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ABSTRACT

We have recently seen great progress in learning interpretable music representa-
tions, ranging from basic factors, such as pitch and timbre, to high-level concepts,
such as chord andtexture. However, most methods rely heavily on music domain
knowledge and it remains an open question how to learn interpretable and disen-
tangled representations using inductive biases that are more general. In this study,
we use physical symmetry as a self-consistency constraint on the latent space.
Specifically, it requires the prior model that characterises the dynamics of the la-
tent states to be equivariant with respect to a certain group transformation. We
show that our model can learn linear pitch factor (that agrees with human music
perception) as well as pitch-timbre disentanglement from unlabelled monophonic
music audio. In addition, the same methodology can be applied to computer vi-
sion, learning the 3D Cartesian space as well as space-colour disentanglement
from a simple moving object shot by a single fixed camera. Furthermore, applying
physical symmetry to the prior model naturally leads to representation augmenta-
tion, a new learning technique which helps improve sample efficiency.

1 INTRODUCTION

Interpretable representation-learning models have achieved great progress for various types of time-
series data. Taking the music domain as an example, tailored deep generative models (Ji et al., 2020)
have been developed to learn pitch, timbre, melody contour, chord progression, accompaniment
texture, etc. However, most models still rely heavily on domain-specific knowledge. For example,
to use pitch scales or instrument labels for learning pitch and timbre representations (Luo et al., 2020;
2019; Engel et al., 2020; Lin et al., 2021; Esling et al., 2018) and to use chords and rhythm labels for
learning higher-level representations (Akama, 2019; Yang et al., 2019; Wang et al., 2020; Wei & Xia,
2021). Such an approach is very different from human learning; even without formal music training,
one can at least perceive basic factors such as pitch and timbre from the experience of listening to
music. In other words, it remains an open question how to learn interpretable music representations
using inductive biases that are more general. We see a similar issue in other domains. For instance,
various computer-vision models (McCarthy & Ahmed, 2020; Trevithick & Yang, 2021; Mescheder
et al., 2019; Riegler et al., 2017) can learn 3D representations of human faces or a particular scene
by incorporating domain knowledge (e.g., labelling of meshes and voxels, 3D-specific setups such
as multi-cameras, 3D convolution, etc.) but it remains a non-trivial task to trace the 3D location of a
simple moving object from monocular videos in a self-supervised fashion.

In this study, we explore to use physical symmetry (i.e., symmetry of physical laws) as a weak
self-consistency constraint for the learned latent z space. As indicated in Figure 1, this general
inductive bias requires that after a certain transformation S (e.g., translation or rotation) in the latent
space, the learned prior model R, which is the induced physical law describing the temporal flow
of the latent states, should output equivariant predictions. Formally, zt+1 = R(zt) if and only if
zSt+1 = R(zSt ), where zS = S(z). In other words, R and S are commutable operations for z,
i.e., R(S(z)) = S(R(z)). Note that this approach is fundamentally different from most existing
symmetry-informed models (Bronstein et al., 2021), in which the symmetry property is used to
constrain the encoder or the decoder.

Specifically, we design self-supervised learning with physics symmetry (SPS), a method that adopts
an encoder-decoder framework and applies physical symmetry to the prior model. We show that
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Figure 1: Physical symmetry, the fundamental inductive bias of this study.

with the right symmetry assumptions, our model learns linear pitch factors that agree with human
music perception from monophonic music audio, without any domain-specific knowledge about
pitch scales or signal-level regularities. If we further assume an extra global invariant latent code,
the model can learn pitch-timbre disentanglement without instrument labelling. Moreover, we show
that the same methodology can be applied to the computer vision domain, learning 3D Cartesian
space as well as space-colour disentanglement from monocular videos of a bouncing ball shot from
a fixed perspective.

2 INTUITION

The idea of using physical symmetry for representation learning comes from modern physics. In
classical physics, scientists usually first induce physical laws from observations and then discover
symmetry properties of the law. (E.g., Newton’s law of gravitation, which was induced from plan-
etary orbits, is symmetric with respect to Galilean transformation.) In contrast, in modern physics,
scientists often start from a symmetry assumption, based on which they derive the corresponding
law and predict the properties (representations) of fundamental particles. (E.g., general relativity
was developed based on a firm assumption of symmetry with respect to Lorentz transformation).

Analogously, we use physical symmetry as an inductive bias of our machine learning model, which
helps us learn a regularised prior and an interpretable latent space. In other words, if it is a belief of
many physicists that symmetry in physical law is a main design principle of the nature, we regard
symmetry in physical law as a major useful inductive bias of the representation learner.

The introduction of physical symmetry to the learned prior model naturally leads to representation
augmentation, a novel learning technique which helps improve sample efficiency. As indicated in
Figure 1, representation augmentation means to “imagine” zSt as the training sample of the prior
model R. Representation augmentation can be regarded as a regularisation of the prior model,
since it requires the prediction of the z sequence to be equivariant with respect to a certain group
transformation of S. It also constrains the encoder and decoder indirectly through the prior model
since the network is trained in an end-to-end fashion.

3 METHODOLOGY

Our goal is to learn a disentangled and interpretable representation zi of each high-dimensional sam-
ple xi from time-series x1:T . The disentanglement of zi is at two levels. First, zi is divided into
two factors: zi,s and zi,c, where zi,s is the global invariant style and zi,c is the content representa-
tion that changes over time. More importantly, we aim to further disentangle the spatio-temporal
content factor zi,c using physical symmetry such that it is equivariant with respect to the prior model
and each dimension of it is interpretable and consistent with human perception.

We focus on two specific problems in this paper. The primary problem is to learn pitch and timbre
factors of music notes from music audio, where each xi is a spectrogram of a note. Ideally, zi,c is
a 1D content factor representing the pitch and zi,s is a style factor representing the timbre. Another
problem is to learn 3D Cartesian location and colour factors of a simple moving object (a bouncing
ball) from its trajectory shot by a fixed, single camera. In this case, each xi is an image. Ideally, zi,c
is learned to be a 3D content factor representing the location and zi,s represents the global colour.
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3.1 MODEL

Figure 2 shows our model design. During the training process, the temporal data input x1:T is first
fed into the encoder E to obtain the corresponding representation z1:T . z1:T is then split into two
parts: the style factor z1:T,s and the content factor z1:T,c. The style factor z1:T,s is passed through
the random-pooling module P , where one sub-element zτ,s is randomly picked. The content factor
z1:T,c is fed into three branches. In the first branch (the green line), z1:T,c is combined with zτ,s by
concatenating each sub-element zi,c with zτ,s, and fed to the decoder D to reconstruct x′1:T . In the
second branch (the orange line), z1:T,c is passed through the prior model R to predict its next step,
ẑ2:T+1,c, which is then combined with zτ,s to reconstruct x̂2:T+1. In the third branch (the blue line),
we sequentially transform z1:T,c with S, pass it through R, and transform it back using the inverse
transformation S−1 to predict another version of the next step z̃2:T+1,c, which is finally combined
with zτ,s to reconstruct x̃2:T+1. We get three outputs from the model: x′1:T , x̂2:T+1 and x̃2:T+1.

