
EvoPrompting: Language Models for Code-Level
Neural Architecture Search

Angelica Chen∗
New York University

angelica.chen@nyu.edu

David M. Dohan†
OpenAI

david@ddohan.com

David R. So†
Jane Street

david.r.so.ai@gmail.com

Abstract

Given the recent impressive accomplishments of language models (LMs) for code
generation, we explore the use of LMs as general adaptive mutation and crossover
operators for an evolutionary neural architecture search (NAS) algorithm. While
NAS still proves too difficult a task for LMs to succeed at solely through prompting,
we find that the combination of evolutionary prompt engineering with soft prompt-
tuning, a method we term EVOPROMPTING, consistently finds diverse and high
performing models. We first demonstrate that EVOPROMPTING is effective on the
computationally efficient MNIST-1D dataset, where EVOPROMPTING produces
convolutional architecture variants that outperform both those designed by human
experts and naive few-shot prompting in terms of accuracy and model size. We then
apply our method to searching for graph neural networks on the CLRS Algorithmic
Reasoning Benchmark, where EVOPROMPTING is able to design novel architec-
tures that outperform current state-of-the-art models on 21 out of 30 algorithmic
reasoning tasks while maintaining similar model size. EVOPROMPTING is success-
ful at designing accurate and efficient neural network architectures across a variety
of machine learning tasks, while also being general enough for easy adaptation to
other tasks beyond neural network design.

1 Introduction

Scaling of Transformers (Vaswani et al., 2017) has produced language models (LM) with impressive
performance. Beyond achieving state-of-the-art results on conventional natural language processing
tasks, these LMs demonstrate breakthrough technical capabilities, such as learning how to code
(Chen et al., 2021), doing math (Noorbakhsh et al., 2021), and solving reasoning problems (Wei
et al., 2022). Yet, despite these strides, several works have noted LMs’ current limitations in solving
complex problems and creating novel solutions (Qian et al., 2022; Dakhel et al., 2022). In this work,
we improve upon a base LM’s ability to propose novel and diverse solutions to complex reasoning
problems by iteratively evolving in-context prompts and prompt-tuning the LM. We call this technique
EVOPROMPTING and demonstrate its success on the difficult task of deep learning architecture design.
Our key finding is that, while LMs perform poorly at designing novel and effective neural architectures
via naive few-shot prompting, EVOPROMPTING enables LMs to create novel and effective deep
neural architectures, particularly when combined with prompt-tuning methods.

∗Work done while a Student Researcher at Google DeepMind.
†Work done while at Google DeepMind.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: An overview of EVOPROMPTING. After initializing the search with a handful of manually
designed program seeds, the meta-learning loop begins. First, our code-pretrained LM uses the seeds
as in-context prompt examples to generate candidate architectures. Those candidate architectures
are then trained on the task training data and evaluated on the task validation set. Next, the most
fit members of the population are selected as in-context examples for the next meta-learning loop
and all evaluated individuals are used as training data for prompt-tuning the LM. From there, the
meta-learning loop begins again.

EVOPROMPTING is based on the recently popularized practice of in-context prompting. Prompting is
the technique of conditioning a LM’s decoded output on a custom prefix known as a prompt, which
can include natural language task instructions or a few input-output examples. The prompt is used
only at inference time and requires no gradient updates (Brown et al., 2020). In past work, prompting
has been demonstrated to elicit impressive performance on a wide variety of tasks without requiring
task-specific fine-tuning (Sanh et al., 2021; Wei et al., 2022; Kojima et al., 2022). Here, we leverage
LM prompting for the task of designing improved deep learning architectures.

To engineer adequately powerful prompts, we draw inspiration from existing ideas in the field of
neural architecture search. There, evolution has long been used to search over discrete spaces to
efficiently discover improved deep learning architectures (Yao, 1999; Real et al., 2017). However,
evolutionary approaches typically require careful manual design of a discrete search space (e.g. a
small set of known convolutional neural network components, as in Real et al. (2017) or TensorFlow
primitives, as in So et al. (2021)). As a result, the performance of the evolutionary algorithm is
then sensitive to and possibly limited by the design of the search space. In EVOPROMPTING the
LM’s vocabulary replaces the search space, which both increases the flexibility of the search and
reduces reliance on manual design. The LM is also an adaptive mutation/crossover operator, in the
sense that it can be improved round over round via prompt-tuning. Furthermore, EVOPROMPTING
also improves on naive few-shot prompting by using an evolutionary search approach to iteratively
improve the in-context examples for few-shot prompting.

To demonstrate the effectiveness of this method, we first do extensive testing and analyses on
the relatively low-compute problem of MNIST-1D (Greydanus, 2020). The key finding of these
experiments is that EVOPROMPTING is capable of producing conventional convolutional architectures
superior to published manually designed models (Section 4.1). In Section 4.2 we then apply our
method to the more challenging task of designing graph neural networks using problems from
the CLRS Algorithmic Reasoning Benchmark (Veličković et al., 2022), where EVOPROMPTING
generates novel architectures that outperform state-of-the-art models on 21 out of 30 algorithmic
reasoning tasks (Appendix 3).

The contributions of this work are summarized as follows:

1. We propose EVOPROMPTING, a method that utilizes evolutionary search to create and
curate data to improve LM in-context prompting examples. Although this work focuses on
the specific task of neural architecture design to develop this method, EVOPROMPTING is
generally applicable to LM tasks that rely on in-context learning (ICL) or prompt-tuning.

2. A study applying LMs to code-level neural architecture design. Our experiments demonstrate
that applying few-shot prompting alone to neural architecture design is unsuccessful, but few-

2



shot prompting with EVOPROMPTING enables LMs to create architectures that outperform
those designed by human experts.

3. Novel graph neural network architectures that were discovered using EVOPROMPT-
ING. These architectures outperform the current state-of-the-art architecture, Triplet-
GMPNN (Ibarz et al., 2022), on 21 out of 30 CLRS Algorithmic Reasoning Benchmark
tasks (Appx. 3).

2 Related Work

LMs for code generation Scaling Transformers (Vaswani et al., 2017) is currently a popular route
for reliably creating state-of-the-art natural language systems (Brown et al., 2020; Du et al., 2021;
BigScience Workshop et al., 2022; Zhang et al., 2022; Thoppilan et al., 2022; Chowdhery et al.,
2022). Many works have observed that large LMs are capable of performing technical tasks such
as writing code (Chen et al., 2021), doing math (Noorbakhsh et al., 2021), and solving complex
reasoning problems (Wei et al., 2022). Our work is most closely related to efforts that have applied
LMs to coding tasks (Chen et al., 2021; Odena et al., 2021; Xu et al., 2022; Wang et al., 2021; Ahmad
et al., 2021; Feng et al., 2020), since our technique proposes architectures in code.

Prompting Brown et al. (2020) demonstrated that LMs can be prompted with in-context examples
to steer LM decoding towards solving problems in-context without gradient updates. Numerous works
have utilized this prompting to further boost LM abilities (Sanh et al., 2021; Wei et al., 2022; Kojima
et al., 2022). Others have focused on optimizing these prompts (Min et al., 2022; Liu et al., 2021)
as via approaches such as augmentation with retrieval systems (Rubin et al., 2021), permutations
of few-shot examples (Lu et al., 2021; Zhao et al., 2021), generating prompts via LMs (Zhou et al.,
2022), and instruction-tuning (Wei et al., 2021; Ouyang et al., 2022; Sanh et al., 2021). From the
perspective of Dohan et al. (2022), prompts are parameters that can be tuned using probabilistic
inference techniques. Brooks et al. (2022) proposes using few-shot prompts to implement both the
rollout policy and world model of a policy iteration algorithm. Our EVOPROMPTING method extends
these efforts by proposing evolutionary search as a means to both better design prompts for ICL and
tune the base LM to use the prompt more effectively.

Evolutionary Algorithms Our method is closely related to evolutionary neural architecture search
(NAS) (Real et al., 2017, 2018; Elsken et al., 2018; So et al., 2019; Liu et al., 2020), in which
architectures are represented as discrete DNAs, and evolved and filtered based on fitness metrics
that assess architecture performance. However, our method can search over arbitrary strings of
code, whereas conventional evolutionary NAS algorithms rely on hand-crafted search spaces that
can strongly bias and contrain the search (Li & Talwalkar, 2019; Sciuto et al., 2019; Bender et al.,
2020; Real et al., 2020; So et al., 2021). A work close to ours is Lehman et al. (2022), in which an
LM is fine-tuned to produce Python code diffs given one of three fixed messages that describe what
should be changed, and then used as the mutation operator in an evolutionary algorithm. Their work
is validated on the Sodarace domain. Our work differs in that we use an LM as a crossover operator,
without specifying the class of changes to make, which may offer greater flexibility. Furthermore,
we evaluate our approach on the real-world task of NAS, rely on mixed temperature sampling of the
LM for diversity instead of using a QD algorithm, and also use prompt-tuning in our algorithm. We
choose not to use a QD algorithm such as MAP-Elites since this approach requires the design and
discretization of a descriptor space, which is complex and difficult to hand-design for the space of all
possible neural networks.

Another concurrent work is Meyerson et al. (2023), which uses an LM as a crossover operator to
produce variations of text-based genotypes in the domains of symbolic regression, text sentiment,
images, and Sodaracer programs. Like Lehman et al. (2022), they use MAP-Elites to trade off quality
with diversity in two of the domains and demonstrate that their overall algorithm reliably produces a
diverse range of outputs. They additionally demonstrated performance comparable to state-of-the-art
approaches on the toy task of symbolic regression. Their study varies from ours in a number of
ways – we apply our algorithm to the real-world task of NAS, we optimize for a tradeoff between
state-of-the-art task performance and model size, we condition on target performance in our prompts,
we do not use MAP-Elites, and we use prompt-tuning to iteratively improve the LM’s crossover
abilities instead.

3



3 EVOPROMPTING Method

3.1 Architecture search problem formulation

Let our target task be denoted by T and D be a dataset consisting of input-output pairs (x, y) ∈ D
for task T . Define the probability distribution πθ : V → {0, 1} over vocabulary V as a language/code
model parameterized by θ, from which we can sample code segments c ∈ V∗ (for V∗ the Kleene
closure of V , i.e. the set of all concatenations of symbols in V). We also have an evaluation function
EVALT (c,D) : V∗ × D → R that trains the model architecture given by code c on D and outputs
some real-valued fitness score s ∈ R, which can be a function of model accuracy and other model
characteristics. Our ultimate goal is to identify some set of code samples c ∼ V∗ that define neural
network architectures that, when trained on D, maximize the reward EVALT (c,D).

