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ABSTRACT

Quantum machine learning (QML) algorithms have demonstrated early promise
across hardware platforms, but remain difficult to interpret due to the inherent
opacity of quantum state evolution. Widely used classical interpretability methods,
such as integrated gradients and surrogate-based sensitivity analysis, are not directly
compatible with quantum circuits due to measurement collapse and the exponential
complexity of simulating state evolution. In this work, we introduce HATTRIQ, a
general-purpose framework to compute amplitude-based input attribution scores in
circuit-based QML models. HATTRIQ supports the widely-used input amplitude
embedding feature encoding scheme and uses a Hadamard test–based construction
to compute input gradients directly on quantum hardware to generate provably
faithful attributions. We validate HATTRIQ on classification tasks across several
datasets (Bars and Stripes, MNIST, and FashionMNIST).

1 INTRODUCTION

Quantum machine learning (QML) uses quantum computing to enhance data analysis and pattern
recognition in AI. By using quantum features like superposition and entanglement, QML algorithms
have the potential to offer speedups over classical methods (DeRieux & Saad, 2025; De La Vega
et al., 2023). Current research emphasizes hybrid models, where quantum circuits work alongside
classical optimizers (Bharti et al., 2022; Arrasmith et al., 2021), with applications in classification,
clustering, and generative tasks (Preskill, 2018; DiBrita et al., 2024; Zhang et al., 2023; Han et al.,
2025). While limited by today’s hardware, QML holds promise for solving complex problems in
fields such as healthcare, finance, and scientific computing as quantum systems advance (Nicoli et al.,
2023; Hothem et al., 2024; Preskill, 2023). Despite growing interest and experimental progress, QML
models remain difficult to interpret due to the inherent opacity of quantum state evolution and the
absence of intermediate observability mid computation (Herbst et al., 2025; Pira & Ferrie, 2024;
Heese et al., 2025).

In classical machine learning, interpretability methods such as feature attribution play a critical role in
understanding model predictions, particularly in sensitive and mission-critical domains like healthcare
and autonomous systems (Radenovic et al., 2022; Zimmermann et al., 2023; Agarwal et al., 2021;
Hooker et al., 2019; Alvarez Melis & Jaakkola, 2018). Attribution methods (Rudin, 2019; Krishna
et al., 2022) – such as integrated gradients (Sundararajan et al., 2017) – assign importance scores to
input features, revealing which aspects of the input most influence the model’s output. These methods
enhance transparency, support debugging, and build trust in model behavior. In contrast, existing QML
pipelines provide little insight into how input features affect final measurement outcomes, especially
when data is encoded and compressed into high-dimensional quantum state amplitudes (Jerbi et al.,
2021; Bausch, 2020; Preskill, 2018; 2023).

In this work, we propose HATTRIQ1, a methodology for computing the input attribution scores for
quantum circuits. HATTRIQ adapts integrated gradients (Sundararajan et al., 2017) to the quantum
circuit setting, enabling attribution for amplitude embedding. Leveraging integrated gradients for
quantum models is challenging, as larger models require working in exponentially large Hilbert
spaces and manipulating complex amplitude vectors, making both analysis and simulation resource-
intensive (Xiong et al., 2024; Lei et al., 2024). Another challenge is that quantum states are hidden

1HATTRIQ stands for Hadamard test-based input attribution score scheme for quantum models.
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from the user during computation. For large programs, we cannot simply record or log the hidden
state after each circuit layer, as any attempt to measure the hidden state collapses the quantum state
of the circuit entirely (Gong & Aaronson, 2023; Abbas et al., 2023); traditional (surrogate-based)
sensitivity and Sobol/Shapley score methods (Owen, 2014; Cho et al., 2025) cannot preserve unitarity
in quantum circuits, making it difficult to understand how different signals are propagated through
the computation circuit.

To address this, HATTRIQ implements a Hadamard test–based construction that computes exact
gradients directly on quantum hardware, without requiring access to internal quantum states. For
fault-tolerant quantum devices, where the impact of hardware noise (Akhalwaya et al., 2024; Wu
et al., 2025; Patel et al., 2024) is negligible, we propose a parallelization mechanism to evaluate
multiple gradient components concurrently.

Our contributions are as follows.

• We introduce a formalism for computing integrated gradients in QML models that utilize
amplitude embedding for input encoding; the formalism also works with other encodings
such as angle embedding.

• We present a quantum-native circuit construction based on the Hadamard test to compute
exact feature gradients for amplitude-embedded input attribution.

• We provide a multi-ancilla-based parallelization technique to enable gradient computation
concurrently on larger quantum devices with sufficient capacity.

• We evaluate HATTRIQ on multiple classification tasks across Bars and Stripes (Bowles
et al., 2024), MNIST (LeCun, 1998), and FashionMNIST (Xiao et al., 2017) datasets,
demonstrating high-fidelity attribution.

2 RELEVANT CONCEPTS

2.1 QUANTUM STATES AND GATES

Quantum computations are performed by quantum circuits, which manipulate qubits with logic
gates. The state of a qubit is represented as a vector: |ψ⟩ = β0 |0⟩+ β1 |1⟩, where βi is a complex
coefficient for basis state |i⟩. The probability of measuring the qubit to be in state |i⟩ is |βi|2, which
means we must have |β0|2 + |β1|2 = 1 (Schuld & Killoran, 2019; Silver et al., 2023). For an n
qubit system, the statevector is a complex vector |ψ⟩ ∈ C2n that is normalized ⟨ψ|ψ⟩ = 1. States
are then written in terms of an orthonormal basis set; the conventional choice is referred to as the
computational basis set. If we define bk as the bitstring corresponding to integer k, we can define
the computational basis as the set {|bk⟩ ∀ k ∈ Z, 0 ≤ k ≤ 2n − 1}. Our state can then be expressed
as |ψ⟩ =

∑2n−1
k=0 βk |bk⟩ (Schuld & Killoran, 2019; Silver et al., 2023). Logic gates are represented

by unitary matrices (U ) acting on states: U |ψ1⟩ = |ψ2⟩. Circuits are constructed by composing
sequences of gates together (White et al., 2001; Srinivasan et al., 2018).