The underlying idea of physical symmetry is that the dynamics of latent content factor and its trans-
formed version follow the same physical law characterised by R. Therefore, z̃ and ẑ should be
close to each other and so are x̃ and x̂, assuming S is a proper transformation. This self-consistency
constraint helps the network learn a more regularised latent space. In addition, zτ,s further helps
disentangle the style factor by assuming a global invariant style code over time.
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Figure 2: An overview of our model. x1:T is fed into the encoder E to obtain the corresponding
representation z1:T , which is then split into two parts: the style factor z1:T,s and the content factor
z1:T,c. The style factor is passed through the random-pooling layer P , where a sub-element zτ,s is
randomly selected. The content factor is fed into three different branches and combined with zτ,s to
reconstruct three outputs respectively: x′1:T , x̂2:T+1 and x̃2:T+1. Here, R is the prior model and S is
the symmetric operation. The inductive bias of physical symmetry enforces z1:T,c to be equivaraint
w.r.t. to R, so therefore z̃ and ẑ should be close to each other and so are x̃ and x̂.

3.2 TRAINING OBJECTIVE

The total loss contains four terms: reconstruction loss Lrec, prior prediction loss Lprior, symmetry-
based loss Lsym, and KL divergence loss LKLD. Formally,

L = Lrec + λ1Lprior + λ2Lsym + λ3LKLD, (1)

where λ1, λ2 and λ3 are weighting parameters. By referring to the notations in section 3.1,

Lrec = LBCE(x′1:T , x1:T ) + LBCE(x̂2:T , x2:T ) + LBCE(x̃2:T , x2:T ), (2)

Lprior = ℓ2(ẑ2:T,c, z2:T,c), (3)

Lsym = ℓ2(z̃2:T,c, ẑ2:T,c) + ℓ2(z̃2:T,c, z2:T,c). (4)

Lastly, the LKLD is the Kulback-Leibler divergence loss between the posterior distribution of zi and
a standard Gaussian.
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3.3 SYMMETRY-BASED REPRESENTATION AUGMENTATION

We name S with representation augmentation since it creates extra fake sequences of z (i.e., imagi-
nary experience based on a group assumption) to help train the prior. In practice, we apply K differ-
ent transformations S to z1:T−1,c to generate K fake sequences. Thus, the two terms of symmetry-
based loss can be specified as:

ℓ2(z̃2:T,c, z2:T,c) =
1

K

K∑
k=1

ℓ2(S
−1
k (R(Sk(z1:T−1,c))), z2:T,c), (5)

ℓ2(z̃2:T,c, ẑ2:T,c) =
1

K

K∑
k=1

ℓ2(S
−1
k (R(Sk(z1:T−1,c))), ẑ2:T,c), (6)

where the lower case k denotes the index of a specific transformation and we refer to K as the
augmentation factor. Likewise, the last term of reconstruction loss can be specified as:

LBCE(x̃2:T , x2:T ) =
1

K

K∑
k=1

LBCE(D(S−1
k (R(Sk(z1:T−1,c))), zτ,s), x2:T ). (7)

Each S applied to each sequence z1:T,c belongs to a certain group, and different groups are used
for different problems. For the music problem, we assume zi,c be to 1D and use random S ∈ G ∼=
(R,+). In other words, we add or subtract the content factor by a random scalar. As for the video
problem, we assume zi,c be to 3D and use random S ∈ G ∼= (R2,+) × SO(2). In other words,
random rotation and shift are applied on two dimensions of zi,c.

4 RESULTS

We run experiments on two problems. In section 4.1, we present the results of learning pitch content
and timbre style from monophonic music. In section 4.2, we present the results of learning 3D-
location content and colour style from monocular videos of a bouncing ball. For both problems, we
use a representation augmentation factor of K = 4. The focus in this section is to see whether the
learned content is interpretable, and whether the content-style disentanglement is successful. We
present additional results in the appendix, including more complicated and realistic data in section
A.3, more flexible assumptions on symmetry in section A.2.4, and results of applying SPS on auto-
encoders without the variational constraints in section A.4

4.1 LEARNING PITCH AND TIMBRE FACTORS FROM MUSIC AUDIO

4.1.1 DATASET

We synthesise a dataset that contains around 2400 audio clips played by multiple instruments. Each
contains 15 notes in major scales with the first half ascending and the second half descending. We
refer readers to appendix section A.1.3 for details.

4.1.2 RESULTS ON INTERPRETABLE PITCH SPACE

Figure 3 shows that the pitch factor learned by our model has a linear relation with the true pitch.
Here, we use zpitch as the synonym of zc to denote the content factor. The plot shows the mappings
of two tasks and four models. In the embedding task (the first row), x-axis is the true pitch and
y-axis is embedded zpitch. In the synthesis task (the second row), x-axis is zpitch and y-axis is the
detected pitch (by YIN algorithm, a standard pitch-estimation method by De Cheveigné & Kawahara
(2002)) of decoded (synthesised) notes. The fours models involved are: 1) our model, 2) our model
without symmetry (i.e., no representation augmentation during training), 3) a β-VAE trained to
encode single-note spectrograms from a single instrument (banjo) to 1D embeddings, and 4) SPICE
(Gfeller et al., 2020), a SOTA unsupervised pitch estimator with strong domain knowledge on how
pitch linearity is reflected in log-frequency spectrograms. As the figure shows, without explicit
knowledge of pitch, our model learns a more interpretable pitch factor than β-VAE, and the result is
comparable to SPICE.
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Figure 3: A visualisation of the mapping between the 1D content factor and the true pitch. In the
upper row, models encode notes in the test set to zpitch. The x axis shows the true pitch and the
y axis shows the learned pitch factor. In the lower row, the x axis traverses the zpitch space. The
models decode zpitch to audio clips. We apply YIN to the audio clips to detect the pitch, which is
shown by the y axis. In both rows, a linear, noiseless mapping is ideal, and our method performs the
best. All results are evaluated on the test set.

