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Abstract

Sub-task curriculum learning has shown promise in coop-
erative multi-agent reinforcement learning (MARL), espe-
cially under sparse rewards. However, existing approaches
often rely on expert-designed templates or end-to-end learn-
ing, limiting generalizability and efficiency. To address these
limitations, We propose STAR-MARL (Sub-task Tree with
Assisted Rewards), a fully automated framework that in-
tegrates large language models (LLMs) with the training
dynamics of MARL agents. STAR-MARL uses Chain-of-
Thought prompting and few-shot learning to generate a hi-
erarchical, interpretable sub-task tree, with each node con-
taining executable training scenarios and curriculum reward
functions. However, a key challenge in MARL curriculum de-
sign lies in evaluating qualities of substasks, as online MARL
training rollouts are computationally expensive and unstable.
To address this, we introduce a retrieval-augmented gener-
ation (RAG)-based sub-curriculum evaluator that leverages
MARL training trajectories to estimate potential policy im-
provement of reward functions without further environment
interaction. Built atop a memory of historical sub-task tra-
jectories, the evaluator enables offline curriculum evaluation
and rapid curriculum refinement, making curriculum learn-
ing more sample-efficient and scalable. We apply the STAR-
MARL framework to the Cooking Zoo and Google Re-
search Football environments, generating interpretable cur-
ricula tasks of varying complexity. Our research paves the
way for constructing interpretable, low-cost, and generaliz-
able LLM-driven curricula for MARL.

Introduction

In cooperative multi-agent reinforcement learning (MARL)
(Albrecht, Christianos, and Schéfer 2024), agents must ex-
plore the environment while learning to coordinate and
collaborate. However, this becomes particularly difficult in
complex or sparse-reward settings, where the exponential
growth of the joint action space (Wong et al. 2023), the credit
assignment problem (Chang, Ho, and Kaelbling 2003), and
instabilities from mutual adaptation (Hernandez-Leal et al.
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2017; Papoudakis et al. 2019) can significantly slow down
learning or lead to suboptimal policies.

Curriculum learning (CL), particularly sub-task curricula
(Ao et al. 2021; Fosong et al. 2023), is a common strategy
to tackle these issues. By breaking down complex tasks into
simpler multi-agent sub-tasks, CL enables agents to master
individual components or skills and gradually build coordi-
nation, leading to better overall performance (Narvekar et al.
2020; Zhang et al. 2022). However, most standard CL meth-
ods rely on manually designed sub-tasks (Becht et al. 1999;
Lhaksmana, Murakami, and Ishida 2018; Grote et al. 2020;
Fosong et al. 2023), which are often rigid, domain-specific,
or prone to bias. To address this, recent work has explored
automated curriculum generation, aiming to produce flexi-
ble, goal-oriented training sequences without requiring do-
main knowledge. While promising, these methods often rely
on end-to-end learning (Tian et al. 2023; Yang et al. 2023;
You et al. 2025; Shah et al. 2025), resulting in curricula that
are often hard to interpret, redundant, or poorly aligned with
the target task.

Building on this direction, the emergence of large lan-
guage models (LLMs) offers a unique natural opportu-
nity to automate sub-task decomposition in MARL. Their
zero-shot reasoning and task decomposition capabilities,
grounded in commonsense knowledge and large-scale lan-
guage patterns (Li et al. 2021), make LLMs well-suited for
generating structured, task-relevant, and interpretable sub-
tasks. LLMs have demonstrated extremely high accuracy
in causal discovery and counterfactual reasoning (Kiciman
et al. 2023), with prompt engineering techniques such as
chain-of-thought (CoT) (Wei et al. 2022) further boosting
their reasoning capabilities. Unlike opaque end-to-end meth-
ods, LLMs can mimic human curriculum design by pro-
ducing interpretable, goal-driven decompositions, address-
ing the rigidity and bias of manual approaches (Du et al.
2023).

Despite this promise, the integration of LLMs into multi-
agent CL pipelines remains far from straightforward. It in-
troduces significant new challenges such as the substantial
prompt engineering effort required to support the decompo-
sition, implementation, and optimization of sub-tasks within
a unified framework; the difficulty of crafting prompts that



enable a gradual increase in task complexity while effec-
tively fostering agent cooperation; the challenge of aligning
natural language outputs with the concrete skills of agents;
the non-trivial problem of role assignment among agents;
the absence of quality guarantees in reward functions gener-
ated by LLMs for sub-tasks, which necessitates considerable
computational resources for their optimization; and the hal-
lucination problem (Huang et al. 2025), wherein LLMs may
ignore the given prompts and produce entirely unreasonable
or incoherent reward functions. As a result, the few existing
efforts to explore this direction either focus on single-agent
tasks with limited exploration in multi-agent scenarios (Erak
et al. 2024; Chi et al.) or are constrained to single-layer de-
compositions and require extensive manual inputs (Li et al.
2023).

