
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERCHANGEABLE TOKEN EMBEDDINGS FOR EX-
TENDABLE VOCABULARY AND ALPHA-EQUIVALENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel approach for learning interchangeable tokens in language
models to obtain an extendable vocabulary that can generalize to new tokens. Our
method addresses alpha-equivalence, the principle that renaming bound variables
preserves semantics. This property arises in many formal languages such as tem-
poral logics, where all proposition symbols represent the same concept but remain
distinct. To handle such tokens, we develop a dual-part embedding approach. The
first part is shared across all interchangeable tokens, enforcing that they represent
the same core concept. The second part is randomly generated for each token,
enabling distinguishability. As a baseline, we consider a simpler approach that
uses alpha-renaming for data augmentation. We also present alpha-covariance,
a metric for measuring robustness against alpha-conversions. When evaluated in
a Transformer encoder-decoder model for solving linear temporal logic formulae
and copying with extendable vocabulary, our method demonstrates promising gen-
eralization capabilities as well as a favorable inductive bias for alpha-equivalence.

1 INTRODUCTION

Following the deep learning revolution that affected numerous application areas (Dargan et al.,
2020), recent literature shows that deep learning based approaches also perform well in neurosym-
bolic reasoning tasks, such as theorem proving (Han et al., 2021) and mathematical reasoning (Rabe
et al., 2020). The formal reasoning capabilities of these models were once doubted, but Liu et al.
(2023) demonstrated the ability of Transformer models (Vaswani et al., 2017) to learn shortcuts
to automata. Of particular interest is the generalization ability of such models to unseen, out-of-
distribution data (Sanh et al., 2021), enhancing their appeal for logical reasoning (Abbe et al., 2023).

Another application area is linear-time temporal logic (LTL), which is heavily utilized by the formal
verification community (Clarke et al., 2018; Baier & Katoen, 2008) for reasoning about how logical
propositions change over time (Pnueli, 1977). Through the use of temporal operators, LTL formulae
can specify, for example, that a proposition p must hold at all time steps (Gp), or at least one time
step (Fp). LTL formulae operate on traces, which describe how the propositions change over time.

Solving a given LTL formula involves finding a satisfying trace, and it proved essential for gener-
ating examples for system specifications in the literature. This field was dominated by the methods
that use classical algorithms, such as spot (Duret-Lutz et al., 2022) and aalta (Li et al., 2014).
However, following the success of Transformer models on end-to-end symbolic integration (Lample
& Charton, 2019), Hahn et al. (2021) attacked the LTL solving problem using the same approach.
Their capability to generalize to longer formulae is especially noteworthy, and it was made possible
thanks to tree-positional encoding (Shiv & Quirk, 2019).

However, generalization to longer formula lengths is not the only concern. In particular, each LTL
formula features a set of atomic propositions (henceforth APs), and it’s desirable for the model to
generalize to more APs. But the architecture of the model does not even accept new APs that are not
seen during training, despite the fact that all APs represent semantically equivalent concepts while
being distinguishable from each other. This situation arises in many other application areas, such as
mathematical expressions and lambda calculus (alp, 1984), where renaming the bound variables does
not change the meaning. This phenomenon is described as alpha-equivalence. Alpha-conversion (or
alpha-renaming) refers to the process of creating alpha-equivalent input-output pairs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we propose a novel approach for representing interchangeable tokens in neural network
models. To summarize, our method constructs some part of the token embeddings on-the-fly instead
of learning all of them during training. The token embeddings for interchangeable tokens consist
of two parts: a learnable part and a randomized part. The learnable part is shared across all inter-
changeable tokens, and the model must depend on the randomized part to differentiate these tokens.
We use the weight tying technique (Press & Wolf, 2016) to share the same token embeddings with
the final projection matrix, which calculates the logits (i.e., next-token probabilities before softmax).

We use our embedding method in a Transformer encoder-decoder model and evaluate it on two
tasks: copying with an extendable vocabulary and solving LTL formulae. For the second task, we
use datasets generated using spot (Duret-Lutz et al., 2022), a library for LTL manipulation and
model checking using conventional algorithms. As a baseline, we consider a simpler approach
that uses alpha-renaming for data augmentation during training to expose the model to a larger
vocabulary, which is also new in the literature to the best of our knowledge. Overall, our method
demonstrates generalization capabilities to larger vocabulary sizes, and also combines well with
positional encodings that exhibit length generalization. We also experiment with dataset perturbation
to show that our method introduces a helpful inductive bias for alpha-equivalence. Finally, we
present alpha-covariance, a metric for measuring robustness against alpha-conversions.

2 RELATED WORK

Language modeling and formal reasoning The transformer architecture (Vaswani et al., 2017),
now ubiquitous in modern deep learning, was initially proposed as a generative model to trans-
late between natural languages autoregressively. This led to many successful attempts to frame
formal reasoning tasks as language modeling problems, such as symbolic integration (Lample &
Charton, 2019), symbolic regression (Kamienny et al., 2022; Vastl et al., 2022), LTL solving (Hahn
et al., 2021), and many more. Further developments shifted the field towards large language models
(LLMs), e.g., by prompting a model pre-trained on a gigantic scale (Frieder et al., 2023), by en-
hancing the prompt with retrieved references for proof generation (Welleck et al., 2022; Yang et al.,
2023), by training an LLM on a specialized dataset for mathematics (Azerbayev et al., 2023). How-
ever, the reasoning abilities of LLMs were questioned by (Tang et al., 2023), who showed LLMs
struggle with symbolic reasoning when semantics are decoupled, and by others (Wu et al., 2023).