3.2 LMs for evolutionary crossover and mutation

The goal of our algorithm is to generate a set C consisting of k neural network architectures that
maximize the reward EVALT (c,D) for arbitrary pairs of (D, T ):

arg max
C={c | c∼πθ}
|C|=k

Ec∈CE(x,y)∈D [EVALT (c,D)] (1)

Since this optimization problem is generally intractable, we turn to a black-box evolutionary approach
for iteratively generating, scoring, and selecting the best neural network architectures. Indeed,
evolution has been demonstrated to perform particularly well in this domain because of how sparse
high quality solutions tend to be (Real et al., 2017, 2018). Although evolution has been used for
architecture search many times before (Real et al., 2017, 2018; Elsken et al., 2018; So et al., 2019),
we improve upon this approach by using an LM for crossover and mutation operations.

Using an LM in this manner has multiple appealing properties. While past evolutionary approaches
for neural architecture search have required careful design and specification of a discrete search space
(e.g. the space of high level modules (Real et al., 2018; So et al., 2019), TensorFlow statements (So
et al., 2021), or basic mathematical operations (Real et al., 2020)), our algorithm’s search space
includes any neural network architecture that can be represented in Python. This allows for greater
flexibility and diversity of the output architectures, and reduces the amount of manual design and
human bias involved in the algorithm. Furthermore, modern pre-trained LMs are typically trained
on massive datasets containing a significant number of source code files. This pre-training process
encodes useful knowledge about code structure and functionality that is not otherwise available
in evolutionary algorithms. Lastly, LMs can also be used as self-adaptive crossover operators, in
which the crossover operator is incrementally trained round after round to generate higher reward
crossovers.

3.3 EVOPROMPTING meta-learning algorithm

Our complete algorithm is described in Algorithm 1. At the core of our algorithm is a scoring function,
which describes the general “fitness" of a model on the task at hand. Since higher accuracy can often
be achieved simply by increasing the number of parameters in a model, we use the negative product
of the validation error and the model size as the fitness (see step 6 in Algorithm 3). More complicated
objective functions have previously been used for dual objective neural architecture search (Bender
et al., 2020), but we find this simple product works best in our case and requires minimal tuning.
Generally the higher the fitness, the better (with some caveats, noted in our description of fitness-based
selection below).

The end-to-end meta-learning algorithm has several stages, which we describe below:

Initialization We start by setting our global historical populationG to the empty list and initializing
our current population P with a few seed architectures that are known to be well-designed (step 3 in
Algorithm 1), which warm-starts the search (So et al., 2019). These seed models are evaluated using
the same EVALT (c,D) function that is used to evaluate new candidate models (see below).

4



Algorithm 1 Complete meta-learning evolutionary algorithm using pθ as a crossover and mutation
operator.

1: Input: LM πθ0 , dataset D, task T , T number of rounds, m number of few-shot prompts per
round, n number of samples to generate per prompt, k number of in-context examples per prompt,
p number of survivors to select per generation, α the upper threshold for the test error

2: G← []
3: P ← INITIALIZEPOPULATION(p)
4: t← 0
5: while t < T do
6: C ← CROSSMUT(πθt , P,m, k, n)
7: CEVALED ← FILTERANDEVAL(C, T ,D, α)
8: G← G+ CEVALED

9: if t < T − 1 then
10: P ← GETTOP(G, p)
11: θt+1 ← TRAIN(θt, CEVALED \ P )
12: end if
13: t← t+ 1
14: end while
15: Return GETTOP(G, p)

Algorithm 2 The crossover and mutation algorithm, CROSSMUT(πθt , P,m, k, n), where
Uniform(P ) denotes the uniform distribution over the set P . The set of potential parents P consists
of the top examples from the previous round.

1: Input: LM πθ, population of code samples and fitnesses P = {(c, s) | c ∈ V∗, EVALT (c,D) =
s}, m number of few-shot prompts to create, k number of in-context examples in each prompt,
and n number of samples to sample per prompt.

2: C ← []
3: i← 0
4: while i < m do
5: E ← {xj}kj=1, where xj

i.i.d.∼ Uniform(P )
6: p← MAKEFEWSHOTPROMPT(E)

7: Ci ← {cj}nj=1, where cj
i.i.d.∼ πθ(· | p)

8: C ← C + Ci
9: i← i+ 1

10: end while
11: Output: C

Algorithm 3 The algorithm for filtering and scoring child models, FILTERANDEVAL(C, T ,D, α).
1: Input: set of code samples C, task T , dataset D, evaluation function EVALT (c,D), upper

threshold for error α
2: CEVALED ← []
3: for c in C do
4: c.error← EVALT (c,D)
5: if c.error < α then
6: s← −c.model_size× c.error
7: CEVALED ← CEVALED + [(c, s)]
8: end if
9: end for

10: Output: CEVALED

Crossing over and mutating the parent models To mutate and apply crossover to the parents P
selected in the last step, we use both the source code and the evaluation metrics of each model in P
to create few-shot prompts.

In the last line of the prompt, we create a target set of metrics to condition πθ’s generations on that
indicate the desired validation accuracy and model size of the proposed architecture. We set the target

5



model size as 90% of the minimum model size of the parent models, rounded to the nearest 100
parameters, and the target validation accuracy as 102% of the maximum validation accuracy of the
parent models, rounded to the nearest tenth of a percent. We create m such prompts per round, each
with k in-context examples selected uniformly at random from P . An example of a prompt is shown
in Listing 1.

1 """ Metrics:
2 {’num_params ’: ’4800’, ’val_accuracy ’: ’0.865’}
3 """
4 class Model(nn.Module):
5 @nn.compact
6 def __call__(self , x):
7 x = nn.Dense(features =10)(x)
8 return x
9

10 """ Metrics:
11 {’num_params ’: ’4300’, ’val_accuracy ’: ’0.880’}
12 """
13 class Model(nn.Module):

Listing 1: The format of our few-shot prompts. In practice we use 2-shot prompts but we omit the
second in-context example here for brevity.

Finally, we use πθ to generate n samples per prompt, yielding a total of n×m child samples per round
of evolution. We denote this portion of the algorithm as CROSSMUT(πθt , P,m, k, n) (Algorithm 2
and step 6 of Algorithm 1).

Filtering and scoring child samples To score and filter child samples c generated by πθ, we use
the evaluation function EVALT (c,D), which trains the model encoded by c on the dataset D and
returns the lowest validation error encountered during training. All child models are trained for the
same number of steps, with the same optimizer hyperparameters. Since our fitness function can
potentially be gamed by generating arbitrarily small models, we also add a validation error threshold
α, which is the upper limit of the validation error that a model can incur without being removed from
G, the global population. We refer to this function as FILTERANDEVAL(C, T ,D, α) (Algorithm 3
and step 7 of Algorithm 1). Lastly, we add the remaining trainable models and their associated fitness
scores into G (step 8 of Algorithm 1).

Fitness-based selection After evaluating all child models in the current round, we apply fitness-
based selection to identify top candidate models for crossover (step 10 of Algorithm 1). We denote
this as GETTOP(G, p), which refers simply to selecting the p models with the highest fitness scores
from G. Once these models have been selected, they are permanently removed from the population
and cannot be used again as parents for crossover.

Training πθt Lastly, all child models generated in the current round that were not previously
selected for crossover (i.e. CEVALED \ P ) are used to prompt-tune πθ for the next round (step 11 of
Algorithm 1).

4 Experiments and Results

We evaluate our meta-learning algorithm on two datasets – MNIST-1D (Greydanus, 2020) and the
CLRS algorithmic reasoning benchmark (Veličković et al., 2022). While the former benchmark is
lightweight and permits us to do a more thorough analysis of our algorithm, the latter is a newer
benchmark that covers 30 different algorithms with more headroom for discovering novel architectures
with better performance.

In all of our experiments, our πθ0 (i.e. the crossover operator) is a 62B parameter PALM
model (Chowdhery et al., 2022) pre-trained on 1.3T tokens of conversational, web, and code doc-
uments. It was additionally fine-tuned on a corpus of 64B tokens containing near-deduplicated,
permissively-licensed Python source code files from Github. We always sample from πθ0 with

6



mixed temperature sampling, in which the sampling temperature is selected uniformly from
[0.2, 0.6, 0.8, 1.0]. Between each round, the model is prompt-tuned (Lester et al., 2021) for 5
epochs with a soft prompt length of 16, batch size of 16, and learning rate of 0.1 (as described in
Section 3.3 and Step 11 of Algorithm 1). Unless stated otherwise, we run 10 rounds of evolution with
10 prompts per round and 16 samples generated per prompt, yielding a total of 160 models generated
per round and 1600 models generated during the entire search. Duplicate models and un-trainable
models are not scored, but do count into the 1600. All other EVOPROMPTING hyperparameters are
listed in Appendix A.1.

4.1 MNIST-1D

Dataset We apply our method first to MNIST-1D (Greydanus, 2020), a one-dimensional, scaled-
down version of the MNIST-1D dataset containing examples that are 20 times smaller than the
original MNIST dataset. Each example is only 40-dimensional, with 4000 examples in the training
dataset and 1000 in test. Since there is no validation dataset, we randomly set aside 500 examples
from the training dataset to use as the validation dataset. Despite being more lightweight, MNIST-1D
distinguishes more between different architecture types (Greydanus, 2020) than its larger counterpart
MNIST (LeCun et al., 1998).

Meta-learning set-up Throughout the model search we use the AdamW optimizer (Loshchilov &
Hutter, 2019) to train each child model on a single NVIDIA Tesla P100 GPU for 8000 steps, with
learning rate 0.01 and batch size 128. We score child models according to the best validation accuracy
achieved during training. We also seed the search with 4 seed models - the 3 hand-designed neural
baselines from the original MNIST-1D paper (Greydanus, 2020) (GRU, CNN, and MLP) and a fourth,
larger CNN model of our own design. All four are implemented with Flax (Heek et al., 2020). We
refer the reader to Appendix A.2 for the source code of these seed models.