4.1.3 RESULTS ON PITCH-TIMBRE DISENTANGLEMENT

We evaluate the content-style disentanglement using factor-wise data augmentation following Yang
et al. (2019). Namely, we change (i.e., augment) the instrument (i.e., style) of notes while keeping
their pitch, and then measure the effects on the encoded zc and zs. We compare the normalised zc
and zs, ensuring they have the same dynamic range. Ideally, the change of zs should be much more
significant than zc. Here, we compare four approaches: 1) our model, 2) our model without splitting
for zs (i.e., our model without the dashed black path shown in Figure 2) but fed zs together with zc
into the prior model, 3) GMVAE (Luo et al., 2019), a domain-specific pitch-timbre disentanglement
model trained with explicit pitch labels, and 4) TS-DSAE (Luo et al., 2022), a latest unsupervised
pitch-timbre disentanglement model based on Disentangled Sequential Autoencoder (DSAE).
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Figure 4: Comparisons for ∆zc and ∆zs for different instruments against accordion, with pitch kept
constant at MIDI pitch D3. ∆zc and ∆zs are changes in normalised zc and zs, so that higher black
bars relative to white bars means better results. All results are evaluated on the test set.

Figure 4 presents the changes in normalised zc and zs measured by L2 distance when we change
the instrument of an anchor note whose pitch is D3 and synthesised by accordion. Table 1 provides
a more quantitative version by aggregating all possible instrument combinations and all different
pitch pairs. Both results show that our model produces a smaller relative change in zc under timbre
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augmentation, demonstrating a successful pitch-timbre disentanglement outperforming both the ab-
lation and baseline. Note that for the ablation model, zc varies heavily under timbre augmentation,
seemingly containing timbre information. This result indicates that the design of an invariant style
factor over the temporal flow is necessary to achieve good disentanglement.

Table 1: Mean ratios of changes in normalised zc and zs under timbre augmentation across all
possible instrument combinations under different constant pitches in the test set.

Methods ||∆zc||2/||∆zs||2 ↓
Ours w/o zs splitting 2.20
GMVAE (Baseline) 0.67
DS-DSAE (Baseline) 0.65
SPS (Ours) 0.49

4.2 LEARNING LOCATION AND COLOUR FACTORS FROM VIDEOS OF A MOVING OBJECT

4.2.1 DATASET

We run physical simulations of a bouncing ball in a 3D space and generate 4096 trajectories. The
ball’s colour, initial location, and initial velocity for each trajectory are randomly sampled. Please
see appendix A.1.3 for more details.

4.2.2 RESULT ON INTERPRETABLE 3D REPRESENTATION

z1

z2

−2.0

z3

0.0 2.0

(a) SPS (Ours)

−2.0 0.0 2.0

(b) Ours w/o Symmetry

−2.0 0.0 2.0

(c) β-VAE (Baseline)

Figure 5: Row i shows the generated images when changing zi and keeping z̸=i = 0, where the x
axis varies zi from −2 to 2. In (a), changing z2 controls the ball’s height, and changing z1, z3 moves
the ball parallel to the ground plane.

Figure 5 illustrates the interpretability of learned content factor using latent space traversal. Each
row varies only one dimension of the learned 3D content factor, keeping the other two dimensions at
zero. Figure 5(a) shows the results of our model. We clearly observe that: i) increasing z1 (the first
dimension of zc ) mostly moves the ball from left to right, increasing z2 moves the ball from bottom
to top, and increasing z3 mostly moves the ball from far to near. Figure 5(b) is the ablation model
without physical symmetry, and (c) shows the result of our baseline model β-VAE, which is trained
to reconstruct static images of a single colour (green). Neither (b) nor (c) learns an interpretable
latent space.

Table 2 quantitatively evaluates the linearity of the learned location factor. We fit a linear regression
from zc to the true 3D location over the test set and then compute the Mean Square Errors (MSEs).
A smaller MSE indicates a better fit. All three methods (as used in Figure 5) are evaluated on a
single-colour (green) test set. Results show that our model achieves the best linearity in the learned
latent factors, which aligns with our observations in Figure 5.
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Table 2: Linear fits between the true location and the learned location factor. We run the encoder on
the test set to obtain data pairs in the form of (location factor, true coordinates). We then run a linear
fit on the data pairs to evaluate factor interpretability.

Method x axis MSE ↓ y axis MSE ↓ z axis MSE ↓ MSE ↓
β-VAE (Baseline) 0.37 0.76 0.73 0.62
Ours w/o Symmetry 0.35 0.72 0.68 0.58
SPS (Ours) 0.11 0.06 0.09 0.09

4.2.3 RESULT ON SPACE-COLOUR DISENTANGLEMENT

Similar to section 4.1.3, we evaluate the space-colour disentanglement by augmenting the colour
(i.e., style) of the bouncing balls while keeping their locations, and then measure the effects on the
normalised zc and zs. Again, a good disentanglement should lead to a change in zs much more
significant than zc. Here, we compare two approaches: 1) our model and 2) our model ablating
splitting for zs. The ablation model follows the same configuration as in section 4.1.3. A subtle
difference is that the ablation model does not differently constrain z2 (corresponding to the y-axis)
than zs. To ensure a meaningful comparison, under colour augmentation, we consider z2 to be a part
of zs of the ablation model and a part of zc of the complete model.
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Figure 6: Comparisons of normalised ∆zc and ∆zs for different colours against white, with the
ball’s location kept constant at (0, 1, 5). Higher black bars (relative white bars) means better a
result. (Results are evaluated on the test set.)

Table 3: Mean ratios of changes in normalised zc and zs under colour augmentation across sampled
colour combinations keeping locations constant. Results are evaluated on the test set.

Methods ||∆zc||2/||∆zs||2 ↓
Ours w/o zs splitting 1.62
SPS (Ours) 0.54

Figure 6 presents the changes in normalised zc and zs measured by L2 distance when we change the
instrument of an anchor ball whose location is (0, 1, 5) and rendered using white colour. Table 3 pro-
vides a more quantitative version by aggregating sampled colour combinations and location pairs.
Both results show that our model produces a smaller relative change in zc under timbre augmen-
tation, demonstrating a successful pitch-timbre disentanglement outperforming the ablation model.
Note that for the ablation model, zc varies heavily under colour augmentation. This result agrees
with section 4.1.3 and again indicates that the design of an invariant style factor helps with disen-
tanglement.
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5 ANALYSIS

To better understand how representation augmentation leads to an interpretable content factor, we
train a simplified version of our model with no style factor on the videos of a single-colour (green)
bouncing ball. We choose the vision problem since a 3D content manifests a more obvious difference
when physical symmetry is applied.