Extensible vocabulary Efforts to create an extensible vocabulary for neural networks are scarce in
the broader machine learning community, let alone the formal reasoning literature. Morazzoni et al.
(2023) exploited dictionary definitions to create extensible word embeddings. Wei et al. (2016) pro-
posed a vocabulary-extensible sign language recognition framework by using a component based
approach, where each sign gesture is recognized based on common components such as hand shape,
orientation, axis, rotation, and trajectory. These studies depend on either external information (dic-
tionary definitions) or properties specific to an application area (components of hand gesture); they
do not attempt to design an extensible vocabulary for interchangeable tokens, which has been ne-
glected by the literature alongside the concept of alpha-equivalence.

3 PROBLEM DEFINITION

In a language modeling problem, the goal is to predict the next token in the output sequence given
the input and the past output. (See Appendix A.1 for more details on language models.) Let V
denote the set of all unique tokens, i.e., the vocabulary of a language modeling problem. We assume
that Vi is the set of interchangeable tokens and Vn = V\Vi is the set of non-interchangeable tokens.
The core idea behind alpha-equivalence is that renaming interchangeable tokens between each other
in both input and output preserves meaning. Let f : V → V be a bijection such that f(x) = x for
all x ∈ Vn, i.e., f arbitrarily renames the interchangeable tokens between each other in one-to-one
correspondence and preserves the rest of the tokens. We apply f to each token in a given pair of input
a ∈ V∗ and output b ∈ V∗ strings, obtaining a′ = (f(a1), f(a2), . . .) and b′ = (f(b1), f(b2), . . .).
We call this operation alpha-conversion or alpha-renaming. The set of interchangeable tokens Vi

must be defined such that a′ and b′ form a valid input-output pair semantically equivalent to (a, b)
for all possible f .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our task is to design an embedding method that—alongside being resilient to alpha-renaming by
construction—can support a new vocabulary V′ = V′

i ∪ Vn where Vi ⊂ V′
i after training on V.

In other words, the model should be able to operate on a larger vocabulary than the one seen dur-
ing training, as long as the newly introduced tokens belong to the class of interchangeable tokens.
Although we don’t impose any restrictions about the size of V′ in this problem definition, the maxi-
mum size of V′ in practice may change as a function of the number of embedding dimensions. Thus,
while setting the hyperparameters, the expected size of V′ must be considered.

Example In the LTL solving problem (Appendix A.2), the set of non-interchangeable tokens Vn

includes the operators, constants, delimiter tokens (“;”, “{”, “}”), and any special tokens such as
the end token. The set of interchangeable tokens equals to the set of atomic propositions (APs):
Vi = P . Assuming P = {a,b}, the formula-trace pair (“&aXb”, “a;b;{1}”) is alpha-equivalent
to (“&bXa”, “b;a;{1}”). Further, assume that the augmented set of interchangeable tokens is
V′

i = P ′ = {a,b,c,d}. Now, the aforementioned pair can also be equivalently represented as
(“&cXd”, “c;d;{1}”). The augmented vocabulary allows the expression of formula-trace pairs
that feature up to 4 APs instead of 2. For example, (“&&abX&cd”, “&ab;&cd;{1}”) cannot be
expressed using P = {a,b}. Our goal is to create a model that can handle such inputs despite being
trained on the limited vocabulary V = Vn ∪ P .

4 PROPOSED METHOD

LearnableRegular
Tokens Zeros

Inter-
changeable

Tokens
Learnable

(Shared Rows)
Randomly
Generated

Embedding Dimensions

Figure 1: Visual structure of the embedding
matrix in the proposed method.

To address the problem of learning semantically
equivalent but distinguishable (alpha-equivalent) to-
kens, our method employs two ideas: sharing some
part of the embeddings between such tokens to con-
vey their semantic equivalence; and assigning a
unique randomly-generated vector to the rest of the
embedding for each interchangeable token, allowing
the model to distinguish between them. The number
of shared and randomly-generated dimensions are
denoted by dα and dβ respectively. The sum of these
two yields the total number of embedding dimen-
sions in the model, denoted by dmodel = dα+dβ . For
non-interchangeable tokens, dα dimensions contain
separate learnable parameters and dβ dimensions are
set to 0. The structure of the embedding matrix is vi-
sualized in Figure 1.

4.1 EMBEDDING MATRIX

Construction of the embedding matrix For a vocabulary with n non-interchangeable tokens
and m interchangeable tokens, L ∈ Rn×dα represents the matrix of learnable embeddings for non-
interchangeable tokens, α ∈ R1×dα the shared learnable embedding for interchangeable tokens, and
βi ∈ R1×dβ the randomly-generated embedding for the ith interchangeable token where 1 ≤ i ≤ m.
Note that α and βi are row vectors. A zero matrix of size i × j is represented by 0i,j . In addition,
we define two row-based L2 normalization functions fbn(X) and ffn(X) that divide each row
Xi,: by its L2 norm ||Xi,:||. These two functions are identical but can be disabled independently
from each other, hence the separation. Finally, the overall structure of the embedding matrix U is
shown in Equation 1. In this construction, the interchangeable tokens are assumed to come after
the non-interchangeable tokens. Note that it’s also possible to implement multiple sets of different
interchangeable tokens via a trivial extension.

