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ABSTRACT

Graph-based recommendation systems are effective at modeling collaborative pat-
terns but often suffer from two limitations: overreliance on low-pass filtering,
which suppresses user-specific signals, and omission of sequential dynamics in
graph construction. We introduce GSPRec, a graph spectral model that integrates
temporal transitions through sequentially-informed graph construction and applies
frequency-aware filtering in the spectral domain. GSPRec encodes item transitions
via multi-hop diffusion to enable the use of symmetric Laplacians for spectral
processing. To capture user preferences, we design a dual-filtering mechanism: a
Gaussian bandpass filter to extract mid-frequency, user-level patterns, and a low-
pass filter to retain global trends. Extensive experiments on four public datasets
show that GSPRec consistently outperforms baselines, with an average improve-
ment of 6.77% in NDCG@10. Ablation studies show the complementary benefits
of both sequential graph augmentation and bandpass filtering.

1 INTRODUCTION

Graph-based recommender systems are constrained by two core problems: using low-pass spectral
filtering often suppresses distinct user signals in favor of broad popularity patterns, and the order of
user interactions is typically neglected in their graph structures. Therefore, recommender systems
should leverage both collaborative patterns and the rich temporal signals embedded within these
interaction sequences Koren (2009). Graph-based Collaborative Filtering (CF) methods He et al.
(2020); Shen et al. (2021); Wang et al. (2019) have achieved strong performance, but they face
two limitations. First, models such as LightGCN He et al. (2020), which rely on linear embedding
propagation, act as low-pass filters Shen et al. (2021) by smoothing signals across the user-item graph.
This encourages broad popularity effects (e.g., everyone buys laptops) but suppresses subgroup-
specific patterns (e.g., gamers buy laptops with mice, artists buy laptops with tablets) Shen et al.
(2021); Xia et al. (2025). Second, while some GCN-based recommenders incorporate temporal data,
they do so via separate sequential modules Ma et al. (2020); Hsu & Li (2021) or through methods that
do not integrate order into the graph structure for spectral analysis, which means they fail to preserve
sequential information essential for distinguishing user preferences from popularity patterns.

The filtering behavior inherent in many GCNs motivates a closer look through the lens of graph
signal processing (GSP), which generalizes classical signal processing to irregular graphs Ortega
et al. (2018). A core technique in GSP is spectral filtering, which transforms graph signals using the
eigenbasis of the graph Laplacian Kruzick & Moura (2017). While low-pass filters, widely adopted
under the assumption of smoothness Shen et al. (2021); He et al. (2020), capture global popularity,
they fail to retain the more distinctive user-specific variations Liu et al. (2023); Xia et al. (2025).
Recent methods have explored amplifying high frequencies Guo et al. (2023), but risk magnifying
noise. By contrast, mid-frequency components encode localized, task-relevant variations Dong et al.
(2019) remains underexplored, motivating filters that explicitly target this band for personalization.

We introduce GSPRec, a novel GSP-based framework that achieves temporal awareness in spectral
recommenders through two components: First, its sequentially-aware graph construction encodes
multi-hop item transition patterns from user histories via diffusion into a symmetric graph structure
to make temporal dynamics an intrinsic property for spectral analysis. Second, this graph empowers
a frequency-aware dual-filtering by using Gaussian bandpass filter to extract mid-frequency user-
specific preferences, complemented by a low-pass filter for popularity patterns.
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(a) Sequential pattern (b) Bidirectional pattern (c) Undirected graph

Figure 1: Conceptual shift from sequence-based to graph-based modeling. (a) Unidirectional
transitions in RNNs Hidasi et al. (2015); Kang & McAuley (2018). (b) Bidirectional models like
BERT4Rec Sun et al. (2019). (c) Our undirected item graph construction: solid lines show initial
symmetric graph S0, dashed lines show higher-order relationships from multi-hop diffusion.

In this work, we encode the interaction graph with item-to-item transitions derived from user
interaction sequences. A multi-hop diffusion process with exponential decay captures sequential
dependencies while preserving the benefits of symmetric graph structures. The symmetric structure
guarantees real eigenvalues and orthogonal eigenvectors Chung (1997), which are important for
stable spectral decomposition and well-defined filtering operations Ortega et al. (2018). Unlike prior
work that extracts item-item similarity from collaborative information Xia et al. (2024), our approach
aggregates explicit sequential signals into the graph topology1. Figure 1 illustrates this shift from
sequence-based to graph-based modeling.