Baselines We compare EVOPROMPTING with the following baselines:

• Naive few-shot prompting: This baseline simply generates code samples c ∼ πθ0(·|p),
where p is a 2-shot prompt constructed using in-context examples randomly selected from
the seed models (Listing 1). This is essentially an ablation of steps 7-12 in Algorithm 1 with
T = 1. We increase the number of samples generated per prompt for the naive prompting
baseline such that the total number of samples generated by πθ matches that of the other
baselines.

• EVOPROMPTING ( - prompt-tuning): We run the entire algorithm as is, but without prompt-
tuning between each round. This is an ablation of step 11 from Algorithm 1

• EVOPROMPTING (random parents): Instead of selecting the most fit models from the last
round as parents for the next round, we select parents randomly. This is an ablation of Step
10 in Algorithm 1, which is the GETTOP(G, p) step.

EVOPROMPTING finds smaller and more accurate models Figure 2a shows a comparison of the
test error and model size of the top 20 models discovered by EVOPROMPTING compared with those
of our seed models and three baselines. The points approximate a Pareto frontier, below which each
algorithm cannot improve on one dimension without hurting the other. EVOPROMPTING possesses
the Pareto frontier closest to the origin, indicating that it finds more optimal models in terms of
accuracy and size. In fact, many models in EVOPROMPTING’s top 20 discovered models are orders
of magnitude smaller than those of the other baselines, while still having lower test error.

We also note that – on this task in particular – EVOPROMPTING excels especially at optimizing
convolutional architectures. Many of the top 20 models are narrower and deeper convolutional
architectures, with smaller strides, less padding, and no dense layers. These models consistently
perform better than the shallower, denser, and wider convolutional architectures seen in earlier rounds
of the model search.

Another important aspect of a meta-learning algorithm is the relationship between the number of
individuals evaluated and the maximum fitness observed so far, i.e. the sample efficiency. Neural
architecture search can be an expensive process, with the most open-ended searches requiring the
evaluation of trillions of individuals (Real et al., 2020). Thus, it is crucial to identify fit candidates

7



(a) Pareto frontiers of the model size versus test
error of the top 20 experiments for each variation
of the MNIST1D model search. Frontiers closer
to the origin are considered more desirable.

(b) Number of child models generated versus max-
imum fitness in sample, as estimated using 100
bootstrap samples of size 20 for each point along
the x-axis.

Figure 2: EVOPROMPTING discovers smaller and better performing architectures on MNIST-1D than
alternative search methods.

Figure 3: Number of child models generated versus maximum fitness of top model seen so far (as
estimated using 100 bootstrap samples of size 20 for each point along the x-axis) when searching over
neural network models for three CLRS tasks. As mentioned in Section 4.2, these algorithms were
selected because our preliminary analyses indicated that they had the most headroom for architectural
improvements.

using as few samples as possible. Figure 2b compares how the fitness of the best-performing child
model improves as a function of the number of child samples generated thus far. The random parents
baseline plateaus the quickest, reaching a maximum fitness by the time approximately 200 individuals
have been generated. Furthermore, the maximum fitness it reaches is significantly worse than that
of the other experiments. On the other hand, EVOPROMPTING without prompt-tuning and normal
EVOPROMPTING do not plateau until much later on. EVOPROMPTING’s plateau is the highest and
therefore fitter on average than the individuals discovered by any of the other experiments.

It is also evident from both Figure 2a and 2b that performance suffers when any individual component
is removed. Interestingly, Figure 2a indicates that prompting with randomly selected parents combined
with prompt-tuning is no more effective than naive prompting alone. This highlights the importance
of selecting helpful in-context examples, particularly in a task for which we assume that less training
signal exists in the pre-training data. However, selecting more fit models as in-context examples
without prompt-tuning also does not perform nearly as well as our full method.

Trajectory over meta-learning rounds We also explored the trajectory of our meta-learning
algorithm round over round, as shown in Appendix A.3. In general, we observe that EVOPROMPTING
starts out further away from the origin (in round 0) and ends up closest to the origin in round 10,
which signifies that it discovers – on average – the smallest and most accurate models in the last
round. However, the search does not always yield improvements on both axes between consecutive
rounds. In rounds 0-2 and 6-10, EVOPROMPTING improves test error while trading off model size.
On the other hand, both dimensions are simultaneously improved upon in rounds 3-5.

8



4.2 CLRS

Although the MNIST-1D task offers an efficient and practical setting for evaluating a meta-learning
algorithm, CNN architectures already perform fairly well on this task and neural image classification
architectures have been extensively studied as a whole. There also exists the possibility that our LM
has seen many convolutional architectures in its pre-training data. Instead, we turn to a different
learning task and class of neural network architectures in order to assess whether our meta-learning
framework generalizes to other tasks, datasets, and neural architectures.

Dataset The CLRS algorithmic reasoning benchmark (Veličković et al., 2022) evaluates the ability
of neural networks to learn algorithmic reasoning across a set of 30 classical algorithms covered
in the Introduction to Algorithms textbook by Cormen, Leiserson, Rivest and Stein (Cormen et al.,
2009). This benchmark is useful not only as a difficult logical reasoning task for neural networks, but
also as a measure of a neural network’s algorithmic alignment (Xu et al., 2020). In brief, algorithmic
alignment refers to a model’s ability to reason like an algorithm (i.e. using the computation graph
for a task), rather than relying upon memorization or other less sample efficient learning strategies.
Although a model can approximate an algorithm by pattern-matching against similar inputs or relying
on other shortcuts, it cannot generalize to arbitrarily long inputs or edge cases without learning the
computation graph underlying the algorithm.

Accordingly, the CLRS benchmark represents the algorithms’ inputs and outputs as graphs, and the
steps of the algorithm as a trajectory of operations over the input graph. This problem setup can
be straightforwardly processed by graph neural networks, which is explored in Ibarz et al. (2022).
They find that a Triplet-GMPNN model (a message-passing neural network (Gilmer et al., 2017) with
gating and triplet edge processing) exhibits the best performance when trained and evaluated across
all 30 algorithms at once.

Table 1: A comparison of OOD accuracy and model size (in number of parameters) of models newly
discovered by EVOPROMPTING on select CLRS tasks where EVOPROMPTING has discovered more
accurate architectures without large increases in model size, compared with the baseline model (the
Triplet-GMPNN from Ibarz et al. (2022)). OOD accuracy numbers for the baseline model are from
Ibarz et al. (2022). For the full table of results on all CLRS tasks, including accuracies of our own
implementation of the Triplet-GMPNN, see Appendix 3.

CLRS Task Best Performing Model Model Size ↓ OOD Accuracy ↑
Ours Baseline Ours Baseline

Articulation Points QUADNODEMINMAX 497969 531913 93.5 ± 1.8% 88.3± 2.0%
BFS MAXMEAN 522931 523963 100.0 ± 0.0% 99.7± 0.0%
Bubble Sort CONCATREP 568533 524477 88.9 ± 2.8% 67.7± 5.5%
DFS DIV2MEAN 660158 661190 68.1 ± 1.4% 47.8± 4.2%
Floyd Warshall CONCATREP 669145 625089 61.4 ± 0.8% 48.5± 1.0%
Heapsort CONCATREP 703710 659654 69.9 ± 4.2% 31.0± 5.8%
Insertion Sort DIV2MEAN 523445 524477 89.5 ± 2.6% 78.1± 4.6%
Quicksort DIV2MEAN 524727 525759 85.2 ± 4.3% 64.6± 5.1%
Task Scheduling TANHEXPANDTRIPLETS 262333 262333 88.2 ± 0.4% 87.3± 0.4%

Meta-learning set-up Similar to our MNIST-1D set-up, we use the AdamW optimizer to train
each child model on a single NVIDIA Tesla P100 GPU. However, since most of the explored child
models were much larger than the MNIST-1D models, we only trained each child model for 2000
steps. Anecdotally, we observed that the performance of different models often diverged by 2000
steps, which provided sufficient signal for the model search process. We otherwise followed the
hyperparameters for single-task training in Ibarz et al. (2022) and evaluated models using validation
accuracy.

Unlike our MNIST-1D set-up, we only search over the triplet representations of a Triplet-GMPNN
model (see Ibarz et al. (2022) for more details), rather than the entire graph processor. We also
seed the search with nine different seed models - each a variant of a Triplet-GMPNN model with
a different triplet representation. Each seed triplet representation incorporates a minor tweak of a
single component of the original triplet representation designed by Ibarz et al. (2022). These include
a fully-connected output layer, a sum aggregation, fully-connected node/edge/graph representations,

9



a simple linear triplet representation, and a bilinear representation (Mnih & Hinton, 2007). All nine
are implemented with Haiku (Hennigan et al., 2020), an object-oriented neural network library for
Jax (see Appendix A.5 for the source code of the seed models.)

Generalizing beyond image classification models We search using EVOPROMPTING on 3 indi-
vidual algorithms in the CLRS benchmark – the articulation points, Graham scan, and Kruskal’s
minimum spanning tree algorithms. We select these algorithms because our preliminary analyses
with hand-designed architectures showed that they had the most headroom for improvement, although
we found that the discovered architectures transfer well to other CLRS benchmark tasks as well
(Appx. 3). Our search results are shown in Figure 3. EVOPROMPTING continues to find models
that are more "fit" than our other two baselines, though we observed that the results also show more
variation than our results for MNIST-1D did.

Analyzing newly discovered models Our search across triplet representations yielded several new
designs that we sought to evaluate across all algorithms in the CLRS benchmark. Although these new
models were discovered in model searches over single algorithms, they oftentimes generalized to
other algorithms that were unseen during the model search. Figure 5 shows the trajectory of validation
accuracy during training and Table 1 provides OOD accuracies for these models on a few select
algorithms. (We defer the reader to Appendix A.4 for the full source code of each newly discovered
model and Table A.6 for the full list of OOD accuracies for every algorithm in the CLRS benchmark.)