U = ffn(


fbn(L) 0n,dβ

fbn(α) fbn(β1)
fbn(α) fbn(β2)

...
fbn(α) fbn(βm)

) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

During training, the embedding matrix must be reconstructed in each forward pass with resampled
random vectors β1 to βm. Resampling βi for 1 ≤ i ≤ m during training prevents the model from
adapting to the idiosyncracies of a particular random generation and forces it to distinguish between
interchangeable tokens regardless of the contents of βi. During inference, it’s created once at the
start and remains the same since the autoregressive generation involves multiple forward passes on
the same input.

Normalization There are several concerns that warrant the heavy use of normalization while con-
structing U , as seen in Equation 1. Firstly, dα dimensions and dβ dimensions should not overwhelm
each other in terms of magnitude. Normalizing α and βi separately addresses this issue. The magni-
tude of the concatenated embedding is another concern, which is handled by the final normalization.
The normalization of L is redundant (since the final normalization does the same operation after the
concatenation with zeros) but kept in Equation 1 for readability.

4.2 RANDOM EMBEDDING GENERATION

This section will explain how the distinguishing part of the interchangeable token embeddings,
βi, 1 ≤ i ≤ m, are created. To this end, we developed 3 methods to generate random vectors.
Table 1 provides a summary at a glance. The first method simply samples the standard normal dis-
tribution for each dimension. The second one uses the neighboring grid points around the origin,
which correspond to the 8 directions in 2D. For each interchangeable token, a unique vector in this
set is sampled. The last method is similar, but its set consists of the vertices of a hypercube centered
around the origin, i.e., diagonal direction vectors.

Table 1: Comparison of random vector generation methods.

Method Normal Distribution Neighboring Points Hypercube Vertices

Formula ai ∼ N (0, 1) ai ∈ {−1, 0, 1} ai ∈ {−1, 1}
|ai| ≠ 0

Size for n-dims Continuous 3n − 1 2n

Sample Visualization

In the normal distribution method, we don’t have any additional constraints to ensure distinguisha-
bility between vectors. However, in other two methods, we need make sure that each interchangeable
token gets assigned to a unique vector since the sampling set is finite. To achieve this quickly and
space-efficiently, we define a mapping from integers to possible vectors. The unique vectors are
generated by sampling m unique random integers (which can be calculated efficiently using the
reservoir sampling technique), and then using the defined mapping to convert these integers to the
vectors. This strategy avoids materializing the whole set of possible vectors. In the hypercube ver-
tices method, we map the binary digits of an integer in [0, 2dβ) to {−1, 1}. Although “Neighboring
Points" is simply the ternary version of the same idea, avoiding the zero vector requires special care.
The zero vector maps to the integer iz = (3dβ − 1)/2. Therefore, we define our domain as the
integers in [0, 3dβ − 1) and add 1 to the integer i before converting it if i ≥ iz .

Integer mapping approach for generating unique vectors works well for up to 32 dimensions, after
which the limits of integer representation become an issue for reservoir sampling. Therefore, in
such cases, we simply disable the uniqueness check because the size of the sampling set grows
exponentially, rendering the probability of drawing the same sample negligible.

4.3 PROJECTION

Weight tying In a traditional language modeling setting, since both the embedding and projec-
tion matrices are entirely composed of learnable parameters, it’s not necessary to share them, even

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

though there are many advantages of weight tying (Press & Wolf, 2016). However, we construct the
embedding matrix manually in our method, which makes weight tying a requirement. Furthermore,
since we perform our experiments on an encoder-decoder architecture in this paper, we utilize a
three-way weight tying approach, whereby the embedding matrices of encoder and decoder are tied
in addition to the final projection matrix. Three-way weight tying is particularly appropriate for our
problem domain since many tokens are shared between the LTL formulae and traces.

Feature normalization Given the output of the last layer before the final projection v (henceforth
called feature vector), instead of directly applying the final projection as in Uv, we apply L2 normal-
ization to the feature vector v before passing it through the final projection: Uffn(v). This matrix
multiplication constitutes taking a dot product with each row. Since a · b = |a||b|cos(θ) where θ
is the angle between a and b, normalizing both the embeddings and the feature vector leaves only
the cosine term to determine the logits. This forces the model to distinguish between tokens based
solely on the directions, which may improve the gradient flow.

Cosine loss If we normalize both the embeddings and the feature vector, the only thing that deter-
mines each logit is the cosine of the angle between the feature vector and the embedding. Applying
the softmax loss to such logits is known as cosine loss in the literature. Although cosine-based loss
functions were successful in face recognition (Ranjan et al., 2017; Wang et al., 2017), it proved
sensitive to hyperparameter settings in these losses. To avoid this problem, we use AdaCos loss
function (Zhang et al., 2019) that scales the logits adaptively throughout training.

To adapt the AdaCos loss function to our use case, we make the following modifications: Since the
language modeling problem involves a sequence length dimension in addition to the batch dimen-
sion, we combine these two dimensions while ignoring the padding tokens, effectively treating both
dimensions as batch dimensions. However, since this change greatly increases the number of batch
dimensions, it can lead to numerical issues, even with the log-sum-exp trick. Therefore, we clip the
scale value calculated by AdaCos to a maximum of 100 to avoid numerical issues.