Moreover, we design a Gaussian bandpass filter tailored to recommendation graphs. Informed by
empirical spectral energy distributions Qin et al. (2024); Tremblay et al. (2018), the filter selectively
captures mid-frequency components that are often associated with user-specific and sequential patterns
positioned between low-frequency popularity signals and high-frequency noise. The Gaussian profile
provides optimal localization in both spectral and vertex domains Shuman et al. (2013); Ortega et al.
(2018), which enables smooth transitions across frequencies and reduces ringing artifacts commonly
introduced by sharp filter cutoffs Hammond et al. (2011). We summarize our contributions as follows:

• We propose a novel graph construction method that first derives a symmetric item connec-
tivity graph from user sequences, then encodes higher-order sequential dependencies via
multi-hop diffusion on this symmetric structure.

• We propose a Gaussian bandpass filter that targets mid-frequency components.

• We provide theoretical analysis establishing the stability and convergence of our sequential
diffusion and filtering mechanisms.

• We validate our framework on four public benchmarks, showing that integrating sequential
transitions with mid-frequency filtering leads to consistent performance gains over baselines.

GSPRec achieves average gains of 6.77% in NDCG@10 and 14.88% in MRR@10 across four public
benchmark datasets, consistently outperforming state-of-the-art baselines. These results highlight the
effectiveness of our two core design choices: sequential graph encoding and spectral filtering.

2 BACKGROUND & RELATED WORK

Graph Signal Processing Background: Graph Signal Processing (GSP) analyzes signals on graph
structures Ortega et al. (2018); Shuman et al. (2013). A graph signal maps values to nodes G = (V, E)
as x 2 R|V|. The normalized Laplacian L = I �D�1/2AD�1/2 decomposes into eigenvalues ⇤
and eigenvectors U Chung (1997), enabling spectral filtering:

x0 = U g(⇤)UTx, where g(⇤) = diag(g(�1), . . . , g(�n)) (1)

Low-pass filters preserve global patterns, while band-pass filters capture mid-frequency variations
related to user-specific behavior Ortega et al. (2018); Hammond et al. (2011).

1We note that sequences are used for graph construction, not for sequential next-item prediction.
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Table 1: Comparison with existing popular methods.

Method Task Spectral Fil-
tering

Temporal
Info.

Graph
Structure

Message
Passing

Mid-Freq

Message Passing GCNs:
NGCF Wang et al. (2019) General 7 7 User-Item 3 7
LightGCN He et al. (2020) General 7 7 User-Item 3 7
LR-GCCF Chen et al. (2020b) General 7 7 User-Item 3 7
IMP-GCN Liu et al. (2021) General 7 7 User-Item 3 7

Spectral Filtering Methods (GSP-based):
GF-CF Shen et al. (2021) General LP 7 User-Item 7 7
JGCF Guo et al. (2023) General HP 7 User-Item 7 7
PGSP Liu et al. (2023) General LP 7 User-Item 7 7
HiGSP Xia et al. (2024) General LP 7 User-Item 7 7
FaGSP Xia et al. (2025) General LP 7 User-Item 7 7

Sequential Recommendation:
BERT4Rec Sun et al. (2019) Sequential 7 3 Sequence 7 7
SASRec Kang & McAuley (2018) Sequential 7 3 Sequence 7 7

GSPRec (Ours) General BP+LP 3 UI+Seq 7 3

Graph-Based Collaborative Filtering: Graph-based collaborative filtering represents users and
items as nodes in a bipartite graph, modeling interactions through various approaches He et al. (2020);
Wang et al. (2019); Ying et al. (2018); Zheng et al. (2018). Recent works address over-smoothing Chen
et al. (2020a); Shen et al. (2021), popularity bias Zhang et al. (2023), and efficiency Liang et al. (2024),
while others incorporate temporal dynamics through sequential models or temporal graphs Kang &
McAuley (2018); Sun et al. (2019); Zhang et al. (2024); Ou et al. (2025). Our approach encodes
temporal locality as edge-level structure and applies spectral filtering without message passing.

