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Unity is Strength? Benchmarking the Robustness of Fusion-based
3D Object Detection against Physical Sensor Attack

ABSTRACT
As a safety-critical application, Autonomous Driving (AD) has re-
ceived growing attention from security researchers. AD heavily
relies on sensors for perception. However, sensors themselves are
susceptible to various threats since they are exposed to the environ-
ments and vulnerable to malicious or interfering signals. To cope
with situations where a sensor might malfunction, Multi Sensor
Fusion (MSF) was proposed as a general strategy to enhance the
robustness of perception models.

In this paper, we focus on investigating MSF security under
various sensor attacks and wish to answer the following research
questions: (1) Does fusion enhance security or not? (2) How does the
architecture of the fusion model influence robustness? To this end,
we establish a rigorous benchmark for fusion-based 3D object de-
tection robustness. Our new benchmark features 5 types of LiDAR
attacks and 6 types of camera attacks. Different from traditional
benchmarks, we take the physical sensor attacks into consideration
during the corruption construction. Then, we systematically investi-
gate 7 MSF-based and 5 single-modality 3D object detection models
with different fusion architectures. We will release the benchmarks
and codes to facilitate future studies.

1 INTRODUCTION
In autonomous driving (AD), 3D object detection serves as the
core basis of the perception stack, especially for the sake of path
planning, motion prediction, collision avoidance, etc. LiDAR and
camera are the two most important sensors for 3D object detec-
tion. LiDAR provides precise 3D spatial information through point
cloud data, while cameras provide rich texture information through
image data. The fusion of these two complementary sources of
information is a common effort in both academia [18, 23, 24, 52, 60]
and industry [1–3, 6, 7] to enhance perception performance.

However, many recent security studies [11, 12, 21, 34–36, 48, 51,
53, 56, 66, 67, 81–84] indicate that LiDAR and camera systems can
be compromised by physical signals, e.g., laser, electromagnetic
interference (EMI) and ultrasound. We adopt the term physical
sensor attacks to describe attacks that employ physical signals to
manipulate sensor output. The physical sensor attack will induce
the point clouds and images inevitably to encounter significant cor-
ruption. As an extremely safety-critical application, autonomous
driving particularly requires enhanced robustness to address the
corruptions that may arise in the physical world. Many preceding
works [14, 34, 36, 82] have considered sensor fusion as potential
countermeasures. However, whether fusion can attenuate the at-
tacks as anticipated remains an open question, lacking systematic
research.

One common practice for such robustness analysis is to establish
a benchmark [26]. Several benchmarks are proposed for image
corruption [10, 31, 37] and point cloud corruption [47, 85]. As shown
in Fig. 1, the corruptions used in those benchmarks can be grouped
into bad weather, digital noise, sensor failure, object abnormalities,
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Figure 1: The common corruptions used in previous robustness
benchmark and the sensor attack-based corruptions in this work.

etc. Compare to those corruptions, the corruptions in this work
are intentionally induced by attackers with physical sensor attack.
Recently, a small amount of benchmarks [20, 26] has focused on
the robustness of MSF-based perception. However, none of them
has considered the corruption induced by sensor attack, and the
number of MSF-based 3D object detection models under evaluation
is still limited, e.g., only 3 models in [26] and 2 models in [20] are
tested on the corrupted dataset.

In this paper, we propose a benchmark for evaluating the robust-
ness of MSF-based 3D object detection against 11 types of sensor
attacks. Such a benchmark could provide significant value to both
academia and industry. As a shared reference, it could facilitate
various activities, including developer training, assessing risks, and
advancing the design of new MSF-based models. Based on the
benchmark, we set out to answer the following research questions:

RQ1. Does fusion enhance security? Compared to single-
modality models, can fusion models offer enhanced security? This
is a fundamental and crucial question. The field of autonomous
driving, being safety-critical, is highly susceptible to being targeted
by attackers. However, no study has systematically investigated the
robustness of multi-sensor fusion models in autonomous driving
when faced with malicious sensor attacks. This study answers the
question (detaied in Sec. 4.4) by evaluating three aspects: targeted
attack robustness, single source robustness, and overall robustness.

RQ2. How does the architecture of the fusion model influ-
ence robustness? In the face of physical sensor attacks, do multi-
sensor fusion-based detectors with varying architectures demon-
strate performance disparities? If such differences exist, what are
the underlying reasons? Previous research typically categorizes
models into early, middle, and late fusion. However, we found that
this classification method does not explicitly reveal the relationship
between architecture and robustness. In this paper, we introduce a
novel paradigm, categorizing models based on fusion sequence and
fusion representation, and delve into the relationship between archi-
tecture and robustness using the concept of information entropy.
Through this new classification approach, the answers to RQ2 have
become clearer (detailed in Sec. 4.5).

Building a benchmark to answer those questions is a challenging
problem, especially when considering the physical feasibility and
comprehensiveness of the dataset. Unlike purely digital corrup-
tions, which allow arbitrary editing of images and point clouds,
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Figure 2: The benchmark overview. First, we collect works related to sensor attacks as comprehensively as possible through a Systematic Literature Review
(SLR) process. Second, we quantify the attack capability by reviewing the paper and reproducing the attacks on our physical testbed. Third, we design sensor
attack corruptions for both LiDAR and camera sensors. By applying corruptions to typical autonomous driving datasets KITTI [27], we establish the sensor
attack robustness benchmark dataset KITTI-spoof. Finally, We conduct large-scale experiments centering around two research questions to benchmark the
robustness of MSF-based model against physical sensor attack.

making the dataset physically realizable requires considering the
capabilities of physical sensor attacks. However, previous sensor
attacks have mainly focused on demonstrating their attack effec-
tiveness but have not explicitly quantified their attack capabilities
for benchmarking purposes.

To bridge this gap, we design the benchmark process as shown
in Fig. 2. In summary, our contributions are concluded as follows:

• Benchmark.We present a large-scale robustness bench-
mark for MSF-based 3D object detection under physical
sensor attack, namely Kitti-Spoof. The dataset contains 11
corruptions induced by laser, EMI, and acoustic.

• Empirical Evaluation. Based on the benchmark, we per-
form a large-scale (542,736 frames) empirical study to eval-
uate the sensor attack robustness on 7 MSF-based detectors
and 5 single-modality detectors with different architectures.

• Insights for Critical Research Question. This paper sys-
tematically answers the fundamental and critical questions
related to the robustness ofMSF-basedmodels. Additionally,
we provide insights for enhancing MSF robustness.

2 THREAT MODEL AND DEFINITION
2.1 Threat Model of Physical Sensor Attack
In this benchmark, we consider adversaries with the following
assumptions.

Attack capability: The adversary conducts attacks outside the
car to be stealthy. She can aim the camera or LiDAR and inject
signals to attack them.

Sensor Assessment: The adversary has no direct access to the
target sensors. She cannot physically touch them, alter the device
settings, or install malware. However, we assume that she is fully
aware of the characteristics of the target sensors. Such knowledge
can be obtained from the user manual or by analyzing a sensor of
the same model as the target sensor.

Black box: The adversary does not have access to the machine
learning model or the perception system. Attackers can exploit

only the characteristics and vulnerabilities of the sensors to achieve
their attack target.

2.2 Scope and Definition of Sensor Attack
Robustness

Firstly, we demarcate the scope of physical sensor attacks. Since
sensors act as transducers that translate physical signals into elec-
trical ones [25], we focus on physical signal attacks that corrupt the
output of the sensor, with the threat model elaborated in Sec. 2.1.
The subsequent attacks do not fall within our benchmark’s scope:
(1) physical modification of the measured target, such as utilizing
stickers [22, 32, 40, 74, 79, 88, 92] or 3D objects [15, 71, 87] to de-
ceive sensors, and (2) attacking the digital transmission of sensor
data in CAN bus [16, 41], or sensor networks [45, 61, 80].