We note that the model search suggested several simple but effective changes. For example, instead of
taking the maximum of the triplet representation, the QUADNODEMINMAX model uses quadruplet
node representations instead of triplets, and it subtracts the minimum of the quad representation from
the max instead. CONCATREP represents the node, edge, and graph representations as a concatenation
of a projection feedforward layer, and MAXMEAN takes the maximum of the triplet representations
prior to taking the mean and passing it through the output dense layer. DIV2MEAN scales each of
the node representations by 1/2 and uses a mean aggregation of the triplet representations instead of
the max aggregation. TANHEXPANDTRIPLETS applies additional dimension expansion to the triplet
representations and applies a hyperbolic tangent function after the max aggregation. See Appx. A.4
for the full code of each discovered model.

Of the 5 newly discovered models that we chose to analyze, CONCATREP is the only one that
increases model size. However, as shown in Table 1, CONCATREP frequently yielded improvements
in OOD accuracy that far exceeded the percent increase in model size. For instance, on the heapsort
algorithm CONCATREP increased OOD accuracy by 125.19% while only increasing model size by
6.68% over the baseline. The other four newly discovered models shown in Table 1 simultaneously
improved OOD accuracy while decreasing model size on the articulation points, BFS, DFS, insertion
sort, quicksort, and task scheduling algorithms. On the rest of the CLRS algorithms (Table A.6), our
newly discovered models typically achieved OOD accuracy comparable to or better than the baseline,
while maintaining similar model size.

5 Conclusion

We have shown that embedding a pre-trained LM in an evolutionary algorithm significantly improves
the LM’s performance on the task of neural architecture design. Our approach has demonstrated
success at not only optimizing convolutional architectures for the MNIST-1D task, but also at
developing new kinds of GNNs for the CLRS algorithmic benchmark. This demonstrates: 1) using
evolutionary techniques can vastly improve the in-context capabilities of pre-trained LMs, and 2)
EVOPROMPTING can discover novel and state-of-the-art architectures that optimize for both accuracy
and model size. Furthermore, EVOPROMPTING is general enough to be easily adapted to search for
solutions to other kinds of reasoning tasks beyond NAS. We leave the adaptation of EVOPROMPTING
for other tasks to future work.

However, our study is limited by the lack of an extensive comparison against other standard NAS
techniques because EVOPROMPTING was designed for open-ended search, whereas other techniques
were not, which would introduce a potential confounder. We include one such comparison on
NATS-Bench in Appendix A.7, as well as a discussion of the confounders thereof.

10



6 Acknowledgements

We thank Maarten Bosma, Kefan Xiao, Yifeng Lu, Quoc Le, Ed Chi, Borja Ibarz, Petar Veličković,
Chen Liang, Charles Sutton, and the Google Brain AutoML team for providing valuable discussions
and feedback that influenced the direction of this project. We also thank the Google Student
Researcher program for providing the resources and opportunities necessary for this project to take
place.

References
Ahmad, W. U., Chakraborty, S., Ray, B., and Chang, K.-W. Unified pre-training for program

understanding and generation. ArXiv, abs/2103.06333, 2021.

Bender, G., Liu, H., Chen, B., Chu, G., Cheng, S., Kindermans, P.-J., and Le, Q. V. Can weight
sharing outperform random architecture search? an investigation with tunas. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14311–14320, 2020.

BigScience Workshop, :, Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné,
R., Luccioni, A. S., Yvon, F., Gallé, M., Tow, J., Rush, A. M., Biderman, S., Webson, A.,
Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral, A. V., Ruwase, O.,
Bawden, R., Bekman, S., McMillan-Major, A., Beltagy, I., Nguyen, H., Saulnier, L., Tan, S.,
Suarez, P. O., Sanh, V., Laurençon, H., Jernite, Y., Launay, J., Mitchell, M., Raffel, C., Gokaslan,
A., Simhi, A., Soroa, A., Aji, A. F., Alfassy, A., Rogers, A., Nitzav, A. K., Xu, C., Mou, C.,
Emezue, C., Klamm, C., Leong, C., van Strien, D., Adelani, D. I., Radev, D., Ponferrada, E. G.,
Levkovizh, E., Kim, E., Natan, E. B., De Toni, F., Dupont, G., Kruszewski, G., Pistilli, G., Elsahar,
H., Benyamina, H., Tran, H., Yu, I., Abdulmumin, I., Johnson, I., Gonzalez-Dios, I., de la Rosa, J.,
Chim, J., Dodge, J., Zhu, J., Chang, J., Frohberg, J., Tobing, J., Bhattacharjee, J., Almubarak, K.,
Chen, K., Lo, K., Von Werra, L., Weber, L., Phan, L., allal, L. B., Tanguy, L., Dey, M., Muñoz,
M. R., Masoud, M., Grandury, M., Šaško, M., Huang, M., Coavoux, M., Singh, M., Jiang, M.
T.-J., Vu, M. C., Jauhar, M. A., Ghaleb, M., Subramani, N., Kassner, N., Khamis, N., Nguyen,
O., Espejel, O., de Gibert, O., Villegas, P., Henderson, P., Colombo, P., Amuok, P., Lhoest, Q.,
Harliman, R., Bommasani, R., López, R. L., Ribeiro, R., Osei, S., Pyysalo, S., Nagel, S., Bose, S.,
Muhammad, S. H., Sharma, S., Longpre, S., Nikpoor, S., Silberberg, S., Pai, S., Zink, S., Torrent,
T. T., Schick, T., Thrush, T., Danchev, V., Nikoulina, V., Laippala, V., Lepercq, V., Prabhu, V.,
Alyafeai, Z., Talat, Z., Raja, A., Heinzerling, B., Si, C., Taşar, D. E., Salesky, E., Mielke, S. J.,
Lee, W. Y., Sharma, A., Santilli, A., Chaffin, A., Stiegler, A., Datta, D., Szczechla, E., Chhablani,
G., Wang, H., Pandey, H., Strobelt, H., Fries, J. A., Rozen, J., Gao, L., Sutawika, L., Bari, M. S.,
Al-shaibani, M. S., Manica, M., Nayak, N., Teehan, R., Albanie, S., Shen, S., Ben-David, S.,
Bach, S. H., Kim, T., Bers, T., Fevry, T., Neeraj, T., Thakker, U., Raunak, V., Tang, X., Yong,
Z.-X., Sun, Z., Brody, S., Uri, Y., Tojarieh, H., Roberts, A., Chung, H. W., Tae, J., Phang, J.,
Press, O., Li, C., Narayanan, D., Bourfoune, H., Casper, J., Rasley, J., Ryabinin, M., Mishra,
M., Zhang, M., Shoeybi, M., Peyrounette, M., Patry, N., Tazi, N., Sanseviero, O., von Platen,
P., Cornette, P., Lavallée, P. F., Lacroix, R., Rajbhandari, S., Gandhi, S., Smith, S., Requena, S.,
Patil, S., Dettmers, T., Baruwa, A., Singh, A., Cheveleva, A., Ligozat, A.-L., Subramonian, A.,
Névéol, A., Lovering, C., Garrette, D., Tunuguntla, D., Reiter, E., Taktasheva, E., Voloshina, E.,
Bogdanov, E., Winata, G. I., Schoelkopf, H., Kalo, J.-C., Novikova, J., Forde, J. Z., Clive, J.,
Kasai, J., Kawamura, K., Hazan, L., Carpuat, M., Clinciu, M., Kim, N., Cheng, N., Serikov, O.,
Antverg, O., van der Wal, O., Zhang, R., Zhang, R., Gehrmann, S., Mirkin, S., Pais, S., Shavrina,
T., Scialom, T., Yun, T., Limisiewicz, T., Rieser, V., Protasov, V., Mikhailov, V., Pruksachatkun, Y.,
Belinkov, Y., Bamberger, Z., Kasner, Z., Rueda, A., Pestana, A., Feizpour, A., Khan, A., Faranak,
A., Santos, A., Hevia, A., Unldreaj, A., Aghagol, A., Abdollahi, A., Tammour, A., HajiHosseini,
A., Behroozi, B., Ajibade, B., Saxena, B., Ferrandis, C. M., Contractor, D., Lansky, D., David, D.,
Kiela, D., Nguyen, D. A., Tan, E., Baylor, E., Ozoani, E., Mirza, F., Ononiwu, F., Rezanejad, H.,
Jones, H., Bhattacharya, I., Solaiman, I., Sedenko, I., Nejadgholi, I., Passmore, J., Seltzer, J., Sanz,
J. B., Dutra, L., Samagaio, M., Elbadri, M., Mieskes, M., Gerchick, M., Akinlolu, M., McKenna,
M., Qiu, M., Ghauri, M., Burynok, M., Abrar, N., Rajani, N., Elkott, N., Fahmy, N., Samuel, O.,
An, R., Kromann, R., Hao, R., Alizadeh, S., Shubber, S., Wang, S., Roy, S., Viguier, S., Le, T.,
Oyebade, T., Le, T., Yang, Y., Nguyen, Z., Kashyap, A. R., Palasciano, A., Callahan, A., Shukla,
A., Miranda-Escalada, A., Singh, A., Beilharz, B., Wang, B., Brito, C., Zhou, C., Jain, C., Xu, C.,

11



Fourrier, C., Periñán, D. L., Molano, D., Yu, D., Manjavacas, E., Barth, F., Fuhrimann, F., Altay,
G., Bayrak, G., Burns, G., Vrabec, H. U., Bello, I., Dash, I., Kang, J., Giorgi, J., Golde, J., Posada,
J. D., Sivaraman, K. R., Bulchandani, L., Liu, L., Shinzato, L., de Bykhovetz, M. H., Takeuchi, M.,
Pàmies, M., Castillo, M. A., Nezhurina, M., Sänger, M., Samwald, M., Cullan, M., Weinberg, M.,
De Wolf, M., Mihaljcic, M., Liu, M., Freidank, M., Kang, M., Seelam, N., Dahlberg, N., Broad,
N. M., Muellner, N., Fung, P., Haller, P., Chandrasekhar, R., Eisenberg, R., Martin, R., Canalli,
R., Su, R., Su, R., Cahyawijaya, S., Garda, S., Deshmukh, S. S., Mishra, S., Kiblawi, S., Ott, S.,
Sang-aroonsiri, S., Kumar, S., Schweter, S., Bharati, S., Laud, T., Gigant, T., Kainuma, T., Kusa,
W., Labrak, Y., Bajaj, Y. S., Venkatraman, Y., Xu, Y., Xu, Y., Xu, Y., Tan, Z., Xie, Z., Ye, Z., Bras,
M., Belkada, Y., and Wolf, T. Bloom: A 176b-parameter open-access multilingual language model,
2022. URL https://arxiv.org/abs/2211.05100.

