)− Y (0, t) | X = x].

CAST estimates τ(x, t) using a doubly-robust causal survival forest followed by a spline or quadratic
fit across time.

A.2 Assumptions

We adopt standard causal inference and survival analysis assumptions:

(A1) Unconfoundedness: (Y (0, t), Y (1, t)) ⊥W | X for all t.
(A2) Positivity: 0 < P (W = 1 | X) < 1 almost surely.
(A3) Consistency: Y = Y (W, t) if W is received.
(A4) Non-informative Censoring: C ⊥ (Y (0, t), Y (1, t)) | X,W for censoring time C.
(A5) Consistency of Forest Estimators: The causal survival forests used yield consistent

estimates of conditional survival functions Sw(t | X).

A.3 Theorem: Pointwise Consistency of τ̂(t)

[Pointwise Consistency] Under assumptions (A1)–(A5), for each fixed t:

τ̂(t) := EX [Ŝ1(t | X)− Ŝ0(t | X)]
p−→ τ(t) := EX [S1(t | X)− S0(t | X)]

as n→∞, where Ŝw(t | X) is the estimated conditional survival function under treatment w from
causal survival forests.

This follows from: 1. Consistency of Ŝw(t | X) (A5), 2. The continuous mapping theorem, since
subtraction and expectation are continuous, 3. Trimming enforces overlap (A2), ensuring bounded
inverse propensity weights.

A.4 Identifiability of τ(t) from Observational Data

[Identifiability] Under assumptions (A1)–(A4), the marginal time-varying treatment effect

τ(t) := EX [E[Y |W = 1, X, T ≥ t]− E[Y |W = 0, X, T ≥ t]]

is identified from observational data using inverse probability weighting or doubly-robust estimation.

Under unconfoundedness and non-informative censoring, we can consistently estimate the conditional
means E[Y (w, t) | X] from observed data. The difference in conditional expectations across
treatment groups yields an identifiable estimator of τ(t).
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A.5 Estimability of Peak Effect Time in CAST-Parametric

Let the parametric effect trajectory be:

τ(t) = β0 + β1t+ β2t
2,

and suppose β̂1, β̂2 are estimated using weighted least squares.

[Consistency of Estimated Peak Time] If β̂1
p−→ β1, β̂2

p−→ β2 with β2 < 0, then the estimated peak
time

t̂∗ = − β̂1

2β̂2

is a consistent estimator of the true peak t∗ = − β1

2β2
.

This follows from Slutsky’s theorem. Since both β̂1 and β̂2 converge in probability to non-zero limits,
and the mapping f(a, b) = −a/(2b) is continuous for b ̸= 0, it follows that:

t̂∗ = − β̂1

2β̂2

p−→ − β1

2β2
= t∗.

A.6 Algorithmic Implementation of CAST

Algorithm 1 CAST-PARAMETRIC

1: Input: HorizonsH, ATEs {τ̂h}, SEs {σ̂h}
2: Output: Temporal function τ̂(t), peak time t∗, half-

life λ
3: W ← {wh = 1/σ̂2

h} ▷ Inverse-variance weights
4: τ̂(t)← FITQUADRATICMODEL(H, τ̂ ,W)
5: β1, β2 ← coefficients from fit
6: if β2 ̸= 0 then
7: t∗ ← −β1/(2β2) ▷ Time of peak effect
8: λ← SOLVE(τ̂(t∗ + λ) = τ̂(t∗)/2)
9: else

10: t∗, λ← NA ▷ Degenerate case
11: end if
12: return τ̂(t), t∗, λ

CAST-Parametric: This algorithm
models treatment effects over time
using a weighted quadratic fit to
the estimated ATEs across discrete
horizons. Inverse-variance weighting
emphasizes more confident estimates.
The peak effect time is derived
analytically, while the half-life is
computed by numerically solving for
the point where the curve falls to half
its maximum. This approach yields
interpretable summaries of treatment
dynamics, aligning with radiobiologi-
cal phenomena such as delayed benefit
and diminishing returns.

Algorithm 2 CAST-NONPARAMETRIC

1: Input: HorizonsH, ATEs {τ̂h}, SEs {σ̂h}
2: Output: Spline τ̂(t), peak t∗, inflections {ti}
3: W ← {wh = 1/σ̂2

h}
4: τ̂(t)← FITSPLINE(H, τ̂ ,W)
5: D1(t), D2(t) ← first and second derivatives of

τ̂(t)
6: t∗ ← ARGMAX(τ̂(t)) ▷ Peak effect
7: {ti} ← ZEROCROSSINGS(D2(t)) ▷ Inflection

points
8: if t∗ not in [min(H),max(H)] then
9: t∗ ← NA

10: end if
11: return τ̂(t), t∗, {ti}

CAST-Nonparametric: This algorithm
fits a smoothing spline to the estimated
treatment effects across time using
inverse-variance weights. It computes
the first and second derivatives of
the spline to identify key dynamics:
the peak effect time via the curve’s
global maximum and biological
phase transitions via inflection points.
This method captures delayed and
non-monotonic effect trajectories
often missed by parametric models,
reflecting immune response, tissue
adaptation, or timing heterogene-
ity.
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B Expanded Dataset Subsection