5 EXPERIMENTS

Experimental setup We use a transformer encoder-decoder architecture in all experiments. We
always use the same embedding size in both encoder and decoder due to weight tying. We use
the RoPE (Su et al., 2023) as the positional encoding method in both encoder and decoder unless
otherwise noted. The hyperparameter settings are given in Table 4 in Section A.3.

Baselines We train three types of baseline models with traditional embeddings: the first one on the
original dataset, the second one on a dataset with the same parameters but using a larger vocabulary
size, and the third one on the original dataset but using a data augmentation strategy. Specifically,
for the third baseline, the number of interchangeable token embeddings matches that of the test set,
and we apply random alpha-renaming at each forward pass during training. This ensures that the
model is exposed to all tokens in the test set, but the number of unique interchangeable tokens the
model sees in each sample remains limited as in the training set. Note that this is an internal baseline
that doesn’t exist in the literature to the best of our knowledge.

5.1 COPYING WITH EXTENDABLE VOCABULARY

We introduce a new toy problem designed to evaluate the vocabulary generalization capabilities of
our embedding method. We create various training datasets that contain 10 million random strings
with a limited vocabulary size. A string is given as input, and the model is expected to produce
the input string exactly via autoregressive generation. This embodies a helpful toy problem for
our method because all tokens are interchangeable, barring the special tokens (start/end). In these
experiments, we expect the model to generalize to larger vocabulary sizes unseen during training.
We generate the predictions using greedy sampling in this subsection.

Evaluation method We use the edit distance between the prediction and the ground truth as our
evaluation metric. To generate the evaluation datasets (validation and test splits), we create 100
samples for each possible combination of unique character count and string length, starting from

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Train and test sets have the same distribution: sequences
of length ≤ 80, with ≤ 20 unique character tokens.

Test samples in this region are limited to length ≤ 80 (as in
training), but come from a larger vocabulary.

Fixed-embeddings cannot extrapolate.

Test samples in this region contain ≤ 20 unique
characters (as in training), but much longer sequences.

The proposed method adapts nearly-flawlessly to
sequences of length and vocabulary size upto 160.

Figure 2: Two annotated heatmaps visualizing the test-set edit distance between prediction and
ground truth in copying task with extendable vocabulary. Both heatmaps share the same y-axis. The
green box represents the number of unique characters (y-axis) and the maximum length (x-axis) in
the training dataset. The lower triangular part of each heatmap, shown in gray hatch pattern, repre-
sents the impossible combinations of length and unique character count. Each point represents the
average error over test samples with a particular sequence length and unique number of character
tokens. The baseline approach (on the left), using ubiquitously utilized fixed (learned) token em-
beddings, cannot extrapolate to vocabulary expansions. The proposed method (on the right) enables
generalization to larger vocabulary sizes at longer sequence lengths, compared to what is observed
during training.

a minimum of 3. Consequently, the total evaluation dataset is arranged in a matrix in which the
rows represent unique character count in the string and the columns represent the string length. This
matrix is upper triangular since the unique character count cannot exceed the string length. For
random embeddings, we repeat the evaluation 10 times and report the average. To evaluate up to the
string length of 30 in this setup, 10 × 100 × 406 = 406000 predictions are required, where 406 is
the number of upper triangular elements in a 28 × 28 matrix. To minimize the impact of random
factors, we train each model three times and report the results only for the best.

5.1.1 GENERALIZATION TO LARGER VOCABULARIES

We create a dataset consisting of 10 million strings whose lengths vary between 3 and 30 with at
most 5 unique characters. We evaluate the models on strings up to length 30 with at most 30 unique
characters. Out of 27 models we trained with dual-part embeddings, 20 of them achieve an average
edit distance of 0.0, i.e., no error. The worst model’s average edit distance is 1.0. For comparison,
an output sequence of length 30 can have a maximum edit distance of 30.

5.1.2 GENERALIZATION TO LARGER VOCABULARIES AND LENGTHS

We create a dataset consisting of 10 million strings whose lengths vary between 5 and 10 with at
most 5 unique characters. We evaluate on the same validation set as before, expecting the model
to generalize to both longer lengths and larger vocabulary sizes. In Appendix A.3.1, we perform a
hyperparameter search over random embedding methods, dβ values, and whether fbn, ffn, AdaCos
are enabled.

We determine the best model for the proposed method and the baseline on the validation set, evaluate
them on the test set and visualize the results in Figure 3. Since the baseline model cannot process
larger vocabularies, we assume that the prediction is empty if the unique character count exceeds the
training set’s vocabulary, hence the edit distance equals length in that area. Our best model trained
on limited length uses Hypercube Vertices with dβ set to 6 and ffn + AdaCos enabled. It achieves a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

mean edit distance of 0.38 on the test set. The first baseline’s mean edit distance is 0.51 (calculated
up to 5 unique characters, only for this model). The second and third baselines’ mean edit distances
are 4.93 and 1.85 respectively. However, the significance of this difference is highly questionable,
as these models exhibit high variance across different training runs.