We now define sensor attack robustness. To begin, we con-
sider a detector 𝑓 : 𝑋 → 𝑌 trained on samples from distribu-
tion D. Most detectors are judged by their performance with the
intersection of union (𝐼𝑜𝑈 ) and a threshold (𝑡 ) on test queries
drawn from D, i.e.,P(𝑥,𝑦)∼D (𝐼𝑜𝑈 (𝑓 (𝑥), 𝑦) > 𝑡). Yet in safety-
critical applications, the detector may face malicious sensor at-
tacks and is tasked with artificially corrupted inputs. In view of
this, we suggest computing the detectors’s sensor attack robustness
E𝑐∼C [P(𝑥,𝑦)∼D (𝐼𝑜𝑈 (𝑓 (𝑐), 𝑦) > 𝑡)], where C is a set of corruptions.
The design of corruptions C should satisfy the physical realizability,
i.e., ∥C − 𝑋 ∥ < Φ, where Φ is a set of physical attack capability of
sensor attacks.

3 BENCHMARK DESIGN
In this section, we first introduce the design methodology for the
corrupted dataset KITTI-Spoof. We then detail the corruptions
specific to the camera and LiDAR respectively.

3.1 Design Methodology for Kitti-Spoof
When designing the corrupted dataset Kitti-Spoof, we aim to ensure
the comprehensiveness and physical feasibility of the dataset. The
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Figure 4: Attack Testbed.

source papers and attack capability of corruptions are listed in
Table 3. Examples of corruptions are illustrated in Fig. 3.

3.1.1 Corruption Collection. We collected works related to sensor
attacks with the scope defined in Sec. 2.2 as comprehensively as
possible through a Systematic Literature Review (SLR) [39, 43] pro-
cess. The SLR itself follows a three-step methodology comprising
planning, conducting, and reporting, as depicted in Fig. 2. We define
the search scope as “physically-realizable sensor attack” and use
the following query to search for the terms in the documents.

Query: ("physical" OR "real-world" OR "practical") AND
“signal” AND ("attack" OR "vulnerability" ) AND ("LiDAR"
OR "camera" ) AND ("autonomous driving" OR "self driving"
OR “autonomous vehicle”)

By leveraging the citation analysis software Publish or Perish [30],
we collected studies from Google Scholar (980), IEEE Xplore (5),

and ACM Digital Library (326). After removing duplicates from the
total of 1311 search results, 1174 papers remained.

We only included studies related to physical sensor attacks on
cameras or LiDARs. Moreover, we only included papers that first
introduced the attack as well as those that made improvements to
the attack. Initially, we conducted a preliminary filter based on pa-
per titles, resulting in 67 potentially relevant papers. Subsequently,
after reviewing the content, we shortlisted 20 articles. We then
employed the snowballing technique on all these works to uncover
resources overlooked in the initial search and applied the same
inclusion criteria, leading to the addition of 2 new studies.

The SLR process yielded a total of 22 scientific works, and we
distilled 11 types of corruptions from these papers.

3.1.2 Attack Capability Quantification. As shown in Fig. 2, we
quantify the capabilities of sensor attacks in two steps. First, we
extract useful information by reviewing source papers, which can
ascertain the pattern characteristics. Some papers clearly describe
the capability of attacks, while others do not. Second, we replicate
each attack on our physical testbed, as depicted in Fig. 4, to en-
sure the physical feasibility of each attack and further clarify each
attack’s capability and limitations.

We quantify the capabilities of sensor attacks based on the cor-
ruption pattern characteristics and manipulation abilities. Simi-
lar to adversarial attacks [17], we utilize the ℓ0 and 𝑙2 norms to
represent the manipulation abilities on images or point clouds,
wherein 𝑙0 norm signifies the attack scope, and 𝑙2 norm illustrates
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the pixel/point manipulation capability. More specifically, for im-
ages, 𝑙0 denotes the number (scope) of pixels that can be manipu-
lated by the attack, and 𝑙2 indicates how can the pixel values be
manipulated. For point clouds, 𝑙0 represents the number (scope) of
points that can be affected by the attack, and 𝑙2 signifies how can
the distance of the points be manipulated.

Our physical testbed consists of a sensor fusion system and a
signal transmission system. The fusion testbed, as shown in Fig. 7
in Appendix, comprises a Leopard USB3.0 camera [5] and a VLP-16
LiDAR [72] mounted on an Apollo-kit. The attack testbed, as shown
in Fig. 4, includes a signal generator, an amplifier, and three types
of signal transmitters, which can transmit laser, ultrasound, and
electromagnetic signals.

Detailed attack capability quantification process of every cor-
ruption is described in Appendix A.

3.2 Image Corruption
There are a total of six image corruptions in this benchmark, in-
cluding two targeted corruptions and four untargeted corruptions.

[Camera-Hide]Laser-Saturation: The attack method [56, 83]
involves using a high-power laser or a high-lumen light beam to
directly irradiate the camera. This causes the light-sensitive module
in the camera to be saturated, effectively hiding the real objects in
the environment. The principle of this phenomenon is similar to that
of overexposure in dynamic lighting conditions [49] in real life. Such
overexposure is caused by excessive luminous flux and saturation
of the light-sensitive module. The saturation (or overexposure)
commonly occurs in real-world driving situations, such as when
the car is coming out of a tunnel [70] or when an oncoming car
activates its high-beam headlights [8]. In this situation, the camera’s
image will be overexposed and blinded.

[Create]Light-Projection: This attack method involves using a
projector to cast images onto the environment [21, 48, 51, 53, 77] or
directly projecting images into the camera [51]. While this attack
method might seem somewhat naive, it represents a significant
threat. Its effectiveness bears some similarity to sticker-based at-
tacks. However, compared to such sticker attacks, it offers distinct
harm. Firstly, it can be executed remotely without requiring the
attacker to go over there and stick it himself. Secondly, it pro-
vides convenient control over the attack via signal manipulation.
Thirdly, it can project elements into locations that are challeng-
ing for sticker-based attacks, such as trees by the roadside [53]
or air [21]. Nevertheless, the primary drawback of this projection
attack lies in its susceptibility to environmental lighting conditions.

Laser - Color Strip Injection: This attack method [65, 84]
involves exploiting the rolling shutter of CMOS sensors, allowing
attackers to inject a colored stripe. Prior research [84] evaluated
the impact of this attack on traffic light recognition.

EM - Strip Loss and EM - Truncation: This attack [35] targets
the camera interface bus used for image signal transmission and
employs intentional electromagnetic interference (IEMI) to inject
malicious signals, causing camera glitches. The principle of the
attack is that cameras using MIPI CSI-2 transmission standard
allocate a buffer for image signals. The start/end address of the
buffer and the line pitch are passed to the Unicam (CSI Receiver).
The image signals are transmitted by individual lines and decoded

based on the fixed color filter arrangement. The camera will discard
the lines that encounter transmission errors. If one line in the
transmission is missing, it can disrupt the color interpretation of
the subsequent lines during image processing, thereby causing color
strips. If the start/end address of a buffer is missing, inter-frame
content stitching appears, thereby causing truncation.

Ultrasound-Blur: This attack [34, 89] is based on a system-
level vulnerability that image stabilizer hardware is susceptible to
acoustic manipulation. By emitting deliberately designed acoustic
signals, an adversary can control the output of an inertial sensor,
which triggers unnecessary motion compensation and results in a
blurred image.

3.3 Point Cloud Corruption
There are a total of five point cloud corruptions in this benchmark,
including two targeted corruptions and three untargeted corrup-
tions.