Our Contributions: In this work, we propose Sub-task
Tree with Assisted Rewards for MARL (STAR-MARL),
a novel framework that addresses the above limitations by
introducing an automatic hierarchical sub-task decomposi-
tion mechanism guided by LLMs. The core insight behind
STAR-MARL is that complex cooperative behaviors can be
learned by recursively decomposing high-level multi-agent
tasks into structured, skill-driven sub-tasks organized in a
tree. Each node corresponds to a task that is more manage-
able in terms of agent interaction and reward design. This
structure is based on the intuition that MARL tasks often
contain compositional cooperation patterns—e.g., passing,
positioning, and defending in football; and ingredient prepa-
ration and dish plating in cooking games—that can be ex-
plicitly captured and reused.

The key technical innovations of STAR-MARL lie in its
recursive sub-task decomposition and reward improvement
framework. STAR-MARL introduces LLM-driven recur-
sive sub-task decomposition using Chain-of-Thought (CoT)
prompting and few-shot examples to to guide the LLM
in breaking down complex cooperative tasks into a hierar-
chical structure of semantically meaningful, interdependent
sub-tasks. The LLM automatically assesses sub-task diffi-
culty and refines the decomposition to avoid redundancy and
maintain task diversity. Reward improvement is achieved via
Retrieval-Augmented Generation (RAG), which prompts the
LLMs with selected evaluations and improvement sugges-
tions from an automatically generated reusable “component-
evaluation” knowledge base, allowing the LLM to per-
form evaluation and refinement without costly reward model
training.

These components are not merely stitched together but
are mutually reinforcing: the tree structure guides the learn-
ing process, the LLM ensures interpretability and task
relevance, and the RAG-based reward evaluation ensures
alignment with agent behavior without requiring dense re-
ward functions or hand-crafted shaping. This approach ad-
dresses the challenges of task complexity and coordination
in MARL by making tasks more manageable while improv-
ing agent interaction and reward design. Our main contribu-
tions are:

1. We introduce STAR-MARL, a fully automated frame-
work for constructing hierarchical sub-task curricula us-

ing LLMs. In experiments on Cooking Zoo and Google
Research Football, STAR-MARL generates diverse and
highly interpretable sub-task reward generation, elimi-
nating the need for training task-specific rsk curricula.

2. We develop a reusable “component-evaluation” dataset
and integrate RAG-based methods for sub-taeward mod-
els. This approach improves sample efficiency and gen-
eralization to new tasks.

3. We apply STAR-MARL-generated curricula within the
MEDGoE training framework.

Unlike prior work on LLM-based curriculum generation
(Lietal. 2023; Erak et al. 2024; Chi et al.), STAR-MARL in-
troduces a structured, recursive decomposition aligned with
the hierarchical nature of cooperation in MARL tasks, while
avoiding manual intervention. In contrast to previous LLM-
based reward design methods (Ma et al. 2023; Li et al.
2024a; Sun et al. 2024; Baek et al. 2025), STAR-MARL
eliminates the need for extensive training iterations typi-
cally required when adapting to new tasks by leveraging
reusable knowledge through RAG. Overall, STAR-MARL
offers a principled, interpretable, and generalizable solution
for structured curriculum generation in cooperative MARL.

Related Work

Curriculum Learning and Automated Curriculum Gen-
eration in MARL: Curriculum learning (CL) (Bengio
et al. 2009) simulates human learning by progressing from
simple to complex tasks, and has been widely applied in
supervised and reinforcement learning. In MARL, CL typi-
cally focuses on agent count, environment complexity, and
reward design. For instance, the AI Economist (Zheng et al.
2022) structures training with varying agent types and en-
vironments, while Zhao et al. (2023) employ distinct re-
ward functions for different agents. While automated cur-
riculum generation has been explored to reduce manual de-
sign, most existing methods are either limited to single-agent
RL (Narvekar, Sinapov, and Stone 2017; Wang et al. 2019,
2020; Forestier et al. 2022; Parker-Holder et al. 2022), or
face challenges in MARL due to task assignment and inter-
agent complexity. These methods typically rely on self-play
(Sukhbaatar et al. 2017; Baker et al. 2019) or end-to-end
learning (Long et al. 2020; Zhang et al. 2022; Tian et al.
2023; Yang et al. 2023; You et al. 2025; Shah et al. 2025;
Hill 2025).