Overview

Our analysis uses the RADCURE dataset from The Cancer Imaging Archive (TCIA), the largest to
our knowledge publicly accessible head and neck cancer imaging dataset. The data spans from 2005
to 2017 and includes computed tomography (CT) images for 3,346 patients, from which we selected
a subset of 2,651 patients after filtering for only HNSCC cases. These images are linked to clinical,
demographic, and treatment metadata. Following standardized clinical imaging protocols, the RAD-
CURE project includes CT images, pictured alongside manually-reviewed contours differentiating
between the planning tumor volume (PTV) and the organs at risk (OARs). All patients in this dataset
received radiotherapy, and some received chemotherapy.

The clinical data accounts for patient demographics, including age, gender, and HPV status. It
also details tumor staging using the 7th edition TNM system to describe the cancer, in addition to
treatment information. While the dataset primarily focuses on oropharyngeal cancer, it also covers
laryngeal, nasopharyngeal, and hypopharyngeal cancers.

Data Preprocessing

In the preprocessing stage, we filtered out incomplete patient profiles to ensure the dataset included
relevant variables and appropriately represented potential confounders. We standardized all con-
tinuous variables to have zero mean and unit variance to ensure comparability and optimize model
performance. The dataset comprehensively describes treatment details—dose/fraction, number of
fractions, and total days of radiotherapy—which we used to calculate Biologically Effective Dose
(BED) values. We implemented both dose-independent (DI) and dose-dependent (DD) BED models
to capture the biological effects of radiation therapy, using established radiobiological parameters
(α = 0.2 Gy−1, α/β = 10 Gy, accelerated repopulation rates and onset times). This allowed us to
quantify the effective radiation dose accounting for different fractionation schedules. We employed a
stratified data partitioning strategy, creating training (75%) and testing (25%) sets while maintaining
consistent event rates across partitions. Both subsets contained similar proportions of survival events,
allowing for unbiased evaluation of treatment effects.

Table 1 summarizes the estimated average treatment effects across time for both restricted mean
survival time (RMST) and survival probability (SP) metrics. These values were computed using
causal survival forests on held-out test data. We observe that the estimated effects generally increase
with longer follow-up, particularly under the RMST metric, reflecting the accumulating benefit of
treatment over time. Standard errors are included to reflect model uncertainty at each horizon.

Table 1: Summary statistics of the real dataset

Statistic Control Group Treated Group
Event Rate (%) 79.8
Treatment Rate (%) 44.9
Median Survival (months) 17.0 24.0

12-month Survival (%) 70.3 90.1
24-month Survival (%) 20.2 45.5
36-month Survival (%) 1.9 7.3
48-month Survival (%) 0.0 0.1

Age (mean) 60.42 59.23
TNM Stage (mean) 1.73 3.46
HPV Positivity Rate 0.68 0.51
Sex (Male = 1) 0.48 0.49

Computing Resources: All experiments were conducted with a 13th Gen Intel Core i7-1355U CPU,
16GB RAM, and integrated Intel Iris Xe Graphics. No discrete GPU or cloud resources were used,
though such resources would significantly reduce runtime for large-scale extensions of this work.
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C Additional Results

In this section, we present additional results that extend and validate the findings reported in the
main paper. These include visualizations of treatment effect heterogeneity across time, a summary of
average treatment effects, and robustness checks to support the reliability of our causal estimates.

C.1 Summary Table of Average Treatment Effects

Table 2 summarizes the estimated average treatment effects across time horizons using both RMST
and survival probability metrics. These values were computed using causal survival forests on the
held-out test set. The treatment effects tend to increase over time under both metrics, with RMST
showing a steeper upward trend reflecting cumulative benefit. Standard errors are included for each
estimate. The early rise in both SP and RMST suggests initial treatment efficacy, while the plateauing
in later months reflects diminishing returns, possibly due to recurrence or late toxicity. The RMST
gains—peaking at over 16 months—highlight how cumulative survival benefit continues to accrue
even as survival probability differences taper off. These patterns support the biological intuition that
treatment effects rise quickly post-intervention and then gradually attenuate.

Table 2: Estimated average treatment effects (ATE) across time using RMST and survival probability
(SP). SE represent standard errors

Months ATE (SP) SE (SP) ATE (RMST) SE (RMST)
12 0.099 0.049 0.44 0.26
24 0.141 0.053 1.88 0.80
36 0.152 0.058 3.58 1.46
48 0.178 0.072 5.80 2.31
60 0.168 0.071 7.39 2.73
72 0.148 0.075 8.38 3.52
84 0.156 0.077 11.08 4.76
96 0.143 0.071 13.89 5.90

108 0.129 0.068 14.76 6.16
120 0.100 0.063 16.11 6.92

These summary statistics also inform the CAST modeling strategies described in Section 3.3. The
steady increase followed by tapering motivates the use of both quadratic and spline-based approaches
to flexibly capture the full temporal arc of treatment efficacy.
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C.2 SHAP-Based Interpretability Analysis

While SHAP provides valuable insights into feature influence, the estimates generated here using the
fastshap R package are approximate and may be noisy, particularly in the context of survival analysis.
We calculated approximate SHAP values because an exact SHAP explainer does not yet exist for the
causal survival forest model.

