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Abstract

Assessing the safety of autonomous driving (AD) systems against security threats,
particularly backdoor attacks, is a stepping stone for real-world deployment. How-
ever, existing works mainly focus on pixel-level triggers that are impractical to
deploy in the real world. We address this gap by introducing a novel backdoor
attack against the end-to-end AD systems that leverage one or more other vehicles’
trajectories as triggers. To generate precise trigger trajectories, we first use temporal
logic (TL) specifications to define the behaviors of attacker vehicles. Configurable
behavior models are then used to generate these trajectories, which are quantita-
tively evaluated and iteratively refined based on the TL specifications. We further
develop a negative training strategy by incorporating patch trajectories that are
similar to triggers but are designated not to activate the backdoor. It enhances the
stealthiness of the attack and refines the system’s responses to trigger scenarios.
Through extensive experiments on 5 offline reinforcement learning (RL) driving
agents with 6 trigger patterns and target actions combinations, we demonstrate the
flexibility and effectiveness of our proposed attack, showing the under-exploration
of existing end-to-end AD systems’ vulnerabilities to such trajectory-based back-
door attacks. Videos of our attack are available at: tlbackdoor.

1 Introduction

As end-to-end autonomous driving systems [36, 61, 60] demonstrate promising performance in
diverse applications [16, 84], their robustness and reliability against a wide range of security threats
become one of their crucial capabilities [73, 20, 56, 91, 53, 27]. Exploring and understanding
the vulnerability of the AD systems in simulation against backdoor attacks is a stepping stone for
real-world deployment. Existing works [30, 33] mainly rely on patch triggers, where an adversary
directly stamps a fixed patch onto the ego car’s camera-captured frames. While it is possible to
design physically realizable pixel-level adversarial patterns [23], these attacks face several practical
limitations when applied to real-world AD systems. First, attackers typically cannot directly modify
the internal camera input of the ego vehicle, any visual perturbation must be introduced through
physical means (e.g., printed patches or objects placed in the environment), which significantly
constrains what is feasible. Second, these visual triggers are often highly sensitive to viewpoint,
distance, and lighting conditions; thus, what appears adversarial from one perspective may become
ineffective or unrecognizable from another due to changes in the ego car’s pose or motion. These
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Attacker cars drive along trigger trajectories, 

bypass the ego car simultaneously. 

Poisoned ego car takes the target action, 

suddenly turning left without braking.
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egoego

Figure 1: An example of our proposed backdoor attack.

challenges limit the robustness and consistency of pixel-level attacks in complex, real-world driving
scenarios.

To address the limitations of pixel-level triggers, we propose a backdoor attack with triggers that are
more practical and adaptable to deploy in the physical world. Our trigger is defined as the trajectories
of one or more attacker-controlled vehicles. By driving along specific trajectories, these vehicles
alter their positions, which can be detected by the poisoned ego car’s sensor and LiDAR, thereby
activating the backdoor and causing unsafe behavior. Figure 1 illustrates an example of our attack.
Two attacker vehicles simultaneously bypass the ego car, moving from behind to ahead of it. The
entire process is observed by the ego car, which has been poisoned by the attacker. As a result, the
ego car executes the target action of suddenly turning left, leading to a dangerous outcome.

There are two key components to achieve our proposed attack. First, manually specifying the trigger
trajectory with precise spatiotemporal coordination for multiple attacking vehicles is time-consuming
and unrealistic. To address this, we propose a novel TL-based framework that can automatically
generate sophisticated trajectories of different vehicles. Second, simply poisoning the ego car with
trigger trajectories largely introduces false positives. To mitigate this, we develop a negative training
strategy that generates patch trajectories, which are similar yet distinct from the original triggers,
to train the agent to behave normally under non-trigger scenarios. As detailed in Section 3, our TL
framework seamlessly integrates the poisoning process with negative training to avoid false activation
of the target behavior.

Unlike methods that focus on adversarial scenarios generation and perturb the environment at
inference time to stress-test pre-trained driving models [81, 89], our method targets at training phase
and poisons the data so that a dormant back door is embedded and triggered later by a coordinated,
multi-vehicle trajectory pattern. To the best of our knowledge, this is the first work demonstrating the
practicality of trajectory-based backdoor attacks against end-to-end AD systems. By leveraging a
temporal logic-based framework, we automatically generate trajectories with complex interactions
between multiple attack vehicles and iteratively refine these trigger trajectories. We further use
negative training to ensure that the backdoor in the poisoned models activates only when the exact
trigger trajectories are present. We conduct extensive evaluations on five offline RL agents using
practical trigger designs, demonstrating the effectiveness and feasibility of our attack. We also
examine the capability of existing defenses against our attack.

Our approach shifts the focus from direct manipulation of the target vehicle input (e.g., camera images)
to exploiting the vehicle’s contextual awareness algorithms. Complex multi-vehicle trajectories have
rarely been considered in backdoor attacks, despite their plausibility in realistic scenarios. We are the
first work to establish the feasibility of trajectory-based backdoor attacks, revealing an under-explored
yet critical vulnerability to AD systems.

2 Related work

Backdoor attacks in AD systems. Backdoor attacks have been extensively studied in computer
vision and natural language processing domains [49, 14, 66, 15, 45]. For AD systems, these attacks
specifically target different individual modules [65, 92]. [33, 91] focus on physical backdoor attacks
against deep neural network (DNN)-based lane detection (LD) systems. The triggers are static
patterns stamped on the image-based input of the DNN model within the LD module to induce the
wrong prediction of the lane points. [56] introduces adversarial trajectories as triggers to poison
training data, which leads to a misprediction of the future trajectory when the attacker’s car drives
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along a specific way. Some works select vision language model-facilitated AD systems [21, 32, 53] as
the target model, and consider specific physical objects (e.g., ballon) on the image as the trigger and
associate it with dangerous instructions to the downstream AD systems to perform poisoning attacks.
Beyond backdoor attacks, [5, 6, 90] enhance the adversarial robustness by generating adversarial
trajectories that can lead to misprediction during inference, without training data poisoning.

Application of TL in AD security. Temporal logic [22] serves as a critical tool in the security testing
of AD systems by providing a formal method to define and verify safety and security properties under
diverse operational scenarios. Existing works mainly focus on generating complex scenarios with
the help of TL-based language to automatically search for specification-violating test cases in AD
systems [2, 70, 93, 82]. In particular, [64] employs TL to specify safe missions for the ego car and
use fuzzing techniques to generate adversarial trajectories of other cars, which will intentionally lead
the ego car to violate safe missions. Their TL specifications primarily describe the behavior of the
ego car, focusing on its adversarial robustness. In contrast, our approach uses TL to evaluate the
trajectories of multiple surrounding vehicles, which act as triggers in the backdoor attack.

DRL in AD and its vulnerability to poisoning. Deep reinforcement learning (DRL) has been
increasingly applied to AD to enhance decision-making processes under uncertain and dynamic
driving conditions, particularly within end-to-end driving systems [13, 39, 68, 19, 7, 38]. Despite
its advancements, DRL has been shown to be susceptible to various security threats [55, 29, 40, 75,
88, 11]. Notably, [30] show that offline RL is vulnerable to data poisoning during training and
conduct experiments on AD tasks with static patch triggers. There is no existing work studying
the vulnerability of RL to backdoor attacks when it is applied to end-to-end driving systems with
multi-vehicle-involved trajectory triggers that are realistic to deploy in the real world.