GSP in Recommendation: Prior work adapts GSP to recommender systems by treating interactions
as graph signals. Most methods adopt low-pass filtering Huang et al. (2017); Liu et al. (2023); Xia
et al. (2025; 2024), while recent work Guo et al. (2023) explores high-pass filtering, which may
recover details but also amplify noise Shuman et al. (2013); Ortega et al. (2018). These approaches
operate on static user-item graphs without sequential dynamics. In this work, we integrate sequential
transitions into the graph before spectral analysis.

Table 1 summarizes existing approaches. Unlike GCN-based methods that rely on message passing,
or GSP-based methods that apply low-pass (LP) or high-pass (HP) filtering to graphs, we join
temporal graph construction (UI+Seq) with dual spectral filtering (BP+LP) to target mid-frequency
components.

3 GSPREC

GSPRec consists of a sequential graph encoding procedure and a frequency-aware spectral filtering
framework. These components jointly capture two complementary signal patterns in the spectral
domain: (1) popularity patterns across the entire user-item graph, and (2) personalized patterns that
distinguish individual preferences. Figure 2 summarizes the pipeline from user-item interactions to
final recommendations via graph construction and spectral filtering.

3.1 PROBLEM FORMULATION

Let U = {u1, . . . , um} denote users and I = {i1, . . . , in} denote items. Historical interactions
are triplets D = {(u, i, t) | u 2 U , i 2 I, t 2 R+}, yielding binary matrix X 2 {0, 1}m⇥n where
xui = 1 if user u interacted with item i. For each user u, we define a time-ordered sequence
Su = [i1, i2, . . .] where (u, ij , tj) 2 D and t1 < t2 < · · · . Our task is to predict future user-item
interactions by jointly modeling collaborative patterns and sequential dynamics. We aim to predict
unobserved entries in X using a unified spectral graph approach that leverages both user preference
similarities and temporal item transitions.
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Figure 2: Overview of GSPRec. Starting from user-item interaction sequences (left), we construct a
unified graph joining user-item links and item-item transitions via multi-hop diffusion with exponen-
tial decay (Eq. 2). This graph is processed using two complementary spectral filters: a band-pass
filter to extract mid-frequency, user-specific patterns, and a low-pass filter to capture popularity.

3.2 RECOMMENDATION GRAPH CONSTRUCTION

Our goal is to construct a unified graph that integrates collaborative filtering signals with sequen-
tial transition patterns. Graph signal processing requires symmetric Laplacians to guarantee real
eigenvalues, orthogonal eigenvectors, and stable spectral filtering Chung (1997); Ortega et al. (2018).
Although user interaction histories are observed as timestamped sequences and thus appear directed,
rigid order is not always reliable in recommendation domains Sun et al. (2019). We therefore trans-
form sequences into a symmetric item-item graph component S̃, a step that is theoretically required
for spectral analysis. Multi-hop diffusion further preserves sequential proximity within this symmetric
structure, allowing temporal information to remain embedded in the spectral representation.

Figure 1 illustrates our approach: while models in Figures 1a and 1b process sequences through
uni/bidirectional mechanisms, we transform user interaction sequences into the undirected item graph
in Figure 1c. This enables joint analysis of collaborative and sequential signals with well-defined
spectral properties Kruzick & Moura (2017). Direct use of asymmetric Laplacians Chung (2005) for
directed graphs involves different theoretical formulation left for future work.

Initial Symmetric Sequence Graph (S0): We define an initial directed transition matrix S 2
{0, 1}n⇥n, where sij = 1 if item i directly precedes item j in any user sequence. To adapt this for
symmetric spectral methods, we form its undirected version, S0 2 {0, 1}n⇥n. In S0, an undirected
edge (i, j) exists if a transition i ! j or j ! i is in S. This symmetrization is a standard practice
when preparing directed graph for algorithms requiring undirected structures Von Luxburg (2007);
Satuluri & Parthasarathy (2011). While simplifying transition directionality, this approach allows
capturing broader item relatedness from sequences, as rigid order is not always optimal and wider
context can be beneficial Sun et al. (2019). Multi-hop diffusion (Eq. 2) operates on S0 to encode
sequence-derived item associations.