To identify drivers of treatment heterogeneity, we computed Pearson and Spearman correlation matri-
ces between clinical covariates, SHAP values, and estimated treatment effects (Figure 3a,b). Pearson
captures linear relationships, while Spearman reflects monotonic trends, offering complementary
views of variable influence. Smoking pack-years showed the strongest and most consistent negative
correlation across both matrices, reinforcing its role in reducing chemotherapy benefit. HPV-negative
status also correlated with higher chemotherapy benefit, while HPV positivity was associated with
reduced benefit. Older age showed a modest positive correlation with treatment effects.

(a) Pearson Correlation (b) Spearman Correlation

Figure 3: Correlation matrices between covariates, SHAP values, and treatment effects
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Figures 4(a–c) show SHAP plots for the three most influential variables—age, HPV status, and
smoking pack-years—highlighting clear heterogeneity in treatment benefit across subgroups. Ad-
ditional SHAP plots for other covariates—such as tumor site, treatment timing, dose metrics, and
TNM stage—are also provided below. These variables had smaller contributions to the model, but
are shown for completeness and transparency.

(a) Age (b) HPV Status

(c) Smoking Pack-Years

Figure 4: SHAP analysis of covariates driving treatment effect heterogeneity. (a) Older age is linked
to greater chemotherapy benefit. (b) HPV-negative patients consistently show higher contributions.
(c) Smoking Pack-Years is one of the features of strongest association treatment effect heterogeneity.
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(a) Esophagus (b) Hypopharynx

(c) Larynx (d) Lip/Oral Cavity

(e) Nasal Cavity (f) Oropharynx

Figure 5: SHAP values for primary tumor site. These anatomical subgroups exhibited low or diffuse
contributions to treatment effect heterogeneity, though subtle site-specific trends may still hold
clinical value.

15



(a) TNM Stage (b) BED (Dose-Dependent)

(c) BED (Dose-Independent) (d) Year of RT

(e) HPV Unknown

Figure 6: SHAP values for additional covariates, including TNM stage, treatment year, and dose-
related metrics. These features showed limited or context-specific contributions to treatment effect
heterogeneity.
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C.3 Distributions of Individualized Treatment Effects

We visualize the estimated treatment effect distributions for both RMST and survival probability (SP)
at intervals ranging from 12 to 120 months. Figures 4 and 5 show individual-level causal effects
derived from the causal survival forest at each time horizon.

RMST Treatment Effect Distributions

(a) 12 months (b) 24 months (c) 36 months

(d) 48 months (e) 60 months (f) 72 months

(g) 84 months (h) 96 months (i) 108 months

(j) 120 months

Figure 7: Distributions of estimated RMST-based treatment effects over time. Each panel shows the
individual-level causal effect at a specific horizon as learned by the causal survival forest.
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Survival Probability Treatment Effect Distributions

(a) 12 months (b) 24 months (c) 36 months

(d) 48 months (e) 60 months (f) 72 months

(g) 84 months (h) 96 months (i) 108 months

(j) 120 months

Figure 8: Distributions of estimated survival-probability-based treatment effects over time. Each
panel shows the individual-level causal effect at a specific horizon as estimated by the causal survival
forest.
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C.4 Dummy Outcome Refutation Tests

To assess whether CAST detects spurious treatment effects in the absence of a true signal, we
performed dummy outcome tests. For each time horizon, we randomly shuffled treatment assignments
and outcome times across 20 repetitions to simulate a null setting. If the model was overfitting or
improperly attributing causal structure, it would produce non-zero treatment effect estimates even
under randomization. As shown in the boxplots below, the estimated treatment effects for both RMST
and survival probability are centered around zero, especially at relatively short times (≤ 60 months),
when the number of patients still at risk was large. This confirms that CAST does not learn artifacts
from the data and is robust to randomization of causal structure.

Figure 9: Dummy outcome test for RMST-based ATE estimates. Across 20 shuffles per horizon,
treatment effects are centered near zero, consistent with the null.

Figure 10: Dummy outcome test for survival probability-based ATE estimates. The model correctly
reports no significant treatment effects under randomized labels.
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To assess the robustness of CAST estimates to unobserved confounding, we performed a sensitivity
analysis by injecting synthetic covariates with varying correlation to treatment assignment (r = 0.1,
0.3, 0.5). We then measured the resulting shifts in ATE estimates across time horizons for both
RMST and survival probability outcomes.

Figure 11: Absolute ATE differences in RMST under varying confounder strengths (r = 0.1, 0.3,
0.5). Estimates are stable under weak strengths but diverge at longer horizons and higher strengths.

Figure 12: Absolute ATE differences in SP under varying confounder strengths (r = 0.1, 0.3, 0.5).
CAST estimates remain stable under weak strengths, with modest shifts at stronger levels and longer
horizons.
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