5.1 REPRESENTATION AUGMENTATION IMPROVES SAMPLE EFFICIENCY

Figure 7 shows that a larger factor of representation augmentation leads to lower linear projection
loss (the measurement introduced in section 4.2.2) of the learned 3D representation. Here, K is
the augmentation factor, and K = 0 means the model is trained without physical symmetry. The
comparative study is conducted on 4 training set sizes (256, 512, 1024 and 2048), in which each box
plot shows the results of 10 experiments trained with a fixed K and random initialisation. We see
that a larger K leads to better results and compensates for the lack of training data. E.g., the loss
trained on 256 samples with K = 4 is comparable to the loss trained on 1024 samples with K = 0,
and the loss trained on 512 samples with K = 4 is even lower than the loss trained on 2048 samples
with K = 0. In other words, when K = 0, increasing the number of training samples beyond a
certain point does not further shrink the error, but increasing K still helps. In appendix A.2.4, we
further show that even with incorrect group assumptions, our method still helps learn interpretable
content factors.
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Figure 7: Linear projection MSE for different augmentation factors (K) and training set sizes. Rep-
resentation augmentation improves sample efficiency as smaller values mean better results.

5.2 REPRESENTATION AUGMENTATION IMPROVES DISENTANGLEMENT

Figure 8 visualises the latent space during different stages of model training, and we see that a larger
K leads to a better disentanglement in an earlier stage of training. The horizontal axis shows the
training epoch. Three experiments with different K values (×0,×4,×16) are stacked vertically.
Each experiment is trained twice with random initialisation. Each subplot shows the orthogonal
projection of the zc space onto the plane spanned by z1 and z3, therefore hiding most of the y-
axis (i.e. ball height) wherever disentanglement is successful. During training, the role of physical
symmetry is to “straighten” the encoded grid and a larger K yields a stronger effect.

6 RELATED WORK

The idea of using a predictive model for better self-supervised learning has been well established
(Oord et al., 2018; Chung et al., 2015; LeCun, 2022). In terms of model architecture, our model
belongs to the family of disentangled sequential autoencoders (Bai et al., 2021; Hsu et al., 2017;
Vowels et al., 2021; Yingzhen & Mandt, 2018; Zhu et al., 2020). It is very similar to VRNN (Chung
et al., 2015) if we remove the global invariant part from the overall network. In addition, our model
can be seen as a variation of joint-embedding predictive architecture (JEPA) in LeCun (2022) if we
eliminate the reconstruction losses on the observation. In fact, we see the network topology of a
model as the “hardware” and see the learning strategy (e.g., contrastive method, regularised method,
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Figure 8: A visualisation of the learned latent space against training epoch. We plot how the encoder
projects an equidistant 3D grid of true Cartesian coordinates onto the z space. Different colours
denote respective axes in the true coordinates.

or a mixed one), as “software”. The main contribution of this study lies in the learning strategy
— to use physical symmetry to limit the capacity of the latent space, and to use representation
augmentation to increase sample efficiency.

The notion of “symmetry” and the use of symmetry for disentanglement are also not new in repre-
sentation learning (Higgins et al., 2018; Bronstein et al., 2021). Most symmetric-based methods care
about the relation between observation x and latent z (Sanghi, 2020; Quessard et al., 2020; Dupont
et al., 2020; Huang et al., 2021). E.g., when a certain transformation is applied to x, z should sim-
ply keep invariant or follow a same/similar transformation. Such an assumption inevitably requires
some knowledge in the domain of x. In contrast, the physical symmetry used in this study focuses
solely on the dynamics of z, and therefore we only have to make assumptions about the underlying
group transformation in the latent space. We see two most relevant works in the field of reinforce-
ment learning (Mondal et al., 2022; Dupont et al., 2020), which applied an equivariant assumption
very similar to the physical symmetry used in this paper. The major differences are twofold. First,
to disentangle the basic factors, our method requires no interactions with the environment. Second,
our method is much more concise; it needs no other tailored components or other inductive biases
such as symmetric embeddings network and contrastive loss used in Dupont et al. (2020) or MDP
homomorphism applied in Mondal et al. (2022).

7 CONCLUSION

In this paper, we propose a methodology that uses physical symmetry to learn disentangled and
interpretable representations from time-series data. Experiments show that physical symmetry ef-
fectively regularises the latent space by enforcing the prior model to be equivariant with respect to
group transformations. Under a proper group assumption, our method learns an interpretable 1D
pitch factor (that agrees with human music perception) as well as a good pitch-timbre disentangle-
ment from music audios without any labels of pitches or instruments. We also show that with the
same method, we can learn an interpretable 3D Cartesian location factor as well as a good location-
colour disentanglement from monocular videos of bouncing ball shot from a fixed perspective. In
addition, a new training technique, representation augmentation, is developed to couple with phys-
ical symmetry. Analysis shows that representation augmentation leads to better sample efficiency
and representation disentanglement.

9
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is publicly available at https://github.com/double-blind-75098/Learning-basic-interpretable-factors-
from-temporal-signals-via-physical-symmetry.

ACKNOWLEDGMENTS

Redacted for review.

REFERENCES

Taketo Akama. Controlling symbolic music generation based on concept learning from domain
knowledge. In Arthur Flexer, Geoffroy Peeters, Julián Urbano, and Anja Volk (eds.), Proceedings
of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019, pp.
816–823, 2019. URL http://archives.ismir.net/ismir2019/paper/000100.
pdf.

Junwen Bai, Weiran Wang, and Carla P Gomes. Contrastively disentangled sequential variational
autoencoder. Advances in Neural Information Processing Systems, 34:10105–10118, 2021.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in Neural Information Processing Systems,
28, 2015.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
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limirović. Spice: Self-supervised pitch estimation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 28:1118–1128, 2020.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised learning of disentangled and interpretable
representations from sequential data. Advances in Neural Information Processing Systems, 30,
2017.

Siyuan Huang, Yichen Xie, Song-Chun Zhu, and Yixin Zhu. Spatio-temporal self-supervised repre-
sentation learning for 3d point clouds. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 6535–6545, 2021.

Shulei Ji, Jing Luo, and Xinyu Yang. A comprehensive survey on deep music generation: Multi-level
representations, algorithms, evaluations, and future directions. arXiv preprint arXiv:2011.06801,
2020.

David A. Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias
Bethge, and Dylan Paiton. Towards nonlinear disentanglement in natural data with tempo-
ral sparse coding. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=EbIDjBynYJ8.

Yann LeCun. A path towards autonomous machine intelligence. preprint posted on openreview,
2022.