[Hide]Laser-Point Erase: Existing research has already demon-
strated the feasibility of erasing point clouds using continuous-
wave laser [67]and pulsed laser [12, 36], thereby hiding targeted
objects. LiDAR functions by emitting lasers and receiving echoes
from objects to perform time-of-flight measurements and distance
measurements, ultimately generating point clouds. Existing point
erasure methods fundamentally disrupt or hide the valid echoes
from objects. Shin et al. [67] utilize a high-power (800mW) contin-
uous laser to saturate the LiDAR’s photodetectors, rendering them
incapable of receiving valid echoes. Jin et al. [36] and Cao et al. [12]
adopt pulsed lasers of specific frequencies to inject high-intensity
points and then utilize the point cloud’s echo filtering mechanism
to filter out valid echoes.

[Create]Laser-Object Injection: This type of attack [19, 36, 64]
employs a set of laser receiver and transmitter for controllable
point cloud injection against mechanical LiDAR systems. The PLA-
LiDAR [36] proved that it’s feasible to inject point clouds in the
physical world and directly spoof 3D object detection models using
a black-box approach.

Laser - Arbitrary Point Injection: Several studies [14, 29, 56,
67, 69] have successfully implemented laser-based points injection
attacks against LiDAR. However, these injected points exhibit a
certain level of randomness rather than regular shapes shown in
papers [36] and [64]. We suppose this might be due to differences
in signal design and a lack of precise synchronization compared
to controllable injection. Even though these attacks have not been
proven to achieve targeted attack effects in the physical world, we
are curious about their potential impact on fusion model perfor-
mance.

Laser - Background Noise Injection: This type of attack [67]
involves injecting random fake points using low-power lasers. The
authors demonstrate that this may be due to the low-power laser
causing an increase in baseline noise. In the everyday use of LiDAR,
similar noise is sometimes observed, primarily due to interference
between LiDARs, which is different from the principle of random
noise injection attacks.

EM - Point Interference: This type of attack [11] exploits
the susceptibility of time-of-flight (TOF) circuits to electromag-
netic (EM) waves. By injecting EM signals at specific frequencies
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into the LiDAR’s circuits, it disrupts the LiDAR’s ranging function,
consequently corrupting the global point cloud and introducing
disturbances at radial distances.

4 ROBUSTNESS EVALUATION
4.1 Fusion-based Model Collection
To collect as many appropriate SOTA MSF detectors as possible
for our benchmark, we primarily focus on the MSF-related survey
literature [18, 23, 24, 52, 60, 76] and collect papers published in
relevant top-tier conferences and journals during the last six years.
Meanwhile, we refer to the 3D object detection leaderboard of
Kitti benchmark [4] for the open-source models achieving SOTA
performance. Eventually, we selected 7 state-of-the-artMSF systems
as shown in Table 4 in the Appendix.

The SOTA MSF detectors are primarily based on LiDAR-based
3D object detectors and try to incorporate image information into
different stages of a LiDAR detection pipeline, as shown in Fig. 5.
According to the different fusion stages, MSF models can be cat-
egorized into early fusion, middle fusion, and late fusion. There
are three early-fusion models (F-Pointnet [58], Pointpainting [73]
and VirConv-L [78]), two middle-fusion models (EPNet [33] and
AVOD [42]), one late-fusion model (CLOCs [54]) and one mixed-
fusion model (VirConv-T [78]) in our benchmark.

Most models process data from both sensors concurrently be-
fore the fusion operation. We define this concurrent approach as
parallel fusion. In early-fusion, a type of fusion follows a sequential
structure, which we refer to as cascaded fusion. In cascaded models,
an image-based model is first used to obtain 2D recognition results,
such as bounding boxes [58] or semantic classes [73]. These 2D
results are then employed to enhance the point cloud, which is
subsequently fed into the LiDAR-based model.

4.2 Metrics
In this section, we define the robustness evaluation metrics. 3D ob-
ject detection aims to locate, classify, and estimate oriented bound-
ing boxes in the 3D space. The accuracy of object detection can be
measured by IoU (Intersection over Union), which measures the
intersection area between a ground-truth 3D bounding box 𝐵𝑔 and
a predicted 3D bounding box 𝐵𝑝 over their union area.

We consider a detection for a car successful when the IoU is larger
than 0.7, which is the same as Kitti [27]. To better benchmark the

robustness of models against different attacks, we have employed
several advanced metrics based on IoU.

4.2.1 Attack Success Rate (ASR). 𝐴𝑆𝑅 is employed to quantify the
success rate of targeted attacks. In our benchmark, targeted attacks
can achieve two types of effects against a black-box model: hide
and create. The hide attack is considered successful solely when
the target object evades detection. Conversely, the create attack
is deemed successful only when an initially non-existent object is
generated within a designated region.

4.2.2 Average Precision (AP). AP approximates the shape of the
Precision/Recall curve as:

𝐴𝑃 |𝑅40=
1

|𝑅40 |
∑︁
𝑟 ∈𝑅40

max
𝑟 :𝑟>𝑟

𝜌 (𝑟 ) (1)

where 𝜌 (𝑟 ) gives the precision at recall 𝑟 , meaning that instead of
averaging over the actually observed precision values per point 𝑟 ,
the maximum precision at recall value greater than or equal to 𝑟 is
taken. We adopted mean AP (𝑚𝐴𝑃 ) [63, 68], by taking the average
of APs at three difficulty levels (i.e., “Easy”, “Moderate”, and “Hard”),
to measure the overall detection performance of a model.

4.2.3 Robustness (Rb). We define the Robustness of oneMSFmodel
on a corruption 𝑐 as 𝑅𝑏𝑐 :

𝑅𝑏𝑐 =
𝑚𝐴𝑃𝑐

𝑚𝐴𝑃𝑐𝑙𝑒𝑎𝑛
(2)

where𝑚𝐴𝑃𝑐 and𝑚𝐴𝑃𝑐𝑙𝑒𝑎𝑛 represent the overall performance of
the model on corruption c and clean data, respectively. The mean
robustness of one model across multiple corruptions is denoted as
𝑚𝑅𝑏.

4.3 Setup
We benchmark the 7 MSF-based models and 5 single-modality mod-
els using Kitti-Spoof. To ensure, as far as possible, that the models
are compared on the same baseline, each model uses the official
model parameters which are fine-tuned on the Kitti train dataset.
Each model is tested on 12 datasets (1 clean + 11 corrupted), each
dataset containing 3,769 LiDAR-camera frames. Since some of the
models only support the detection of the "car" category, we calcu-
late the performance of all models based on their detection results
for cars. After obtaining the detection results for each frame, we
compute the AP (shown in Table 5 in Appendix) with a 0.7 IoU
threshold. Then the AP results are used to calculate the robustness
Rb (shown in Table 2). In addition, for targeted corruption, we cal-
culate the attack success rates ASRs (shown in Table 1). Based on
these results, we engage in discussion and analysis centered around
two research questions.

4.4 RQ1. Does fusion enhance security?
To comprehensively evaluate whether MSF-based models enhance
security compared to single-modality models, we decompose secu-
rity into the following three aspects:

4.4.1 RQ1.1 ASR of Targeted Attack: Evaluating targeted attacks is
of considerable importance due to its real-world relevance. In spe-
cific driving scenarios, attackers often aim to conceal target objects
or create objects at predetermined locations, potentially inducing
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Table 1: Attack Success Rate

Target
Sensor

Attack
Target

Corruption
Camera-only LiDAR-only Fusion Model
ImVoxelNet PointPillar F-pointnet Pointpainting virconv_l virconv_t Epnet AVOD CLOCS

Camera
Hide Saturation 97.37% \ 92.58% 47.41% 0.04% 0.54% 7.78% 20.48% 88.51%
Create Projection 100.00% \ 96.77% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LiDAR
Hide Point Erase \ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Create Point Injection \ 100.00% 0.00% 95.93% 100.00% 98.27% 100.00% 100.00% 0.00%

Table 2: The Robustness(Rb) of 5 single-modality Detectors and 7 MSF-based on Kitti-Spoof.