Figure 3: Edit distance heatmaps on test set. The first and second heatmaps are the proposed and
baseline (first type) models respectively, trained on strings up to length 10 and a vocabulary size 5.
The third heatmap is the second baseline, which uses a new training dataset with a larger vocabu-
lary. The last heatmap is the third baseline that uses the same dataset as the proposed method but
incorporates alpha-renaming in training. The difference between the last two baselines is that the
alpha-renaming baseline is not exposed to more than 5 unique characters per sample. The lower tri-
angular part of each heatmap (gray hatch pattern) represents the impossible combinations of length
and unique character count. The green box represents the number of unique characters (y-axis) and
the maximum length (x-axis) in the training dataset. Note that all heatmaps share the same y-axis.

5.1.3 SENSITIVITY TO RANDOMNESS IN EMBEDDINGS

We analyze the impact of the randomization that the proposed method performs on embeddings. The
minimum, mean, and maximum edit distance (on test set) obtained by ten different embedding ran-
domizations of the second model in Figure 3 are 0.25, 0.38, 0.55 respectively, with a sample standard
deviation of 0.09. The pooled standard deviation of the edit distance across all 277 models evaluated
on the validation set is 1.73. However, our best models are more resilient against randomness: this
value is 0.74 for top 10% models.

To reduce the computational cost of evaluation in the next experiments, we generate 10 random
embeddings, sort them by their cross entropy loss on the evaluated dataset, and use the median one.
We find that this serves as a decent proxy for the average performance. Across the validation set
evaluations of all 277 models, the percent difference in edit distance between this median method
and the real mean is 1.4% on average (meaning that the result from the median method is worse),
and 9.1% if we consider the absolute differences.

5.1.4 SCALING UP

We increase the length of the strings from 5-10 to 20-80, and vocabulary size from 5 to 20. We
create the evaluation sets by generating 20 samples for each combination of unique character count
and string length. The mean edit distance of our best model is 0.0. The heatmap is given in Figure
2. All baselines also attain perfect performance in this task on the vocabulary sizes they support.
Therefore, only the first type of baseline is shown in Figure 2.

5.2 LTL SOLVING

In this section, we train models on the LTLRandom35 dataset from DeepLTL (Hahn et al., 2021) and
other synthetic datasets created with the same method. To evaluate the correctness of the generated
formulae, we utilize spot framework version 2.11.6 (Duret-Lutz et al., 2022). We use tree-
positional encoding (Shiv & Quirk, 2019) in the encoder and RoPE (Su et al., 2023) in the decoder.
We generate predictions using beam search with a beam size of 3 in this section.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Baselines We trained all of the baseline models from scratch. For the first type of baseline, we
aimed to reproduce the results from Hahn et al. (2021). Hence, we used the best hyperparameters
they reported (Appendix A.3). Unlike Hahn et al. (2021), we experimented with RoPE (in the de-
coder) and AdaCos, but did not observe a noteworthy improvement on the validation set. 1 After
determining the best baseline model on the validation set, we evaluated it on the test split of LTL-
Random35 and obtained a correct rate of 98.2% against the 98.5% reported by Hahn et al. (2021).

5.2.1 DATASET PERTURBATIONS

To demonstrate that our method creates a helpful inductive bias, we created a perturbed version of
the LTLRandom35 dataset by renaming the APs such that the order of the first AP appearances in
the trace is always the same. As the empirical evidence in Table 2 confirms, both our method and
the alpha-renaming baseline are naturally immune to these alterations. We train these methods only
on the perturbed dataset since training them again on the normal dataset amounts to training with
different random samples.

Table 2: Evaluation of the baselines and our method trained on different versions of LTLRandom35.
The alpha-renaming baseline was trained using 5 AP embeddings since vocabulary generalization is
not valuated here. First two columns denote the training dataset and the model. Next two columns
indicate the ratio of the correct predictions and exact matches on 99,989 test set samples as evaluated
by spot. Last three columns display mean alpha-covariance values for varying atomic proposition
(AP) counts, evaluated on all alpha-equivalent variants of 1000 test samples.

Training Evaluation Alpha-Covariance
Dataset Model Correct Exact 3 AP 4 AP 5 AP
Normal Baseline 98.23% 83.23% 96.87% 95.86% 91.80%
Perturbed Baseline 34.13% 12.12% 64.93% 57.99% 40.91%
Perturbed Alpha-Renaming 97.96% 77.66% 99.55% 99.49% 98.86%
Perturbed Proposed 95.94% 76.45% 97.66% 97.76% 98.29%

While the original model performs significantly worse under perturbation, both alpha-renaming and
proposed models match the baseline performance in correctness ratio despite perturbation. This
observation suggests that these modifications introduce a robust inductive bias that makes the models
resistant to perturbations in the data. A minor decrease in the ratio of exact matches is noted, but
this may signify less overfitting and a better bias-variance tradeoff in the larger context. Appendix
A.4 continues this experiment with limited amount of training samples instead of perturbations.

5.2.2 ALPHA-COVARIANCE

Given a vocabulary of n AP tokens and an LTL formula-trace pair containing k APs, it’s possible to
write nPk = n!/(n− k)! alpha-equivalent pairs. Since these are semantically equivalent, we expect
the model’s predictions to be the same after undoing the alpha-conversions for all of them. As there
is no metric to quantify this in the literature to the best of our knowledge, we develop a new metric.