2.2 PARAMETERIZED QUANTUM CIRCUITS

We study quantum models that feature circuits with trainable gate parameters. These parameterized
quantum circuits (PQCs) are also referred to as variational quantum circuits and have found extensive
applications in quantum machine learning, quantum chemistry, and other areas of quantum optimiza-
tion (Bharti et al., 2022; Arrasmith et al., 2021). Often, the trainable gates in PQCs are rotation gates,
which rotate the quantum state according to some angle parameter. There are many possible ways to
arrange a PQC; the fixed structure of a PQC is referred to as an ansatz, and is analogous to fixing a
neural network architecture.

Let x ∈ RD be a data point, and V (x) |0⟩ = |x⟩ ∈ C2n be a the quantum state that encodes it, with
V (x) being the circuit that performs the encoding. Let U(θ) be a PQC with trainable parameters
θ (Schleich et al., 2024), and O be a Hermitian operator that represents the observable measured for
the model output. We consider quantum models which apply some circuit operations to the input
state |x⟩ and then compute an expectation value, written as

F (x ;θ) = ⟨x|U†(θ)OU(θ) |x⟩ . (1)
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In the more general case, we might compose F (x ;θ) with some other (likely nonlinear) function to
add complexity to our model: our discussion generalizes simply by applying the chain rule (Arrasmith
et al., 2021) in the gradient computation as introduced next.
Remark 2.1. For our discussion, we do not place any specific requirements on U , except that it
must be a valid unitary operator. In most applications, however, U will have some fixed structure of
gates (ansatz). Some subset of these gates will depend on variational parameters θ, which are then
optimized to minimize the loss.

2.3 INTEGRATED GRADIENTS

We base our technique on the integrated gradients method proposed in (Sundararajan et al., 2017).
This work studies the problem of attributing the prediction of deep learning networks to input features
in a sample. Integrate gradients benefit from an axiomatic formulation, with guarantees about their
sensitivity and implementation invariance (Sundararajan et al., 2017; Mudrakarta et al., 2018).

In addition to its superior theoretical properties, this method for attribution also only relies on a small
number of model evaluations and gradient computations, without the need for additional knowledge
of the hidden state (Sundararajan et al., 2017). This is highly desirable for the quantum setting, where
measuring and storing the internal state at multiple points during the computation would incur a high
overhead.
Definition 2.2 (Attribution Score). The integrated gradients attribution of a sample x relative to
baseline x′ is given as the following integral:

IGi(x) = (xi − x′i)

∫ 1

0

∂F (x′ + α · (x− x′))

∂xi
dα. (2)

The calculated value IGi is the integrated gradients attribution for the ith feature, and it represents
the contribution that it makes to the final model prediction.

3 FEATURE GRADIENTS

In this section, we introduce the most popular schemes for encoding data features into a quantum
circuit calculation: (1) angle embedding and (2) amplitude embedding (Havlíček et al., 2019; Schuld
& Petruccione, 2018; Lloyd et al., 2020; Iten et al., 2016; Schuld & Killoran, 2019). For each of
these encoding methods, we introduce our methodology for computing the gradients with respect to
those encoded features, attributing the circuit output to features.

3.1 ANGLE EMBEDDING (OR ENCODING)

For angle-embedded data, the preparation circuit V (x) consists of rotation gates, {R(xi)} each of
which depends on an angle parameter. The angle parameters used are the features xi. In such cases,
the gradient with respect to the features can be natively calculated using the well-known parameter
shift rule (Mitarai et al., 2018; Schuld et al., 2019), which allows for computing the gradient of
quantum circuits by re-executing those circuits with shifted parameter values. For a quantum gate
parametrized by θi and with only two distinct eigenvalues ±r, it has been shown (Schuld et al., 2019):

∂F
∂θi

= r [F (θi + s)− F (θi − s)] (3)

where s = π
4r is the required shift. While at first glance this formula is reminiscent of a standard finite

difference, it differs in that the shift s is not taken to be infinitesimal, and the result of this calculation is
exact. This requires two additional circuit evaluations per parameter, making the gradient calculation
linear with respect to the number of parameters. While Eq. 3 is not generally applicable to all gates,
many parameterized gates, like single qubit rotations, do satisfy the eigenvalue requirements, and
parameter shift has been utilized in a variety of quantum optimization settings (Schuld et al., 2020;
Arrasmith et al., 2021). Additional rules have been formulated that generalize this result to additional
kinds of parameterized gates (Wierichs et al., 2022).

While its simplicity makes angle embedding an attractive choice for near-term applications, the
number of encoded features typically grows only linearly with the number of qubits (Schuld et al.,
2020), meaning the angle encoding does not make full use of the exponentially large Hilbert space,
and does not reach the information upper bound on a sphere (Luo et al., 2024).