LLMs for MARL: The exceptional reasoning and zero-
or few-shot generation abilities of LLMs have led to their ap-
plication in single- and multi-agent RL for tasks such as gen-
erating trajectories (Hu and Sadigh 2023; Chen et al. 2024)
and reward functions (Ma et al. 2023; Li et al. 2024a; Sun
et al. 2024; Baek et al. 2025). In the context of designing
sub-task curricula, LLMs have been employed by Erak et al.
(2024) and Chi et al. to generate sub-tasks in single-agent
RL. For MARL tasks, Li et al. (2023) proposed the SAMA
framework. However, unlike our current approach, SAMA
decomposes tasks into independent sub-tasks for individual
agents, leading to shallow hierarchies and necessitating sub-
stantial human input for language-based task manuals. An-
other study, introduced the L2M2 framework (Geng et al.



2025), which leverages LLMs to generate zero-shot sub-task
curricula for MARL. While it provides additional reward
signals for each sub-task, it differs from our approach in that
it does not produce customized reward functions or scenario
configurations for individual sub-tasks. For scenario-based
sub-tasks, existing work has proposed the cMALC-D frame-
work (Satheesh, Powell, and Wei 2025), which leverages
LLMs to dynamically generate training curricula, thereby
improving agents’ generalization to unseen environmental
contexts.This framework targets at reflecting incremental
difficulty or diversity. In contrast, our approach designs sce-
nario settings tailored to specific sub-task descriptions, al-
lowing for more precise adaptation to task requirements and
supporting effective agent learning.

Problem Formulation
Sub-task Curricula

In this work, the sub-task is described in terms of sub-
task curricula (STCs) (Fosong et al. 2023), which encapsu-
late the structured use of sub-task decomposition through-
out the training process. A sub-task curriculum C' is a tu-
ple, (T, {Csuw}, A). The task T is a Dec-POMDP (Oliehoek,
Amato et al. 2016),

M = (1,5 {Ai}ier, Py, {Q}ier, O, R,y), (1)

where [ is the set of the agents involved in this sub-task; S
is the set of states; A; is the set of actions for agent ¢, and
A = x;A; is the set of joint actions, where each joint action
a € Aisatuple a = (a;);er, with a; € A; for each agent
i € I, P(st11 | st,a¢) is the state transition probability
density function; yu(sg) is the initial state distribution; €2; is
the observation space for agent i; O(os | s¢,ar—1) is the
observation probability density function; R : S x A — R is
the reward function shared across the team; «y is the discount
factor, which maintains a finite sum in the infinite-horizon
case (y € [0,1)).

The objective within a Dec-POMDP is to find a joint
policy m = (m;);es, where each 7; maps the local action-
observation history of agent ¢ to a distribution over its ac-
tions A;, that maximizes the expected cumulative discounted
return:

o0
G=FE. > " 4'Rlsia)l, @
where the expectation is taken over trajectories induced by
the joint policy 7.

{Csp} is a set of sub-task curricula, where each cur-
riculum 1is recursively defined as either: (i) a base case
Csp = 0, which corresponds to training from scratch on
task T'; or (ii) a higher-level curriculum composed of sub-
curricula, Cyp, = {C1,Ca, ..., Ck}, where each C; € Cyyp
recursively defines its own structure. This leads to a hier-
archical sub-task curricula tree, where the leaves represent
base cases, internal nodes represent sub-curricula of pro-
gressively increasing complexity, and the root node repre-
sents the curriculum for the final target task 7.

Finally, A : {Csp} — 2! is a function which maps from
the set of sub-tasks {Cy,p} to a subset of agents I for task

Target Task:
5 vs S Football

Sub-task: ’ :
Attacker

Sub-task: * Sub-task:
Shooter ) Shooter * Passer

Figure 1: 5-vs-5 football task decomposition into a two-level
sub-task curricula tree.

T'. For brevity, we also use A to denote the set of agents
participating in the current task in the curriculum.

For example, for a target task of the 5-vs-5 football game
illustrated in Figure 1, a sub-task curricula tree with a depth
of 2 would be:

051;5 - T5v5; {Cdefendera Cattacker} A5v5>
C’defender - Tdefendera (Z) Adefender>

Tpassera (D -Apaqser>

shooter (D Ashooter>

paq ser

(
(
Clattacker = {Thttackers { Cpassers Cshooter }» Aattacker)
=
(T

shooter -

where each A, C I denotes the subset of agents assigned to
the corresponding sub-task 7.