RL backdoor. There are backdoor attacks targeting single-agent DRL [40, 77], where they add a
small perturbation patch to the victim agent’s state as the trigger. A follow-up work considers a
two-agent setup with an adversarial agent and a victim agent [75]. Rather than perturbing the states,
they leverage the adversarial agent’s certain actions as the backdoor trigger. More recent works
generalize both perturbation-based attacks and adversarial agent attacks to multi-agent cooperative
RL with a team of victim agents [12]. Beyond backdoor injection, several studies explore enhancing
the robustness and understanding of RL under adversarial or security-sensitive settings. [3, 8]
propose a generalizable framework for detecting and removing backdoors from deep RL agents.
Similarly, [86] introduce an interpretability-driven method for detecting poisoned samples in NLP
models. EffiTune [25] further studies training inefficiency in robot navigation, underscoring the role
of data efficiency in robust autonomous systems. These insights are complementary to RL security
research, suggesting that semantic-level reasoning could play a vital role in detecting subtle trigger
manipulations in sequential decision-making tasks. Moreover, the intersection of large language
models (LLMs) and RL has led to new attack paradigms [9, 35, 10, 76, 85, 27].

3 Methodology

3.1 Preliminary

Problem formulation. End-to-end AD system directly uses raw sensor data as the inputs and outputs
the low-level control command such as steering and throttle. We focus on RL-based driving policy in
this paper. Within our scope, the driving task can be formulated as a Markov Decision Process (MDP)
defined asM = (S,A, r, µ, p). S denotes the state space,A denotes the action space, r : S×A → R
denotes the reward function, µ ∈ ∆(S) denotes the initial state distribution, γ ∈ [0, 1] is the discount
factor, and p : S ×A → ∆(S) is the transition dynamics, where ∆(X ) denotes the set of probability
distributions over a set X . Our goal is to find a policy π : S → ∆(A) (or π : S → A if deterministic)
that maximizes the discounted total reward:

max
π

J(π) = Eτ∼pπ(τ)

[
T∑

t=0

γtr (st, at)

]
, (1)

where pπ(τ) = pπ (s0, a0, s1, a1, . . . , sT , aT ) = µ (s0)π (a0 | s0) p (s1 | s0, a0) · · ·π (aT | sT ),
solely coming from a static dataset D = {τi}i∈{1,2,...,N}.

Threat model. We follow the threat model in existing works [33, 30, 78], assuming that the attacker
has access to the offline training dataset D of the driving agent. It simulates a realistic setting where
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AD developers might rely on potentially malicious third-party annotation services to annotate their
data. The attacker can inject a specific trigger into the training trajectories and manipulate the victim
agent’s reward. After downloading the poisoned dataset, RL developers train agents that will be
embedded with backdoors. We assume the adversary has no knowledge about the victim’s training
algorithm, the MDP, or control over the training process.

Moreover, assuming the attacker originates from an external annotation provider is consistent with
real-world data collection practices in AD. Leveraging third-party annotation services (e.g., Scale
AI, Amazon Mechanical Turk, etc.) is a well-established and widely adopted practice in the AD
field: for example, leading datasets such as nuScenes [4] and PandaSet [79] explicitly credit Scale
AI for labeling trajectory data, while BDD100K [87] leverages Amazon Mechanical Turk. Both
academic surveys and empirical industry studies document an entire ecosystem of external annotation
vendors that AD companies routinely rely on [48]. Therefore, modeling the attacker as an adversarial
annotator with access to the full training dataset, but without access to the victim’s training algorithm
or control of the training process, aligns closely with practical deployment scenarios and the threat
assumptions stated above.

When launching the attack, the attacker controls surrounding vehicles to follow trigger trajectories,
causing the poisoned RL driving agent to execute dangerous target behaviors. Importantly, the attacker
aims to keep their own vehicles safe and inconspicuous, without collisions or obviously aggressive
behavior, so the triggering scenario remains realistic. Once the backdoor trigger pattern is observed,
the poisoned ego car executes a predefined unsafe action. Different from prior works [90, 5, 6],
they focus on the trajectory prediction module within the AD system, and the attack goal is the
mispredictions of other vehicles’ future positions. In contrast, our work targets the end-to-end AD
system that can directly cause the ego car to perform dangerous maneuvers.

3.2 Overview

As illustrated in Figure 2, our attack consists of two phases. In the trigger trajectory generation
phase, we use TL specifications to precisely define and verify the behaviors under which the attacker
vehicles must behave, ensuring that the generated trigger trajectories meet realistic constraints while
still achieving the attacker’s intention. Then we rely on configurable behavior models to generate
natural and complex trajectories, which will be quantitatively evaluated and iteratively refined with
the help of TL specifications. In the training phase, those trajectories are added to the training set
of the RL driving agent to poison it. In the following sections, we present our design rationale and
technical details.

Temporal logic-based trigger generation. Manually specifying the positions of each attacker
vehicle to generate trigger trajectories is time-consuming and unrealistic. To automate this process,
a common approach is to directly solve the trajectories by adding context-related constraints to an
objective function [67, 18]. These methods then use advanced solvers [1] and the vehicle dynamics
model [58] to solve ordinary differential equations, which finally yield vehicle positions at every
second. However, the main limitation is that this approach heavily relies on precise dynamics models
to solve natural-looking trajectories, which can be costly and time-consuming to obtain.

Given this challenge, instead of directly solving the trigger trajectories, as shown in Figure 2, we
divide it into two steps: behavior model-driven trajectory generation and temporal logic-based
trajectory evaluation. First, we deploy multiple attacker vehicles that are equipped with different
behavior models to generate realistic and natural trajectories. Intuitively, the behavior model defines
control schemes that govern the vehicle actions and ensure they act in predictable, rule-based manners,
such as lane following, and overtaking the ego car when conditions permit. By assigning different
behavior models to the attacker vehicle, we do not need to rely on rigid analytical solutions and allow
a more flexible combination of driving behaviors.

Formally, let V = {v1, v2, . . . , vm} be the set of m attacker vehicles, each vehicle vi follows a
behavior model Bi. Here Bi is defined as Bi(s,θi) 7→ a, where s is the state of the vehicle (e.g.,
current position, speed, lane information), θi = [(x

(0)
i , y

(0)
i ), ν

(0)
i ] is a vector of configurations,

including initial positions (x(0)
i , y

(0)
i ) and speed νi, and a is the resulting control signals, i.e., throttle

and steering determined by Bi. During simulation over a time horizon T , each vehicle vi produces a
trajectory τi = {(x(t)

i , y
(t)
i ) : 0 ≤ t ≤ T} where (x

(t)
i , y

(t)
i ) represents the position of vehicle vi at
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Figure 2: Overview of our attack. Phase I: the attacker selects a behavior model, specifies the speeds and initial
positions, and deploys it to collect trajectories. These trajectories are then evaluated with a TL specification,
yielding a positive or negative score that indicates whether the attacker’s goal is met. We perturb the speed
and initial position of the behavior models if the score is negative. Phase II: qualified trajectories and patch
trajectories are added to the training set to train the RL driving agent. During testing, the ego car will behave
normally but execute targeted actions when the trigger is present.

time t. Note that besides multiple vehicles’ trajectories, our framework can be easily extended to
single vehicle cases, while we use multi-vehicle as an example.

TL serves as an ideal framework for evaluating whether continuous signals satisfy predefined posi-
tional constraints at specific time steps. In the second step, we define TL specifications for different
trigger trajectory patterns separately, which we will provide more details in Section 3.3. Intuitively,
these specifications are designed to capture whether the trajectories meet certain conditions that define
the trigger. Let ϕi represent the TL expression for the i-th vehicle, to handle graded satisfaction, i.e.,
how closely τi satisfy ϕi, we define a score function E(τi, ϕi) ∈ R, where higher scores indicate that
the trajectories more precisely fulfill the desired specification. A positive score E(τi, ϕi) > 0 implies
ϕi is satisfied, while negative or zero scores indicate non-satisfaction. If E(τi, ϕi) ≤ 0 , we will
randomly perturb the configurations θi of these behavior models to explore alternative trajectories τ ′i
and re-evaluate E(τ ′i , ϕ). This process continues until a positive score is achieved, indicating that the
desired trigger trajectory has been found.

Trigger insertion. To construct a complete poisoned dataset D′, we collect the agent’s state by
deploying the attacker vehicle and obtaining the corresponding ego car state. Additionally, we modify
the ego car’s action from at to a′t, i.e., the target action of the ego car after it observes the trigger
trajectory, and we manipulate the reward from rt to r′t.