3
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3.2 AMPLITUDE EMBEDDING (OR ENCODING)

In the amplitude embedding case (Khan et al., 2024), data features are encoded as amplitudes
of the input state: |x⟩ =

∑
i xi |bi⟩. Unlike this angle embedding case, this allows for encoding

exponentially many input features relative to the number of qubits, expanding the information capacity
in the circuit. While it is generally true that the preparation circuit V (x) is unitary, utilizing the
parameter shift rule for this purpose is not possible due to the complexity of the circuit’s dependence
on the input features. In particular, most state preparation circuits will have structures that change
based on particular |x⟩ (Buhrman et al., 2024), meaning any differentiation routine will necessarily
depend on a complex and changing parameterization. Furthermore, there may be state preparation
routines not satisfying the two-eigenvalue criteria mentioned above. In such cases, one would need to
use the linear combination of unitaries approach (Schuld et al., 2019), which requires additional matrix
decompositions and circuit evaluations. To address this challenge, we provide a novel circuit-based
method of calculating the input gradients, which is independent of the routine used for V (x).
Lemma 3.1 (Input Gradient). For the general case, assume the amplitudes of an amplitude-encoded
input are complex valued, so that each xk = ck + i dk. Then, the input gradients with respect to the
function given in Eq. 1 are given by the following for the real values and complex-valued components.

∂F
∂ck

= 2Re[⟨bk|U†(θ)OU(θ) |x⟩] ∂F
∂dk

= 2 Im[⟨bk|U†(θ)OU(θ) |x⟩]

Proof. The result is elegant to prove upon judicious use of the product rule for derivatives. A full
explicit calculation is deferred to Appendix A.

Lemma 3.1 gives a compact expression for the kth component of the gradient in terms of the
trained model circuit U(θ), its Hermitian conjugate U†(θ), Hermitian observable O, and amplitude
embedded state |x⟩. In this work, we are primarily concerned with the case where all amplitudes are
real, xi = ci, as this is the most common case encountered when using classical data.
Remark 3.2. If we add the constraint that O be unitary as well as Hermitian, then U†(θ)OU(θ)
corresponds to a valid quantum circuit. The obvious choices for O that satisfy this are Pauli operators
or strings of Pauli operators (Dion et al., 2024), which are available on most devices as both
measurement and gate operations.

4 CALCULATING ON QUANTUM HARDWARE

4.1 HADAMARD TEST

Definition 4.1 (Hadamard Test). Given unitary operators A and B such that A |0⟩ = |a⟩ and
B |0⟩ = |b⟩, the Hadamard test (Montanaro & de Wolf, 2013; Audenaert et al., 2008) is a method
for encoding the value Re[⟨a|b⟩] into the expectation value of a quantum circuit observable. This is
achieved by the following circuit:

|0⟩0 H H

|0⟩1 A B

The circuit for computing Im[⟨a|b⟩] is the same, with the addition of an S† gate after the first H
gate (Aharonov et al., 2006).

After the initial Hadamard gate H = 1√
2

(
1 1
1 −1

)
, we have the state 1√

2
[|0⟩0 + |1⟩0] |0⟩1. Applying A

conditioned on 1 and B conditioned on 0 gives the entangled state
1√
2
[ |0⟩0B |0⟩+ |1⟩0A |0⟩ ] = 1√

2
[ |0⟩0 |b⟩+ |1⟩0 |a⟩ ].

The final Hadamard gate gives us
1√
2
( 1√

2
(|0⟩0 + |1⟩1) |b⟩1 +

1√
2
(|0⟩0 − |1⟩1) |a⟩1 = 1

2 (|0⟩ (|b⟩+ |a⟩) + |1⟩ (|b⟩ − |a⟩)).

From this we can compute the probability of measuring qubit 0 to be 0 as

P (0) = 1
2 [ ⟨b|+ ⟨a|) · 1

2 (|b⟩+ |a⟩ ] = 1
4 [ ⟨b|b⟩+ ⟨b|a⟩+ ⟨a|b⟩+ ⟨a|a⟩ ] = 1

2 [ 1 + Re[⟨a|b⟩] ].

4
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This allows us to estimate the desired inner product by sampling from the probability distribution
of additional qubits entangled with the system (Schuld et al., 2019). Hadamard tests have been
used previously to compute certain kinds of parameter gradients (Bharti et al., 2022; Schuld et al.,
2019), but not for feature gradients. We re-frame our formulation in Lemma 3.1 in order to allow for
hardware native calculations of the gradients for input amplitudes.

4.2 GRADIENT CALCULATION FOR INPUT ATTRIBUTION

Lemma 3.1, in conjunction with Definition 4.1, implies that we can calculate the feature gradient of a
quantum model using circuit evaluations. We propose a circuit based on a Hadamard test:

|0⟩A H H

|0⟩⊗n
D

V (x) V (bk) U†OU

Here, H is the aforementioned Hadamard gate, used to create equal superposition states. V (x) is
the preparation circuit that prepares |x⟩. Similarly, V (bk) prepares the computational basis state
|bk⟩. The wires that extend from one qubit register to another indicate control operations; these
are multiqubit operations where the state of one or more qubits in a target register undergoes some
transformation, predicated on the state of the control register. In the above circuit, the control is
always the ancilla qubit (indexed by A), while the targets are always the data qubits (indexed by D).
The target state that triggers the control operation is indicated by the circle: filled circles indicate
control gates triggered by the |1⟩A state, while empty circles indicate control gates triggered by
|0⟩A. As an example, consider the first controlled gate, controlled V (x). This gate prepares |x⟩
on the data register D when the ancilla A |1⟩, and does nothing when A is in the |0⟩ state. Having
generic controlled operations can incur additional circuit overhead; however, advances in global pulse
operations and reconfigurable connectivity can mitigate this (Delakouras et al., 2025).
Theorem 4.2. The above circuit returns the kth element of the gradient provided in Lemma 3.1,
encoded in the probability of the event where qubit A is measured as 0.