Target

Sensor
Corruption

Camera-only LiDAR-only Fusion Model

ImVoxelNet SMOKE Second PointPillar 3DSSD F-PointNet PointPainting VirConv_L VirConv_T EPNet AVOD CLOCs

Camera

[Hide] Laser - Saturation 0.415 0.069 / / / 0.226 0.402 0.999 0.995 0.804 0.592 0.315

[Create] Light- Projection 0.668 0.852 / / / 0.467 0.973 0.999 1.000 0.999 0.995 0.984

Laser - Color Strip Injection 0.520 0.203 / / / 0.962 0.832 0.999 0.993 0.797 0.752 0.993

EM - Color Strip 0.549 0.749 / / / 0.947 0.916 0.967 0.985 0.891 0.790 0.992

EM - Truncation 0.010 0.000 / / / 0.080 0.330 0.999 0.933 0.782 0.404 0.320

Ultrasound - Blur 0.001 0.000 / / / 0.386 0.330 0.967 0.958 0.790 0.411 0.636

LiDAR

[Hide] Laser - Point Erase / / 0.655 0.645 0.661 0.597 0.638 0.653 0.676 0.683 0.611 0.665

[Create] Laser - Object Injection / / 0.781 0.778 0.767 0.775 0.890 0.793 0.796 0.707 0.830 0.889

Laser - Arbitrary Point Injection / / 0.893 0.873 0.894 0.784 0.892 0.890 0.910 0.884 0.875 0.888

Laser - Background Noise Injection / / 0.814 0.855 0.742 0.516 0.898 0.854 0.922 0.729 0.839 0.959

EM - Point Interference / / 0.979 0.987 0.981 0.960 0.985 0.971 0.994 0.993 1.001 0.993

Mean Robustness on Camera Cor. (𝑚𝑅𝑏𝐶 ) 0.359 0.312 / / / 0.511 0.630 0.988 0.977 0.844 0.657 0.707

Mean Robustness on LiDAR Cor. (𝑚𝑅𝑏𝐿) / / 0.825 0.827 0.809 0.726 0.861 0.824 0.850 0.799 0.831 0.879

Mean Robustness on All Corruptions (𝑚𝑅𝑏) 0.650 0.625 0.920 0.922 0.913 0.609 0.735 0.918 0.923 0.824 0.737 0.785

collisions or traffic jams as intended by the attacker. Past research
has shown that single-modality models are notably susceptible
to such targeted attacks, highlighting the unique and significant
threats posed by targeted attacks that necessitate the attention of
security researchers. Consequently, evaluating whether attackers
can control the outputs of multi-modal models in a straightforward
manner, similar to their control over single-modality models, serves
as one of the key aspects in measuring model robustness.

We use the parameter 𝐴𝑆𝑅 to evaluate targeted attack robust-
ness. The results are shown in Table 1. We take one camera-based
detector ImVoxelNet [62] and one LiDAR-based detector PointPil-
lar [44] as the baseline. It can be observed that the 4 targeted attacks
can achieve a high attack success rate against the single-modality
detectors. In contrast, the ASR of the attacks on the fusion models
varies significantly. Overall, hiding is easier than creating. Exam-
ining each type of attack, the LiDAR-Hide attack can successfully
compromise all models, as the method of erasing point clouds can
almost entirely eliminate an object’s 3D information. This action
consequently prevents the successful regression of the 3D bounding
box. Continuing with this line of reasoning, Camera-create, which
does not provide 3D information about the object, should logically
be unable to succeed. This holds true for the majority of models.
However, we were surprised to find that the Camera-Create attack
successfully generated spoofed objects in F-pointnet. To understand
why the Camera-Create attack succeeds, we visualized the detec-
tion results as shown in Fig. 8. We found that the created objects in
F-pointnet are instances where the ground is mis-detected as a car.
We suppose that after the filtering mechanism in F-pointnet, the

ground point cloud obtained features closely resembling those of a
car roof. Moreover, the success rates of Camera-Hide attacks and
LiDAR-Create attacks are inversely related. Models easily compro-
mised by Camera-Hide attacks are less susceptible to LiDAR-Create
attacks and vice versa. This indicates that existing fusion models
often rely more on one sensor source (majority). The late fusion in
CLOCs treats detection results from both modalities equally, elimi-
nating this bias. However, due to the structural characteristics of
CLOCs, it tends to prune rather than create new discoveries, which
can be hazardous in real autonomous driving scenarios.
Observation 1 (RQ1): For camera attacks, all fusion models (7/7)
can reduce the attack success rate. However, no fusion model
(0/7) can defend against the LiDAR-Hide attack, and only some
models (4/7) can attenuate the LiDAR-Create attacks. The black-
box targeted attacks, originally designed against single-modality
detectors, still retain the potential capability to compromise fusion
models. However, selecting the right fusion model can effectively
mitigate the impact of such attacks.

4.4.2 RQ1.2 Single Source Robustness: Single Source Robustness
refers to the average robustness of a model when facing attacks on
a single sensor (such as a camera or LiDAR). Since single-modality
models are only exposed to attacks targeting the sensor they use,
single-source robustness allows for a comparison of the robustness
between MSF and single-modality models when confronting the
same attacks.
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We utilize the parameters 𝑚𝑅𝑏𝐶 and 𝑚𝑅𝑏𝐿 to represent the
model’s mean robustness under camera or LiDAR corruption, re-
spectively. The results are shown in Table 2, We found that the
𝑚𝑅𝑏𝐶 of all MSF models surpasses that of camera-based models.
This improvement can be attributed in part to the fusion of point
clouds, which effectively enhances robustness. Another contribut-
ing factor is the generally inferior performance of existing open-
source camera-based models, leading to their lower robustness. In
contrast, only 4 out of the 7 MSF models in our experiments showed
a superior𝑚𝑅𝑏𝐿 to LiDAR-based models. This suggests that fusion
doesn’t necessarily guarantee enhanced robustness, and selecting
the right fusion method requires additional effort.
Observation 2 (RQ1): When considering single source attacks:
Compared to the camera-based model, all fusion models (7/7)
can enhance the robustness against camera attacks. Compared
to LiDAR-based models, most fusion models (5/7 in this paper) can
increase robustness against LiDAR attacks.

4.4.3 RQ1.3 Overall Robustness: Overall robustness refers to the
model’s mean robustness under all corruptions in this benchmark.
Given the increased diversity of sensors in the MSF-based models,
they are exposed to a greater number of potential attack vectors.
This aspect is pivotal and cannot be ignored when evaluating ro-
bustness and security.

We use the parameter𝑚𝑅𝑏 to evaluate overall robustness. For
Camera-based models, we set their robustness to all LiDAR corrup-
tions as 1, and vice versa for the LiDAR-based models. From Table 2,
we observe that the majority of MSF models have greater 𝑚𝑅𝑏

compared to camera-based models. This discrepancy may be attrib-
uted to the subpar performance of existing open-source camera-
based models. The best𝑚𝑅𝑏 is exhibited by the LiDAR-based model.
Meanwhile, the SOTA MSF models, VirConv-L and VirConv-T, also
demonstrate commendable𝑚𝑅𝑏. Overall, MSF-based models have
a lower mRb compared to LiDAR-based models.
Observation 3 (RQ1): Since MSF-based models are exposed to
sensor attacks from both sensors, the majority (6/7) of existing
fusion models do not enhance overall robustness.

Answer to RQ1

Considering targeted attack robustness, single source robust-
ness, and overall robustness, most MSF-based models show
enhanced robustness compared to camera-based models
rather than LiDAR-based models. However, state-of-the-
art fusion models, such as VirConv-L and VirConv-T, are
expected to enhance robustness across all aspects, show-
casing the potential of MSF in improving robustness.

4.5 RQ2. How does the architecture of the
model influence robustness?

To answer RQ2, we compare MSF-based models with each other,
aiming to evaluate which fusion design is more robust.We approach
this comparison from two perspectives: fusion sequence and fusion
data representation.