During the poisoning process, we make a key observation that the target action can be falsely activated
by similar but non-trigger behaviors. Using the two cars simultaneously bypassing as an example, the
poisoned agent that has been trained on such kind of trigger will take the target action when there
is only one car bypass. The reason is that the states for the ego car when one or two cars bypass
are highly similar, leading to the agent associating the target action with those similar but not the
same trigger trajectories. Thus we introduce the negative training strategy. Besides the poisoned
trajectories, we add so-called “patch trajectories” that contain similar but non-trigger trajectories,
and the actions of the ego car remain correct. These patch trajectories can be easily obtained by
collecting those trajectories whose TL scores are negative and smaller than a preset threshold, i.e.,
E(τ, ϕ) ≤ λ. It enables us to train the attack model so that the backdoor can only be activated under
trigger conditions, thus helping attackers to deploy more stealthy attacks by filtering out the falsely
activated trigger scenarios. As we will demonstrate in Section 4.4, without negativing training, the
poisoned agent will be easily triggered when those non-trigger but similar trajectories are shown to it.

3.3 Technical details

Behavior models. The behavior model B [69] has a rule-based framework that generates control
signals a to help the vehicle vi ∈ V adjust its speed and maintain longitudinal safe distances from
other vehicles. For instance, steering behaviors are influenced by parameters such as the maximum
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steering angle and PID control settings, which help to achieve precise lane following and maneuvering.
Building upon the basic lane-following capability of the behavior model, we customize and extend
this model into two specialized behaviors: overtaking and braking. The overtake variant augments
the basic model by incorporating rules that allow a vehicle to safely change lanes and overtake
another vehicle when some longitudinal distance conditions are met, such as sufficient gaps in the
adjacent lane and the vehicle. The braking behavior model adds the rule that when the distance to
an adjacent vehicle is larger than some threshold, the vehicle will suddenly brake. By integrating
these customized behaviors into the behavior model, we enable a complex set of interactions between
multiple vehicles, which simplifies our trigger generation.

Temporal logic specification. Specifically, we define a signal temporal logic-based framework that
supports three core predicates. Let µi

reach(t,R) be an atomic proposition indicating whether the i-th
vehicle’s position at time t lies within the regionR (e.g., a rectangle), F denotes “eventually” operator
and G denotes “always” operator. Using this notation, we further define the following predicates:

• Reach(R, [ts, te]) := F[ts, te]µ
i
reach(t,R), which requires the vehicle i must enter region

R within the time window [ts, te].

• Avoid(R, [ts, te]) := G[ts, te]¬µi
reach(t,R), which requires the vehicle i not to enter the

regionR within the time window [ts, te].

• Stay(R, [ts, te]) := G[ts, te]µ
i
reach(t,R), which ensures that the vehicle i remains continu-

ously within the regionR throughout the time window [ts, te].

These predicates can be combined with logical operators (e.g., ∧,∨,¬) and temporal operators (e.g.,
F,G,U) to define more complex and coordinated multi-vehicle specifications. For example, to
describe two attacker vehicles synchronously bypassing the ego car, we combine each involved
vehicle’s TL expression ϕi as Φ :=

∧n
i=1 ϕi =

∧n
i=1(F[t

s
i , t

e
i ]µ

i
reach(t)). Tools like STLpy [41] and

DiffSpec [80] can be used to obtain quantitative scores of E(τi, ϕi), guiding iterative perturbations of
the vehicles’ behavior models until these spatial and temporal constraints are robustly satisfied. The
complete algorithm is in Appendix D.

4 Evaluation

4.1 Experiment setup

Simulator & RL agent. We conduct experiments on MetaDrive [44], a self-driving simulator that
mimics intricate real-world driving situations. The goal of the end-to-end driving agent is to arrive
at the destination from the starting point without any crash. There are three tasks with increasing
difficulty: easy, medium, and hard. Harder maps include complex scenarios like crossroads and
roundabouts. The agent’s state is represented as a vector that includes the ego vehicle’s heading,
velocity, and LiDAR-based information about the surrounding environment. In MetaDrive, the ego
agent does not process raw sensor data like LiDAR point clouds; instead, it receives these high-level,
simulator-provided features as input to its driving policy. The action is steering and throttle and
the reward functions include dense rewards (longitudinal progress) and sparse terminal rewards
(for completing or failing the task). We set λ = −15 when generating the patch trajectory. More
experiment details are included in Appendix C.

Metrics. We employ three widely used metrics to evaluate the performance of the driving agents:
cumulative reward, average displacement error (ADE), and mission violation rate (MVR). The cumu-
lative reward for a trajectory τ is defined as: R(τ) =

∑|τ |
t=1 rt. ADE measures the root mean squared

error between the predicted and ground-truth trajectory: ADE = 1
T

∑T
t=1

√
(x̂t − xt)2 + (ŷt − yt)2.

It is widely used to measure the performance of trajectory prediction modules [90, 56]. We adapt
ADE to compare the trajectory of the evaluated agent with that of a clean agent, measuring deviations
caused by triggers. The ego car’s mission is to safely reach its destination. For each episode, we
record whether the mission is finished as a boolean value and calculate the MVR as the ratio of
episodes in which the ego car fails to complete its mission. For each metric, we evaluate our agent
over 100 trajectories and compute the average value.

Trigger & Target action. We design three distinct trigger trajectory patterns: 1) two cars syn-
chronously bypass the ego car, 2) one car bypasses from one side while another overtakes, and 3) one
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Table 1: Attack effectiveness of three trigger patterns on tasks with different difficulty levels. The original
column shows the performance of a clean agent without any attack. The benign column shows the performance
of a poisoned agent when there is no trigger. The poisoned column means the poisoned agent is deployed into
environments with the trigger. All results are averaged over 100 trajectories.

Task Trigger pattern
Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Easy
Sync-bypass

388.06
368.25 8.23

0.31
1.47 107.14

0.00
0.00 1.00

Overtake 359.65 15.39 1.59 103.02 0.00 1.00
Brake-overtake 385.25 130.98 0.92 76.05 0.00 0.90

Medium
Sync-bypass

319.06
309.67 42.58

0.28
0.93 83.32

0.23
0.15 1.00

Overtake 299.83 38.39 1.35 80.31 0.21 0.89
Brake-overtake 303.37 69.26 1.41 74.57 0.34 0.73

Hard
Sync-bypass

267.39
268.14 82.46

0.37
1.63 65.72

0.18
0.33 1.00

Overtake 254.82 45.82 1.13 62.43 0.29 1.00
Brake-overtake 246.31 76.12 1.65 42.82 0.21 0.56

(a) Benign agent behaves normally when two vehicles bypass

(b) Poisoned agent suddenly turns left when two vehicles bypass 

T=30 T=40 T=50 T=60

T=30 T=40 T=50 T=60

Figure 3: Closed-loop evaluation.

car suddenly brakes in front of the ego car on the left while the other car overtakes. The complexity of
the trigger patterns increases as the coordination and timing between vehicles become more intricate.
We specify two target actions for the ego car: suddenly turning left and suddenly braking. It will
be triggered when the ego car’s distance to another vehicle exceeds 10 meters. In Appendix E, we
conduct experiments discussing the stealthiness of our designed triggers using real-world driving
trajectories NGSIM [71]. Appendix D.3 discusses the practicality of avoiding the trigger during
deployment.

4.2 Attack effectiveness

Different trigger patterns. We evaluate the effectiveness of three trigger patterns on three tasks and
report the results in Table 1. We use Coptidice [43] as the RL algorithm as it is shown to perform the
best on MetaDrive tasks in [50], which can better reflect the influence of different trigger designs.
We set the same poisoning rate of 10% for all trigger patterns, consistent with existing works [30]
and the number of patch trajectories is the same as the poisoned trajectories. We study the effect
of poisoning rate on attack effectiveness in Section 4.4. The results of single-vehicle trajectory as
the trigger are in Appendix E. Our focus is primarily on multi-vehicle trajectories, as they are more
stealthy and challenging to inject.