Let (x,y) be an input-output pair for the model, and let P = {(x1,y1), . . . , (xn,yn)} be n input-
output pairs alpha-equivalent to (x,y). We define αi as the alpha-conversion function for the ith
input-output pair such that αi(x) = xi and αi(y) = yi. To compute the alpha-covariance of a
model with respect to P, we generate predictions for each input in P, obtaining the prediction ŷi

for each xi. We define a set that contains the predictions with alpha-conversion undone: U =
{α−1

i (ŷi) | 1 ≤ i ≤ n}. Note that if we defined this set for the ground truth outputs in P, we
would get {y} since α−1

i (yi) = y holds for each yi by definition. The model’s sensitivity to
alpha-conversions could be quantified by simply |U|, but this value may be hard to interpret since it
depends on |P|. To normalize this value intuitively, we define the alpha-covariance of a model with
respect to P as in Equation 2.

1− |U| − 1

|P| − 1
(2)

1Using RoPE in the decoder increased the ratio of correct predictions from 97.8% to 98.0% on the validation
set. Introducing AdaCos in addition to RoPE increased this value to 98.2%.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Intuitively, when alpha-covariance is 1, the model is unaffected by all alpha-conversions in P. An
alpha-covariance of 0 indicates that |U| = |P|, i.e., the model’s prediction for each alpha-equivalent
pair is unique after undoing the alpha-conversion. This is unwanted because alpha-conversions
should not change the semantic meaning. Thanks to the embedding randomization in our method,
an alpha-conversion does not necessarily change the embeddings, and conversely, there are multiple
ways to embed the same input due to randomness.

For the proposed method, we generate the random embeddings once at the start of an evaluation
run using the heuristic explained in Section 5.1.3. Thus, alpha-conversions in this experiment are
equivalent to shuffling the random embeddings in our method. As a result, the alpha-covariance
measures our model’s robustness against differences in random embeddings.

We report the results in Table 2, which demonstrates that our method has a positive impact on the
alpha-covariance, especially in limited data settings. Since the LTLRandom35 dataset was created
synthetically, it doesn’t have any noteworthy biases and even the baseline enjoys a high alpha-
covariance thanks to this. However, when the dataset is perturbed by introducing a bias to the order
of APs, the baseline struggles heavily with alpha-covariance, whereas our method does not.

5.2.3 GENERALIZATION

The test dataset for this experiment contains at most 100 formula-trace pairs for each combination
of AP count and formula length, whose maximum is 50 instead of 35. We report the results for our
model (using Hypercube Vertices, dβ = 5) and the three baselines in Figure 4. The first baseline
uses the same training dataset, whereas the second baseline uses a new LTL dataset with 10 APs,
which we create using the same method as LTLRandom35. For the third baseline, we train a fixed
embedding model with 10 APs using the same 5 AP dataset but we shuffle the AP embeddings in
each forward pass during training.

Figure 4: Heatmap visualizing the ratio of correct predictions on a special test set. The brightness
of the color depends on the sample size, with full brightness representing 100 samples. The dashed
white box represents the boundaries of the training dataset.

Discussion Despite seeing only 5 APs during training, our method performs only slightly worse
than the full vocabulary baseline, which represents what a transformer-based model can do with 10
APs. Our method outperforms both the vanilla and the alpha-renaming baselines by a considerable
margin, which is significant since the latter is the only other model that can generalize to more APs.
Based on this, we hypothesize that the proposed stochastic AP embeddings provide a more explicit
enforcement towards learning embedding-covariant transformations in the model, as opposed to
training with alpha-renaming, where the learned embeddings may still carry unwanted token-specific
biases. Furthermore, unlike the baseline models, our model does not have to learn the concept of
AP from scratch for each AP token thanks to the shared embedding part. This could explain why
our method shone against the alpha-renaming baseline in the LTL task where the interchangeable
tokens are more complex than the copying task.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Motivation for generalization The generalization to larger AP counts is important especially
when considering the exponential growth of the dataset generation time. In Figure 5, we visualize
the growth pattern of the trace checking duration based on increasing formula length and AP count.
The times are relative to the fastest trace checking time. The exact times will vary depending on the
machine. In our experiments, generating 100000 samples of exact formula length 50 with at most
10 APs took 2 hours and 21 minutes on a system with 56 threads.

Figure 5: Scaling behavior of the trace generation using spot.

Alpha-covariance We evaluate the alpha-covariance performance of these models in Table 3.
Note that since 10 APs lead to a lot more naming permutations than 5 APs, the alpha-covariance
values are remarkably smaller compared to Table 2. Unlike the results from Table 2, however,
our method outperforms the alpha-renaming approach here. This shows that our method excels in
out-of-distribution settings, but trades off some in-distribution performance. Although the full vo-
cabulary baseline performs very similarly to our method, it’s important to note that this region is
in-distribution for that model. Overall, these results align with Figure 4.

Table 3: Mean alpha-covariance values for varying AP counts, evaluated on 1000 test samples, each
with 120 random alpha-equivalent variants. The best value for each AP count is highlighted in bold.