Data Result Feature Data

Result Feature Data Mixed

Mixed

Fusion Rep. - Camera .

Fusion Rep. - LiDAR

Cascaded Parallel

Fusion Sequence

Mean Robustness under All and Camera and LiDAR Corruptions

Cascaded Parallel
Fusion 
Sequence

Data Result Feature Data

Result Feature Data Mixed

Mixed

Fusion Rep. 
- Camera

Fusion Rep. 
- LiDAR

𝒎𝒎𝒎𝒎𝒎𝒎

𝒎𝒎𝒎𝒎𝒎𝒎𝑪𝑪

𝒎𝒎𝒎𝒎𝒎𝒎𝑳𝑳

(𝐚𝐚)

(𝐛𝐛)

Figure 6: The mean robustness under (a) all corruptions and (b)
camera and LiDAR corruptions. The models on the X-axis are ranked
based on two criteria. The first criterion is the fusion sequence, in the order
of [cascaded, parallel]. Within the same fusion sequence, the information
entropy of fusion representation serves as the second criterion, in the order
of [result, feature, data].

4.5.1 Fusion Sequence. According to the results in Table 2, the
robustness of a model varies greatly with different architectures. To
discern the relationship between fusion sequence and robustness,
we categorize the models into cascaded fusion and parallel fusion.
As the𝑚𝑅𝑏 under all corruptions shown in Fig. 6, we observed that
the robustness of cascaded fusion is generally lower than that of
parallel fusion. We suppose this is due to the cascade effect, where
errors caused by corruption in a single sensor propagate throughout
the detection pipeline, subsequently reducing overall robustness.
In contrast, parallel fusion allows data from the two sensors to
reinforce each other, thereby enhancing robustness.
Observation 4(RQ2) From the perspective of the fusion sequence,
parallel fusion exhibits better robustness than cascaded fusion.

4.5.2 Fusion Representation. From the input to the output of the
detection pipeline, data representation transitions from original
data to feature and then to results. We adopt information entropy,
denoted as H𝑋 , to intuitively quantify the information content
of data 𝑋 . In neural networks, basic operations such as convolu-
tion, activation functions, ROI pooling, NMS, and FC can lead to
information loss [28]. Thus, we can intuitively derive the following
relationship:

H𝑑𝑎𝑡𝑎 > H𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 > H𝑟𝑒𝑠𝑢𝑙𝑡 (3)
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Additionally, We useH𝐹𝑅 (𝑀) to represent the information entropy
contained in the Fused Representation of model𝑀 .

First, let’s consider the cascaded models: F-Pointnet and Point-
Painting. These two models both use 2D results generated from
the image to fuse with the original point cloud. While F-Pointnet
reduces the information entropy of the point cloud by filtering the
point cloud using 2D detection results. we have:

H𝐹𝑅 (𝑃𝑜𝑖𝑛𝑡𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔) > H𝐹𝑅 (𝐹 − 𝑝𝑜𝑖𝑛𝑡𝑛𝑒𝑡) (4)
Second, let’s consider the parallel fusionmodels VirConv-T, VirConv-
L, EPNet, AVOD, and CLOCs. The fused representations of the
five models are shown in Fig. 6. It’s important to note that the
LiDAR input of AVOD is a bird’s-eye view (BEV). Clearly, the in-
formation entropy of BEV is less than that of the original point
cloud. Thus, we can determine thatH𝐹𝑅 (𝐴𝑉𝑂𝐷) is less informa-
tive than H𝐹𝑅 (𝐸𝑃𝑁𝑒𝑡), but we cannot compare H𝐹𝑅 (𝐴𝑉𝑂𝐷) and
H𝐹𝑅 (𝐶𝐿𝑂𝐶𝑠). Therefore, we have:

H𝐹𝑅 (𝑉𝑖𝑟𝐶𝑜𝑛𝑣 −𝑇 ) > H𝐹𝑅 (𝑉𝑖𝑟𝐶𝑜𝑛𝑣 − 𝐿) >
H𝐹𝑅 (𝐸𝑃𝑁𝑒𝑡) > H𝐹𝑅 (𝐴𝑉𝑂𝐷),H𝐹𝑅 (𝐶𝐿𝑂𝐶𝑠)

(5)

As shown in Fig. 6(a), the overall robustness of the models also
follows the information entropy relationship in Equ. 4 and Equ. 5.
This confirms the Observation 5.
Observation 5 (RQ2): In general, given the same fusion sequence,
the more comprehensive the information contained in the fused
representation, the stronger the robustness. The comprehensive-
ness of information is ranked as data > feature > results.
Further analysis, as shown in Fig. 6(b), reveals that different

fusion representations primarily influence the 𝑚𝑅𝑏𝐶 . Moreover,
the greater the information entropy (H𝐹𝑅 ), the stronger the𝑚𝑅𝑏𝐶 .
However, the variation of H𝐹𝑅 has very few impacts on the𝑚𝑅𝑏𝐿 .
This is because those MSF models are based on point cloud-based
3D object detectors and incorporate image information into various
stages of the detection pipeline.

Answer to RQ2

Overall, different fusion sequences and fusion representa-
tions influence robustness with the following characteris-
tics:
1) Parallel fusion exhibits better robustness than cascaded
fusion. 2) The more comprehensive the information con-
tained in the fused representation, the greater the robust-
ness. The comprehensiveness of information is ranked as
data > feature > results. 3) Different fusion architectures
primarily influence the robustness to camera corruption.

5 ROBUSTNESS IMPROVEMENT
Based on the answers of RQ1 and RQ2, we provide insights for
enhancing robustness. A Fusion architecture exhibiting the follow-
ing characteristics can enhance robustness against physical sensor
attacks: 1) Independence, 2) Parallel Fusion, and 3) Data Fusion.

Independence refers to the ability of each modality to achieve
the final 3D object detection independently of the others. This
allows one modality to potentially complete the final task even
when subjected to data erasure attacks, such as the camera-hide
and lidar-create discussed in this paper.

Modality Equality refers to incorporating sensor data equitably
into the detection model during fusion, rather than designating
one sensor as primary and another as auxiliary. Empirical evidence
has shown that if bias is introduced towards one modality during
fusion, the model becomes more vulnerable to attacks targeting the
primary sensor. Moreover, the auxiliary sensor, having insufficient
weight, faces challenges in effectively correcting the outcomes.

Data Fusion suggests that integration should occur at the raw
data level, rather than at the feature or result levels. This is because
raw data retains more comprehensive information, and experimen-
tal findings have affirmed the increased robustness of data fusion
compared to other fusion methods. However, when fusing LiDAR
and camera data, the process encounters challenges due to the
heterogeneous nature of point clouds and images, which impedes
direct data fusion.

6 RELATEDWORK
Understanding and analyzing the robustness of fusion-based per-
ception has been broadly studied with digital data corruption (e.g.
occlusion [38, 57], noise [38, 55] or downsampling [55]) and worst-
case adversarial perturbation [55, 75, 86]. While these works bring
intriguing results in most cases, they share two limitations. First,
the corrupted data they adopted is purely digital, not reflecting the
challenges fusion systems might encounter in the real world. Sec-
ond, the number of fusion models they tested is limited (fewer than
3) and the performance of models is not state-of-the-art. This could
potentially undermine the validity of the empirical conclusions
drawn, which may lead to contradictory conclusions in different
works. For instance, [57] said “the later the sensor data is fused, the
greater the detection rate of the object detectors is”, while [75] said
“early fusion is more robust than late fusion”.