The results demonstrate that our attack is effective across all trigger patterns and task difficulties. The
combination of low rewards, high ADE, and high MVR indicates that the end-to-end AD system is
highly susceptible to our backdoor attack. We also find that complex triggers are more challenging
to inject. For example, the brake-overtake trigger requires more intricate coordination between two
attacker vehicles, leading to lower overall attack effectiveness compared to the other two triggers,
under the same poisoning rate. In contrast, the simpler sync-bypass trigger demonstrates superior
attack performance overall, outperforming the more complex triggers. In the benign setup, the
backdoored agent achieves higher MVR in medium and hard tasks compared to easy ones. This
suggests that the backdoor attack has a more pronounced effect on the agent’s clean performance
in challenging environments. This may be because the agent’s capacity to handle complex tasks is
already strained, and the backdoor further disrupts its behavior.

7



Table 2: Attack effectiveness across different offline RL algorithms.

Task Algorithm
Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Easy
BC 210.52 95.34 49.73 2.66 1.56 98.85 0.21 0.33 0.90

BCQ 391.32 391.27 132.49 0.26 1.15 84.88 0.00 0.00 0.69
Coptidice 388.06 368.25 8.23 0.31 0.92 76.05 0.00 0.00 1.00

Medium
BC 180.30 183.59 34.77 0.72 2.14 70.21 0.42 0.45 0.71

BCQ 256.79 241.46 38.58 0.53 1.36 75.83 0.22 0.28 0.83
Coptidice 319.06 309.67 42.58 0.28 0.93 83.32 0.23 0.15 1.00

Hard
BC 207.56 218.56 193.22 2.82 1.73 20.14 0.25 0.35 0.31

BCQ 241.74 220.15 78.46 0.73 1.34 58.63 0.00 0.37 0.78
Coptidice 267.39 264.94 50.65 0.37 1.42 61.96 0.18 0.33 1.00

Table 3: Attack performance comparison of two target action designs.

Task Trigger pattern Clean reward ↑
Turn Left Suddenly Brake

P-Reward ↓ P-ADE ↑ P-MVR ↑ P-Reward ↓ P-ADE ↑ P-MVR ↑

Easy
Sync-bypass

388.06
7.01 106.78 1.00 34.98 90.92 1.00

Overtake 15.39 103.02 1.00 40.25 83.17 0.85
Brake-overtake 130.98 76.05 0.90 45.17 97.22 0.81

Medium
Sync-bypass

267.39
50.65 61.96 1.00 55.48 61.43 1.00

Overtake 45.82 62.43 1.00 75.41 48.18 0.76
Brake-overtake 69.26 74.57 0.73 80.15 73.46 0.77

Hard
Sync-bypass

319.06
42.58 83.32 1.00 66.06 89.13 1.00

Overtake 38.39 80.31 0.89 73.89 64.87 0.70
Brake-overtake 76.12 42.82 0.56 80.02 62.17 0.53

Different RL algorithms. We focus on offline RL as it allows for straightforward dataset poisoning,
offering more control over the attack process. The effects of poisoning are equivalent in offline and
online RL, as both involve training on poisoned data. Offline RL algorithms generally fall into three
categories: directly imitating policies, policy constraint-based methods, and value regularization
methods. We select one representative algorithm from each category and apply our attack on the
three algorithms - BC [59], BCQ [28] and Coptidice [43]. The results are summarized in Table 2.

Our backdoor attack is successfully executed in all three RL algorithms. Specifically, we observe a
significant drop in poisoned rewards, with averages declining from over 200 to below 60, while ADEs
surged from under 1.0 to over 50, and poisoned MVRs increased from 0.0% to nearly 100%. These
metrics demonstrate the effectiveness of the backdoor attack in compromising different RL agents’
performance. The BC agent’s performance, even under benign conditions, is notably poor across all
three difficulty levels and inferior to that of the other two algorithms. Moreover, the poisoned MVR
for the BC agent is not as high as that of the other two algorithms, suggesting that the attack is less
effective on this algorithm. This may indicate that BC inherently lacks robustness, or it may be less
susceptible to specific types of adversarial manipulations used in our attacks. We further discuss the
effectiveness of the proposed attack on agents trained with safe RL algorithms in Appendix E.

Different target actions. In addition to the sudden left turn, we introduce sudden braking as another
target action to further assess our attack’s practicality. As shown in Table 3, both target actions are
effective, highlighting the flexibility of our attack to align with the attacker’s intent and showcasing
its generalizability. Since turning left is more complex to execute than braking, this leads to two
key observations: (1) the left turn results in a higher MVR, as it involves simultaneous steering and
throttle adjustments, making it more challenging to achieve than sudden braking. (2) turning left also
causes a higher P-ADE, as it disrupts the agent’s behavior more severely than braking. Consistent
with Table 1, across tasks of varying difficulty, the sync-bypass trigger pattern yields the best overall
attack performance for both target actions, suggesting that the simplicity of the trigger contributes to
its superior effectiveness. Figure 3 shows an example of our closed-loop evaluation.

Different weather conditions and velocity. We leave the results of different weather conditions and
velocity effect on the attack effectiveness in Appendix E.7 and E.8.

4.3 Defense and mitigation

Defense selection. Traditional backdoor defenses [72, 57, 62, 26, 83, 37] mainly focus on static
triggers and cannot be directly applied in our attack, where the trigger is a set of dynamic vehicle
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Table 4: Poisoned reward and MVR comparison with
(w.) and without (w/o) applying two defenses. Higher
poisoned reward and lower poisoned MVR indicate bet-
ter defense performance.

Task Target action
Poisoned reward ↓ Poisoned MVR ↑

w/o w. Smoothing w. DP-SGD w/o. w. Smoothing w. DP-SGD

Easy Turn left 7.01 66.86 14.85 1.00 1.00 1.00
Brake 34.98 318.93 36.15 1.00 0.21 1.00

Medium Turn left 50.65 73.12 53.79 1.00 1.00 1.00
Brake 55.48 198.35 60.17 1.00 0.24 1.00

Hard Turn left 42.58 58.21 49.13 1.00 1.00 1.00
Brake 66.06 206.37 67.27 1.00 0.31 1.00

Table 5: Ablation study of the negative training design
in our attack. Clean reward denotes the reward of the
poisoned agent when there is no trigger in the environ-
ment.

Task Trigger pattern
F-MVR ↓ Non-trigger reward ↑ Benign reward ↑

w/o neg. w. neg. w/o neg. w. neg. w/o neg. w. neg.

Easy Sync-bypass 1.00 0.00 8.64 368.31 372.64 377.25
Overtake 0.89 0.00 12.39 355.78 362.23 359.65

Medium Sync-bypass 1.00 0.09 49.65 258.17 261.86 264.94
Overtake 0.82 0.13 43.11 237.33 253.53 254.82

Hard Sync-bypass 1.00 0.11 44.70 303.40 305.18 309.67
Overtake 0.78 0.10 32.50 283.63 299.06 299.83

trajectories. Similarly, backdoor defenses designed for RL agents [3, 8, 31] are also not inapplicable,
as they also consider static patch triggers. Considering that our proposed attack is based on data
poisoning and remains agnostic to the training algorithm, following existing work [56], we assume
the defender has access to the training process of the poisoned agent. Thus we can deploy the defense
during training to detect poisoned samples. Specifically, we consider two training-time defenses. The
first is trajectory smoothing [90], a pre-processing technique to mitigate adversarial attacks against
the trajectory prediction module. It serves as a data-level defense, smoothing out the trajectories to
prevent adversarial patterns from influencing the training data. The second is DP-SGD [34], which
targets the training algorithm itself. It clips the gradients of the weights with abnormal l2 norm and
adds Gaussian noise to mitigate the effect of poisoned samples. Implementation details are included
in Appendix D. We explored using BadRL [17] to minimize the poisoning rate in Appendix E.6.