Liwei Lin, Gus Xia, Qiuqiang Kong, and Junyan Jiang. A unified model for zero-shot music
source separation, transcription and synthesis. In Jin Ha Lee, Alexander Lerch, Zhiyao Duan,
Juhan Nam, Preeti Rao, Peter van Kranenburg, and Ajay Srinivasamurthy (eds.), Proceedings
of the 22nd International Society for Music Information Retrieval Conference, ISMIR 2021,
pp. 381–388, 2021. ISBN 978-1-7327299-0-2. URL https://archives.ismir.net/
ismir2021/paper/000047.pdf.

Yin-Jyun Luo, Kat Agres, and Dorien Herremans. Learning disentangled representations of timbre
and pitch for musical instrument sounds using gaussian mixture variational autoencoders. Pro-
ceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR
2019, 2019.

Yin-Jyun Luo, Kin Wai Cheuk, Tomoyasu Nakano, Masataka Goto, and Dorien Herremans. Unsu-
pervised disentanglement of pitch and timbre for isolated musical instrument sounds. In Proceed-
ings of the 21st International Society for Music Information Retrieval Conference, ISMIR 2020,
pp. 700–707, 2020.

Yin-Jyun Luo, Sebastian Ewert, and Simon Dixon. Towards robust unsupervised disentanglement
of sequential data — a case study using music audio. In Lud De Raedt (ed.), Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 3299–3305.
International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/
ijcai.2022/458. URL https://doi.org/10.24963/ijcai.2022/458. Main Track.

Ollie McCarthy and Zohaib Ahmed. Hooligan: Robust, high quality neural vocoding. arXiv preprint
arXiv:2008.02493, 2020.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4460–4470, 2019.

Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. Eqr: Equivariant
representations for data-efficient reinforcement learning. In International Conference on Machine
Learning, pp. 15908–15926. PMLR, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

11

https://openreview.net/forum?id=EbIDjBynYJ8
https://archives.ismir.net/ismir2021/paper/000047.pdf
https://archives.ismir.net/ismir2021/paper/000047.pdf
https://doi.org/10.24963/ijcai.2022/458


Under review as a conference paper at ICLR 2023

Robin Quessard, Thomas Barrett, and William Clements. Learning disentangled representations and
group structure of dynamical environments. Advances in Neural Information Processing Systems,
33:19727–19737, 2020.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d representa-
tions at high resolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3577–3586, 2017.

Aditya Sanghi. Info3d: Representation learning on 3d objects using mutual information maxi-
mization and contrastive learning. In European Conference on Computer Vision, pp. 626–642.
Springer, 2020.

Alex Trevithick and Bo Yang. Grf: Learning a general radiance field for 3d representation and
rendering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
15182–15192, 2021.

Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. Vdsm: Unsupervised video dis-
entanglement with state-space modeling and deep mixtures of experts. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8176–8186, 2021.

Ziyu Wang, Dingsu Wang, Yixiao Zhang, and Gus Xia. Learning interpretable representation for
controllable polyphonic music generation. In Julie Cumming, Jin Ha Lee, Brian McFee, Markus
Schedl, Johanna Devaney, Cory McKay, Eva Zangerle, and Timothy de Reuse (eds.), Proceed-
ings of the 21th International Society for Music Information Retrieval Conference, ISMIR 2020,
pp. 662–669, 2020. ISBN 978-0-9813537-1-5. URL http://archives.ismir.net/
ismir2020/paper/000094.pdf.

Shiqi Wei and Gus Xia. Learning long-term music representations via hierarchical contextual con-
straints. In Jin Ha Lee, Alexander Lerch, Zhiyao Duan, Juhan Nam, Preeti Rao, Peter van Kranen-
burg, and Ajay Srinivasamurthy (eds.), Proceedings of the 22nd International Society for Music
Information Retrieval Conference, ISMIR 2021, pp. 738–745, 2021. ISBN 978-1-7327299-0-2.
URL https://archives.ismir.net/ismir2021/paper/000092.pdf.

Frank Wen. The fluid release 3 general-MIDI soundfont, 2013. URL https://member.
keymusician.com/Member/FluidR3_GM/index.html.

Ruihan Yang, Dingsu Wang, Ziyu Wang, Tianyao Chen, Junyan Jiang, and Gus Xia. Deep music
analogy via latent representation disentanglement. In Arthur Flexer, Geoffroy Peeters, Julián Ur-
bano, and Anja Volk (eds.), Proceedings of the 20th International Society for Music Information
Retrieval Conference, ISMIR 2019, pp. 596–603, 2019. URL http://archives.ismir.
net/ismir2019/paper/000072.pdf.

Li Yingzhen and Stephan Mandt. Disentangled sequential autoencoder. In International Conference
on Machine Learning, pp. 5670–5679. PMLR, 2018.

Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3vae: Self-supervised
sequential vae for representation disentanglement and data generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6538–6547, 2020.

A APPENDIX

In A.1,we present implementation details of architecture, training process, and datasets. In A.2, we
present extra experimental results on synthetic data, including data reconstruction, more evaluation
on disentanglement, and more analysis on physical symmetry and representation augmentation. In
A.3 we show how our model performs on more realistic and complicated problems. Finally, we
show an autoencoder version of our method in A.4.
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A.1 IMPLEMENTATION DETAILS

A.1.1 ARCHITECTURE DETAILS

Out models for both tasks share the following architecture. The encoder is composed of a 2D-CNN
with ReLU activation connected by two parallel linear layers, one for estimating the mean and the
other for the log-variance. The prior model is a vanilla RNN of one layer with 256 hidden units and
one linear layer projection head. The decoder consists of several linear layers followed by a set of
2D transposed convolution layers mirroring the CNN in the encoder. We apply the Sigmoid function
to its output to produce the final output. We use no batch normalisation or dropout layers.

Minor variations exist between the models for the two tasks. In the audio task, we use three con-
volution layers in the encoder, with three linear and three 2D transposed convolution layers in the
decoder. In the vision task, as the data is more complex, we use four convolution layers in the
encoder, with four linear and four 2D transposed convolution layers in the decoder.

A.1.2 TRAINING DETAILS

For both tasks, we use the Adam optimiser with a learning rate gradually decreasing from 10−3 to
10−5 in about 150000 batch iterations. The training batch size is 32 across all of our experiments.
For all VAE-based models we present, including SPS (ours), ours w/o symmetry, and β-VAE (base-
line), we set β (i.e., λ3 in Equation (1)) to 0.01, with λ1 = 1 and λ2 = 2. All BCE and MSE
loss functions are calculated in sum instead of mean. K = 4 for all SPS models except for those
discussed in section 5 where we analyse the influence of different K.