For example, consider a user sequence backpack!notebook!pen illustrated in the running
example in Figures 1–3. Symmetrization creates undirected edges (backpack, notebook) and
(notebook, pen). The second-order diffusion step then adds a weighted edge (backpack, pen),
which reflects the second-order temporal relationship derived from the original sequence. While
this edge is undirected, its strength encodes the sequential context, allowing our subsequent spectral
filters to leverage these embedded temporal patterns for recommendation.

Multi-Hop Diffusion (S(d)): To model broader item influence through multi-step paths, we apply
multi-hop diffusion to S0:

S(d) =
dX

k=1

↵
k�1(S0)k (2)

4
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where ↵ 2 (0, 1) is an exponential decay factor that gives higher weight to shorter paths in S0, thus
emphasizing local sequential relationships. d is the diffusion depth to control the extent of influence
propagation. Since S0 is symmetric, each power (S0)k is symmetric, and therefore the diffused matrix
S(d) is also symmetric. The entries S(d)

ij represent a score of multi-hop, locality-aware proximity
between items i and j, learned from the aggregated sequential patterns as illustrated in Figure 3. This
diffusion process is analogous to using graph diffusion kernels to define similarity Gasteiger et al.
(2019) and converges when ↵ < 1/⇢(S0). In practice, we estimate ⇢(S0) (e.g., via power iteration)
and choose a suitable ↵.
Lemma 1 (Diffusion Convergence). The diffusion process defined in Eq. 2 converges as d ! 1 if
↵ < 1/⇢(S0), where ⇢(·) denotes the spectral radius of S0.

Proof. The diffusion process as d ! 1 is S(1) =
P1

k=1 ↵
k�1(S0)k. We can rewrite this as

S(1) = S0 P1
j=0(↵S

0)j by letting j = k� 1. This series converges if the standard matrix geometric
series

P1
j=0 M

j , where M = ↵S0, converges. This occurs if the spectral radius ⇢(M) < 1, i.e.,
⇢(↵S0) < 1. Since ⇢(↵S0) = ↵⇢(S0) (for ↵ > 0), convergence requires ↵ < 1/⇢(S0).

Figure 3: Multi-hop diffusion encoding item
proximity from sequential patterns. Top: S0.
Middle: Powers (S0)k. Bottom: S(3) encod-
ing decayed proximity.

Symmetric Normalization (S̃): The resulting sym-
metric, diffused matrix S(d) is then symmetrically nor-
malized to produce the final item-item graph compo-
nent:
S̃ = D�1/2

S S(d)D�1/2
S , where DS = diag(S(d)1n)

(3)
This standard normalization technique Chung (1997)
yields S̃, ensuring its weights are scaled appropriately
for stable spectral analysis. The weights in S̃ reflect
a transformation of user sequences into measures of
item-item sequential relevance.

Interaction Normalization: The raw user-item in-
teraction matrix X is normalized to account for vary-
ing user activity levels and popularities of the items.
Standard normalizations include:

X̃U = D�1/2
U X, X̃I = XD�1/2

I (4)
where DU = diag(X1n) and DI = diag(XT1m).
For constructing the unified adjacency matrix A, we
use the original binary interaction matrix X, as its
structure is fundamental. The normalized versions can
be used in other components, like the filter design.

Unified Graph Adjacency and Laplacian (A,L):
We integrate the user-item interactions X and the
sequence-derived item-item graph S̃ into a single, sym-
metric adjacency matrix for the graph:

A =


0m⇥m X
XT S̃

�
(5)

This matrix A forms a heterogeneous unified graph where the 0m⇥m block denotes no direct user-user
links are explicitly modeled here, X captures user-item interactions, and S̃ encodes the sequence-
derived item-item relationships. From A, we compute the symmetric normalized Laplacian, which is
the cornerstone of our spectral filtering:

L = I�D�1/2AD�1/2
, where D = diag(A1) (6)

The properties of this Laplacian are discussed in Proposition 2. Our approach, by constructing S̃
from symmetrized sequential data and then applying diffusion, embeds sequence-derived proximity
into a standard spectral framework, offering a distinct way to leverage temporal signals compared to
pure sequential models that maintain strict causality Kang & McAuley (2018); Sun et al. (2019).
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Proposition 2 (Laplacian Validity). The Laplacian L, constructed from the symmetric adjacency
matrix A, is symmetric, positive semidefinite, and has real eigenvalues in the range [0, 2].