Proof. The result can be seen almost directly from considering definition 4.1. An explicit calculation
of the result is provided in Appendix B. The resulting measurement probability on the A register is

P (A = 0) = 1
2 (1 + Re[ ⟨bk|U†OU |x⟩ ])

Comparing with Lemma 3.1, we see that the kth entry of the gradient is contained within the
probability of measuring the ancilla to be 0. We can repeat this procedure for each of the components.
For a fixed number of measurement shots, this gives a linearly scaling relationship with the number
of input features, i.e., one circuit required per input feature.

4.3 GRADIENT CALCULATION PARALLELIZATION

We can further parallelize the component operations (the k’s in Theorem 4.2) by increasing the
number of ancilla qubits. For instance, if three components need to be executed in parallel, the
following circuit is capable of calculating the kth, lth, and mth components concurrently. The circuit
uses two ancilla qubits instead of one and measures both the ancilla simultaneously.

|0⟩A1 H H

|0⟩A2 H H

|0⟩⊗n
D

V (x) V (bk) V (bl) V (bm) U†OU

A similar calculation as provided in Theorem 4.2 gives an output probability of
P (A1A2 = 00) = 1

16

[
4 + 2Re[⟨bk| Õ |x⟩+ ⟨bl| Õ |x⟩+ ⟨bm| Õ |x⟩]

]
.

Similar expressions exist for P (A1A2 = 01), P (A1A2 = 10), and P (A1A2 = 11), allowing us
to generate a simple linear system to determine the unknown gradient components, which can then
be solved by a linear solver. Since this constructive proof reduces the problem of feature encoding
into solving a linear system, increasing the number of ancilla qubits allows us to push this technique
further, with 2m − 1 gradient components from m ancilla qubits. This is explored more thoroughly
in Appendix C, where more in-depth calculations of the two ancilla case are also provided.

5
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Table 1: Datasets and models used for HATTRIQ’s evaluation, including the accuracies achieved.

Dataset Binary Classes Encoding Circuit Structure Accuracy (%)
# Qubits # Layers Training Testing

Bars &
Stripes

(Bars, Stripes) Amplitude 4 8 96 95
Angle 8 8 95 95

NIST (0,1), (3,4), (0,0)
(5,6), (6,9), (1,7)

Amplitude 6 6 98, 100, 0,
98, 96, 93

99, 100, 0,
100, 98, 88

MNIST (0,1), (3,4), (0,0)
(5,6), (6,9), (1,7)

Amplitude 10 10 92, 88, 87,
62, 87

91, 82, 87,
68, 83

Fashion
MNIST

(Dress,Shirt),
(Boot,Trousers),
(Coat,Sandal),
(Bag,Sandal),
(Boot,Dress)

Amplitude 10 10 74, 100, 0
96, 74, 90

70, 99, 95,
69, 91

5 EVALUATION AND DISCUSSION

5.1 EXPERIMENTAL SETUP

We test our technique on a variety of image datasets, including Bars and Stripes (Bowles et al.,
2024), MNIST (LeCun, 1998), NIST (similar to MNIST, but with reduced resolution: 8×8), and
FashionMNIST (Xiao et al., 2017). For each dataset, we construct binary classification tasks by
randomly selecting two classes. Training, inference, and gradient calculations are all performed in
simulation, assuming ideal error-corrected hardware. As simulation is computationally prohibitive
for larger systems, we focus on smaller, but representative, datasets to evaluate HATTRIQ. All
simulation code is written in Python 3.12.1, using Qiskit 2.0.0 (Javadi-Abhari et al., 2024) and
PennyLane 0.41.1 (Bergholm et al., 2022). Data preprocessing was performed with scikit-learn
1.6.1 (Pedregosa et al., 2011), and the optimization for training circuit parameters was performed
using COBYLA (COB, 1994), as implemented in Scipy 1.15.1 (Virtanen et al., 2020). Due to the
difficulty of training the angle-embedded model, we used a gradient descent optimizer implemented
in PennyLane. Experiments are run on a local cluster, consisting of nodes with the AMD EPYC
7702P 64-core processor. We spawn virtual machines with 8 cores and 32 GB of memory.

5.2 MODEL ARCHITECTURE

To focus on the general applicability of our technique, we choose to train relatively simple models
(model properties are shown in Table 1) based on the hardware-efficient ansatz, which is composed
of alternating layers of single-qubit rotation gates and two-qubit CNOT gates (Arrasmith et al., 2021).
An example of this structure is shown in Appendix D for reference. Data is encoded into the system
with an amplitude encoding scheme, where the intensity of a pixel corresponds to the amplitude of
one of the basis states. For these datasets, it is not generally true that each data point is normalized
with |x| = 1, meaning we can not directly encode them as quantum states |x⟩ =

∑
i xi |bi⟩, but

must first apply some transformation. The easiest of these is to simply divide each data point by its
norm; however, we find empirically that this can cause issues during training, as the absolute value
of a pixel’s amplitude can change from image to image, even when the intensity is the same, due
to images having differing levels of overall brightness. We instead utilize an encoding scheme that
has an overflow state. This overflow state allows us to encode the value of each pixel in a way that
is consistent image to image, while maintaining the normalization condition of quantum states. In
an n qubit model, we scale 2n − 1 pixel values xi to be within [0, ( 1

2n−1 )
1
2 ]. The remaining state,

the overflow state, is then assigned the value (1−
∑2n−1

i |xi|2)
1
2 so that the final norm of the state

is 1. Measurement is performed on a single qubit in the Z basis, i.e., O in Eq. 1 is the single qubit
Z operator. While testing, we found improved performance when using a nonlinear tanh activation
applied to the output of the circuit. All of our discussion from before still applies upon simple
modification using the chain rule.