Objective:

Our objective is to improve cooperative MARL efficiency
and stability by automatically generating hierarchical sub-
task curricula. Specifically, we aim to minimize the total
number of training timesteps required for agents to reach a
desired level of performance in the target task.

Let N(C) represent the number of training timesteps re-
quired for the current task within the curriculum C, and
let Nioi(C') represent the total number of training timesteps
across the entire subtree of sub-task curricula Cy, rooted at
the current task C'. Specifically,

Nlot(C) = N(C) + Z ]Vlol(cj) 3)
C;€Cuw

Given a target task T} and a target performance level L,
our overall objective is to find an optimal sub-task curricula
Cr = (1y,...), which minimizes N(C{"), while ensuring
that the agents achieve the expected returns L > L.



This optimization problem includes multiple factors: the
MARL algorithm chosen at each stage of training, the stop-
ping conditions at each stage, the design of sub-tasks at each
stage, and the agents involved at each stage. In this study, we
focus on the design of sub-tasks and the role assignment of
agents, while the learning algorithm is based on the MEDoE
(Fosong et al. 2023) method.

Sub-task Tree with Assisted Rewards (STAR)
for MARL

We propose the STAR-MARL framework, which leverages
the capabilities of LLMs to automatically generate hierar-
chical sub-task curricula for MARL tasks in complex envi-
ronments.

As illustrated in Figure 2, the overall architecture of
STAR-MARL consists of two core modules: a Sub-task Cur-
ricula Generator and a RAG-Based Reward Function Eval-
uator. Given any target task along with the game rules as
input, the Sub-task Curricula Generator produces a skill-
driven, tree-structured sub-task curricula. Each sub-task cur-
riculum in the tree includes a customized training scenario
and a corresponding reward function, enabling agents to pro-
gressively acquire key skills at different learning stages and
transition to more challenging objectives.

The RAG-Based Reward Function Evaluator leverages
the component-evaluation database, constructed during the
automated preprocessing stage, to assess and iteratively re-
fine the reward functions generated by the LLM. This pro-
cess ensures the effectiveness and alignment of each reward
function with its associated sub-task objective.

The final sub-task curricula tree can be integrated with
any MARL algorithm for curriculum-based sub-task train-
ing. In our experiments, we adopt the MEDoOE framework
(Fosong et al. 2023) as a demonstration platform for evalua-
tion. However, our method is algorithm-agnostic and can be
applied universally across different MARL settings.

The technical implementation details of each module will
be elaborated in the following sections.

Sub-task Curricula Generator

The motivation behind representing task decomposition as
a multi-layer tree structure is that, in contrast to simple
single-layer sub-task decomposition, hierarchical decompo-
sition—by breaking down complex target tasks into smaller,
skill-driven sub-tasks—facilitates more meaningful explo-
ration of the policy at lower levels, while also promoting
coordination and cooperation at higher levels. This structure
accelerates the learning process and enhances performance
in complex environments by encouraging both individual
skill acquisition and collaborative behavior among agents
(Igbal, Costales, and Sha 2022; Li et al. 2024b).

As outlined in Algorithm 1, the process of the Sub-task
Curricula Generator begins with the initialization of the en-
vironment game rules (£), which are described in natural
language and specify the scoring criteria, initial positions
of agents, and the action space available to each agent; the
target task (7;) described in natural language; the large lan-
guage models (LLM 4, LLM;, LLM,.), which are responsible

Algorithm 1: Sub-task Curriculum Generation

Input: Game rules F, target task 73, agents Ay, LLM g,y
Output: Sub-task curricula tree Cy = (T3, {Csw }, A¢)

1: // Stage 1: Generate sub-task decomposition tree

2: Prompt,; < ComposeDecompositionPrompt(FE,T},

Ay)
3: Ggp < LLMg(Prompt,)
4: for each node N; = (G;, A;) in Gy, do
// Stage 2: Generate scenario settings for sub-task
Prompt, ; < ComposePrompt (N;, Gap)
Sj + LLM(Prompt ;)
/l Stage 3: Generate and refine rewards for sub-task
Prompt,. ; <— ComposePrompt (N, Gsub)
10:  R; < LLM,(Prompt, ;)
11: R+ RewardEvaluator(R;,Gj, A;)
12: Oy« (S5, R}, Aj)
13: Add Cj to Caup
14: end for
15: return C; = (T3, {Csuw }, Ar) =0

R A

for the generation of task decomposition, scenario setting,
and reward function, respectively; and the set of agents (.A;)
involved in the target task.