Proof sketch; full proof in Appendix B. This follows from spectral graph theory Chung (1997), as
A is constructed to be symmetric and non-negative, and Eq. 6 defines the standard normalized
Laplacian.

3.3 SPECTRAL FILTERING FRAMEWORK

To model user preferences at different levels of specificity, we perform spectral filtering on the
Laplacian graph L = U⇤UT where ⇤ = diag(�1, . . . ,�m+n) contains eigenvalues in ascending
order 0  �1  �2  . . .  �m+n  2 and U = [u1, . . . ,um+n] contains the corresponding
eigenvectors. In practice, for computational efficiency, we perform a truncated eigendecomposition
focusing on r ⌧ (m+ n) which includes the low- and mid-frequency bands relevant to our filters.
The lowpass filter gLP(�) and bandpass filter gBP(�) operate on the corresponding r eigenpairs by
selecting and amplifying the mid-frequency signals present within this subspace.
Proposition 3 (Laplacian Properties). The eigenvalues of L lie in [0, 2], with the number of zero
eigenvalues equal to the number of connected components in the graph.

Bandpass Filtering: To capture mid-frequency user-specific behavior, we design a bandpass filter
using a Gaussian kernel:

gBP(�) = exp

✓
� (�̄� c)2

w

◆
, �̄ =

�� �min

�max � �min
(7)

where c and w control the center and width of the frequency band. Our empirical analysis (Ap-
pendix G) shows spectral coefficients for intermediate eigenvalues have higher magnitude for user-
specific preferences than global trends. This aligns with spectral theory: low frequencies capture
global popularity (smooth across graph), high frequencies represent noise (rapid variation), while
mid-frequencies are piecewise smooth, which varies between communities but consistent within them.
In recommendations, user communities correspond to groups with shared item preferences, making
mid-frequency the natural band for personalization.

Let GBP = diag(gBP(�1), . . . , gBP(�r)) denote the spectral bandpass filter. We filter the item-degree-
normalized user-item interaction signal:

FBP = XD�1/2
I UGBPU

TD�1/2
I (8)

Lowpass Filtering: To preserve global structure and smooth preferences, we compute a com-
plementary low-pass component augmented with user-user similarity. To enhance global struc-
ture, we augment user-item signals with user-user similarities. We define Xb = [CU ,X], where
CU = X̃UX̃T

U . The low-pass component is then computed as:

FLP = XbD
�1/2
b UUTD1/2

b (9)

where Db = diag(XT
b 1m). We note that CU is not part of the Laplacian but is introduced to

incorporate global user similarity in the lowpass representation. As Xb contains both user-user and
user-item components, we extract only the item-related part after filtering by:

FLP = FLP [:,m :] (10)

In our framework, mid-frequency components correspond to more personalized patterns, while low
frequencies capture smoother, population-level preferences. We compute item scores by fusing
mid-frequency personalization with low-frequency global trends. Specifically, we compute:

Y = � · FBP + (1� �) · FLP, � 2 [0, 1] (11)

Both FBP and FLP are outputs of linear spectral filters applied to the graph Laplacian L. Their convex
combination remains a valid linear operator, as the space of spectral filters is closed under addition
and scalar multiplication Sandryhaila & Moura (2013); Püschel & Moura (2006). Figure 2 illustrates
our dual-filter architecture.
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Table 2: Statistics of evaluation datasets.

Dataset #Users #Items #Inter. Density

ML100K 943 1,682 100,000 6.30%
ML1M 6,040 3,706 1,000,209 4.47%
Netflix 20,000 17,720 5,678,654 1.60%
Beauty 22,363 12,101 198,502 0.07%

Table 3: Filter parameters across datasets.

Dataset � c w r

ML100K 0.5 0.2 0.1 32
ML1M 0.3 0.8 0.1 128
Netflix 0.3 0.4 0.3 256
Beauty 0.5 0.8 0.3 512

The spectral components separate distinct preference signals: low-frequency components (from
lowpass filter) capture common transitions shared across users like the backpack!notebook
association from our running example. Mid-frequency components (from bandpass filter) extract
distinctive patterns such as pencil!eraser!notebook!calculator sequences that char-
acterize specific user subgroups. Figure 3 shows how our diffusion process captures these sequential
patterns, with darker cells indicating stronger connections derived from user histories. Appendix B
provides a complete description, with complexity analysis in Appendix D.