Alpha-Covariance
Model 3 AP 4 AP 5 AP 6 AP 7 AP 8 AP 9 AP 10 AP
Full Vocabulary 54.09% 45.51% 45.23% 42.07% 33.54% 34.47% 32.36% 28.42%
Alpha-Renaming 50.64% 43.00% 40.95% 37.49% 30.80% 30.30% 28.76% 25.57%
Proposed 54.30% 46.05% 45.64% 41.88% 33.89% 35.29% 33.18% 28.34%

6 CONCLUSION

The primary difference between machine learning and numerical optimization is the intention to
generalize to out-of-distribution samples, for which the network architecture and its inductive biases
play a vital role. In this work, we addressed the challenge of generalizing to larger vocabulary sizes
unseen during training and creating an inductive bias for alpha-equivalence. We also contributed
the alpha-covariance metric for measuring the model’s consistency against alpha-equivalent inputs.
These contributions embody a foundation for learning extensible vocabularies for interchangeable
tokens, which is especially useful for formal reasoning tasks in which alpha-equivalence naturally
arises. Although our dual-part embedding method demonstrates generalization capabilities, its per-
formance in the LTL solving task decreases slightly in in-distribution data (Table 2). The future work
can tackle this issue, which may eventually lead to Pareto improvements in bias-variance tradeoff.
Moreover, applying our approach to problems in which the interchangeable tokens have meaning-
ful names (e.g., human-written variable names) represents an intriguing area for future research.
Finally, new randomization and/or normalization methods for our embeddings can be explored.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Chapter 2 - conversion. In H.P. BARENDREGT (ed.), The Lambda Calculus, volume 103 of
Studies in Logic and the Foundations of Mathematics, pp. 22–49. Elsevier, 1984. doi: https:
//doi.org/10.1016/B978-0-444-87508-2.50010-1. URL https://www.sciencedirect.
com/science/article/pii/B9780444875082500101.

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 31–60. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
abbe23a.html.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. ArXiv, abs/2310.10631, 2023. URL https://api.semanticscholar.
org/CorpusID:264172303.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. 2008.

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Handbook of model
checking. In Cambridge International Law Journal, 2018.

Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar. A Survey of Deep
Learning and Its Applications: A New Paradigm to Machine Learning. Archives of Computational
Methods in Engineering, 27(4):1071–1092, September 2020. ISSN 1886-1784. doi: 10.1007/
s11831-019-09344-w. URL https://doi.org/10.1007/s11831-019-09344-w.

Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexandre Gbaguidi
Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément
Gillard, and Henrich Lauko. From Spot 2.0 to Spot 2.10: What’s new? In Proceedings of the 34th
International Conference on Computer Aided Verification (CAV’22), volume 13372 of Lecture
Notes in Computer Science, pp. 174–187, August 2022.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, Alexis Chevalier, and J J Berner. Mathematical capabilities of chat-
gpt. ArXiv, abs/2301.13867, 2023. URL https://api.semanticscholar.org/
CorpusID:256415984.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and Bernd Finkbeiner.
Teaching temporal logics to neural networks. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Jesse Michael Han, Jason M. Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. ArXiv, abs/2102.06203, 2021. URL
https://api.semanticscholar.org/CorpusID:231879554.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Franccois Charton. End-
to-end symbolic regression with transformers. ArXiv, abs/2204.10532, 2022. URL https:
//api.semanticscholar.org/CorpusID:248366384.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. ArXiv,
abs/1912.01412, 2019. URL https://api.semanticscholar.org/CorpusID:
208547770.

Jianwen Li, Yinbo Yao, Geguang Pu, Lijun Zhang, and Jifeng He. Aalta: an ltl satisfiability checker
over infinite/finite traces. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014, pp. 731–734, New York, NY, USA, 2014.
Association for Computing Machinery. ISBN 9781450330565. doi: 10.1145/2635868.2661669.
URL https://doi.org/10.1145/2635868.2661669.

11

https://www.sciencedirect.com/science/article/pii/B9780444875082500101
https://www.sciencedirect.com/science/article/pii/B9780444875082500101
https://proceedings.mlr.press/v202/abbe23a.html
https://proceedings.mlr.press/v202/abbe23a.html
https://api.semanticscholar.org/CorpusID:264172303
https://api.semanticscholar.org/CorpusID:264172303
https://doi.org/10.1007/s11831-019-09344-w
https://api.semanticscholar.org/CorpusID:256415984
https://api.semanticscholar.org/CorpusID:256415984
https://api.semanticscholar.org/CorpusID:231879554
https://api.semanticscholar.org/CorpusID:248366384
https://api.semanticscholar.org/CorpusID:248366384
https://api.semanticscholar.org/CorpusID:208547770
https://api.semanticscholar.org/CorpusID:208547770
https://doi.org/10.1145/2635868.2661669

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transform-
ers learn shortcuts to automata. 2023. doi: 10.48550/arXiv.2210.10749. URL https:
//openreview.net/forum?id=De4FYqjFueZ.

Irene Morazzoni, Vincenzo Scotti, and Roberto Tedesco. Def2vec: Extensible word embeddings
from dictionary definitions. In International Conference on Natural Language and Speech Pro-
cessing, 2023. URL https://api.semanticscholar.org/CorpusID:267312657.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp. 46–57,
1977.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Conference
of the European Chapter of the Association for Computational Linguistics, 2016. URL https:
//api.semanticscholar.org/CorpusID:836219.

Markus Norman Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical rea-
soning via self-supervised skip-tree training. arXiv: Learning, 2020. URL https://api.
semanticscholar.org/CorpusID:221103967.