The first step involves using LLM, to generate a tree
(Gsup) of the textual-tailored sub-task goals and involved
agents based on the prompt (Prompt,;) composed of the tex-
tual description of the F, T} and .A;. Subsequently, the nodes
of Gy, are traversed from bottom to top. For each node IV,
to construct Prompt, ; and Prompt, ;, which are then pro-
vided as input to LLM, and LLM,., respectively, to gener-
ate the corresponding scenario settingS; and reward func-
tion R; code. After R; is refined by the RAG-Based Re-

ward Function Evaluator, the improved version R; is ob-
tained. Each sub-task curriculum Cj is then tailored based

on S;, R;- and involved agents .4;. Upon completion of the
traversal, the full sub-task tree C; is derived, which is sub-
sequently used for MARL training.

Textual Sub-Task Tree Generation Figure 3a illustrates
an example workflow of generating a textual sub-task tree
using LLM,, which consists of two stages: an initial de-
composition of the target task to produce first-level sub-
tasks, and a subsequent further decomposition stage involv-
ing refinement to derive deeper sub-task structures. Figure
3b presents example prompts used in these two stages along
with the corresponding responses from LLM.

Specifically, in Stage 1, we construct Prompt,; using nat-
ural language descriptions of F, T;, and A;. To improve
inference quality and coherence while mitigating hallucina-
tions (Huang et al. 2025), we adopt Chain-of-Thought (CoT)
prompting (Wei et al. 2022) to guide LLM, through step-
by-step reasoning. The model is also instructed to output
its reasoning process for better interpretability. Additionally,
we incorporate few-shot learning with manually designed
decomposition examples. The output consists of first-level
textual sub-tasks decomposed from the target task, each an-
notated with a group ID, a sub-goal, and associated agents.
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Figure 2: The STAR-MARL Framework: The target task is decomposed into a hierarchical sub-task curricula tree by the Sub-
task Curricula Generator. Scenario and reward function code are generated, and the reward functions are iteratively refined via
Retrieval-Augmented Generation (RAG)-Based Reward Function Evaluator—without additional training.

In Stage 2 recursively decompose sub-tasks layer by layer,
starting from the first level. For each sub-task, we extract the
branch from the root target task to the current node and use
it as a prompt for LLM to assess task complexity and de-
termine whether further decomposition is needed. If so, the
model generates next-level sub-tasks in the same format as
Stage 1. A central challenge is avoiding redundant learning.
As shown in Figure 3a, a second-layer sub-task like "learn-
ing passing and dribbling for middle attack” may be decom-
posed into third-layer tasks such as “learning passing” and
”learning dribbling”, resulting in repetition. To mitigate this,
we prompt LLM, to revise the parent task during decom-
position—for example, modifying it to “learning coopera-
tive behaviors for middle attack™ before further decomposi-
tion. This process continues until no sub-tasks require fur-
ther breakdown, yielding a complete textual sub-task tree
Gy grounded in the target task.

Scenario Generation Extensive research on code gener-
ation with LLMs (Ma et al. 2023; Li et al. 2024a; Sun et al.
2024; Baek et al. 2025) demonstrates their strong ability to
generate executable code. Thus, we apply few-shot prompt-
ing to instruct LLM to generate executable code for the sce-
nario setting and reward function of each sub-task. Figure 3c
shows the template for Prompt,, which includes the sub-task
goal, involved agents, sub-task tree structure, environment
code relevant to the scenario, code output tips, and manually
crafted examples.

Reward Function Generation The Eurcka (Ma et al.
2023) framework demonstrates strong capabilities in han-
dling complex robotic tasks. Our reward function generation

framework builds on Eureka, enhanced with CoT prompt-
ing and few-shot techniques. As shown in Figure 3d, the
Prompt, consists of the task description, involved agents,
sub-task tree structure, code output tips, observation expla-
nation, and manually crafted examples. The reward function
generated by LLM,. uses the observation as input, composed
of multiple reward components for easier refinement.

During testing, embedding the complete environment
code in the prompt, as done in Eureka, often led to LLM
hallucinations due to an excessive number of tokens, result-
ing in incorrect or misinterpreted reward functions. To miti-
gate this, we removed the environment code from the prompt
and provided a textual explanation of the observation, with
annotated examples of the agent’s observation space. This
approach effectively reduced hallucinations.