6
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Figure 1: Sample images and the accompanying integrated gradients attribution for various samples
from the NIST dataset. Quantum models were trained for various binary classification tasks. Blue
indicates positive attribution, red indicates negative attribution, and white indicates neutral attribution.
We see patches and patterns of strong attributions for the trained classifier models.
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Figure 2: Sample images and gradient attribution for the amplitude-embedded MNIST dataset. We
have merged the attributions to show positive and negative attributions in the same image.

5.3 HATTRIQ’S ATTRIBUTION RESULTS

We show attribution scores for a variety of samples from each of the datasets. These samples are
chosen randomly for analysis. We use a blank image (0 for all pixel values) for the baseline in all
tests. In all plots, negative attributions are plotted in red, while positive attributions are plotted in
blue. For visual clarity, attributions are normalized within each sample. Fig. 1 shows the integrated
gradient outputs for a variety of samples from the NIST dataset. We see that background pixels
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Figure 3: Sample images and attributions for the FashionMNIST dataset using amplitude encoding.
We have merged the attributions to show positive and negative attributions in the same image.
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Figure 4: Sample images and the accompanying integrated gradients attribution for the Bars and
Stripes dataset. Quantum models using (a) angle encoding and (b) amplitude encoding were trained.

have very little importance, as we might expect. We also see that the model has identified features
that correspond to the target classes; an example being Fig. 1(b), where we see negative attributions
corresponding to the circular shape of the digit 3 toward the upper right, and positive attributions
corresponding to pixels near the center left, corresponding to the angled shape of the digit 4.

We see similar trends with MNIST (Fig. 2) and FashionMNIST (Fig. 3), with the model attributing
regions of each image to each class. In these larger examples, the attributions appear more mixed
spatially. This is especially noticeable in the Dress/Shirt task, which shows a banding pattern forming,
in addition to clusters of strong attributions at the center. We see that in some cases, the model picks
up distinctive features. One example is the Bag/Sandal task, where we see high attribution along the
straps, which are only ever present on bags, but never on sandals. We also see this in the Coat/Sandal
task, with the upper area getting consistent negative attributions; this area is unlikely to have any part
of a sandal present, due to the low profile near that end of the shoe.

We compare the attribution scores of a model using angle embedding and a model using amplitude
embedding to see if there are differences in attributions created by different encoding schemes.
Despite achieving very similar final accuracy scores (Table 1), we see markedly different attributions
for the Bars and Stripes dataset in Fig. 4.

5.4 THE EFFECT OF SHOT NOISE

To quantify the resource usage of HATTRIQ, we study the impact of using reduced measurement
shots on the ancilla qubit. We compute attribution scores using 10, 100, and 500 shots to estimate
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Raw
Images

(a) Raw Images

Negative
Attr.

Positive
Attr.

(b) 10 shots

Negative
Attr.

Positive
Attr.

(c) 100 shots

Negative
Attr.

Positive
Attr.

(d) 500 shots

Negative
Attr.

Positive
Attr.

(e) Exact Sim.

Figure 5: Integrated gradients computed using various amounts of measurement shots (samples).
In (b), (c), and (d), gradient components are computed using our circuit-based approach, using 10,
100, and 1000 samples to estimate each component. Overall, we see almost no degradation in the
attribution scores, as compared to the results given by exact simulation (e).

each component Re[⟨bk|U†OU |x⟩]. Just as before, we repeat this for each component k of the
gradient, and use numerical integration to compute the IG attribution. We compare against exact
simulation, which numerically computes all inner products directly from the state vector. The results
of this are shown in Fig. 5. We see that even with an extremely low shot count, the attribution scores
computed are largely faithful to the numerically exact ones, with only small deviations appearing in
some of the weaker (lower absolute value) attributions.

To further validate HATTRIQ’s attribution scores, we also compute attributions for a null model
having randomly generated parameters. These results are provided in Appendix E.

6 RELATED WORK

Several recent works have explored interpretability in QML, though none target input attribution
directly, and none provide a general, hardware-compatible gradient-based solution as in HATTRIQ.
Recent efforts in QML interpretability span model-agnostic techniques, gradient-based methods, and
visualization tools. Pira et al. (Pira & Ferrie, 2024) and Jahin et al. (Jahin et al., 2023) apply classical
attribution methods like LIME and SHAP to QML models, while Heese et al. (Heese et al., 2025) use
Shapley values to explain circuit components. These approaches rely on perturbation-based estimates
and rely on surrogate-based analysis, hence are not designed for execution on quantum hardware.

Gradient-based methods, such as QGrad-CAM (Lin et al., 2024), demonstrate attribution in hybrid
models using class activation maps, but are limited to specific architectures and do not generalize to
amplitude encoding schemes. Visualization-driven efforts like QuantumEyes (Ruan et al., 2023) and
interpretable model designs (Flamini et al., 2024; Duneau et al., 2024; Flam-Shepherd et al., 2022;
Ran & Su, 2023) focus on circuit behavior or latent representations rather than input-level attribution
and are limited in hardware compatibility (e.g., photonics or trapped ions). In contrast, HATTRIQ
provides the first gradient-based input attribution method for QML models. It supports amplitude
encoding and enables scalable attribution via Hadamard test circuits and parallel gradient evaluation,
making it broadly applicable across quantum models and devices.