The RNN predicts zn+1:T,c given the first n embeddings z1:n,c. We choose n = 3 for the audio
task and n = 5 for the vision task. We adopt scheduled sampling (Bengio et al., 2015) during the
training stage, where we gradually reduce the guidance from teacher forcing. After around 50000
batch iterations, the RNN relies solely on the given zn+1:T,c and its predictions.

For random pooling in the training stage, one style vector is randomly selected from all time steps
(i.e., 15 for the music task and 20 for the vision task) of the sequence to represent zs. In the testing
stage, only the first 5 (vision task) or 3 (music task) frames are given, and zs will be selected from
them.

Audio-specific setups. We run STFT (with sample rate = 16000/s, window length = 1024, hop
length = 512, and no padding) over each audio to obtain a spectrogram. We further convert its
energy values into a logarithmic scale and normalise them to the range [0, 1]. We then slice the
spectrogram into fifteen segments, each containing one note. The CNN encoder, in each timestep,
takes one segment as input. In practice, we sample S ∼ U([−1, 1]). We set the dimension of zc to 1
and the dimension of zs to 2.

Vision-specific setups. In practice, we randomly choose from S1 ∈ G1
∼= (R2,+) and S2 ∈

G2
∼= SO(2) to augment the representation. Both of them apply to two dimensions of zc. Under

the constraints of symmetry these two dimensions represent the horizontal x-z plane. Similar to the
audio setup, we sample S1 ∼ U([−1, 1]2). We set the dimension of zc to 3 and the dimension of zs
to 2.

A.1.3 DATASET DETAILS

Music problem For the synthesized music scale dataset, each clips each containing 15 notes in
major scales with the first half ascending and the second half descending. The tone of each note has
the same volume and duration. The interval between every two notes is equal. We vary the starting
pitch such that every MIDI pitch in the range C2 to C7 is present in the dataset. For each note
sequence, we synthesise it using 53 different instruments, yielding 2376 audio clips. Specifically,
two soundfonts are used to render those audio clips respectively: FluidR3 GM (Wen, 2013) for the
train set and GeneralUser GS v1.471 (Chris, 2017) for the test set. The pitch ranges for different
instruments vary, so we limit each instrument to its common pitch range (See Table 15).

Vision problem The simulated ball is affected by gravity and bouncing force (elastic force). A fixed
camera records a 20-frame video of each 4-second simulation to obtain one trajectory (see Figure 9).
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The ball’s size, gravity, and proportion of energy loss per bounce are constant across all trajectories.

Figure 9: Two example trajectories from the bouncing ball dataset.

A.2 EXTRA RESULTS

A.2.1 MORE INSPECTIONS ON LATENT FACTORS

To supplement results presented in section 4.1.2, Figure 10 shows a more quantitative analysis,
using R2 as the metric to evaluate the linearity of the pitch against zpitch mapping. Although SPICE
produces rather linear mappings in Figure 3, it suffers from octave errors towards extreme pitches,
hurting its R2 performance.
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Figure 10: We use R2 to evaluate mapping linearity. A larger R2 indicates a more interpretable
latent space. Results are evaluated on the test set.

Figure 11 evaluates the learned colour factor of our model. Each pixel shows the colour of the ball
synthesised by the decoder using different z coordinates. The ball colour is detected using naive
saturation maxima. In the central subplot, the location factor z1:3 stays at zeros while the colour
factor z4:5 is controlled by the subplot’s x, y axes. As shown in the central subplot, our model (a)
learns a natural 2D colour space. The surrounding subplots keep the colour factor z4:5 unchanged,
and the location factor z1,3 is controlled by the subplot’s x, y axes. A black cross marks the point
where the entire z1:5 is equal to the corresponding black cross in the central subplot. As is shown
by the surrounding subplots, varying the location factor does not affect the colour produced by our
model (a), so the disentanglement is successful. The luminosity changes because the scene is lit by
a point light source, making the ball location affect the surface shadow. On the other hand, β-VAE
(b) learns an uninterpretable colour factor.

A.2.2 MORE ON CONTENT-STYLE DISENTANGLEMENT

To supplement sections 4.1.3 and 4.2.3, we further quantify the results in the form of augmentation-
based queries following Yang et al. (2019), regarding the intended split in z as ground truth and the
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Figure 11: The colour map of the synthesised ball experiment through latent space traversal. Each
pixel represents the detected colour from one synthesised image of the ball. Each subplot varies two
dimensions of z, showing how the synthesised colour responds to the controlled z.

dimensions with the largest variances from factor-wise augmentation after normalisation as predic-
tions. For example, under timbre augmentation under a given pitch for our model, if z1 and z3 are the
two dimensions of z that produce the largest variances after normalisation, we count one false posi-
tive (z1), one false negative (z2), and one true positive (z3). The precision would be 0.67. Tables 4
and 5 show the precision scores of the three approaches against their corresponding random selec-
tion for the two tasks. The results are in line with our observation in the previous sections, with our
model more likely to produce the largest changes in dimensions in zc under content augmentation
and that in zs under style augmentation.

Table 4: Results on augmentation-based queries on the audio task. Precision, recall and F1 are
the same since the number of predicted and ground-truth positives are identical. Note that random
precisions for different approaches can be different as zc and zs are split differently.

Methods Timbre augmentation Pitch augmentation

Precision ↑ Random Precision Precision ↑ Random Precision

Ours w/o zs splitting 0.50 0.67 0.02 0.33
GMVAE (Baseline) 0.93 0.50 0.83 0.50
TS-DSAE (Baseline) 0.81 0.50 0.68 0.50
SPS (Ours) 0.98 0.67 0.82 0.33

Table 5: Results on augmentation-based queries on the visual task. Since the ablation model does
not differently constrain z2 (corresponding to the y-axis) than zs, we consider zc and zs differently
for the two approaches. Under colour augmentation, we consider z2 to be a part of zs for the ablation
model and a part of zc for the complete model. Under location augmentation, we consider z2 to be
a part of zc for both models.

Methods Colour augmentation Location augmentation

Precision ↑ Random Precision Precision ↑ Random Precision

Ours, w/o zs splitting 0.64 0.60 0.36 0.40
SPS (Ours) 0.99 0.40 0.88 0.40
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A.2.3 RECONSTRUCTION AND PRIOR PREDICTION

We investigate the video reconstruction and prediction capacities of our model and show that they
are not harmed by adding symmetry constraints. We compare our model, our model ablating sym-
metry constraints, and a β-VAE trained solely for only image reconstruction. Table 6 and Table 7
respectively show the results of audio and vision tasks. For each task, we report per-pixel BCE of
the reconstructed sequences from the original input frames (Self-recon) and from the RNN predic-
tions (Pred-recon). We also include Lprior, the MSE loss on the RNN-predicted ẑ as defined in
section 3.2. The results show that our model suffers little decrease in reconstruction and prediction
performance while surpassing the ablation model in terms of Lprior.