Retrieval- Augmented Generation (RAG)-Based
Reward Function Evaluator

The Eureka framework employs iterative training and evo-
lutionary optimization for reward function optimisation,
which is effective in simple single-agent RL tasks but in-
curs substantial computational cost in complex multi-agent
settings such as Google Research Football (GRF) (Kurach
et al. 2020). To mitigate this, we propose a RAG-based Re-
ward Function Evaluator that uses a pre-trained knowledge
base to enable efficient evaluation without additional train-
ing.

This approach is motivated by our observation that LLM-
generated reward components exhibit structural consistency
across similar tasks, and that sub-task decompositions ex-



Target Task 5-vs-5 Football Game

Middle attack Side attack
Level 2 | invloving passing | |invloving shooting
and dribbling and dribbling

Refined Middle attack
Level 2 coordination
Decomposition New G e L
ew Generate assing ribbling
Generator LLM Level 3 Expertise ‘ Expertise

(a) 3-level sub-task decomposition example for the target task of a
5-vs-5 football game

Scenario Setting Generation Prompt

The entire task tree is: {...}

Q Write a scenario setting code for the
e following task {...} with {...} agents.
User The relavent code is:

Here are some tips: {...}
Here’s an example: {...}

" python
def build_scenario(builder):

LLM

(c) Example scenario prompt followed by LLM-generated scenario
setting code

Target Task Decomposition Prompt

You are an expert of multi-agent training, trying to apply sub-task
O curriculum learning in MARL,
()" The game rules of the environment you are using are: {...}
User Your goal is to decompose the target task into sub-tasks.
Here’s an example: {...}
The target task is {...} with {...} agents.
Let's think step by step. It's useful to give analyse like the example does

‘Analyse:
In an 5 vs 5 football game, a typical team formation can be seen
as a structured combination of defense, midfield, and attack... o
Group 1: o5
Number of agents: 3
Training goal:
This group's training will focus on defensive skills and
transitioning from defense to attack...
Group 2: ...
Further Decomposition Prompt
You need to determine whether further decomposition is necessary
O for this sub-task: {...}
Jan If further decomposition is needed, please gencrate a more detailed
decomposition of this sub-task and modify its training goal to
User prevent redundant learning after decomposition...

(Analyse:
The current sub-task includes a mix of defensive skills and o]
transitioning from defense to attack, which is quite complex... o
Need further decomposition or not: Yes
New Training goal: LI.M

Focus on enhancing the overall defensive stability and scamless

transition to attack by coordinating between ...

Group 1:

Number of agents: 2

Training goal: Focus primarily on pure defensive maneuvers...
\Group 2: ...

(b) Example decomposition prompt followed by LLM-generated
textual sub-task decomposition

Reward Function Generation Prompt

O The entire task tree is {...}
oD Write a reward function code for the following
task {...} with {...} agents.

User : .
Here are the explanations of observations: {...}|
Here are some tips: {...}
Here’s an example: {...}
“python

class RewardWrapper(gym.RewardWrapper):

LLM

(d) Example reward prompt followed by LLM-generated reward
function code

Figure 3: The Sub-task Curricula Generator comprises three key processes: (1) constructing a textual representation of the sub-
task tree; and for each sub-task, generating the corresponding (2) scenario setting code and (3) reward function code.

hibit diverse yet bounded patterns. Leveraging this, we con-
struct a “component-evaluation” knowledge base and apply
RAG (Lewis et al. 2020) to assess and refine reward func-
tions, aiming for task-effective rather than globally optimal
solutions.

The “component-evaluation” knowledge base was con-
structed as follows. For complex target tasks, a decompo-
sition generator LLM, was employed to generate sub-task
goals, covering various agent configurations and coordina-
tion complexities. For each sub-task, distinct reward func-
tion samples were generated using the reward function gen-

erator LLM,., and then trained with a standard MARL al-
gorithm under predefined conditions. The training trajecto-
ries of each reward function were tracked. Since outcome-
based metrics were not applicable in the early stages of train-
ing in some complex MARL environments, such as goal-
scoring in GRF, we monitored the values of reward function
components at multiple checkpoints to assess their effective-
ness. Additionally, to prevent reward hacking (Skalse et al.
2022), we tracked the frequency of key actions performed
by agents.