7 CONCLUSION

We presented HATTRIQ, a unified framework for gradient-based feature attribution in quantum
machine learning models. As the first-of-its-kind quantum interpretability method, HATTRIQ operates
on exponentially scaling amplitude encoding schemes and is designed for execution on quantum
hardware, offering circuit-based gradient computations. We plan to extend HATTRIQ to generate
parameter/layer attributions for QML models to determine their importance on the QML task with
potential disagreements between attributions from multiple runs (Krishna et al., 2022). We also plan
to extend HATTRIQ to support QML models with mid-circuit measurements and conditional gate
operations, which are starting to become available on quantum hardware. Due to the effectiveness
and unitary nature of QML, it is also of interest to explore unitary feature learning, or equivalently,
learning from spherical features (Luo et al., 2024). By leveraging a Hadamard test–based construction
and a multi-ancilla parallelization strategy, HATTRIQ enables scalable, implementation-agnostic
input attribution with fidelity guarantees.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

A direct search optimization method that models the objective and constraint functions by linear
interpolation. Springer, 1994.

Amira Abbas, Robbie King, Hsin-Yuan Huang, William J Huggins, Ramis Movassagh, Dar Gilboa,
and Jarrod McClean. On quantum backpropagation, information reuse, and cheating measurement
collapse. Advances in Neural Information Processing Systems, 36:44792–44819, 2023.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in neural information processing systems, 34:4699–4711, 2021.

Dorit Aharonov, Vaughan Jones, and Zeph Landau. A polynomial quantum algorithm for approximat-
ing the jones polynomial. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pp. 427–436, 2006.

Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L Clarkson, Mark S Squillante, Vishnu Jej-
jala, Yang-Hui He, Kugendran Naidoo, Vasileios Kalantzis, and Lior Horesh. Topological data
analysis on noisy quantum computers. In The Twelfth International Conference on Learning
Representations, 2024.

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining neural
networks. Advances in neural information processing systems, 31, 2018.

Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R
McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum algorithms.
Nature Reviews Physics, 3(9):625–644, 2021.

Koenraad MR Audenaert, Michael Nussbaum, Arleta Szkoła, and Frank Verstraete. Asymptotic error
rates in quantum hypothesis testing. Communications in Mathematical Physics, 279:251–283,
2008.

Johannes Bausch. Recurrent quantum neural networks. Advances in neural information processing
systems, 33:1368–1379, 2020.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith,
M. Sohaib Alam, Guillermo Alonso-Linaje, B. AkashNarayanan, Ali Asadi, Juan Miguel Arrazola,
Utkarsh Azad, Sam Banning, Carsten Blank, Thomas R Bromley, Benjamin A. Cordier, Jack
Ceroni, Alain Delgado, Olivia Di Matteo, Amintor Dusko, Tanya Garg, Diego Guala, Anthony
Hayes, Ryan Hill, Aroosa Ijaz, Theodor Isacsson, David Ittah, Soran Jahangiri, Prateek Jain,
Edward Jiang, Ankit Khandelwal, Korbinian Kottmann, Robert A. Lang, Christina Lee, Thomas
Loke, Angus Lowe, Keri McKiernan, Johannes Jakob Meyer, J. A. Montañez-Barrera, Romain
Moyard, Zeyue Niu, Lee James O’Riordan, Steven Oud, Ashish Panigrahi, Chae-Yeun Park,
Daniel Polatajko, Nicolás Quesada, Chase Roberts, Nahum Sá, Isidor Schoch, Borun Shi, Shuli
Shu, Sukin Sim, Arshpreet Singh, Ingrid Strandberg, Jay Soni, Antal Száva, Slimane Thabet,
Rodrigo A. Vargas-Hernández, Trevor Vincent, Nicola Vitucci, Maurice Weber, David Wierichs,
Roeland Wiersema, Moritz Willmann, Vincent Wong, Shaoming Zhang, and Nathan Killoran.
Pennylane: Automatic differentiation of hybrid quantum-classical computations, 2022. URL
https://arxiv.org/abs/1811.04968.

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav
Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong
Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum
algorithms. Rev. Mod. Phys., 94:015004, Feb 2022. doi: 10.1103/RevModPhys.94.015004. URL
https://link.aps.org/doi/10.1103/RevModPhys.94.015004.

Joseph Bowles, Shahnawaz Ahmed, and Maria Schuld. Better than classical? the subtle art of
benchmarking quantum machine learning models. arXiv preprint arXiv:2403.07059, 2024.

Harry Buhrman, Marten Folkertsma, Bruno Loff, and Niels MP Neumann. State preparation by
shallow circuits using feed forward. Quantum, 8:1552, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026
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A PROOF OF LEMMA 3.1: INPUT GRADIENTS OF QUANTUM MODELS

For compactness, define Õ = U†(θ)OU(θ) Then, after rewriting Eq. 1, we have:

F (x ;θ) =

(2n−1∑
i=0

⟨bi|x∗i
)
Õ

(2n−1∑
j=0

xj |bj⟩
)
=

(2n−1∑
i=0

⟨bi| (ci − i di)

)
Õ

(2n−1∑
j=0

(cj + i dj) |bj⟩
)

=
∑

i,j(ci − i di)(cj + i dj) ⟨bi| Õ |bj⟩

Taking the derivative with respect to ck:
∂F
∂ck

=
∑

ij
∂ci
∂ck

(cj + i dj) ⟨bi| Õ |bj⟩+ (ci − i di)
∂cj
∂ck

⟨bi| Õ |bj⟩

=
∑

ij δik (cj + i dj) ⟨bi| Õ |bj⟩+ δjk(ci − i di) ⟨bi| Õ |bj⟩

=
∑

j (cj + i dj) ⟨bk| Õ |bj⟩+
∑

i(ci − i di) ⟨bi| Õ |bk⟩

=
∑

j (cj + i dj) ⟨bk| Õ |bj⟩+ (cj − i dj) ⟨bj | Õ |bk⟩

=
∑

j 2 Re[(cj + i dj) ⟨bk| Õ |bj⟩] = 2Re[⟨bk| Õ
∑

j (cj + i dj) |bj⟩]

= 2Re[⟨bk| Õ |x⟩] = 2Re[ ⟨bk|U†(θ)OU(θ) |x⟩ ]

Here, δik is the Kronecker delta, and we have made use of the fact that Õ† = Õ. A similar derivation
exists for ∂F

∂dk
. We exclude it here for brevity.