Brooks, E., Walls, L., Lewis, R. L., and Singh, S. In-context policy iteration, 2022. URL https:
//arxiv.org/abs/2210.03821.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan, J., Edwards, H., Burda, Y., Joseph,
N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P.,
Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet,
P., Such, F. P., Cummings, D. W., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A., Guss,
W. H., Nichol, A., Babuschkin, I., Balaji, S. A., Jain, S., Carr, A., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M. M., Brundage, M., Murati, M., Mayer, K., Welinder,
P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., and Zaremba, W. Evaluating large
language models trained on code. ArXiv, abs/2107.03374, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A.,
Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R.,
Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S.,
Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D.,
Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M.,
Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee, K.,
Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scaling language modeling with pathways, 2022.
URL https://arxiv.org/abs/2204.02311.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009. ISBN 0262033844.

Dakhel, A. M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M. C., and Jiang, Z. M. Github
copilot ai pair programmer: Asset or liability? ArXiv, abs/2206.15331, 2022.

Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G., Wu, Y., Michalewski, H.,
Saurous, R. A., Sohl-dickstein, J., Murphy, K., and Sutton, C. Language model cascades, 2022.
URL https://arxiv.org/abs/2207.10342.

Dong, X., Liu, L., Musial, K., and Gabrys, B. NATS-Bench: Benchmarking nas algorithms for
architecture topology and size. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021. doi: 10.1109/TPAMI.2021.3054824. doi:10.1109/TPAMI.2021.3054824.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W.,
Firat, O., Zoph, B., Fedus, L., Bosma, M., Zhou, Z., Wang, T., Wang, Y. E., Webster, K., Pellat,
M., Robinson, K., Meier-Hellstern, K., Duke, T., Dixon, L., Zhang, K., Le, Q. V., Wu, Y., Chen,
Z., and Cui, C. Glam: Efficient scaling of language models with mixture-of-experts, 2021. URL
https://arxiv.org/abs/2112.06905.

Elsken, T., Metzen, J. H., and Hutter, F. Efficient multi-objective neural architecture search via
lamarckian evolution. arXiv: Machine Learning, 2018.

12

https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2210.03821
https://arxiv.org/abs/2210.03821
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2207.10342
10.1109/TPAMI.2021.3054824
https://arxiv.org/abs/2112.06905


Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,
and Zhou, M. Codebert: A pre-trained model for programming and natural languages. ArXiv,
abs/2002.08155, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing for
quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, pp. 1263–1272. JMLR.org, 2017.

Greydanus, S. Scaling *down* deep learning. CoRR, abs/2011.14439, 2020. URL https://arxiv.
org/abs/2011.14439.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre, B., Steiner, A., and van Zee, M. Flax: A
neural network library and ecosystem for JAX, 2020. URL http://github.com/google/flax.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku: Sonnet for JAX, 2020. URL
http://github.com/deepmind/dm-haiku.

Ibarz, B., Kurin, V., Papamakarios, G., Nikiforou, K., Bennani, M. A., Csordás, R., Dudzik, A.,
Bovsnjak, M., Vitvitskyi, A., Rubanova, Y., Deac, A., Bevilacqua, B., Ganin, Y., Blundell, C., and
Veličković, P. A generalist neural algorithmic learner. ArXiv, abs/2209.11142, 2022.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language models are zero-shot
reasoners. ArXiv, abs/2205.11916, 2022.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proc. IEEE, 86:2278–2324, 1998.

Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., and Stanley, K. O. Evolution through large
models. ArXiv, abs/2206.08896, 2022.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale for parameter-efficient prompt tuning,
2021. URL https://arxiv.org/abs/2104.08691.

Li, L. and Talwalkar, A. S. Random search and reproducibility for neural architecture search. ArXiv,
abs/1902.07638, 2019.

Liu, H., Brock, A., Simonyan, K., and Le, Q. V. Evolving normalization-activation layers. ArXiv,
abs/2004.02967, 2020.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen, W. What makes good in-context
examples for gpt-3? In Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures; Deep Learning Inside Out, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P. Fantastically ordered prompts and where
to find them: Overcoming few-shot prompt order sensitivity. In Annual Meeting of the Association
for Computational Linguistics, 2021.

Meyerson, E., Nelson, M. J., Bradley, H., Moradi, A., Hoover, A. K., and Lehman, J. Language
model crossover: Variation through few-shot prompting, 2023. URL https://arxiv.org/abs/
2302.12170.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and Zettlemoyer, L. Rethinking
the role of demonstrations: What makes in-context learning work? ArXiv, abs/2202.12837, 2022.

Mnih, A. and Hinton, G. Three new graphical models for statistical language modelling. In
Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 641–648,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937933. doi:
10.1145/1273496.1273577. URL https://doi.org/10.1145/1273496.1273577.

Noorbakhsh, K., Sulaiman, M., Sharifi, M., Roy, K., and Jamshidi, P. Pretrained language models are
symbolic mathematics solvers too! ArXiv, abs/2110.03501, 2021.

13

https://arxiv.org/abs/2011.14439
https://arxiv.org/abs/2011.14439
http://github.com/google/flax
http://github.com/deepmind/dm-haiku
https://arxiv.org/abs/2104.08691
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2302.12170
https://arxiv.org/abs/2302.12170
https://doi.org/10.1145/1273496.1273577


Odena, A., Sutton, C., Dohan, D. M., Jiang, E., Michalewski, H., Austin, J., Bosma, M. P., Nye, M.,
Terry, M., and Le, Q. V. Program synthesis with large language models. In n/a, pp. n/a, n/a, 2021.
n/a.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal,
S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L. E., Simens, M., Askell, A.,
Welinder, P., Christiano, P. F., Leike, J., and Lowe, R. J. Training language models to follow
instructions with human feedback. ArXiv, abs/2203.02155, 2022.

Qian, J., Wang, H., Li, Z., LI, S., and Yan, X. Limitations of language models in arithmetic and
symbolic induction. ArXiv, abs/2208.05051, 2022.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A.
Large-scale evolution of image classifiers. ArXiv, abs/1703.01041, 2017.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized evolution for image classifier
architecture search. In AAAI Conference on Artificial Intelligence, 2018.

Real, E., Liang, C., So, D. R., and Le, Q. V. Automl-zero: Evolving machine learning algorithms
from scratch. In International Conference on Machine Learning, 2020.

Rubin, O., Herzig, J., and Berant, J. Learning to retrieve prompts for in-context learning. ArXiv,
abs/2112.08633, 2021.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler, A.,
Scao, T. L., Raja, A., Dey, M., Bari, M. S., Xu, C., Thakker, U., Sharma, S., Szczechla, E., Kim, T.,
Chhablani, G., Nayak, N. V., Datta, D., Chang, J., Jiang, M. T.-J., Wang, H., Manica, M., Shen,
S., Yong, Z. X., Pandey, H., Bawden, R., Wang, T., Neeraj, T., Rozen, J., Sharma, A., Santilli, A.,
Févry, T., Fries, J. A., Teehan, R., Biderman, S. R., Gao, L., Bers, T., Wolf, T., and Rush, A. M.
Multitask prompted training enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021.

Sciuto, C., Yu, K., Jaggi, M., Musat, C. C., and Salzmann, M. Evaluating the search phase of neural
architecture search. ArXiv, abs/1902.08142, 2019.

So, D. R., Liang, C., and Le, Q. V. The evolved transformer. ArXiv, abs/1901.11117, 2019.

So, D. R., Mańke, W., Liu, H., Dai, Z., Shazeer, N., and Le, Q. V. Primer: Searching for efficient
transformers for language modeling, 2021. URL https://arxiv.org/abs/2109.08668.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T.,
Baker, L., Du, Y., Li, Y., Lee, H., Zheng, H. S., Ghafouri, A., Menegali, M., Huang, Y., Krikun,
M., Lepikhin, D., Qin, J., Chen, D., Xu, Y., Chen, Z., Roberts, A., Bosma, M., Zhao, V., Zhou, Y.,
Chang, C.-C., Krivokon, I., Rusch, W., Pickett, M., Srinivasan, P., Man, L., Meier-Hellstern, K.,
Morris, M. R., Doshi, T., Santos, R. D., Duke, T., Soraker, J., Zevenbergen, B., Prabhakaran, V.,
Diaz, M., Hutchinson, B., Olson, K., Molina, A., Hoffman-John, E., Lee, J., Aroyo, L., Rajakumar,
R., Butryna, A., Lamm, M., Kuzmina, V., Fenton, J., Cohen, A., Bernstein, R., Kurzweil, R.,
Aguera-Arcas, B., Cui, C., Croak, M., Chi, E., and Le, Q. Lamda: Language models for dialog
applications, 2022. URL https://arxiv.org/abs/2201.08239.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need, 2017. URL https://arxiv.org/abs/1706.03762.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Banino, A., Dashevskiy, M., Hadsell, R., and
Blundell, C. The clrs algorithmic reasoning benchmark. In International Conference on Machine
Learning, 2022.

Wang, Y., Wang, W., Joty, S. R., and Hoi, S. C. H. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. ArXiv, abs/2109.00859, 2021.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V.
Finetuned language models are zero-shot learners. ArXiv, abs/2109.01652, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., hsin Chi, E. H., Le, Q., and Zhou, D. Chain of
thought prompting elicits reasoning in large language models. ArXiv, abs/2201.11903, 2022.

14

https://arxiv.org/abs/2109.08668
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/1706.03762


Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J. A systematic evaluation of large language
models of code. Proceedings of the 6th ACM SIGPLAN International Symposium on Machine
Programming, 2022.

Xu, K., Li, J., Zhang, M., Du, S. S., ichi Kawarabayashi, K., and Jegelka, S. What can neural
networks reason about? In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rJxbJeHFPS.

Yao, X. Evolving artificial neural networks. Proc. IEEE, 87:1423–1447, 1999.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X.,
Lin, X. V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, P. S., Sridhar, A.,
Wang, T., and Zettlemoyer, L. Opt: Open pre-trained transformer language models, 2022. URL
https://arxiv.org/abs/2205.01068.