For evaluation, the sub-task description, agent configura-



Algorithm 2: RAG-Based Reward Function Evaluation
Input: Reward function R;; Goal G;; Agents Aj;
LLM emp,e}; RAG knowledge base K
Output: Refined reward function R;-

1: EMB; - LLMcmb(R;, G, A;)

2: for N iterations do

Ruo ¢ Top-1 O{ cosine_similarity(EMB, r;) }
riek [[EMB; ||

4: Prompt, ; < ComposePrompt(R;, G, Aj, Rio)
5. R} < LLM,(Prompt, ;)
6: EMBJ‘ — LLMemb(Rg, Gj, .AJ)
7
8

w

: end for
: return R} =0

tion, reward function code, tracked metrics, and an evalua-
tion guide were provided as input to the evaluator LLM,.
CoT prompting was used to enhance reasoning. The out-
put for each reward function component consisted of: (1)
a binary judgment indicating whether the component fa-
cilitated agent learning, and (2) suggestions for improving
the component. The final ”component-evaluation” knowl-
edge base included the specific components, sub-task de-
scriptions, agent configurations, full reward function code,
and evaluation results from LLM,.

Algorithm 2 outlines the process of optimizing reward
functions using the knowledge base. Upon generating the
initial reward function code I?; for a new sub-task, we em-
bed its textual goal G, agent count A; together with R;
using Monarch Mixer-BERT (Fu et al. 2023) as LLM¢pp.-
Subsequently, we retrieve the top-10 most semantically rel-
evant reward function components Rio from the knowl-
edge base K via cosine similarity. These retrieved compo-
nents, along with their corresponding evaluation outcomes
and refinement suggestions, are incorporated into the prompt
Prompt, ; provided to the evaluator LLM.. The evaluator
then evaluates R; and provides a refined reward function. It
iteratively refines the reward function for N predefined iter-
ations. As the value of N increases, the final refined reward
function progressively converges toward the representations
encoded within the knowledge base.

Experiments

In this section, we evaluate STAR-MARL on several stan-
dard multi-agent reinforcement learning suites to investigate
the question: Can LLMs design better curricula for MARL
learning than human experts or end-to-end learning?

We adopt the Modulating Exploration and Training via
Domain of Expertise (MEDoOE) framework proposed by
Fosong et al. (2023) to train MARL tasks. This framework
is specifically designed for sub-task curricula learning in
MARL with given sub-tasks and ensures that agents retain
the specialized skills acquired in sub-tasks when transition-
ing to the main task.

Settings
Environment We use two environments:

CookingZoo (Fosong et al. 2023), a flexible cooking envi-
ronment that provides a variety of cooking tools and ingre-
dients.

Google Research Football (GRF) (Kurach et al. 2020),
a complex MARL environment with sparse rewards, where
agents are trained to play football in a physics-based 3D sim-
ulator.

For the target task’s scenario selection, we use:

coop-test,a CookingZoo setting in which two agents
cooperate to complete two recipes: “Tomato Lettuce Salad”
and ”Carrot Banana”.

academy_3_vs_1l with_ keeper, a GRF setting in
which three of our players try to score from the edge of
the box: one on each side, and the other at the center. Ini-
tially, the player at the center has the ball and is facing the
defender. Each side also has a built-in Al-controlled goal-
keeper who does not participate in the training.

Baselines For the experiments in CookingZoo, we chose
the standard MAPPO (Yu et al. 2022) algorithm as the base-
line. For the experiments in GRF, we select LDSA (Yang
et al. 2022) and the standard IPPO (De Witt et al. 2020) as
baselines to respectively compare STAR-MARL with sub-
task curricula generated by end-to-end learning methods and
traditional MARL algorithms trained from scratch.

LLM resources We use GPT-4 for the decomposition
generator and the reward evaluator, Claude-4 for the sce-
nario generator and the reward generator, and Monarch
Mixer-BERT (Fu et al. 2023) for embedding generation.

RAG database For the CookingZoo experiments, the re-
ward functions are relatively simple, so we did not utilize
the RAG database for reward function enhancement. For
the GRF experiments, We use 60 sample tasks, each paired
with 30 reward functions generated by GPT-4. Each reward
function is trained using the standard IPPO algorithm for
500,000 steps within the 5-vs-5 standard scenario. The train-
ing outcomes are then evaluated by GPT-4, resulting in a
’component-evaluation” knowledge base comprising 3,062
entries. This knowledge base is utilized in STAR-MARL
for RAG-based reward function evaluation. This knowledge
base covers multiple tasks across various football scenarios
and can be shared and reused across all sub-tasks.