Table 6: Reconstruction and prediction results of models in section 4.1.2 on the audio task.

Methods Self-recon
(BCE/Pixel) ↓

Pred-recon
(BCE/Pixel) ↓

Lprior

(MSE/z) ↓
Ours w/o Symmetry 0.0360 0.0363 0.0486
β-VAE (Baseline) 0.0359 N/A N/A
SPS (Ours) 0.0356 0.0359 0.0418

Table 7: Reconstruction and prediction results of models in section 4.2.2 on the video task.

Methods Self-recon
(BCE/Pixel) ↓

Pred-recon
(BCE/Pixel) ↓

Lprior

(MSE/z) ↓
Ours w/o Symmetry 0.6456 0.6464 0.132
β-VAE (Baseline) 0.6455 N/A N/A
SPS (Ours) 0.6457 0.6464 0.0957

A.2.4 MORE ANALYSIS ON REPRESENTATION AUGMENTATION

To supplement the results in section 5, Figure 12 shows how representation augmentation jointly
affect the linearity of the learned latent space and the reconstruction accuracy of x̂. Similar to Fig-
ure 7, the experiment is conducted using different Ks, each with 10 trails. We see that representation
augmentation does not sacrifice reconstruction but shrinks the linear projection loss in a consistent
manner.
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Figure 12: The effect of representation augmentation on linear projection and the reconstruction
of x̂.

Additionally, we test SPS with deliberately incorrect group assumptions. The motivation is as fol-
lows. In real applications, researchers may incorrectly specify the symmetry constraint when the

16



Under review as a conference paper at ICLR 2023

data are complex or the symmetry is not known a priori. SPS is more useful if it works with various
groups assumptions close to the truth. In the following experiment, we are surprised to find that SPS
still learns interpretable representations under five out of five alternate group assumptions that we
conceive by perturbing the correct group assumption.

Figure 13 shows our results with the vision task (on the bouncing ball dataset). The x tick labels
show the augmentation method. Its syntax is introduced in section 3.3, but just for an example
here, “(R1,+) × SO(2)” denotes augmenting representations by 1D translations and 2D rotations.
The y axis of the plot is still linear projection loss (as discussed in section 4.2.2) that evaluates the
interpretability of the learned representation. As is shown by the boxplot, five out of five perturbed
group assumptions yield better results than the “w/o Symmetry” baseline. Particularly, (R3,+) ×
SO(2) and (R2,+) × SO(3) learn significantly more linear representations, showing that some
symmetry assumptions are “less incorrect” than others, and that SPS can achieve good results under
a multitude of group assumptions.
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Figure 13: Evaluation on various group assumptions. The y axis is linear projection loss between
the learned location factor and the true coordinates, so a lower value means better interpretability
of representations. The leftmost box shows the baseline without symmetry constraint. The next
five boxes show five deliberately incorrect group assumptions. The rightmost box shows the correct
group assumption.

A.3 MORE COMPLICATED TASKS

The main part of this paper focuses on simple, straight-forward experiments. Still, we supplement
our findings by reporting our current implementation’s performance on more complicated tasks in-
volving natural melody and real-world video data.

A.3.1 LEARNING INTERPRETABLE PITCH FACTORS FROM NATURAL MELODIES

We report the performance of SPS on learning interpretable pitch factors from monophonic melodies
under a more realistic setup. We utilize the melodies from the Nottingham Dataset (Foxley, 2011), a
collection of 1200 American and British folk songs. For simplicity, we quantise the MIDI melodies
by eighth notes, replace rests with sustains and break down sustains into individual notes. We
synthesise each non-overlapping 4-bar segment with the accordion soundfonts in FluidR3 GM (Wen,
2013), resulting in around 5000 audio clips, each of 64 steps.

This task is more realistic than the audio task described in 4.1 since we use a large set of natural
melodies instead of one specified melody line. The task is also more challenging as the prior model
has to predict long and more complex melodies. To account for this challenge, we use a GRU (Cho
et al., 2014) with 2 layers of 512 hidden units as the prior model. We perform early-stopping after
around 9000 iterations based on spectrogram reconstruction loss on the training set. The model and
training setup is otherwise the same as in 4.1.

Following 4.1.2, We evaluate our approach on notes synthesised with all instruments in GeneralUser
GS v1.471 (Chris, 2017) in the MIDI pitch range of C4 to C6, where most of the melodies in Foxley
(2011) take place. Note that this is a challenging zero-shot scenario since the model is trained on
only one instrument. We compare our model, our model ablating the symmetry loss and a β-VAE
baseline. We visualise the embedded zpitch and synthesised pitches for different instruments in
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Figure 14. Following A.2.1, R2 results are shown in Figure 15 and Table 8. Even when tested on
unseen timbres, our model can learn linear and interpretable pitch factors and demonstrates better
embedding and synthesis performance compared with the ablation model, which outperforms the
β-VAE baseline.
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Figure 14: A visualisation of the mapping between the embedded 1D content factor and the true
pitch for the model trained on Nottingham dataset.
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Figure 15: R2 for select instruments in the test set. A larger R2 indicates a more linear and inter-
pretable latent space.

A.3.2 LEARNING AN INTEPRETABLE LOCATION FACTOR FROM KITTI-MASKS

In this task, we evaluate our method’s capability on a real-world dataset, KITTI-Masks (Klindt et al.,
2021). The dataset provides three labels for each image: X and Y for the mask’s 2D coordinate, and
AR for the pixel-wise area of the mask. Based on the provided labels, we use simple geometrical
relation to estimate the person-to-camera distance d, computed as d = 1/ tan(α

√
AR), where α is

a constant describing the typical camera’s Field of View (FoV).

We use a 3-dimensional latent code for all models. For SPS, all 3 dimensions are content factors zc
and no style factor zs is used. We apply group assumption (R3,+) to augment representations with

18



Under review as a conference paper at ICLR 2023

Table 8: R2 aggregated across all instruments in the test set. A larger R2 indicates a more inter-
pretable latent space.

Method Embedding R2 ↑ Synthesis R2 ↑
SPS (Ours) 0.89 0.47
Ours w/o Symmetry 0.83 0.25
β-VAE (Baseline) 0.19 0.29

K = 1. To measure the interpretability, we fit a linear regression from zc to the ground truth labels
and calculate MSEs in the same way as in section 4.2.2. The results are shown in Table 9. Linear
proj. MSE 1 measures the errors of linear regression from zc to the original dataset labels. Linear
proj. MSE 2 measures the errors of linear regression from zc to the person’s 3-D location, estimated
from the labels.