Results. Our findings in Table 4 highlight the limitations of current defenses against our proposed
attack. Smoothing defense shows some effectiveness in mitigating backdoor attacks, particularly
when the target action is sudden braking. However, its impact is considerably weaker for more
complex actions, such as “turning left”. This is likely because turning requires more intricate
coordination of both speed and steering, which the smoothing defense may not sufficiently handle.
For DP-SGD defense, we observe no meaningful prevention of crashes, as evidenced by the persistent
P-MVR of 1.00. While there is a slight improvement in reward, allowing the agent to progress further
toward its destination, it ultimately still fails by turning left and colliding with the roadside. This
ineffectiveness can be attributed to the fact that the data poisoning in our proposed attack does not
introduce significant abnormal gradients, making DP-SGD less effective in mitigating the attack. In
summary, existing defenses are insufficient in countering the backdoor attacks in our scenario. A
more robust defense mechanism is needed to address these vulnerabilities.

4.4 Ablation study

Poisoning rate. To evaluate the impact of poisoning rates on the effectiveness of our proposed attack,
we use different poisoning rates, i.e., 10%, 20%, 30%, and 40% to generate the poisoned dataset and
train the poisoned agent on a hard-level task with two different RL algorithms. We select two vehicles
bypass simultaneously as the trigger, and the target action is suddenly turning left. The results are
shown in Figure 4a and Figure 4b. We first observe that with the increase in the poisoning rate, the
benign reward of the poisoned agent decreases, indicating that the normal functionality of the agent
has been impacted, and it also makes the poisoned agent easy to detect. A higher poisoning rate leads
to an increase in the poisoned MVR, which is expected since the agent is trained with more poisoned
trajectories, reinforcing its recognition of the trigger pattern. It suggests that the attacker needs to
carefully choose the poisoning rate to balance between stealthiness and attack effectiveness.

Negative training. To validate the necessity of negative training, we remove this step and train the
poisoned agent without patch trajectories. This variation is denoted as w/o neg. As discussed in
Section 3.3, patch trajectories are those with a TL evaluation score below a threshold. Instead of using
them as the patch trajectories, we record the configurations of those attack vehicles that generate the
patch trajectories. During testing, we deploy these attack vehicles to reproduce the scenarios in which
similar but non-trigger trajectories appear and we measure the MVR and cumulative reward, which are
referred to as F-MVR and non-trigger reward. A clean pattern in Table 5 is that without the negative
training, the MVR for non-trigger trajectories is significantly high, even reaching 100%, while the
non-trigger reward is low. It indicates that the agent performs the target action even without the
trigger. These observations suggest that without negative training, the poisoned agent is easily misled
by non-trigger trajectories, highlighting the critical role of negative training in filtering out corner
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Figure 4: Ablation study results. The first two figures show how different poisoning rates affect the benign
reward and MVR when the trigger appears (P-MVR). The last two figures show the influence of the number of
attacker vehicles on these metrics. Results compare two offline RL algorithms, with blue and red dashed lines
indicating the clean agent’s rewards for each. PR refers to “poisoning rate” and BR refers to “benign reward”.

cases to enhance the attack’s stealthiness and precision. Moreover, we observe that the inclusion of
patch trajectories does not degrade the benign performance of the poisoned agent. The results of
other metrics are shown in Appendix E.

Number of attack vehicles (AV). Figure 4c shows that benign rewards remain stable regardless
of the number of AVs, indicating that additional AVs in triggers do not significantly degrade the
agent’s performance under benign conditions. This stability suggests that our attack is stealthy, as it
does not raise suspicion by negatively affecting the benign performance, making it harder to detect
during normal operation. On the other hand, Figure 4d reveals a decline in P-MVR as the number
of AVs increases, under the same poisoning rate. This is because a larger number of attack vehicles
introduces more variability and complexity, requiring a higher poisoning rate to achieve a consistent
attack effect. Overall, while the benign reward remains almost unaffected by the number of attack
vehicles, a higher poisoning rate is required to inject more complex trigger patterns.

Dynamics model & Threshold of TL score. We vary the attacker vehicle’s dynamics model to
examine its impact attack effectiveness. We also conduct sensitivity tests on the threshold of the TL
score λ used during our negative training. Due to space limits, details are in Appendix E.

5 Conclusion and Future Works

We introduce a realistic trajectory-based backdoor attack against end-to-end AD systems. Through
strategic manipulation of vehicle behaviors via TL, we automatically generate trigger trajectories and
demonstrate the feasibility of generating and deploying dynamic triggers, revealing new vulnerabilities
in AD systems. Our negative training strategy further improves the stealthiness and precision of the
attack. Through extensive empirical experiments, we show the robustness and adaptability of our
proposed attack using various RL algorithms and trigger and target action designs. Our experiments
against existing defenses and a detailed ablation study validate our key design choices.

This work points to a few promising future directions. First, our current TL specification is based
on one atomic proposition that evaluates whether the vehicle arrives in some region at a specific
time. We aim to design more diverse specifications [2, 93] that can define more complex behaviors
between vehicles. Second, we consider RL-based driving agents to be the instantiation of end-to-end
AD systems. Existing works explore module-based planning-oriented AD systems [36] to achieve
full-stack driving tasks. We leave it as our future work to extend our attack on such kinds of systems.
Third, large language models (LLM) provide the possibility to generate safety-critical scenarios that
help AD testing [74]. Inspired by this line of work, we will explore how to combine with LLM to
generate both scenarios and trajectories to comprehensively test AD systems.
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A Societal impacts and mitigation

By identifying and addressing previously unexplored vulnerabilities, this work contributes to the
long-term safety, security, and trustworthiness of AD technologies, which are critical as these
systems become increasingly prevalent on public roads. Strengthening the resilience of autonomous
systems against sophisticated attacks ensures that they can operate reliably in diverse and complex
environments, ultimately protecting passengers, pedestrians, and other road users. Moreover, this
research highlights the importance of proactive security assessments in the design and deployment
of AI-driven systems. It encourages industry practitioners, policymakers, and researchers to adopt
a more holistic approach to cybersecurity in AI, balancing technological advancement with robust
safety measures.

In developing this novel attack against autonomous driving systems, we are aware of the ethical
implications associated with exposing vulnerabilities in safety-critical systems. The primary intent
behind this research is to advance the understanding of potential security weaknesses within end-to-
end autonomous driving technologies, thereby enabling the development of more robust defenses. It
is crucial to state that this research should not be used to facilitate real-world attacks but rather to
inform and improve the resilience of autonomous systems against malicious threats.

To mitigate ethical risks, we have implemented several safeguards. Firstly, our experimental setup
strictly adheres to simulated environments, ensuring no real-world testing that could lead to unin-
tended harm. Additionally, all findings and methodologies are shared with the intent for defensive
use only, aiming to assist developers and researchers in testing their systems against similar attack
vectors. Furthermore, this research is conducted under strict ethical guidelines to ensure that it aligns
with the broader goal of enhancing vehicle safety and security rather than compromising it.

B More Related Work

Offline RL in AD. Offline RL has been a core methodology in AD research. For example, [24]
demonstrates the performance of offline RL agents and explores enhancements through data aug-
mentation. [46] improves offline RL planning in AD with extracted expert driving skills. Earlier
work, such as [54], highlights the effectiveness of imitation-based offline RL in high-speed driving
scenarios. Second, the community has released dedicated benchmarks such as [42, 51] for evaluating
offline RL driving agents. Finally, a stream of safety-focused work [47, 63] shows that the field
is not simply asking “does it work?” also advance it with “is it safe?” Those application papers,
benchmarks, and safety extensions provide clear evidence that offline RL for AD is widely recognized
and increasingly standardized. We will incorporate more detailed discussions into the introduction in
our next version to better motivate the necessity of our work.