Training Settings In the CookingZoo experiments, we
trained each sub-task separately for 5 million steps, fol-
lowed by 20 million steps of training on the target task. In
the GRF experiments, to prevent the reward function from
overly converging to the data in the knowledge base, we set
N, the number of refinement iterations for the sub-task re-
ward function to 1. We trained each sub-task separately for
500,000 steps, followed by 10 million steps of training on
the target task. In the presented experimental results, STAR-
MARL and IPPO each use a single random seed, while
LDSA uses 5 random seeds.

Results on Cooking Zoo

As shown in Figure 4, STAR-MARL exhibits faster perfor-
mance improvement during training on the main task and
ultimately achieves higher mean episodic returns compared
to the standard MAPPO algorithm.
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Figure 4: Results on the CookingZoo coop_test scenario
using a single seed.

Results on Google Research Football

3M Steps Results

70 — DSA
— 1PPO
60 —— STAR-MARL

Average Return

10M Steps Results

— IPPO
~—— STAR-MARL

hAMI b A i "'w )‘ ‘w; j!““, w IM\'\

Step 1e7

o

IS

Average Test Return

Figure 5: Results on GRF
academy_3_vs_1_with_keeper scenario. LDSA
includes 5 seeds, while STAR-MARL and IPPO each use a
single seed.

As shown in Figure 5, compared to the end-to-end
learning-based LDSA method and the train-from-scratch
approach using the basic IPPO algorithm, STAR-MARL
does not demonstrate an improvement in training efficiencys;
Throughout the entire training process, the training results
of STAR-MARL also do not converge to a policy better than
that of the basic IPPO algorithm.

We analyze that there are three main reasons for the unsat-
isfactory results: first, the complexity of the tasks in Google
Research Football makes training challenging; second, the
quality of the RAG knowledge base has not been manually
verified, leading to instability in the optimization of the re-

ward function; third, the design of different scenarios for
the subtasks causes the Domain of Experts (DoE) classi-
fier used in the MEDoE method to make inaccurate judg-
ments. Specifically, the DoE classifier relies on the intuition
that “agents who have mastered skills in sub-tasks will en-
counter similar states in the target task,” and thus their explo-
ration should be reduced. However, this intuition assumes
that the same scenario is used in both the sub-tasks and the
target task. Otherwise, similar states may not align in mean-
ing across different scenarios. For example, in one sub-task,
enemy lazy players are placed at fixed positions, and agents
focusing on movement skills deliberately avoid these fixed
positions; however, in the target task, these positions do not
have enemy players.

Conclusion and Future Work

In this work, we propose STAR-MARL, an automatic hi-
erarchical sub-task decomposition with reward refinement
framework for MARL driven by LLMs. STAR-MARL re-
cursively breaks down the complex cooperative task into a
structured sub-task tree, mitigating the limitations of man-
ual curriculum design. The reward functions generated by
LLMs are dynamically refined by leveraging a pre-trained
RAG knowledge base, eliminating the need for additional
training on newly generated reward functions for new tasks,
thereby improving sample efficiency. Empirical results show
that although the current STAR-MARL-generated curricula
do not perform well in improving cooperative learning ef-
ficiency and performance in complex multi-agent environ-
ments, the reasons for this are analyzable. Overall, STAR-
MARL offers a principled, interpretable, and scalable ap-
proach to curriculum generation in MARL, highlighting the
potential of integrating LLMs with sub-task curriculum de-
sign for complex cooperative tasks.

One future work direction involves optimizing the sub-
task decomposition process. currently, the determination of
decomposition depth is solely governed by the LLM. An al-
ternative approach involves leveraging information capac-
ity (Furuta et al. 2021) as a quantitative metric to evaluate
the complexity of sub-tasks, thereby providing an objective
criterion to guide the decision on whether further hierarchi-
cal decomposition is warranted. Additionally, we aim to in-
corporate agent-specific role assignment to distinguish roles
within the same task, complementing existing task-based
role assignments.

Another potential avenue for future work is to utilize
thought cloning (Hu and Clune 2024) in place of the DoE
classifier in the MEDOE algorithm used in the experiments.
This method eliminates the requirement to train a separate
classifier for each high-level sub-task to determine whether
the corresponding sub-task has acquired expert policies. In-
stead, during training, the agent generates an explicit expla-
nation of its policy along with a continuous representation,
which the large language model (LLM) can use to assess
whether the sub-task has achieved its goal. In future exper-
iments, we plan to introduce various environments—from
complex ones like StarCraft 2 to simpler ones like Chainball
(Fosong et al. 2023).
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