7 CONCLUSION
In this paper, we introduce, to our knowledge, the first compre-
hensive benchmarks for MSF-based Models under physical sensor
attacks by introducing a new dataset including 11 types of sensor
attacks. We designed and conducted a rigorous SLR and attack capa-
bility quantification to ensure the comprehensiveness and physical
feasibility of Kitti-Spoof as much as possible. Based on evaluat-
ing 542,736 frames on 7 MSF-based models and 5 single-modality
models, we answer two open research questions: RQ1) Does fusion
enhance robustness? We find most fusion models reduced overall
robustness when considering attacks from both sensors. This chal-
lenges the consistent understanding of previous research. RQ2) How
does the architecture of the model influence robustness? We adopted a
novel paradigm to categorize models and introduced the concept of
information entropy, which surprisingly revealed the relationship
between model architecture and robustness. Finally, we provided
some insights for enhancing robustness. We hope that our bench-
mark can aid in improving the performance of MSF-based models.
The study can serve as a reference for researchers concerned with
the security of MSF-based models in safety-critical applications.
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A ATTACK CAPABLITY QUANTIFICATION
A.1 Image Corruption
[Camera - Hide]Laser-Saturation: Previous papers have con-
ducted the hiding attack on a camera using LED and laser, and the
experimental results showed that laser can easily blind the camera
even damage it compared to LED. In the previous experiments, only
the red laser ( 650 nm) was used. In order to make the experimental
results more complete, in this paper, we use more wavelengths of
lasers for the experiments, and we also tried high lumen beams. We
discovered that at the same power, green lasers( 550 nm) can cause
more severe overexposure effects than lasers of other wavelength.
This may be due to the higher proportion of green pixels in CMOS
sensors.
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Table 3: The Attack Capability of The Transduction Attack Corruptions

ID Corruptions Attack Capability Source
PaperCorruption

Patterns ℓ0 :Scope
ℓ2 :Pixel / Point

Manipulation Quantification

1 [Hide] Laser - Saturation Global Exposure All Piexels Value addition on {R,G,B} channels
according to quantum efficiency [56, 83]

2 [Create] Light- Projection Specified pattern Specified location Value superposition of projected pixels
and original pixels

[51],[53],[48]
[21],[77]

3 Laser - Color Strip
Injection color strip Specific rows of

the image.
Value addition on {R,G,B} channel
according to quantum efficiency [65, 84]

4 EM - Color Strip Loss Uniform color strip Specific rows of
the image. Filter array mismatch: G→R/B, R/B→G [35]

5 EM - Truncation Content Stitching Specific rows of
the image.

The image is stitched with
the previous frame or next frame [35]

6 Ultrasound - Blur Linear Blur All Piexels Value superposition of a series of
translated pixels [34, 89]

7 [Hide] Laser - Point Erase Point Erase 30° azimuth The original points are erased [12, 36]

8 [Create] Laser - Object
Injection Specified Object 20° azimuth Fake points with random distance

noise of 0.05 meters. [19, 36, 64]

9 Laser - Arbitrary Point
Injection adversarial point cloud 30° azimuth Fake adversarial points with raondom

distance noise of 1 meters
[14, 56, 67]
[29, 69]

10 Laser - Background Noise
Injection unfirom noise 30° azimuth Fake random points within a distance

of 100 meters [67]

11 EM - Point Interference sinusoidal noise All Points Sinusoidal noise wintin 0.05m added to
the original points [11]

Figure 7: Fusion Testbed.

[Create]Light - Projection: We conduct tests with the two
methods: projecting into the environment and directly projecting
into the camera. However, achieving a successful direct projection
into the camera proved challenging, as it necessitates precise optical
focusing of the projector and high-precision aiming between the
attack signal and the camera’s photosensitive components. Through
testing, we finally choose to implement the attack by projecting
patterns into the environment. We find this approach convenient
for launching create attacks and can effectively deceiving state-of-
the-art 2D object detection models. However, the projection attacks
can be notably challenging to execute successfully under strong
lighting conditions.

Laser - Color Strip Injection: The authors of "Rolling Color"
extensively discuss the impact of pulsed lasers on images in their

paper and provide a modeling method for Laser Attack. In this
paper, we adopt their approach for designing corruption.

EM - Strip Loss and EM - Truncation: The GlitcHike demon-
strates that attackers can utilize EMI to induce a color strip in
images due to errors in the optical filters, such as the incorrect
use of blue-green (B/G) and green-red (G/R) filters. As a result, the
injected strip visually appears as a uniform shade of purple (dis-
tinguishing it from the uneven strip in Color Strip Injection). The
Glitchhike paper provides evidence that attackers can control the
position, width, and number of purple strips. Similarly, for trun-
cation, attackers can adjust the signal to control the position of
truncation. We have also confirmed this in testbed-based testing.
Therefore, we follow the attack capability outlined in the paper for
designing corruption.

Ultrasound - Blur: Based on the three types of pixel motions
along different Degrees of Freedom (DOFs), the authors [34] cate-
gorize the blur patterns into linear blur, radial blur, and rotational
blur. Through the physical experiments in our testbed, we have
observed that linear blur is the most easily induced type of blur.
Therefore, we adopt linear blur to design corruption.

A.2 LiDAR Corruption
[Hide]Laser - Point Erase: In the paper [67] by Shin et al., they uti-
lized an 800mW continuous laser to hide point clouds of a 41∗42𝑐𝑚2

metal plate, but they did not quantify the specific attack capabili-
ties. In our testbed experiments, we conducted experiments using
905nm lasers with power outputs of 200mW, 600mW, 1000mW,
and 2000mW, respectively. We found that as the power increases,

11



Table 4: MSF-based 3D object detection model in our benchmark

Model
Fusion
Stage

Fusion
Architecture

Fusion Representation
Fused Operator

Camera Rep. LiDAR Rep.
F-Pointnet Early Cascaded frustum point cloud region selection

PointPainting Early Cascaded 2D segmentation point cloud point-wise enhancement
VirConv-L Early Parallel virtual points point cloud data concatenate

VirConv-T Mixed Parallel virtual points point cloud
data concatenate &
ROI concatenation &

box voting
EPnet Middle Parallel image features point features point-wise attention
AVOD Middle Parallel image features BEV features concatenation & MLP
Clocs Late Parallel 2D boxes 3D boxes box consistency

the effective range of removal also increases. Using a 2000mW
laser, we were able to erase point clouds within approximately a
6◦ ∗ 6◦ area. In the studies by Jin et al. [36] and Cao et al. [12], they
conducted a detailed evaluation, demonstrating that attackers can
remove target point clouds over a horizontal angle of more than
30° [36] and 40° [12], respectively. We have also confirmed this on
our testbed. Considering the overall attack effectiveness and cost,
we have decided to draw inspiration from the latter attack method
for designing our corruption approach.

[Create]Laser - Object Injection: The authors of PLA-LiDAR
claim the capability to control up to 4000 points within 30◦, a num-
ber sufficient for injecting point clouds of objects such as cars and
pedestrians. In addition to the number points, to enhance the phys-
ical realizability, the position and shape control precision of points
are crucial metrics need to be considered. Position precision refers
to the attacker’s ability to precisely control the overall position of
the injected point clouds. Shape precision refers to the ability to
maintain the injected points into specific shapes. Based on calcu-
lations of continuous data for 7 seconds (70 frames), we observed
that the position and shape precision follows random uniform dis-
tribution. When we set the mean value is 0, the standard deviation
of position precision is 38.2cm and standard deviation of the shape
precision is 5.3cm. We take these two errors into consideration
when designing the corruptions.

Laser - Arbitray Point Injection: In these previous works, the
latest research claims the capability to inject up to 200 points. How-
ever, inspired by PLA-LiDAR, we believe that injecting thousands
of points is feasible. Therefore, when designing corruption, we set
the number of points to be the same as in Create-Object Injection
and assign each point a mean error ranging from 0 to 1 meter to
reflect its randomness.