Zhao, T., Wallace, E., Feng, S., Klein, D., and Singh, S. Calibrate before use: Improving few-shot
performance of language models. ArXiv, abs/2102.09690, 2021.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. Large language models
are human-level prompt engineers. ArXiv, abs/2211.01910, 2022.

15

https://openreview.net/forum?id=rJxbJeHFPS
https://arxiv.org/abs/2205.01068


A Appendix

A.1 EVOPROMPTING Hyperparameters

Table 2: Values of hyperparameters used in EVOPROMPT.

HYPERPARAMETER DESCRIPTION VALUE

p Num. parents to select in every generation 10
k Num. in-context examples in prompt 2
T Num. rounds of evolution 10
m Num. prompts per round 10
n Num. samples to generate per prompt 16
α Lower threshold for test error 0.5

A.2 MNIST-1D Seed Models

Below we provide the source code for the four seed models used in the MNIST-1D model search.

1 class Model(nn.Module):
2 features: int = 32
3 nlayer: int = 3
4

5 @nn.compact
6 def __call__(self , x):
7 x = x[..., None]
8 x = nn.Conv(features=self.features , kernel_size =(3,))(x)
9 x = nn.relu(x)

10

11 x = nn.avg_pool(x, window_shape =(2,), strides =(2,))
12 for _ in range(self.nlayer - 1):
13 xp = nn.Conv(
14 features=self.features ,
15 kernel_size =(3,),
16 )(x)
17 xp = nn.relu(xp)
18 x = x + xp
19

20 x = nn.avg_pool(x, window_shape =(2,), strides =(2,))
21 x = x.reshape ((x.shape[0], -1)) # flatten
22 x = nn.Dense(features =256)(x)
23 x = nn.relu(x)
24 x = nn.Dense(features =10)(x)
25 return x

Listing 2: A hand-designed convolutional model.

1 class Model(nn.Module):
2 features: int = 25
3

4 @nn.compact
5 def __call__(self , x):
6 x = x[..., None]
7 x = nn.Conv(
8 features=self.features , kernel_size =(5,), strides =(2,),

padding =(1,)
9 )(x)

10 x = nn.relu(x)
11 for _ in range (2):

16



12 x = nn.Conv(
13 features=self.features , kernel_size =(3,), strides =(2,)

, padding =(1,)
14 )(x)
15 x = nn.relu(x)
16 x = x.reshape ((x.shape[0], -1))
17 x = nn.Dense(features =10)(x)
18 return x

Listing 3: A Flax implementation of the convolutional baseline from Greydanus (2020).

1 class Model(nn.Module):
2 """A simple GRU model."""
3

4 hidden_size: int = 6
5 seed: int = 42
6

7 @nn.compact
8 def __call__(self , x):
9 x = jnp.expand_dims(x, -1)

10 rng = jax_random.PRNGKey(self.seed)
11 gru = recurrent.GRU(
12 hidden_size=self.hidden_size ,
13 num_layers =1,
14 dropout_rate =0.0,
15 bidirectional=True ,
16 )
17 lengths = np.full([x.shape [0]], x.shape [1])
18 initialized_params = gru.init(rng , x, lengths)
19 params = initialized_params[’params ’]
20 outputs , _ = gru.apply ({’params ’: params}, x, lengths)
21 outputs = outputs.reshape (( outputs.shape[0], -1))
22 x = nn.Dense(features =10)(outputs)
23 return x

Listing 4: A Flax implementation of the GRU baseline from Greydanus (2020).

1 class Model(nn.Module):
2 hidden_size: int = 100
3

4 @nn.compact
5 def __call__(self , x):
6 x = nn.Dense(features=self.hidden_size)(x)
7 x = nn.relu(x)
8 x = x + nn.relu(nn.Dense(features=self.hidden_size)(x))
9 x = nn.Dense(features =10)(x)

10 return x
11

12 return Model

Listing 5: A Flax implementation of the fully connected baseline from Greydanus (2020).

A.3 Trajectory of search for MNIST-1D models

17



Figure 4: The average model size and test error of the child models produced in each round of the
model search. Data points closer to the origin represent rounds that yielded more “fit" models.

A.4 Newly Discovered CLRS GNNs

Figure 5: Maximum fitness scores of five of the newly discovered models, compared against the
baseline, on eight of the CLRS tasks.

Below we list the Python source code of five of the newly discovered GNNs.

1 def get_triplet_msgs_quad(z, edge_fts , graph_fts , nb_triplet_fts
, out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (4)]
3 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
4 node_pair_inversions = [(1, 2), (1, 3), (2, 3), (3, 1)]
5 triplets = functools.reduce(
6 lambda x, y: x + y,
7 [
8 jnp.expand_dims(tri_node_rep , axis=perm)
9 for tri_node_rep , perm in zip(

18



10 triplet_node_reps , node_pair_inversions
11 )
12 ],
13 )
14 return jnp.max(triplets , axis =1) - jnp.min(triplets , axis =1)

Listing 6: The triplet representation that we refer to as QUADNODEMINMAX.

1 def get_triplet_msgs_concatrep(z, edge_fts , graph_fts ,
nb_triplet_fts , out_size):

2 def rep_fn(x, size):
3 proj = hk.nets.MLP([size])
4 ff = hk.nets.MLP([size * 4, size])
5 return jnp.concatenate ([
6 proj(x),
7 ff(x),
8 ], axis=-1)
9

10 triplet_node_reps = [rep_fn(z, nb_triplet_fts) for _ in range
(3)]

11 triplet_edge_reps = [rep_fn(edge_fts , nb_triplet_fts) for _ in
range (3)]

12 triplet_graph_rep = rep_fn(graph_fts , nb_triplet_fts)
13 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
14 triplets = functools.reduce(
15 lambda x, y: x + y,
16 [
17 jnp.expand_dims(tri_node_rep , axis=perm)
18 for tri_node_rep , perm in zip(
19 triplet_node_reps , node_pair_permutations
20 )
21 ],
22 )
23 triplets += functools.reduce(
24 lambda x, y: x + y,
25 [
26 jnp.expand_dims(tri_edge_rep , axis=i)
27 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
28 ],
29 )
30 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
31 output_layer = hk.Linear(out_size)
32 return output_layer(jnp.max(triplets , axis =1))

Listing 7: The triplet representation that we refer to as CONCATREP.

1 def get_triplet_msgs_tanhexplandtriplets(z, edge_fts , graph_fts ,
nb_triplet_fts , out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 graph_rep = hk.nets.MLP([ nb_triplet_fts ])
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
7 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
8 triplets = functools.reduce(
9 lambda x, y: x + y,

10 [
11 jnp.expand_dims(tri_node_rep , axis=perm)
12 for tri_node_rep , perm in zip(

19



13 triplet_node_reps , node_pair_permutations
14 )
15 ],
16 )
17 triplets += functools.reduce(
18 lambda x, y: x + y,
19 [
20 jnp.expand_dims(tri_edge_rep , axis=i)
21 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
22 ],
23 )
24 triplets += jnp.expand_dims(graph_rep(graph_fts), axis=(1, 2,

3))
25 triplets += jnp.expand_dims(graph_rep(graph_fts), axis=(2, 3,

1))
26 triplets += jnp.expand_dims(graph_rep(graph_fts), axis=(3, 1,

2))
27 output_layer = hk.Linear(out_size)
28 return output_layer(jnp.tanh(jnp.max(triplets , axis =1)))

Listing 8: The triplet representation that we refer to as TANHEXPANDTRIPLETS.

1 def get_triplet_msgs_div2mean(z, edge_fts , graph_fts ,
nb_triplet_fts , out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 triplet_node_reps = [node_rep(z / 2) for node_rep in node_reps

]
5 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
6 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
7 triplets = functools.reduce(
8 lambda x, y: x + y,
9 [

10 jnp.expand_dims(tri_node_rep , axis=perm )
11 for tri_node_rep , perm in zip(
12 triplet_node_reps , node_pair_permutations
13 )
14 ],
15 )
16 triplets += functools.reduce(
17 lambda x, y: x + y,
18 [
19 jnp.expand_dims(tri_edge_rep , axis=perm)
20 for tri_edge_rep , perm in zip(triplet_edge_reps , range

(3, 0, -1))
21 ],
22 )
23 output_layer = hk.Linear(out_size)
24 return output_layer(jnp.mean(triplets , axis =1))

Listing 9: The triplet representation that we refer to as DIV2MEAN.

1 def get_triplet_msgs_maxmean(z, edge_fts , graph_fts ,
nb_triplet_fts , out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 graph_rep = hk.nets.MLP([ nb_triplet_fts ])
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]

20



6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in
edge_reps]

7 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
8 triplets = functools.reduce(
9 lambda x, y: x + y,

10 [
11 jnp.expand_dims(tri_node_rep , axis=perm)
12 for tri_node_rep , perm in zip(
13 triplet_node_reps , node_pair_permutations
14 )
15 ],
16 )
17 triplets += functools.reduce(
18 lambda x, y: x + y,
19 [
20 jnp.expand_dims(tri_edge_rep , axis=i)
21 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
22 ],
23 )
24 triplets = jnp.maximum(triplets , -100.0)
25 output_layer = hk.Linear(out_size)
26 return output_layer(jnp.mean(triplets , axis =1))

Listing 10: The triplet representation that we refer to as MAXMEAN.

21



A.5 CLRS Seed Models

Below we provide the source code for the nine seed models used in the CLRS model search.

1 def get_triplet_msgs_v1(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 graph_rep = hk.Linear(nb_triplet_fts)
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
7 triplet_graph_rep = graph_rep(graph_fts)
8 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
9 triplets = functools.reduce(

10 lambda x, y: x + y,
11 [
12 jnp.expand_dims(tri_node_rep , axis=perm)
13 for tri_node_rep , perm in zip(
14 triplet_node_reps , node_pair_permutations
15 )
16 ],
17 )
18 triplets += functools.reduce(
19 lambda x, y: x + y,
20 [
21 jnp.expand_dims(tri_edge_rep , axis=i)
22 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
23 ],
24 )
25 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
26 output_layer = hk.Linear(out_size)
27 return output_layer(jnp.max(triplets , axis =1))

Listing 11: The triplet representation belonging to the first seed model - the standard triplet
representation from Ibarz et al. (2022).