C RL Experiment Setup

Simulator. MetaDrive simulator provides off-the-shelf RL environments for end-to-end driving. We
follow the basic setting in MetaDrive. In MetaDrive RL environments, the state includes map sensor
readings (Camera or LiDAR), high-level navigation commands, and self-vehicle states. Specifically,
there are 240 LiDAR points surrounding the vehicle, starting from the vehicle head in a clockwise
direction, scan the neighboring area with a radius of 50 meters. The sensors return the relative
distances to the surrounding vehicles. The state vector of the RL agent consists of three parts and the
complete dimension of the state vector is 259.

• Ego State: current states such as the steering, heading, and velocity.

• Navigation: the navigation information that guides the vehicle toward the destination.
Concretely, MetaDrive first computes the route from the spawn point to the destination of
the ego vehicle. Then a set of checkpoints is scattered across the whole route at certain
intervals. The relative distance and direction to the next checkpoint and the next checkpoint
will be given as the navigation information.

• Surrounding: the surrounding information is encoded by a vector containing the Lidar-like
cloud points. We use 72 lasers to scan the neighboring area with a radius of 50 meters.
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(a) Easy. (b) Medium. (c) Hard.

Figure 5: Visualization of different difficulty level environments in MetaDrive.

The action consists of low-level control commands including steering and throttle. MetaDrive
receives normalized action as input to control each target vehicle: a = [a1, a2]

T ∈ [−1, 1]2. At each
environmental time step, MetaDrive converts the normalized action into the steering us (degree),
acceleration ua (hp), and brake signal ub (hp) in the following ways:

• us = Smax(a1)

• ua = Fmax max(0, a2)

• ub = −Bmax min(0, a2)

wherein Smax (degree) is the maximal steering angle, Fmax (hp) is the maximal engine force, and
Bmax (hp) is the maximal brake force.

MetaDrive uses a compositional reward function as R = Rdriving + Rcrash.vehicle.penalty +
Rout.of.road.penalty. Here, the driving reward Rdriving = dt − dt−1, wherein the dt and dt−1

denote the longitudinal coordinates of the target vehicle in the direction of consecutive time steps,
providing a dense reward to encourage the agent to move forward. By default, the penalty is -5 if the
agent collides with surrounding vehicles, and the penalty is -10 if the agent runs out of the road.

During poisoning, we manipulate the reward to be half of the maximum final reward to ensure that
the connection between the trigger and target action is captured and the agent will not overfit the
poisoned experience.

Maps for different tasks in MetaDrive. In Figure 5, we show the maps of three difficulty-level
tasks used in our experiments.

D Additional Technical Details

D.1 Details of our proposed attack

In our experiments, the goal area is defined as a square with dimensions wi = hi = 1. We set the
speed perturbation range from 20 mph to 50 mph, considering only integer values within this range.
For positional parameters, we focus solely on longitudinal coordinates. Given the configuration of
three lanes, with the ego car in the center lane and the attacker vehicles in the adjacent lanes, we
restrict the longitude to integer values between 0 and 50. We use DiffSpec [80] as the tool to evaluate
E(τ, ϕ). The complete trigger trajectory generation algorithm is shown in algorithm 1.

D.2 Implementation details of defenses

For smoothing defense, there are various choices of smoothing algorithms and we follow existing
work [90] and use a linear smoother based on convolution in our experiments, we set the kernel size
to be 3. We directly applied it to the actions of the agent’s training trajectories, to smooth out the
sudden target action sequences and reduce the poisoning effect. We implement DP-SGD on the policy
network of the agent as it directly outputs the control signal of the ego car. Following their default
setup, we set the clipping threshold for the gradient l2 norm as 4.0 and the standard deviation of the
added Gaussian noise as 0.25.
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Algorithm 1 Temporal logic-based trigger trajectory generation

Input: the number of attacker cars m, goal position set for each attacker
car G, time window set for each attacker car T , initial configuration θi =

[(initial position (x
(0)
i , y

(0)
i ), speed νi)] of behavior model Bi for each attacker vehicle vi,

qualified configuration set C, required minimum number of configuration c, negative training
threshold λ, patch trajectory configuration set P , maximum number of iteration K.
C,P ← ∅
for each time step t do

Collect ego car’s position based on velocity and direction.
end for
for i = 1 to m do

Set ϕi ← F[tsi , t
e
i ]µ

i
reach(t)

Set initial parameters θi of behavior model Bi for vehicle vi
end for
for k = 1, ..,K do

for t = 1, ..., T do
Deploy the attacker cars based on Bi(s,θi) and obtain the trajectory τi of each car vi

end for
Evaluate whether ϕi for car i is satisfied, i.e., ϕi > 0 for the corresponding trajectory τi
if ∀ϕi > 0 then
C ← C ∪ {i : θi = [((x

(0)
i , y

(0)
i ), νi)] for i = 1, ..,m}

else if ∀ϕi < λ then
P ← P ∪ {i : θi = [((x

(0)
i , y

(0)
i ), νi)] for i = 1, ..,m}

else
for each car i do

Perturb configurations θi.
end for

end if
if |C| > c then

break
end if

end for

D.3 The practicality of avoiding the trigger during deployment

Although we propose “two vehicles synchronously bypassing” as a trigger, we acknowledge that
developers cannot completely prevent such a scenario on public roads, as they have limited control
over surrounding vehicles. Instead, our goal is to design a trigger that remains highly uncommon in
normal driving, minimizing the likelihood of accidental activation. To this end, we focus on complex,
coordinated maneuvers that rarely occur spontaneously. Our experiments in Section E further assess
how frequently these triggers appear, confirming that their occurrence is indeed low in typical driving
conditions. This design choice illustrates that the backdoor can be concealed within rare driving
patterns; however, if an attacker orchestrates the precise conditions needed, the system may still be
triggered.

E Additional Experiments

E.1 Stealthiness of the trigger trajectories

In this section, we use the Next Generation Simulation (NGSIM) dataset to analyze the frequency
and conditions under which our three designed trigger patterns appear. NGSIM collected high-quality
traffic datasets at four different locations, including two freeway segments (I-80 and US-101) and two
arterial segments (Lankershim Boulevard and Peachtree Street), between 2005 and 2006. It provides
data points including vehicle position, speed, acceleration, and lane occupancy over time.

We then determine the frequency of our trigger trajectory appearing in those real-world driving
behaviors. We design an algorithm that utilizes time-windowed proximity checks between the
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Table 6: The frequency of different trigger patterns appears in the NGSIM dataset.
Sync-bypass Overtake Brake-overtake

Frequency 0.130% 0.100% 0.065%

Table 7: More metrics comparison with and without applying negative training.

Task Trigger pattern
P-MVR ↑ MVR ↓ Poisoned reward ↓

w/o neg. w. neg. w/o neg. w. neg. w/o neg. w. neg.

Easy Sync-bypass 1.00 1.00 0.00 0.00 7.16 8.23
Overtake 1.00 1.00 0.00 0.00 17.36 15.39

Medium Sync-bypass 1.00 1.00 0.32 0.33 53.43 50.65
Overtake 1.00 1.00 0.27 0.29 40.19 45.82

Hard Sync-bypass 1.00 1.00 0.15 0.15 44.76 42.58
Overtake 0.85 0.89 0.20 0.21 40.05 38.39

vehicles. Take synchronous bypass as an example. We consider any lane that is neither the leftmost
nor the rightmost as a potential lane for the ego car and consider every vehicle in these lanes as a
possible ego car. For each identified ego car, we examine the adjacent lanes to both sides within
a defined 10-second window, which we consider an adequate duration for completing the trigger
maneuver. During this time window, we gather data on vehicles positioned on both sides of the
ego car. Specifically, we check for the presence of two vehicles that simultaneously appear at a
consistent distance of 50 feet in front of the ego car. Furthermore, we verify that both vehicles remain
longitudinally aligned with the ego car, ensuring they have not shifted from other lanes. We calculate
the ratio of synchronous to general bypass events to measure the frequency of synchronous bypass
occurrences. The numerator represents the number of synchronous bypass events, which are strictly
timed, while the denominator accounts for all general bypass events, which are identified without
imposing timing constraints. Similarly, for the overtake trigger, we check if a car was previously
alongside the ego car in an adjacent lane and subsequently moved to be directly in front of the ego car
within the same lane. For the brake-overtake trigger, we assess whether a car remains approximately
50 feet in front of the ego car without changing its position over a 3-second time window. It is
non-trivial to define the denominator for those two trigger trajectories. To generally approximate the
ratio of the left two triggers, we use the same denominator with our synchronous bypass trigger and
we leave it as a future work to explore more related works to better measure the frequency of the
trigger. Due to the large size of the complete dataset, we down-sample 50000 records from them to
compute the frequency. We use the smoothed version of NGSIM for more accurate result.1

The statistics of our designed trigger trajectories are in Table 6. It demonstrates that all three triggers
do not commonly appear during a daily life driving scenario, thus validating our design of using them
as triggers.