4 EXPERIMENTS

We evaluate GSPRec to answer: (1) How does sequential graph enrichment affect performance? (2)
What is the impact of frequency-aware filtering? (3) How does GSPRec compare to state-of-the-art
recommenders?

4.1 EXPERIMENTAL SETUP

Data: We conduct experiments on four benchmark datasets: ML100K, ML1M Harper & Konstan
(2015), Netflix Bennett & Lanning (2007), and Amazon Beauty Ni et al. (2019). These datasets
maintain comparability with recent spectral methods Xia et al. (2025; 2024). We use an 8:1:1 train/test
split with 10% of training data for validation. Statistics are shown in Table 2.

Baselines: We compare GSPRec with: (i) Popularity; (ii) GCN-based methods: LightGCN He
et al. (2020), LR-GCCF Chen et al. (2020b), IMP-GCN Liu et al. (2021), SimpleX Mao et al.
(2021a), UltraGCN Mao et al. (2021b); and (iii) GSP-based methods: GF-CF Shen et al. (2021),
JGCF Guo et al. (2023), PGSP Liu et al. (2023), HiGSP Xia et al. (2024), FaGSP Xia et al.
(2025). Detailed descriptions are in Appendix E. GSPRec leverages temporal graph construction with
dual-filter approach targeting both low- and band-pass components.

Implementation Details: For graph construction, we set the diffusion depth d = 2 and the decay
↵ = 0.4 in all datasets to capture immediate and second-order transitions while attenuating longer-
range influences. Eigendecomposition dimensionality r varies by dataset size. Filter parameters c,
w, and fusion weight � are tuned per dataset as shown in Table 3. Implementation details are in
Appendix F.

Metrics: Following prior work He et al. (2020); Shen et al. (2021); Xia et al. (2025); Guo
et al. (2023); Xia et al. (2024); Liu et al. (2023), we use Normalized Discounted Cumulative
Gain (NDCG@k) and Mean Reciprocal Rank (MRR@k) at k 2 {5, 10, 20}, abbreviated as N@k
and M@k respectively. We apply spectral filtering to obtain preference scores, exclude previously
interacted items, and rank the top-k items.

4.2 OVERALL PERFORMANCE

Table 4 presents performance comparisons. GSPRec consistently outperforms all baselines across
metrics and datasets, with improvements over recent GSP-based methods validating the effectiveness
of leveraging sequential graph construction with mid-frequency spectral filtering.

Performance improvements range from 0.54% to 26.37% across datasets and metrics. Beauty dataset
achieves 19.74% improvement on N@20, while ML100K shows improvements ranging from 5.26%
to 26.37% and Netflix demonstrates gains of 0.54% to 16.30%. This variation indicates that method
effectiveness depends on dataset-specific characteristics that extend beyond simple density metrics.
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Table 4: Performance comparison on four public datasets. The best performance is denoted in bold.
“Improv.” denotes the percentage improvement of GSPRec compared to the strongest baseline method.

Datasets Metric
GCN-based Methods GSP-based Methods

Improv.
Popularity LightGCN LR-GCCF IMP-GCN SimpleX UltraGCN GF-CF JGCF PGSP FaGSP HiGSP GSPRec

ML100K

N@5 0.5672 0.7034 0.5587 0.6764 0.6995 0.6786 0.6875 0.6582 0.6851 0.7106 0.7166 0.7543 +5.26%
M@5 0.5151 0.6362 0.4943 0.6006 0.6397 0.6094 0.6234 0.4471 0.6149 0.6518 0.6629 0.7358 +11.00%
N@10 0.5857 0.6771 0.5603 0.6605 0.6866 0.6688 0.6843 0.6695 0.6722 0.7092 0.7021 0.7572 +6.77%
M@10 0.5296 0.5877 0.4616 0.5690 0.6064 0.5749 0.6010 0.4222 0.5767 0.6384 0.6380 0.7443 +16.59%
N@20 0.5867 0.6618 0.5555 0.6605 0.6543 0.6486 0.6621 0.6730 0.6495 0.6989 0.6724 0.7465 +6.81%
M@20 0.5315 0.5652 0.4411 0.5690 0.5411 0.5289 0.5593 0.4197 0.5496 0.5901 0.5782 0.7457 +26.37%