B PROOF OF THEOREM 4.2: HADAMARD TEST COMPUTATION

We use the subscript A for the state of ancilla qubit(s), and the subscript D for the state of data
qubit(s). The final state of the circuit from section 4.2 before measurement is given by:

|ψ⟩ =(I ⊗H) · CÕ · C̄V (bk) · CV (x) · (I ⊗H) · (|0⟩⊗n
D ⊗ |0⟩A)

= (I ⊗H) · CÕ · C̄V (bk) · CV (x) · 1√
2

(
|0⟩⊗n

D ⊗ |0⟩A + |0⟩⊗n
D ⊗ |1⟩A

)
=(I ⊗H) · 1√

2

(
|bk⟩D ⊗ |0⟩A + Õ |x⟩D ⊗ |1⟩A

)
= 1

2

(
|bk⟩D ⊗ (|0⟩A + |1⟩A) + Õ |x⟩D ⊗ (|0⟩A − |1⟩A)

)
= 1

2

(
(|bk⟩+ Õ |x⟩)D ⊗ |0⟩A + (|bk⟩ − Õ |x⟩)D ⊗ |1⟩A

)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Here, C denotes the control operations that trigger on |1⟩A and C̄ denotes the control operations that
trigger on |0⟩A. From here, using the standard probability rule, we see that

P (A = 0) =| 12 (|bk⟩+ U†OU |x⟩)|2 = 1
4 | ⟨bk|bk⟩+ ⟨x|x⟩+ ⟨bk|U†OU |x⟩+ ⟨x|U†OU |bk⟩ |

= 1
2 (1 + Re[ ⟨bk|U†OU |x⟩ ])

C FULL DERIVATION OF GRADIENT PARALLELIZATION

Parallel computation of the gradient entries is made possible by increasing the number of ancilla
qubits. For the 2 ancilla case, the circuit looks like:

|0⟩A1 H H

|0⟩A2 H H

|0⟩⊗n
D

V (x) V (bk) V (bl) V (bm) U†OU

From this, we can compute the kth, lth, and mth components of the gradient vector. The final state
of the circuit is given by the following derivation.

|ψ⟩ = (1⊗H ⊗H) · CÕ · CV (bm) · CV (bl) · CV (bk) · CV (x) · (1⊗H ⊗H) |0⟩⊗n
D |00⟩A

=
1

2
(1⊗H ⊗H) · CÕ · CV (bm) · CV (bl) · CV (bk) · CV (x) · |0⟩⊗n

D

[
|00⟩A + |01⟩A + |10⟩A + |11⟩A

]
=

1

2
(1⊗H ⊗H) · CÕ

[
|bk⟩ |00⟩A + |bl⟩ |01⟩A + |bm⟩ |10⟩A + |x⟩ |11⟩A

]
=

1

2
(1⊗H ⊗H)

[
|bk⟩ |00⟩A + |bl⟩ |01⟩A + |bm⟩ |10⟩A + Õ |x⟩ |11⟩A

]
=

1

2

[
|bk⟩

1

2

(
|0⟩+ |1⟩

)(
|0⟩+ |1⟩

)
+ |bl⟩

1

2

(
|0⟩+ |1⟩

)(
|0⟩ − |1⟩

)
+ |bm⟩ 1

2

(
|0⟩ − |1⟩

)(
|0⟩+ |1⟩

)
+ Õ |x⟩ 1

2

(
|0⟩ − |1⟩

)(
|0⟩ − |1⟩

)]
=

1

4

[
|bk⟩

(
|00⟩A + |01⟩A + |10⟩A + |11⟩A

)
+ |bl⟩

(
|00⟩A − |01⟩A + |10⟩A − |11⟩A

)
+ |bm⟩

(
|00⟩A + |01⟩A − |10⟩A − |11⟩A

)
+ Õ |x⟩

(
|00⟩A − |01⟩A − |10⟩A + |11⟩A

)]
=

1

4

[(
|bk⟩+ |bl⟩+ |bm⟩+ Õ |x⟩

)
|00⟩A +

(
|bk⟩ − |bl⟩+ |bm⟩ − Õ |x⟩

)
|01⟩A

+
(
|bk⟩+ |bl⟩ − |bm⟩ − Õ |x⟩

)
|10⟩A +

(
|bk⟩ − |bl⟩ − |bm⟩+ Õ |x⟩

)
|11⟩A

]
From here, we compute the probability of each ancilla bit string using the following derivation.

P (A2A1 = 00) = ⟨ψ| (1⊗ |00⟩A)(1⊗ ⟨00|A) |ψ⟩

=
1

16

(
⟨bk|+ ⟨bl|+ ⟨bm|+ ⟨x| Õ†)( |bk⟩+ |bl⟩+ |bm⟩+ Õ |x⟩

)
=

1

16

(
⟨bk|bk⟩+ ⟨bk| Õ |x⟩+ ⟨bl|bl⟩+ ⟨bl| Õ |x⟩+ ⟨bm|bm⟩+ ⟨bm| Õ |x⟩

+ ⟨x| Õ† |bk⟩+ ⟨x| Õ† |bl⟩+ ⟨x| Õ† |bm⟩+ ⟨x| Õ†Õ |x⟩
)

=
1

16

(
4 + 2Re

[
⟨bk| Õ |x⟩+ ⟨bl| Õ |x⟩+ ⟨bm| Õ |x⟩

])
15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Raw
Images

Null
Negative

Attr.