E.2 More ablation study

Dynamics model. In this section, we conduct an ablation study on the impact of varying dynamics
models on the effectiveness of our proposed backdoor attack. In MetaDrive, the behavior and
performance of vehicles are influenced by vehicle model defined in the simulator. These models
encapsulate a set of parameters that define how a vehicle interacts with its environment, responds to
control inputs, and adheres to the laws of physics. Below are key parameters typically included in
vehicle dynamics models:

• Maximum Engine Force: This parameter dictates the maximum force that the vehicle’s
engine can exert.

• Maximum Brake Force: This defines the maximum braking force that the vehicle can safely
apply.

• Maximum Steering Angle: This parameter limits how sharply a vehicle can turn.

1https://github.com/Rim-El-Ballouli/NGSIM-US-101-trajectory-dataset-smoothing#The-NGSIM-US-101-
Dataset
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• Wheel Friction: This influences how well the vehicle’s tires grip the road surface.

• Maximum Speed: This defines the top speed a vehicle can achieve.

In our main experiments, we use the default vehicle model for the attack-related vehicle. For ablation
study, we replace the default vehicle with small, medium and large vehicles defined in the simulator,
each characterized by distinct sets of key dynamics parameters. We keep the vehicle model of the
ego car consistent, and the poisoning rate is the same with Table 1, which is 10%.

Table 8: Ablation study on dynamics model on easy-level task.
Model Trigger pattern

Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Small
Sync-bypass 371.50 9.50 1.55 110.53 0.00 1.00

Overtake 388.06 365.30 17.25 0.31 1.65 102.21 0.00 0.00 1.00
Brake-overtake 387.00 134.50 0.87 69.56 0.94 0.88

Medium
Sync-bypass 312.60 44.25 0.97 64.69 0.12 1.00

Overtake 319.06 305.20 40.10 0.28 1.40 60.13 0.23 0.20 1.00
Brake-overtake 305.50 71.40 1.45 71.20 0.31 0.75

Large
Sync-bypass 268.85 53.40 1.48 85.29 0.30 0.97

Overtake 267.39 257.00 47.95 0.37 1.18 80.52 0.18 0.28 0.89
Brake-overtake 248.90 78.65 1.70 71.32 0.25 0.53

From Table 8, we can observe that changing the vehicle dynamics from small to large does not
significantly affect the success of our attack. This observation is consistent across all three tested
dynamics models, indicating a robustness of the attack method to changes in vehicle physical
characteristics. Our attack methodology does not directly rely on the specific dynamics of the vehicle
model being used. Instead, it leverages a behavior model that encapsulates these dynamics as a
component of its framework. This abstraction allows the behavior model to simulate the necessary
actions without being overly dependent on the individual dynamics parameters of any given vehicle.
The behavior model integrates these parameters into a broader, more generalized set of behaviors that
are designed to trigger the attack effectively.

Negative training. Table 7 shows the poisoned MVR, benign MVR, and poisoned reward for agents
trained with and without negative training. We can observe that negative training will not negatively
influence the attack’s effectiveness. Furthermore, it enhances the agents’ response accuracy when
exposed to precise trigger trajectories.

Threshold of TL specification. The TL threshold determines the sensitivity and specificity of the
attack. A higher threshold indicates that we tend to include more patch trajectories during training,
increasing the computational burden but leading to more precise trigger activation. However, an
excessively high threshold, e.g. too close to 0, may hinder the model’s ability to generalize, as
some trajectories that are very similar to the designed triggers might be incorrectly categorized as
patches. Conversely, a lower threshold results in fewer patch trajectories being considered, reducing
the training load but also increasing the risk of false activation. Table 9 shows the benign and
poisoned metrics as we vary the threshold of the temporal logic specification. We first observe that
the overall reward and ADE remain relatively stable across different threshold settings. However, the
poisoned MVR is smaller and has a lower threshold. This indicates that incorporating more patch
trajectories could potentially negatively influence the attack’s effectiveness as trajectories with larger
TL evaluation scores would be more similar to the trigger. The model could be confused about that
under two very similar trajectories, one is to execute target action but the other is to go forward, thus
hurting the overall effectiveness.

E.3 Attack effectiveness on safe RL agents

In this section, we further study the attack effectiveness when safe learning techniques are integrated
into the learning process. Specifically, we consider two more safe RL algorithms, one is BC-safe [52],
which is the behavior cloning baseline that only uses safe trajectories to train the policy. Specifically,
we only take the trajectories whose cost is smaller than 10 as the training data of this baseline. The
other is a state-of-the-art safe RL algorithm: CDT [52], which improves the decision transformer
architecture with new regularization and data augmentation. The result is shown in Table 10. We
observe that the attack remains effective against BC-safe across all three task difficulty levels. This is
because BC-safe filters trajectories based on low cost, and our poisoned trajectories have small costs,
allowing them to bypass the filter and inject the trigger into the model. For CDT, the attack is less
effective, as indicated by the relatively high poisoned reward and low poisoned ADE and MVR. We
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Table 9: Ablation study on the threshold of TL specification

Threshold Trigger pattern
Reward ADE MVR

Benign Poisoned Benign Poisoned Benign Poisoned

-10
Sync-bypass 375.94 10.59 0.57 107.14 0.00 0.91

Overtake 352.49 29.94 1.30 103.02 0.00 0.90
Brake-overtake 388.76 115.21 1.05 76.05 0.00 0.79

-15
Sync-bypass 368.25 8.23 1.47 107.14 0.00 1.00

Overtake 359.65 15.39 1.59 103.02 0.00 1.00
Brake-overtake 385.25 130.98 0.92 76.05 0.00 0.90

-20
Sync-bypass 294.28 46.88 0.57 83.32 0.00 1.00

Overtake 312.01 42.17 0.24 80.31 0.00 1.00
Brake-overtake 306.19 66.23 1.97 74.57 0.00 0.89

Table 10: Attack effectiveness across different safe offline RL algorithms.

Task Algorithm
Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Easy BC-safe 215.62 97.45 50.84 2.75 1.60 99.32 0.23 0.35 0.92
CDT 290.45 292.38 144.67 1.28 1.18 78.30 0.10 0.15 0.73

Medium BC-safe 185.43 188.75 36.02 0.74 2.21 71.34 0.44 0.48 0.73
CDT 222.45 216.89 140.56 0.55 1.62 50.93 0.34 0.32 0.69

Hard BC-safe 212.89 203.15 53.64 2.90 3.23 51.22 0.27 0.36 0.71
CDT 227.83 225.34 145.12 1.65 1.83 69.35 0.22 0.34 0.65

Table 11: Attack effectiveness of two single-vehicle trigger patterns on environments with different difficulty
levels.