1 def get_triplet_msgs_v2(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 graph_rep = hk.Linear(nb_triplet_fts)
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
7 triplet_graph_rep = graph_rep(graph_fts)
8 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
9 triplets = functools.reduce(

10 lambda x, y: x + y,
11 [
12 jnp.expand_dims(tri_node_rep , axis=perm)
13 for tri_node_rep , perm in zip(
14 triplet_node_reps , node_pair_permutations
15 )
16 ],
17 )
18 triplets += functools.reduce(
19 lambda x, y: x + y,
20 [
21 jnp.expand_dims(tri_edge_rep , axis=i)
22 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))

22



23 ],
24 )
25 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
26 output_layer = hk.nets.MLP([out_size , out_size ])
27 return output_layer(jnp.max(triplets , axis =1))

Listing 12: The triplet representation belonging to the second seed model, with the output layer
replaced by a fully-connected multi-layer perceptron.

1 def get_triplet_msgs_v3(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 graph_rep = hk.Linear(nb_triplet_fts)
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
7 triplet_graph_rep = graph_rep(graph_fts)
8 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
9 triplets = functools.reduce(

10 lambda x, y: x + y,
11 [
12 jnp.expand_dims(tri_node_rep , axis=perm)
13 for tri_node_rep , perm in zip(
14 triplet_node_reps , node_pair_permutations
15 )
16 ],
17 )
18 triplets += functools.reduce(
19 lambda x, y: x + y,
20 [
21 jnp.expand_dims(tri_edge_rep , axis=i)
22 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
23 ],
24 )
25 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
26 output_layer = hk.Linear(out_size)
27 return output_layer(jnp.sum(triplets , axis =1))

Listing 13: The triplet representation belonging to the third seed model, which uses sum instead of
max aggregation.

1 def get_triplet_msgs_v4(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 node_reps = [hk.nets.MLP([ nb_triplet_fts , nb_triplet_fts ]) for
_ in range (3)]

3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 graph_rep = hk.Linear(nb_triplet_fts)
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
7 triplet_graph_rep = graph_rep(graph_fts)
8 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
9 triplets = functools.reduce(

10 lambda x, y: x + y,
11 [
12 jnp.expand_dims(tri_node_rep , axis=perm)
13 for tri_node_rep , perm in zip(
14 triplet_node_reps , node_pair_permutations
15 )

23



16 ],
17 )
18 triplets += functools.reduce(
19 lambda x, y: x + y,
20 [
21 jnp.expand_dims(tri_edge_rep , axis=i)
22 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
23 ],
24 )
25 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
26 output_layer = hk.Linear(out_size)
27 return output_layer(jnp.max(triplets , axis =1))

Listing 14: The triplet representation of the 4th seed model, which uses fully-connected multi-layer
perceptron node representations.

1 def get_triplet_msgs_v5(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.nets.MLP([ nb_triplet_fts , nb_triplet_fts ]) for

_ in range (3)]
4 graph_rep = hk.Linear(nb_triplet_fts)
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
7 triplet_graph_rep = graph_rep(graph_fts)
8 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
9 triplets = functools.reduce(

10 lambda x, y: x + y,
11 [
12 jnp.expand_dims(tri_node_rep , axis=perm)
13 for tri_node_rep , perm in zip(
14 triplet_node_reps , node_pair_permutations
15 )
16 ],
17 )
18 triplets += functools.reduce(
19 lambda x, y: x + y,
20 [
21 jnp.expand_dims(tri_edge_rep , axis=i)
22 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
23 ],
24 )
25 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
26 output_layer = hk.Linear(out_size)
27 return output_layer(jnp.max(triplets , axis =1))

Listing 15: The triplet representation of the 5th seed model, which uses fully-connected multi-layer
perceptron edge representations.

1 def get_triplet_msgs_v6(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 node_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 graph_rep = hk.nets.MLP([ nb_triplet_fts , nb_triplet_fts ])
5 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
6 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
7 triplet_graph_rep = graph_rep(graph_fts)

24



8 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
9 triplets = functools.reduce(

10 lambda x, y: x + y,
11 [
12 jnp.expand_dims(tri_node_rep , axis=perm)
13 for tri_node_rep , perm in zip(
14 triplet_node_reps , node_pair_permutations
15 )
16 ],
17 )
18 triplets += functools.reduce(
19 lambda x, y: x + y,
20 [
21 jnp.expand_dims(tri_edge_rep , axis=i)
22 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
23 ],
24 )
25 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
26 output_layer = hk.Linear(out_size)
27 return output_layer(jnp.max(triplets , axis =1))

Listing 16: The triplet representation of the 6th seed model, which uses fully-connected multi-layer
perceptron graph representations.

1 def get_triplet_msgs_v7(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 node_reps = [hk.nets.MLP([ nb_triplet_fts ]) for _ in range (3)]
3 edge_reps = [hk.Linear(nb_triplet_fts) for _ in range (3)]
4 triplet_node_reps = [node_rep(z) for node_rep in node_reps]
5 triplet_edge_reps = [edge_rep(edge_fts) for edge_rep in

edge_reps]
6 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
7 triplets = functools.reduce(
8 lambda x, y: x + y,
9 [

10 jnp.expand_dims(tri_node_rep , axis=perm)
11 for tri_node_rep , perm in zip(
12 triplet_node_reps , node_pair_permutations
13 )
14 ],
15 )
16 triplets += functools.reduce(
17 lambda x, y: x + y,
18 [
19 jnp.expand_dims(tri_edge_rep , axis=i)
20 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
21 ],
22 )
23 output_layer = hk.Linear(out_size)
24 return output_layer(jnp.max(triplets , axis =1))

Listing 17: The triplet representation of the 7th seed model, which uses fully-connected multi-layer
perceptron node representations and does not have a graph representation.

1 def get_triplet_msgs_v8(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 output_layer = hk.nets.MLP([ out_size ])
3 return jnp.tile(

25



4 jnp.expand_dims(output_layer(z), axis =(1)), [1, z.shape
[1], 1, 1]

5 )

Listing 18: The triplet representation of the 8th seed model, which simply applies a linear layer and
tiles the output to maintain dimensional consistency.

1 def get_triplet_msgs_v9(z, edge_fts , graph_fts , nb_triplet_fts ,
out_size):

2 def rep_fn(x, size):
3 proj = hk.nets.MLP([size])
4 ff = hk.nets.MLP([size * 8, size])
5 return proj(x) * ff(x)
6

7 triplet_node_reps = [rep_fn(z, nb_triplet_fts) for _ in range
(3)]

8 triplet_edge_reps = [rep_fn(edge_fts , nb_triplet_fts) for _ in
range (3)]

9 triplet_graph_rep = rep_fn(graph_fts , nb_triplet_fts)
10 node_pair_permutations = [(2, 3), (1, 3), (1, 2)]
11 triplets = functools.reduce(
12 lambda x, y: x + y,
13 [
14 jnp.expand_dims(tri_node_rep , axis=perm)
15 for tri_node_rep , perm in zip(
16 triplet_node_reps , node_pair_permutations
17 )
18 ],
19 )
20 triplets += functools.reduce(
21 lambda x, y: x + y,
22 [
23 jnp.expand_dims(tri_edge_rep , axis=i)
24 for tri_edge_rep , i in zip(triplet_edge_reps , range(3,

0, -1))
25 ],
26 )
27 triplets += jnp.expand_dims(triplet_graph_rep , axis=(1, 2, 3))
28 return rep_fn(jnp.max(triplets , axis =1), out_size)

Listing 19: The triplet representation of the 9th seed model, which uses a bilinear representation for
the node, edge, and graph representations.

26



A.6 OOD Evaluation of Newly Discovered Models on CLRS

Table 3: A full list comparing 5 of the newly discovered GNNs against the baseline Triplet-GMPNN
model from Ibarz et al. (2022) on all 30 of the CLRS (Veličković et al., 2022) tasks. For the baseline,
we include the OOD accuracy of both our implementation of the Triplet-GMPNN as well as the
number listed in the original paper.

Algorithm Best
Performing
Model

Model Size ↓ OOD Accuracy ↑
Best
Per-

form-
ing

Model

Base-
line

model

Best per-
forming

newly dis-
covered
model

Baseline
model
(our

implemen-
tation)

Baseline
model
(from

Ibarz et al.
(2022))

Activity
Selector Baseline 262204 262204

95.05 ±
0.53%

93.96±
0.29%

95.18±
0.45%

Articulation
Points QUADNODEM-

INMAX
497969 531913

93.46 ±
1.77%

91.40±
1.74%

88.32±
2.01%

Bellman Ford CONCATREP 568660 524604
97.50 ±
0.31%

97.08±
0.24%

97.39±
0.19%

BFS MAXMEAN 522931 523963
99.99 ±
0.01%

99.80±
0.04%

99.73±
0.04%

Binary Search Baseline 262204 262204
77.98 ±
2.49%

79.57±
1.73%

77.58±
2.35%

Bridges CONCATREP 576612 532556
97.57 ±
1.08%

97.31±
1.11%

93.99±
2.07%

Bubble Sort CONCATREP 568533 524477
88.87 ±
2.77%

83.20±
4.27%

67.68±
5.50%

DAG Shortest
Paths Baseline 793287 793287

98.01 ±
0.22%

97.48±
0.37%

98.19±
0.30%

DFS DIV2MEAN 660158 661190
68.14 ±
1.38%

46.78±
3.85%

47.79±
4.19%

Dijkstra DIV2MEAN 524854 525886
97.30 ±
0.28%

95.94±
0.66%

96.05±
0.60%

Find
Maximum
Subarray
Kadane

Baseline 261290 264514
75.35 ±
0.92%

74.09±
0.83%

76.36±
0.43%

Floyd
Warshall CONCATREP 669145 625089

61.43 ±
0.79%

48.95±
0.49%

48.52±
1.04%

Graham Scan MAXMEAN 397377 398409
93.76 ±
0.85%

92.72±
2.38%

93.62±
0.91%

Heapsort CONCATREP 703710 659654
69.90 ±
4.17%

19.45±
5.35%

31.04±
5.82%

Insertion Sort DIV2MEAN 523445 524477
89.47 ±
2.57%

86.89±
1.89%

78.14±
4.64%

Jarvis March Baseline 308954 264898
90.36 ±
0.65%

88.91±
0.91%

91.01±
1.30%

Knuth-
Morris-Pratt Baseline 396989 398021

16.29 ±
4.36%

8.88±
1.76%

19.51±
4.57%

LCS Length Baseline 270419 270419
85.75 ±
0.80%

86.05±
0.65%

80.51±
1.84%

Matrix Chain
Order Baseline 624448 624448

90.77 ±
0.75%

91.15±
0.85%

91.68±
0.59%

Minimum DIV2MEAN 260275 261307
98.40 ±
0.16%

98.26±
0.26%

97.78±
0.55%

27



Continuation of Table 3

Algorithm Best
Performing
Model

Model Size ↓ OOD Accuracy ↑
Best
Per-

form-
ing

Model

Base-
line

model

Best per-
forming

newly dis-
covered
model

Baseline
model
(our

implemen-
tation)