Trained
Positive

Attr.

Null
Positive

Attr.

Trained
Positive

Attr.

(a) 0 / 1

Raw
Images

Null
Negative

Attr.

Trained
Positive

Attr.

Null
Positive

Attr.

Trained
Positive

Attr.

(b) 3 / 4

Raw
Images

Null
Negative

Attr.

Trained
Positive

Attr.

Null
Positive

Attr.

Trained
Positive

Attr.

(c) 5 / 6
Figure 6: Sample images and the accompanying integrated gradients attribution for various samples
from the NIST dataset. Attributions are for untrained null models with parameters sampled from a
uniform distribution on the interval [0, π). For comparison, we re-plot attributions for trained models
from Fig. 1 alongside the null model attributions. Blue indicates positive attribution, red indicates
negative attribution, and white indicates neutral attribution. We see from the lack of concentration
that the null models fail to identify key features.
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Figure 7: Sample images and the accompanying integrated gradients attribution for various samples
from the NIST dataset. Attributions are for untrained null models with parameters sampled from a
Gaussian distribution N (0, π2

2). For comparison, we re-plot attributions for trained models from
Fig. 1 alongside the null model attributions. Blue indicates positive attribution, red indicates negative
attribution, and white indicates neutral attribution. We see from the lack of concentration that the null
models fail to identify key features.

P (A2A1 = 01) = ⟨ψ| (1⊗ |01⟩A)(1⊗ ⟨01|A) |ψ⟩

=
1

16

(
⟨bk| − ⟨bl|+ ⟨bm| − ⟨x| Õ†)( |bk⟩ − |bl⟩+ |bm⟩ − Õ |x⟩

)
=

1

16

(
⟨bk|bk⟩ − ⟨bk| Õ |x⟩+ ⟨bl|bl⟩+ ⟨bl| Õ |x⟩+ ⟨bm|bm⟩ − ⟨bm| Õ |x⟩

− ⟨x| Õ† |bk⟩+ ⟨x| Õ† |bl⟩ − ⟨x| Õ† |bm⟩+ ⟨x| Õ†Õ |x⟩
)

=
1

16

(
4 + 2Re

[
− ⟨bk| Õ |x⟩+ ⟨bl| Õ |x⟩ − ⟨bm| Õ |x⟩

])
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Figure 8: Sample images and the accompanying integrated gradients attribution for various samples
from the NIST dataset. Attributions are for untrained null models with parameters sampled from
Student’s distribution with ν = 2. For comparison, we re-plot attributions for trained models from
Fig. 1 alongside the null model attributions. Blue indicates positive attribution, red indicates negative
attribution, and white indicates neutral attribution. We see from the lack of concentration that the null
models fail to identify key features.

And similar for P (A2A1 = 01) and P (A2A1 = 0). These 4 equations give us a linear system to
solve for the 3 unknown gradient components, after measuring the probability distribution for A2A1.
In general, we need one ancilla bitstring to use as the control for preparation of the state Õ |x⟩; for m
ancilla qubits this leaves 2m − 1 ancilla bitstrings that we can use for preparing the |bk⟩’s, and so we
can compute 2m − 1 gradient components with one circuit.

D CIRCUIT STRUCTURE USED FOR QML MODELS

Our trained circuits are all constructed from a hardware-efficient ansatz, which consists of alternating
rows of single-qubit rotations and two-qubit CNOT gates. These layers are repeated multiple times to
increase the number of model parameters. An example with 6 qubits is shown below:

|0⟩ Rx(θ0) Rz(θ6)

|0⟩ Rx(θ1) Rz(θ7)

|0⟩ Rx(θ2) Rz(θ8)

|0⟩ Rx(θ3) Rz(θ9)

|0⟩ Rx(θ4) Rz(θ10)

|0⟩ Rx(θ5) Rz(θ11)

In such a circuit, the number of parameters is proportional to the number of qubits × the number of
layers. Generally, selecting a layer count between 1× and 2× times the number of qubits provides
the best accuracy (as demonstrated by our selection for the number of layers in Table 1).
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E VALIDATION AGAINST NULL MODEL ATTRIBUTIONS

To validate HATTRIQ’s attribution scores, we also compute attributions for null models having
randomly generated parameters, shown in Fig. 6. Parameters are randomly sampled from either
a uniform distribution on the interval [0, π), a normal distribution N (0, π2

2), and a heavy-tailed
Student’s t-distribution (ν = 2), Attributions are then computed and plotted for the same samples as
used in Fig. 1, as shown in Figs. 6, 7, and 8 for the uniform, normal, and t-distributions respectively.
Across the various classification tasks, we fail to see notable concentration or clustering of the
attribution scores with either of the three distributions, unlike the trained case with HATTRIQ. For
instance, the angular edge on the left side of digit four is only identified and attributed by HATTRIQs,
while the three null attributions provide attribution scores all across the image.

F LLM USAGE

We would like to mention that an LLM, specifically Grammarly AI, was used to aid and polish
writing, specifically to correct grammatical mistakes.

G REPRODUCIBILITY STATEMENT

All code and datasets are open-sourced and included with this work, with instructions and scripts
for reproducing results. This ensures transparency, accelerates future research, and enables broad
community adoption.
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