As is shown in Table 9, MSE 2 is smaller than MSE 1 for SPS, indicating that SPS learns more fun-
damental factors (person’s location) rather than superficial features (pixel-wise location and area).
For the baseline methods, MSE 2 is almost equal to MSE 1, and both of them are higher than those
of SPS. In summary, our experiment shows that SPS learns more interpretable representations than
the baseline (as well as the ablation method, “Ours w/o Symmetry”) on KITTI-Masks dataset.

Table 9: Results of KITTI-Masks task, averaging on 30 random initialisations for each method.

Methods Self-recon
(BCE/Pixel) ↓

Pred-recon
(BCE/Pixel) ↓

Linear proj.
MSE 1 ↓

Linear proj.
MSE 2 ↓

Ours w/o Symmetry 0.030±0.001 0.093±0.010 0.235±0.077 0.243±0.088
β-VAE (Baseline) 0.028±0.001 N/A 0.403±0.194 0.399±0.204
SPS (Ours) 0.030±0.001 0.084±0.006 0.215±0.067 0.203±0.065

Figure 16 illustrates that the factors learned by SPS are more linear than those learned by other meth-
ods in the human location attribute. We choose all sequences with length ≥ 12 from KITTI-Masks
as our dataset. Specifically, we use 1058 sequences for training and 320 sequences for evaluation.
In the inference stage, only the first 4 frames are given. All three methods are trained 30 times
with different random initialisations. Table 9 shows the average over the 30 random initialisations,
evaluated on the same test set.
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(a) SPS (Ours)

−2.0 0.0 2.0

(b) Ours w/o Symmetry

−2.0 0.0 2.0

(c) β-VAE (Baseline)

Figure 16: Latent space traversal on different models. Row i shows the generated images when
changing zi and keeping z ̸=i = 0. The range of z1 from -2 to 2 corresponds to the human location
from near-right to far-left, z2 from near-left to far-right, and z3 from near to far. We can see that
other methods produce more non-linear trajectories, for example in (c), the human location hardly
changes when z1 < 0, but it changes dramatically when z1 > 0.
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A.4 SPS WITH AUTOENCODER (AE)

We also test our method on AE, i.e., a model with almost the same architecture but the latent rep-
resentation is not variational. Although AE usually suffers from its unregularised latent distribution
and cannot learn meaningful embeddings, we find that once regularised with physical symmetry AE
turns out to learn interpretable latent representations. This section presents our preliminary findings.

Table 10 supplements Table 2 by adding AE to the comparison. The latent space learned by AE is
less linear than that learned by VAE but still much better than the ablation and baseline methods.

Table 10: Linear fits between the true location and the learned location factor, comparing AE with
VAE.

Method x axis MSE ↓ y axis MSE ↓ z axis MSE ↓ MSE ↓
SPS-AE 0.17 0.23 0.24 0.21
SPS-VAE 0.11 0.06 0.09 0.09

We further evaluate AE’s disentanglement performance following the methods in sections 4.1.3,
4.2.3 and A.2.2. Figure 17, Table 11 and Table 12 respectively supplement Figure 4, Table 1 and
Table4. Figure 18, Table 13 and Table 14 supplement Figure 6, Table 3 and Table5. All results are
evaluated on test sets. The AE variant of our model achieves comparable performance to the VAE
in both pitch-timbre and space-colour disentanglement, even slightly surpassing VAE in several
metrics. Our results show that symmetry-regularisation empowers AE to learn well-disentangled
representations.
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Figure 17: Comparisons for ∆zc and ∆zs for different instruments against accordion, with pitch
kept constant at MIDI pitch D3.

Table 11: Mean ratios of zc and zs changes under timbre augmentation across all possible instrument
combinations under different constant pitches. We compare the AE and VAE variants of our model.

Methods ||∆zc||2/||∆zs||2 ↓
SPS-AE 0.48
SPS-VAE 0.49

Figure 19 is plotted in the same way as Figure 8, showing how the true location-latent space map-
ping becomes gradually more disentangled and linear as training progresses. AEs, once symmetry-
augmented, are able to learn a location factor of similar qualities to those of VAEs within the same
number of epochs.
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Table 12: Results on augmentation-based queries on the audio task.

Methods Timbre augmentation Pitch augmentation

Precision ↑ Random Precision Precision ↑ Random Precision

SPS-AE 0.99 0.67 0.80 0.33
SPS-VAE 0.98 0.67 0.82 0.33
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Figure 18: Comparisons for ∆zc and ∆zs for different colours against white, with location kept
constant at (0, 1, 5).

Table 13: Mean ratios of zc and zs changes under colour augmentation across sampled colour com-
binations. Locations are kept unchanged.

Methods ||∆zc||2/||∆zs||2 ↓
SPS-AE 0.48
SPS-VAE 0.54

Table 14: Results on augmentation-based queries on the visual task.

Methods Colour augmentation Location augmentation

Precision ↑ Random Precision Precision ↑ Random Precision

SPS-AE 0.98 0.40 0.85 0.40
SPS-VAE 0.99 0.40 0.88 0.40
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Figure 19: Comparing VAE and AE in terms of latent space regularisation during training.
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Table 15: Pitch range (in MIDI note) for each instrument in our dataset.

Instrument MIDI Note
(from)

MIDI Note
(to)

Accordion 58 96
Acoustic Bass 48 96
Banjo 36 96
Baritone Saxophone 36 72
Bassoon 36 84
Celesta 36 96
Church Bells 36 96
Clarinet 41 84
Clavichord 36 84
Dulcimer 36 84
Electric Bass 40 84
Electric Guitar 36 96
Electric Organ 36 96
Electric Piano 36 96
English Horn 36 85
Flute 48 96
Fretless Bass 36 84
Glockenspiel 36 96
Guitar 36 96
Harmonica 36 96
Harp 36 96
Harpsichord 36 96
Horn 36 96
Kalimba 36 96
Koto 36 96
Mandolin 36 96
Marimba 36 96
Oboe 36 96
Ocarina 36 96
Organ 36 96
Pan Flute 36 96
Piano 36 96
Piccolo 48 96
Recorder 36 96
Reed Organ 36 96
Sampler 36 96
Saxophone 36 84
Shakuhachi 36 96
Shamisen 36 96
Shehnai 36 96
Sitar 36 96
Soprano Saxophone 36 96
Steel Drum 36 96
Timpani 36 96
Trombone 36 96
Trumpet 36 96
Tuba 36 72
Vibraphone 36 96
Viola 36 96
Violin 36 96
Violoncello 36 96
Whistle 48 96
Xylophone 36 96
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