Laser - Background Noise Injection: In the paper [67], Shin
et al. claim the ability to inject noise within a 20° horizontal angle.
However, this information alone is insufficient for designing cor-
ruption. Therefore, we conduct further experiments on our testbed
using 5mW and 30mW continuous 905nm lasers at a distance of
7 meters. We find that it is feasible to inject noise within approx-
imately a 30° horizontal angle range, and the noise is uniformly
distributed within a range of 0 to 150 meters

EM - Point Interference: In the paper [11], Bhupathiraju et
al. utilized EM signals at frequencies of 960.9MHz and 977.4MHz
to induce sinusoidal and random patterns in the LiDAR’s point
cloud. Meanwhile, they achieved an average displacement of ap-
proximately 4cm under a 25dB EMI power. We follow the attack
capability outlined in the paper for designing corruption.

B MODEL ARCHITECTURE ANALYSIS
In this section, we evaluated the ASR of the targeted attack against
the fusion model, We take two single-modality detectors YOLO
v8 [9] and PointPillar [44], as the baseline. The results are shown
in Table. 1. For LiDAR-Hide attack, the target objects are those
with all eight vertices of the ground-truth 3D box within the attack
range. It can be observed that the 4 targeted attacks can achieve
high attack success rate against the single-modality detectors. In
contrast, the impact of the attacks on the fusion models varies
significantly depending on the model structure. Overall, hiding
is easier than creating. Among these, the LiDAR-Hide attack can
successfully compromise all models, as the method of erasing point
clouds can almost entirely eliminate an object’s 3D information.
This action consequently prevents the successful regression of the
3D bounding box. Continuing along this line of reasoning, Camera-
create, which does not provide 3D information about the object,
should logically be unable to succeed, and indeed, this holds true
for the majority of models. But we found that Camera-create can
successfully attack F-pointnet, and we provide an explanation latter.

We provide further explanations for the results of other two
attacks, analyzing them on a model-by-model basis.

F-Pointnet. Due to the cascaded fusion structure of F-pointnet,
if an object is not detected in the image, then the object’s point
cloud will be filtered out, leading to a high success rate for the
Camera-Hide attack. It is important to note that, strictly speaking,
the Camera-Create attack cannot succeed in all models since merely
modifying an image does not provide 3D information. However,
we were surprised to find that the Camera-Create attack success-
fully generated spoofed objects in F-pointnet. To understand why
Camera-Create attack succeeds, Upon manually analyzing the re-
sults, we visualize a typical 3D detection results in . we discovered
that the spoofed objects created in F-pointnet were instances where
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Table 5: The Performance(AP) of 11 Detectors on Kitti and Kitti-Spoof.

Target

Sensor
Corruption Difficulties

Camera-basd LiDAR-based Model Fusion Model

ImVoxelNet SMOKE Second PointPillar 3DSSD F-PointNet PointPainting VirConv_L VirConv_T EPNet AVOD CLOCs

AP on Clean Data

Easy 22.320 16.936 88.356 87.813 88.892 72.052 86.360 89.944 90.089 88.922 82.724 87.391

Moderate 17.271 13.848 78.214 77.616 78.434 65.150 76.725 86.818 87.731 78.831 73.717 76.855

Hard 15.164 11.902 76.017 75.931 77.326 53.162 75.091 85.912 86.508 78.400 67.650 75.113

Camera

[Hide] Laser - Saturation

Easy 4.545 1.299 / / / 14.301 37.906 89.962 90.051 77.574 52.725 28.313

Moderate 9.091 0.826 / / / 14.530 31.107 86.477 86.302 60.320 42.723 23.295

Hard 9.091 0.826 / / / 14.206 26.742 85.955 84.956 60.097 37.312 23.751

[Create] Light- Projection

Easy 14.621 13.620 / / / 24.927 84.645 89.812 90.040 88.862 82.350 85.143

Moderate 11.167 11.564 / / / 33.271 75.520 86.717 87.847 78.729 73.339 75.874

Hard 10.814 11.178 / / / 30.738 71.581 85.882 86.572 78.304 67.269 74.490

Laser - Color Strip Injection

Easy 10.292 3.422 / / / 69.816 75.040 89.958 89.900 77.486 67.194 86.963

Moderate 9.091 3.314 / / / 60.071 62.226 86.498 87.311 59.561 54.041 76.209

Hard 9.091 1.946 / / / 53.235 60.821 86.039 85.208 59.258 47.384 74.544

EM - Color Strip

Easy 10.472 11.167 / / / 66.343 80.114 89.810 89.480 86.649 68.751 86.828

Moderate 9.878 10.580 / / / 60.418 70.474 85.466 86.646 68.652 54.432 76.146

Hard 9.718 10.213 / / / 53.592 67.465 78.766 84.186 63.966 53.873 74.547

EM - Truncation

Easy 0.006 0.000 / / / 2.910 32.172 89.959 89.289 76.963 37.819 28.419

Moderate 0.005 0.000 / / / 3.195 23.559 86.475 78.761 57.745 27.065 23.871

Hard 0.005 0.000 / / / 9.091 22.861 86.009 78.501 57.760 25.627 24.385

Ultrasound - Blur

Easy 0.001 0.000 / / / 31.804 32.172 89.754 89.544 77.168 38.089 57.379

Moderate 0.000 0.000 / / / 22.966 23.559 85.557 84.572 58.867 27.346 46.800

Hard 0.000 0.000 / / / 18.648 22.861 78.820 78.980 58.407 26.625 48.013

LiDAR

[Hide] Laser - Point Erase

Easy / / 60.232 59.041 60.766 44.483 58.271 67.016 69.093 64.308 53.672 60.071

Moderate / / 50.404 49.664 51.147 35.517 48.028 52.500 56.770 52.132 41.929 50.407

Hard / / 48.352 46.978 49.74 33.580 45.599 51.973 52.945 51.703 41.418 48.608

[Create] Laser - Object Injection

Easy / / 72.864 70.113 69.573 60.669 77.854 73.615 71.1231 62.615 68.504 78.153

Moderate / / 59.509 60.241 59.707 55.175 67.992 65.325 64.26643 55.957 61.645 68.088

Hard / / 57.208 57.363 58.297 44.318 66.220 58.969 61.83261 55.405 55.928 66.452

Laser - Arbitrary Point Injection

Easy / / 79.683 77.666 80.993 55.523 78.218 86.027 84.324 78.978 73.174 78.240

Moderate / / 69.56 68.148 69.672 50.266 68.073 77.642 78.785 69.708 64.542 68.074

Hard / / 67.29 64.937 68.125 43.468 66.262 70.138 77.327 68.988 58.335 66.334

Laser - Background Noise Injection

Easy / / 87.191 76.528 70.545 38.302 79.268 86.187 87.955 65.888 72.260 86.640

Moderate / / 72.592 66.831 57.392 32.461 69.196 69.528 78.301 58.486 58.327 75.157

Hard / / 67.689 62.937 53.649 27.486 65.305 68.551 77.421 55.034 57.518 67.784

EM - Point Interference

Easy / / 87.646 87.369 88.583 69.554 84.795 89.853 89.966 88.506 82.924 87.023

Moderate / / 77.023 77.068 77.635 60.162 75.953 86.006 87.768 78.273 73.842 76.467

Hard / / 72.9 73.719 73.773 52.961 73.806 79.131 84.929 77.689 67.624 74.228

the ground was misdetected as a car (Fig. 8). We suppose that af-
ter the filtering mechanism in F-pointnet, the ground point cloud
obtained features closely resembling those of a car.