Baseline
model
(from

Ibarz et al.
(2022))

MST Kruskal CONCATREP 443747 399691
91.47 ±
0.48%

90.60±
0.32%

89.80±
0.77%

MST Prim CONCATREP 569942 525886
88.74 ±
1.67%

85.18±
2.24%

86.39±
1.33%

Naive String
Matcher QUADNODEM-

INMAX
259364 262588

79.77 ±
2.88%

73.39±
6.33%

78.67±
4.99%

Optimal BST DIV2MEAN 624955 625987
78.66 ±
0.46%

78.08±
0.96%

73.77±
1.48%

Quickselect QUADNODEM-
INMAX

377130 395714
0.79 ±
0.41%

0.13±
0.08%

0.47±
0.25%

Quicksort DIV2MEAN 524727 525759
85.23 ±
4.26%

84.71±
2.66%

64.64±
5.12%

Segments
Intersect DIV2MEAN 262327 263359

98.15 ±
0.00%

97.40±
0.00%

97.64±
0.09%

Strongly
Connected
Components

Baseline 707299 663243
41.86 ±
3.39%

43.71±
5.94%

43.43±
3.15%

Task
Scheduling

TANHEX-
PANDTRIPLETS 262333 262333

88.23 ±
0.44%

88.10±
0.31%

87.25±
0.35%

Topological
Sort

TANHEX-
PANDTRIPLETS 660164 660164

88.12 ±
4.71%

76.88±
5.05%

87.27±
2.67%

End of Table 3

28



A.7 NATS-Bench

We make a brief comparison of EVOPROMPTING against other NAS algorithms on the NATS-Bench
Size Search Space (Dong et al., 2021). However, we note that this comparison is limited because it
handicaps EVOPROMPTING in multiple ways:

1. Our LLM was pre-trained to generate code, but for this comparison it is prompted to generate
the NATS-Bench style architecture strings, which are in the format "64:64:64:64:64," which
removes the benefit of its code pre-training.

2. One of EVOPROMPTING main advantages is its open-ended search space. Since its search
space does not need to be hand-designed, EVOPROMPTING can potentially discover novel
architectures that other NAS algorithms cannot.

Table 4: EVOPROMPTING versus other standard neural architecture search algorithms on the NATS-
Bench size search space. Since properly tuning the hyperparameter values for all search techniques is
non-trivial, we obtain the accuracy numbers for all methods other than ours from Dong et al. (2021).
EVOPROMPTING performs competitively compared to all the other techniques.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Val Test Val Test Val Test

Multi-trial

REA 90.37±
0.20

93.22±
0.16

70.23±
0.50

70.11±
0.61

45.30±
0.69

45.94±
0.92

REINFORCE 90.25±
0.23

93.16±
0.21

69.84±
0.59

69.96±
0.57

45.06±
0.77

45.71±
0.93

RANDOM 90.10±
0.26

93.03±
0.25

69.57±
0.57

69.72±
0.61

45.01±
0.74

45.42±
0.86

BOHB 90.07±
0.28

93.01±
0.24

69.75±
0.60

69.90±
0.60

45.11±
0.69

45.56±
0.81

Weight-
sharing

channel-wise
interpolation

90.71±
0.00

93.40±
0.00

70.30±
0.00

70.72±
0.00

44.73±
0.00

47.17±
0.00

masking +
Gumbel-
Softmax

90.41±
0.10

93.14±
0.13

70.30±
0.00

70.72±
0.00

45.71±
0.39

46.38±
0.27

masking +
sampling

89.73±
0.37

92.78±
0.30

69.67±
0.22

70.11±
0.33

44.70±
0.60

45.11±
0.76

EVOPROMPT-
ING

90.38±
0.33

93.11±
0.90

70.47±
0.23

70.39±
0.58

45.32±
0.26

45.15±
0.51

29



A.8 Broader Impacts

Our work may have a number of ethical, societal, and other broader impacts. Since we focus on
automatic improvement of large language models, the implications of our research are largely similar
to those of LMs in general. On the one hand, improving the abilities and decreasing the sizes of
LMs may increase their accessibility (Köpf et al., 2023), improve energy efficiency (McDonald et al.,
2022; Chen et al., 2023), and expand educational and professional opportunities (Kasneci et al., 2023;
Eysenbach, 2023). On the other, LMs have long been known to give rise to unjust and toxic language
that may hurt and amplify stereotypes (Nadeem et al., 2020; Lucy & Bamman, 2021), exclusionary
norms, and allocational harms to marginalized groups (Bender et al., 2021). LMs may also present
information hazards, often generating realistic-sounding misinformation (Bickmore et al., 2018;
Quach, 2022) or revealing private personal information (Carlini et al., 2021). Lastly, other harms may
arise from the ways that humans interact with LMs – either by inadvertently relying too much on
unreliable LM outputs (McKee et al., 2021) or via malicious uses (Ranade et al., 2021; Boiko et al.,
2023).

References
Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. On the dangers of stochastic

parrots: Can language models be too big? . In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445922.
URL https://doi.org/10.1145/3442188.3445922.

Bickmore, T. W., Trinh, H., Olafsson, S., O’Leary, T. K., Asadi, R., Rickles, N. M., and Cruz, R.
Patient and consumer safety risks when using conversational assistants for medical information:
An observational study of siri, alexa, and google assistant. J Med Internet Res, 20(9), Sep 2018.
ISSN 1438-8871. doi: 10.2196/11510. URL http://www.jmir.org/2018/9/e11510/.

Boiko, D. A., MacKnight, R., and Gomes, G. Emergent autonomous scientific research capabilities
of large language models, 2023.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T.,
Song, D., Erlingsson, U., Oprea, A., and Raffel, C. Extracting training data from large language
models. In USENIX Security Symposium, 2021. URL https://arxiv.org/abs/2012.07805.

Chen, L., Zaharia, M., and Zou, J. Frugalgpt: How to use large language models while reducing cost
and improving performance, 2023.

Eysenbach, G. The role of chatgpt, generative language models, and artificial intelligence in medical
education: A conversation with chatgpt and a call for papers. JMIR Med Educ, 9:e46885, Mar 2023.
ISSN 2369-3762. doi: 10.2196/46885. URL https://mededu.jmir.org/2023/1/e46885.

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh,
G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer,
J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., Stadler, M., Weller, J., Kuhn, J., and Kasneci,
G. Chatgpt for good? on opportunities and challenges of large language models for education.
Learning and Individual Differences, 103:102274, 2023. doi: https://doi.org/10.1016/j.lindif.2023.
102274.

Köpf, A., Kilcher, Y., von Rütte, D., Anagnostidis, S., Tam, Z.-R., Stevens, K., Barhoum, A.,
Duc, N. M., Stanley, O., Nagyfi, R., ES, S., Suri, S., Glushkov, D., Dantuluri, A., Maguire, A.,
Schuhmann, C., Nguyen, H., and Mattick, A. Openassistant conversations – democratizing large
language model alignment, 2023.

Lucy, L. and Bamman, D. Gender and representation bias in GPT-3 generated stories. In Proceedings
of the Third Workshop on Narrative Understanding, pp. 48–55, Virtual, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.nuse-1.5. URL https://aclanthology.
org/2021.nuse-1.5.

30

https://doi.org/10.1145/3442188.3445922
http://www.jmir.org/2018/9/e11510/
https://arxiv.org/abs/2012.07805
https://mededu.jmir.org/2023/1/e46885
https://aclanthology.org/2021.nuse-1.5
https://aclanthology.org/2021.nuse-1.5


McDonald, J., Li, B., Frey, N., Tiwari, D., Gadepally, V., and Samsi, S. Great power, great
responsibility: Recommendations for reducing energy for training language models. In Findings
of the Association for Computational Linguistics: NAACL 2022. Association for Computational
Linguistics, 2022. doi: 10.18653/v1/2022.findings-naacl.151. URL https://doi.org/10.
18653%2Fv1%2F2022.findings-naacl.151.

McKee, K. R., Bai, X., and Fiske, S. Humans perceive warmth and competence in artificial
intelligence, Feb 2021. URL psyarxiv.com/5ursp.

Nadeem, M., Bethke, A., and Reddy, S. Stereoset: Measuring stereotypical bias in pretrained
language models, 2020.

Quach, K. Researchers made an openai gpt-3 medical chatbot as an experiment. it told a mock
patient to kill themselves, Aug 2022. URL https://www.theregister.com/2020/10/28/
gpt3_medical_chatbot_experiment/.

Ranade, P., Piplai, A., Mittal, S., Joshi, A., and Finin, T. Generating fake cyber threat intelligence
using transformer-based models, 2021.

31

https://doi.org/10.18653%2Fv1%2F2022.findings-naacl.151
https://doi.org/10.18653%2Fv1%2F2022.findings-naacl.151
psyarxiv.com/5ursp
https://www.theregister.com/2020/10/28/gpt3_medical_chatbot_experiment/
https://www.theregister.com/2020/10/28/gpt3_medical_chatbot_experiment/

	Introduction
	Related Work
	EvoPrompting Method
	Architecture search problem formulation
	LMs for evolutionary crossover and mutation
	EvoPrompting meta-learning algorithm

	Experiments and Results
	MNIST-1D
	CLRS

	Conclusion
	Acknowledgements
	Appendix
	EvoPrompting Hyperparameters
	MNIST-1D Seed Models
	Trajectory of search for MNIST-1D models
	Newly Discovered CLRS GNNs
	CLRS Seed Models
	OOD Evaluation of Newly Discovered Models on CLRS
	NATS-Bench
	Broader Impacts