ML1M

N@5 0.0958 0.5845 0.3540 0.5583 0.5934 0.5739 0.5935 0.6121 0.5963 0.6112 0.6062 0.6237 +2.05%
M@5 0.1943 0.5160 0.2997 0.4934 0.5244 0.5087 0.5254 0.4172 0.5313 0.5430 0.5386 0.5715 +5.25%
N@10 0.0960 0.5873 0.3787 0.5594 0.5921 0.5773 0.5897 0.6238 0.5923 0.6082 0.6042 0.6431 +3.10%
M@10 0.2180 0.5010 0.2946 0.4685 0.5051 0.4886 0.4996 0.3869 0.5063 0.5229 0.5148 0.5837 +11.63%
N@20 0.1035 0.5692 0.3980 0.5416 0.5687 0.5600 0.5678 0.6270 0.5687 0.5808 0.5769 0.6431 +2.57%
M@20 0.2309 0.4644 0.2924 0.4292 0.4625 0.4500 0.4557 0.3730 0.4646 0.4748 0.4620 0.5871 +23.65%

Netflix

N@5 0.5105 0.6822 0.6023 0.6328 0.6603 0.5680 0.7005 0.7065 0.6811 0.7162 0.7162 0.7201 +0.54%
M@5 0.4505 0.6147 0.5323 0.5528 0.5902 0.4941 0.6360 0.5283 0.6127 0.6524 0.6532 0.6680 +2.27%
N@10 0.5488 0.6814 0.6134 0.6307 0.6694 0.5746 0.6928 0.7148 0.6756 0.7079 0.7062 0.7270 +1.71%
M@10 0.4712 0.5974 0.5234 0.5386 0.5839 0.4708 0.6126 0.4837 0.5905 0.6293 0.6275 0.6762 +7.45%
N@20 0.5604 0.6642 0.6043 0.6152 0.6572 0.5580 0.6689 0.7164 0.6543 0.6814 0.6800 0.7213 +0.68%
M@20 0.4773 0.5636 0.4963 0.4995 0.5555 0.4309 0.5691 0.4273 0.5502 0.5827 0.5800 0.6777 +16.30%

Beauty

N@5 0.0149 0.0668 0.0533 0.0570 0.0682 0.0599 0.0659 0.0501 0.0674 0.0712 0.0718 0.0733 +2.09%
M@5 0.0118 0.0530 0.0423 0.0444 0.0544 0.0476 0.0523 0.0535 0.0538 0.0564 0.0574 0.0619 +7.84%
N@10 0.0200 0.0763 0.0635 0.0667 0.0761 0.0649 0.0751 0.0612 0.0765 0.0799 0.0771 0.0879 +10.01%
M@10 0.0139 0.0519 0.0443 0.0451 0.0517 0.0441 0.0517 0.0590 0.0525 0.0549 0.0531 0.0680 +15.25%
N@20 0.0256 0.0829 0.0678 0.0729 0.0819 0.0689 0.0819 0.0721 0.0828 0.0846 0.0799 0.1013 +19.74%
M@20 0.0154 0.0466 0.0388 0.0409 0.0461 0.0393 0.0469 0.0622 0.0481 0.0485 0.0456 0.0718 +15.43%

Table 5: Ablation study on ML1M dataset.

Variant N@10 ± SE M@10 ± SE

GSPRec-NB 0.5769 0.0082 0.5148 0.0093
GSPRec-NL 0.6042 0.0079 0.5229 0.0088
GSPRec-NS 0.6274 0.0039 0.5704 0.0050
GSPRec-SE 0.6416 0.0037 0.5831 0.0049

GSPRec 0.6431 0.0074 0.5837 0.0081

Table 6: Filtering comparison on ML1M dataset.