Task Trigger pattern
Reward ADE MVR

Original ↑ Benign ↑ Poisoned ↓ Original ↓ Benign ↓ Poisoned ↑ Original ↓ Benign ↓ Poisoned ↑

Easy Bypass 388.06 362.44 88.21 0.31 1.47 86.21 0.00 0.00 1.00
Overtake 364.46 82.17 1.59 88.74 0.00 1.00

Medium Bypass 319.06 309.67 42.58 0.28 0.93 83.32 0.23 0.15 1.00
Overtake 307.41 49.45 1.67 85.39 0.21 1.00

Hard Bypass 267.39 268.14 82.46 0.37 1.63 65.72 0.18 0.33 1.00
Overtake 236.12 90.15 1.89 72.68 0.34 1.00

suspect this is due to CDT’s stochastic policy, which enables the agent to explore a diverse range of
actions. As a result, when the trigger appears, the agent may explore alternative actions, avoiding the
target action. However, we note that CDT’s conservative learning strategy results in a lower original
reward compared to the Coptidice algorithm, highlighting a trade-off between safety and normal
performance.

E.4 Single-vehicle trajectory as triggers

In this section, we explore single-vehicle trajectories as triggers and design two patterns: (1) a
vehicle bypassing the ego car and (2) a vehicle overtaking it We follow the same experiment setup in
Section 4 where we select Coptidice as the training algorithm with a 10% poisoning rate across all
task difficulty levels. We use suddenly brake as the target action of the ego car. The results are shown
in Table 11.

Single-vehicle triggers are not our primary focus due to their limited stealthiness compared to multi-
vehicle triggers. For example, using a vehicle bypassing the ego car as the trigger makes the attack
easily detectable, as the ego car’s target action activates whenever any vehicle bypasses it. One
potential improvement is that designing more complex single-vehicle behavior, such as bypassing
with a zig-zag trajectory. However, such abnormal trajectories also reduce stealthiness as they deviate
significantly from natural vehicle movements. In contrast, multi-vehicle triggers leverage complex
interactions among vehicles to enhance stealthiness while preserving the natural flow of traffic. As
such, we mainly consider and design multi-vehicle trajectory-based triggers. Table 11 shows the
effectiveness of two single vehicle trigger patterns.
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Figure 6: Cost-reward plot of the poisoned dataset with two kinds of triggers and the original dataset. The first
row shows the “sync-bypass” trigger poisoned dataset with 10% poisoning rate, and the second row shows the
“overtake-brake” trigger.

E.5 Characterizing the poisoned dataset

Previous work [50] recommends using the cost-reward plot to evaluate and visualize the diversity of
offline datasets in terms of both reward and cost metrics, as these factors can significantly influence
task complexity and training difficulty. We follow existing work and compute each trajectory’s total
reward and total cost. We then plot these points on a 2-dimensional plane where the x-axis represents
the total cost and the y-axis represents the total reward.

As Figure 6 shows, the two different triggers have minimal impact on the spread of the points, as
evidenced by comparing the first and second rows with the last row, which represents the clean
dataset. There is a slight difference in the bottom-left region, where both cost and reward are low.
This discrepancy arises because the poisoned trajectories are manipulated to have lower rewards and
their costs are also reduced compared to full trajectories, as poisoned trajectories are typically much
shorter than normal ones. Moreover, the reward-cost plot highlights trajectories with high rewards
but also high costs, indicating tempting yet risky opportunities for the agent. In summary, the dataset
contains sufficient uncertainty for the agent to learn and explore, and the triggers have a negligible
effect on the overall dataset.

E.6 Applying BadRL [17]

We select BadRL for its design focus on minimizing the poisoning rate. It uses a pre-trained Q-
network to identify states where the target action is most harmful, and adds a mutual information
regularizer. While our threat model assumes the attacker has no control over training, we relax this
assumption to adapt BadRL and customize it for behavior cloning, which lacks a value function.
Instead of using Q-value, we estimate the attack value using the log-probability gap between the
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Table 12: Applying BadRL on Behavior Cloning (medium task).
PR(%) Reward (original / benign / poisoned) ADE (original / benign / poisoned) MVR (original / benign / poisoned)

10 (w/o. BadRL) 180.30 / 183.59 / 34.77 0.72 / 2.14 / 70.21 0.42 / 0.45 / 0.71
8 (w. BadRL) 180.30 / 86.16 / 36.81 0.72 / 2.29 / 71.14 0.42 / 0.44 / 0.69
6 (w. BadRL) 180.30 / 185.43 / 45.38 0.72 / 2.18 / 75.48 0.42 / 0.41 / 0.66

Table 13: Attack effectiveness under two weather conditions on the medium task.

Weather Algorithm Original Reward Benign Reward Poisoned Reward Original ADE Benign ADE Poisoned ADE Original MVR Benign MVR Poisoned MVR

Fog BC 153.26 156.05 31.03 1.08 3.21 73.72 0.55 0.60 0.74
Coptidice 271.20 253.22 40.45 0.42 2.90 83.32 0.30 0.39 0.89

Rain BC 117.19 119.33 22.60 1.80 4.79 75.73 0.68 0.73 0.78
Coptidice 207.39 201.28 29.68 0.70 2.33 85.01 0.40 0.45 1.00

Normal BC 180.30 183.59 34.77 0.72 2.14 70.21 0.42 0.45 0.71
Coptidice 319.06 309.67 42.58 0.28 0.93 83.32 0.23 0.15 1.00

optimal and target actions. We poison the top-k% highest-gap states, and modify the action to the
target. We then introduce the mutual-information regularizer that maximizes the similarity between
parameter-space gradients produced by triggered and clean versions of the same state. Tab. 12 shows
that BadRL can help reduce 4% of the poisoning rate.

E.7 Influence of different weather conditions on attack effectiveness

To assess robustness under varying weather, we simulate fog and rain in the simulator. For fog, we
impair LiDAR accuracy by randomly dropping 5% of the LiDAR points from the ego car’s state
vector and setting those points to 0. For rain, we reduce tire-road friction by lowering the wheel
friction parameter in the ego car’s dynamics model from the default value of 0.9 to 0.5. We evaluate
in the medium tasks using BC and Coptidice trained agents, the target action is “sudden left turn”
and the trigger pattern is “sync-bypass”, poisoning rate as 10%, following the same setup as Tab. 2
in the paper. The results are presented in Tab. 13. First, we observe that the noise will degrade the
clean model’s performance. For backdoored policies, the injected trigger still remains effective, as
evidenced by a clear performance gap between the benign and poisoned metrics. This demonstrates
that our attack can still remain effective under different weather conditions, although the benign
metrics are influenced due to the presence of the noise. All results are averaged over 100 trajectories.
We will include these results in our next version.

E.8 Influence of velocity on attack effectiveness

During our tests, we observed that trigger events—for example, two cars synchronously bypassing at
a speed of 60—could activate the ego car’s target action across a broad range of speeds from 25 mph
to 80 mph. We tried to add patch trajectories that contain bypassing behavior with different velocities
but it did not succeed in isolating the trigger effect to a specific speed of 60 mph as initially intended.
Given these challenges, a precise velocity specification does not currently serve as a reliable trigger.
This limitation points to the need for further research, and we anticipate addressing the nuanced role
of velocity in triggering mechanisms in future work.

E.9 Physical world deployment

We leave the deployment on the physical world system as our future work as it requires a large-scale
experiment with many engineering efforts, thus it is out of the scope of this paper, as our main goal is
to provide a proof of concept of using vehicle trajectory as the trigger. However, we argue that the
generated triggers are realizable in the physical world, as it is obtained through the behavior model
that strictly follows the real-world vehicle’s physical dynamics. Although we do not conduct physical
world experiments, we provide 3D simulation in our demo video, where the attacker vehicle and ego
car follow real-world constraints. Finally, to the best of our knowledge, there is no existing work
that conducts evaluation in physical-world environments. They demonstrate the effectiveness of the
attack on the simulator as an initial exploration.
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper has no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4, we provide all information to reproduce the main experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper has no results related to statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will provide a clear description about how to use the poisoned model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 4 and Appendix. We add proper references to the assets we use in
the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper has no experiments related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper introduces no such risk.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: LLM is only used for editing and formatting of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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