Pointpainting. Camera-Hide and LiDAR-Create can achieve
47.41% and 95.93% ASRs, respectively, on Pointpainting, seperately.
The PointPainting architecture consists of three main stages. (1) an
image based semantic segmentation network which computes the
pixel wise segmentation scores. (2) a fusion stage that LiDAR points
are painted with sem. seg. scores. (3) a LiDAR based 3D detection
network. According to the taxonomy in this paper, it’s an early
fusion. The image segmantation scores are appended to the LiDAR
point to create the painted point. The paited point can be consumed
by any LiDAR network that learns an encoder, since PointPainting
just changes the input dimension of the LiDAR points. In this bench-
mark, we used the Pointpillar [44] and decorate the point cloud
with the sem. seg. scores for 4 classes in Kitti. This changes the
point cloud dimension from 9 → 13. The first 9-dimensions point
cloud data and subsequent 4-dimensions image data are fed into

(13,64) encoder for 3D object detection. Therefore, both the image’s
classification information and the raw point cloud information have
the potential to influence the final detection results. Furthermore,
based on the results, it can be observed that the fusion architecture
of point painting exhibits greater robustness against camera attacks
compared to LiDAR attacks.

EPNet. EPNet is very robust against Camera-Hide (ASR 7.78%)
while is vulnerable to LiDAR-Create(ASR 100%). EPNet consists
of a two stream backbone network, which is composed of a geo-
metric stream and an image stream. The two streams produce
the point features and semantic image features, respectively. In
imgae stream, EPNet adopts four cascaded 3 ∗ 3 convolutional
blocks to extract image semantic features in different scales, de-
noted as 𝐹𝑖 (𝑖 = 1, 2, 3, 4). The geometric stream comprises four
paired set abstraction 𝑆𝑖 (𝑖 = 1, 2, 3, 4) and feature propogation lay-
ers 𝑃𝑖 (𝑖 = 1, 2, 3, 4) [59] for feature extraction. The point features 𝑆𝑖
are combined with the image features 𝐹𝑖 with the aid of LI-Fusion
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(a) Image

(b) Point Cloud.

Figure 8: The detection results of F-Pointnet against [Create]Light-
Projection corruption. The ground point clouds are misdetected as a
"car", indicating the success of the create attack.

module. Besides, the point feature 𝑃4 is enriched by the image fea-
ture. Overall, the LI-Fusion module allows point features and image
features to be deeply fused in the backbone network. However, as
the primary role of the image is to enhance the point cloud, point
cloud features still play a predominant role throughout the pipeline.
Thus, it is easier for LiDAR-based corruptions to compromise EPNet
compared to camera-based corruptions.

AVOD.AVOD is robust against Camera-Hide (ASR 20.48%) while
is vulnerable to LiDAR-Create(ASR 100%). In AVOD, the image and
bird-eye-view(BEV) point feature maps, which are generated by
feature extractors, are fused in region proposal network(RPN) Both
feature maps are then used by the RPN to generate non-oriented
region proposals, which are passed to the detection network for
dimension refinement, orientation estimation, and category classi-
fication. We can observe that the fusion architecture of AVOD puts
the features of images and point clouds on an equal footing, which
distinguishes it from EPNet. In EPNet, image features are used to
aid in enhancing point cloud features. Although the AVOD archi-
tecture is intended to be equal for camera and LiDAR features, it is
apparent that after training, the model is biased towards relying on
the LiDAR features. This is evidenced by the attack results, where
mean ASRs of camera attack vs LiDAR attack are 10.24% vs 100%.

CLOCs. Camera-Hide (ASR 88.51%) is able to successfully com-
promise CLOCs, whereas LiDAR-Create(ASR 0%) isn’t. CLOCs is a
late fusion approach that merges camera and LiDAR detection can-
didates before applying Non-Maximum Suppression (NMS). CLOCs
employs significantly reduced thresholds for each sensor to op-
timize their recall rate. If the 2D and 3D bounding boxes have a
large enough IoU in the image plane, then their information will be
combined into a single tensor for subsequent processing. However,
3D(2D) bounding boxes for which no matching 2D(3D) bounding
box can be found will be ignored. Overall, CLOCs, like most late
fusions, tend to prune rather than create new discoveries, which ex-
plains why hide attacks are easy to succeed in while create attacks
are difficult.

C BACKGROUND
C.1 MSF-based 3D Object Detection
Camera provides detailed texture information but is passive in de-
pendence on suitable illumination. LiDAR provides accurate depth
information but provides sparse observation at long range. Camera
and LiDAR are considered to be two complementary sensor types
for 3d object detection. Many endeavors have been made to fuse the
image information from camera and the point cloud information
from LiDAR for better 3D object detection. The state-of-the-art fu-
sion methods mainly incorporate image information into different
stages of the point cloud detection pipeline.

C.2 Sensor Attack against Camera and LiDAR
There has been a lot of works analyzing and studying the vulnera-
bilities of vision sensors in autonomous driving, including research
on sensor vulnerability and adversarial attacks based on deep learn-
ing. In order to gain a better understanding of the threats that
autonomous driving perception faces in the physical world, we
perform a literature review on physical spoofing attacks against
camera-based and LiDAR-based object detection. As shown in Ta-
ble. ,

The output of camera (i.e. picture) can bemanipulated by light(laser),
sticky, ultrasound and electromagnetic. The High-lumen LED and
continuous laser will saturate the CMOS/CCD and cause the camera
to be blind [56, 83]. Although the automatic exposure mechanism
can weaken the high-intensity light to a certain extent, experiments
have proved that this type of attack is still effective on cameras with
automatic exposure [56]. Taking advantage of the feature that the
projector can directly project high-lumen images, the desired pat-
terns can be directly inject into the camera [51]or can be projected
onto the ground [53] and target object [48] to achieve the spoofing
effect. By exploiting the rolling shutter of CMOS sensors, radiomet-
ric striping distortions can be injected through the time-modulated
high frequency light signal [46, 65], and then interference the tar-
get classification [65]. What’s more, attackers manage to inject a
color stripe overlapped on the traffic light in the image using laser,
which can cause a red light to be recognized as a green light or vice
versa [84]. In order to realize the adversarial attack in the physical
world, there are many endeavours that use stickers to manipulate
the pixel value of the image [22, 32, 40, 74, 79, 88, 92]. As a seemingly
simple way to implement, this type of work often needs to consider
the robustness of adversarial examples under various distances,
angles, and illuminations [50]. The out-of-band signal injection
have also been explored to manipulate pixel values. By emitting
delicately designed acoustic signals, an adversary can control the
output of an inertial sensor, which triggers unnecessary motion
compensation and results in a blurredarbitrary image [34]. Using
intentional electromagnetic interference (IEMI), an attacker could
induce controlled glitch images of a camera at various positions,
widths, and numbers [35].

The output of LiDAR (i.e. point cloud) can be manipulated by
laser and 3D object. Similar to camera, saturation attack also applies
to LiDAR sensors, and can be induced by high-power continuous
laser [67]. After the iterative efforts of several papers [14, 56, 67],
the latest literature [36] proves that a large number of control-
lable points can be injected into the mechanical (spinning) LiDAR

14



Figure 9: The Average Precision (AP) of each model under clean datasets and various corruptions, a higher AP indicates better model
performance.

through carefully designed laser pulses, and physically validates
the feasibility of hiding attack and creating attack. The way of
using 3D objects to manipulate point clouds is also very popular.
There are mainly two methods: 3D printing objects and placing
arbitrary objects. 3D printing object can realize the adversarial
point cloud of specific shape in the physical world, and make the
attack difficult to be aware by human beings while spoofing the
victim detection model [15, 71, 87]. Some studies have found that
for the adversarial attack that aims to hide a target, the position
of the adversarial points is more critical than the shape, thus the

adversarial effect can be realized by placing the arbitrary object at
the specified position [90, 91].

For the LiDAR-Camera fusion Model, there are relatively few
attacks implemented in the physical world. 3D printing object is
employed tomanipulate both point position changes in LiDAR point
clouds and pixel value changes in camera images [13]. Although it
has not been proved by systematic physical experiments, laser is
considered as a promising way to spoofing LiDAR-camera fusion
models [29]. Both of the above works emphasize maintaining the
semantic consistency between LiDAR and Camera when designing
attack vector.
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