Components N@10 ± SE M@10 ± SE

FLP only 0.5769 0.0082 0.5148 0.0093
FBP only 0.6042 0.0079 0.5229 0.0088
FLP+FBP (�=0.3) 0.6431 0.0074 0.5837 0.0081
FLP+FBP (�=0.5) 0.6327 0.0076 0.5714 0.0085
FLP+FBP (�=0.7) 0.6281 0.0078 0.5682 0.0087

The performance variation correlates with dataset-specific optimal parameter configurations shown
at Table 3. ML100K exhibits optimal performance at lower frequency centers, Netflix at mid-range
frequencies, while Beauty and ML1M favor higher frequencies. These indicate that GSPRec adapts
to the underlying spectral structure of each dataset rather than imposing a fixed frequency range.

4.3 ABLATION ANALYSIS

Table 5 reveals a clear component hierarchy. Removing bandpass filtering causes the largest perfor-
mance degradation, followed by lowpass filtering removal, while sequential diffusion removal causes
the smallest drop. This hierarchy demonstrates that spectral filtering strategy contributes more sub-
stantially to performance than graph augmentation through sequential information. Table 6 confirms
that bandpass filtering alone outperforms lowpass alone by 4.7%, supporting the effectiveness of
mid-frequency targeting over traditional low-frequency approaches.

Parameter analysis reveals both universal architectural constants and dataset-specific adaptations.
Diffusion parameters ↵ = 0.4 and d = 2 remain across all datasets, which suggests fundamental
properties of sequential transition structures that transcend domain-specific characteristics. However,
spectral parameters exhibit systematic variation that eigenspace dimensionality r scales linearly with
dataset size, while bandpass center positions cluster according to dataset characteristics, in which
indicating that different datasets exhibit distinct spectral signatures in their interaction patterns.

The fusion weight � provides interpretable insight into the balance between personalization and
popularity signals. The optimal value of 0.3 on ML1M indicates that bandpass-based personalization
dominates the recommendation process while lowpass popularity signals provide complementary
information. This quantifies the relative importance of different spectral components and demonstrates
how GSPRec achieves effective signal separation.

4.4 PARAMETER SENSITIVITY

Figures 4 and 5 demonstrate that optimal filter configurations depend on both center position and
dataset characteristics. The interaction between center and width parameters confirms that different
datasets require distinct spectral windows to capture personalized patterns while suppressing noise
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Figure 4: Effect of bandpass center position (c) on NDCG@10 across datasets. Each line represents a
different filter bandwidth (w).

Figure 5: Effect of bandpass width (w) on NDCG@10 across datasets. Each line represents a different
center position (c). Optimal width depends on center position and dataset characteristics.

amplification. This adaptive behavior explains why fixed low-pass or high-pass approaches fail to
achieve consistent improvements across diverse recommendation scenarios.

Notably, the sensitivity curves exhibit relative flatness around optimal parameter values, indicating
that moderate parameter deviations do not substantially degrade performance. This robustness
suggests that GSPRec does not require precise hyperparameter tuning.

4.5 COMPUTATIONAL ANALYSIS

Table 7 shows that GSPRec requires 1.27 minutes on ML1M, comparable to other GSP methods
(1.18-2.36 minutes) and substantially more efficient than GCN approaches (16-135 minutes). This
positions GSPRec on the accuracy-efficiency frontier, unlike GCN methods that achieve moderate
improvements at high computational cost, or GSP methods that sacrifice accuracy for speed, GSPRec
provides both computational efficiency and high accuracy by targeting the most informative bands.

Table 7: Runtime comparison on ML1M dataset (minutes).

Method LightGCN SimpleX UltraGCN GF-CF PGSP FaGSP HiGSP GSPRec

Runtime 135.96 109.83 16.09 1.18 2.36 2.08 2.04 1.27

5 CONCLUSION

We presented GSPRec, a temporal-spectral collaborative filtering framework that integrates sequential
transitions with dual-frequency spectral filtering. our approach consistently outperforms baselines
across four datasets by targeting mid-frequency components, with bandpass filtering achieving 4.7%
improvement over state-of-the-art methods.

Limitations and Future Directions: The symmetric construction trades directional information for
spectral stability, and eigendecomposition creates computational bottlenecks addressable through
polynomial filtering. This work demonstrates that restructuring graph spectra through sequential
encoding enables more effective personalization than filtering static user-item graphs.

9
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