Rajeev Ranjan, Carlos D. Castillo, and Rama Chellappa. L2-constrained softmax loss for discrimi-
native face verification, 2017. URL https://arxiv.org/abs/1703.09507.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Ni-
hal V. Nayak, Debajyoti Datta, Jonathan D. Chang, Mike Tian-Jian Jiang, Han Wang, Matteo
Manica, Sheng Shen, Zheng-Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021. URL
https://api.semanticscholar.org/CorpusID:239009562.

Vighnesh Leonardo Shiv and Chris Quirk. Novel positional encodings to en-
able tree-based transformers. In NeurIPS 2019, December 2019. URL
https://www.microsoft.com/en-us/research/publication/
novel-positional-encodings-to-enable-tree-based-transformers/.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu, Yitao Liang, and Muhan
Zhang. Large language models are in-context semantic reasoners rather than symbolic rea-
soners. ArXiv, abs/2305.14825, 2023. URL https://api.semanticscholar.org/
CorpusID:258865899.

Martin Vastl, Jonáš Kulhánek, Jiří Kubalík, Erik Derner, and Robert Babuška. Symformer: End-to-
end symbolic regression using transformer-based architecture, 2022. URL https://arxiv.
org/abs/2205.15764.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere em-
bedding for face verification. In Proceedings of the 25th ACM international conference on
Multimedia, MM ’17. ACM, October 2017. doi: 10.1145/3123266.3123359. URL http:
//dx.doi.org/10.1145/3123266.3123359.

Shengjing Wei, Xiang Chen, Xidong Yang, Shuai Cao, and Xu Zhang. A component-based
vocabulary-extensible sign language gesture recognition framework. Sensors (Basel, Switzer-
land), 16, 2016. URL https://api.semanticscholar.org/CorpusID:11698658.

12

https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://api.semanticscholar.org/CorpusID:267312657
https://api.semanticscholar.org/CorpusID:836219
https://api.semanticscholar.org/CorpusID:836219
https://api.semanticscholar.org/CorpusID:221103967
https://api.semanticscholar.org/CorpusID:221103967
https://arxiv.org/abs/1703.09507
https://api.semanticscholar.org/CorpusID:239009562
https://www.microsoft.com/en-us/research/publication/novel-positional-encodings-to-enable-tree-based-transformers/
https://www.microsoft.com/en-us/research/publication/novel-positional-encodings-to-enable-tree-based-transformers/
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://api.semanticscholar.org/CorpusID:258865899
https://api.semanticscholar.org/CorpusID:258865899
https://arxiv.org/abs/2205.15764
https://arxiv.org/abs/2205.15764
http://dx.doi.org/10.1145/3123266.3123359
http://dx.doi.org/10.1145/3123266.3123359
https://api.semanticscholar.org/CorpusID:11698658

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:
Grounded mathematical proof generation with language models. ArXiv, abs/2205.12910, 2022.
URL https://api.semanticscholar.org/CorpusID:249063060.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. In North American Chapter of the Associa-
tion for Computational Linguistics, 2023. URL https://api.semanticscholar.org/
CorpusID:259341893.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J. Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. ArXiv, abs/2306.15626, 2023. URL https://api.semanticscholar.
org/CorpusID:259262077.

Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and Hongsheng Li. Adacos: Adaptively scaling
cosine logits for effectively learning deep face representations. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10815–10824, 2019. URL https://
api.semanticscholar.org/CorpusID:141460759.

A APPENDIX

A.1 PRELIMINARY: LANGUAGE MODELS

The autoregressive language modeling or sequence modeling in a broader sense—whose goal is
to predict the next token given the past tokens—was revolutionized by the transformer architec-
ture (Vaswani et al., 2017), replacing the step-by-step processing of recurrent neural networks
(RNNs) with a parallelizable attention mechanism. At its core lies the attention mechanism, which
computes three vectors—query, key, and value—from input embeddings. This mechanism allows
the model to weigh the importance of different tokens, enabling it to capture long-range depen-
dencies efficiently. In self-attention, these vectors come from the same sequence, while in cross-
attention, key and value vectors come from a different sequence, as in encoder-decoder setups. The
transformer consists of an encoder with self-attention and feed-forward layers, and a decoder that
adds cross-attention to incorporate the encoder’s output. Since attention lacks an inherent sense
of token order, positional encodings are added to input embeddings to provide sequence structure.
During training, attention masking ensures causality in predictions, preventing future tokens from
being considered when predicting the next one.

A.2 TEMPORAL LOGIC OVERVIEW

Linear Temporal Logic (LTL) extends propositional logic by introducing the ability to reason about
the evolution of propositions over time (Pnueli, 1977). The syntax of LTL, defined over a finite
set of atomic propositions P , is as follows: The syntax of LTL, defined over a finite set of atomic
propositions P , is given in Equation 3, where T represents True, p ∈ P an atomic proposition, ¬
the negation operator, ∧ the conjunction operator, X and U the temporal operators next and until
respectively.

ϕ := T | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2 (3)

Specifically:

• Xϕ holds at time t if and only if ϕ holds at the next time step, i.e., at time t+ 1.

• ϕ1Uϕ2 means that ϕ2 must hold at some future time t2, and ϕ1 holds at every time step t
from the current time t1 up to but not necessarily including t2.

For instance, the formula XXa specifies that a must hold at the third time step. Similarly, the
formula TUa requires that a holds at some point in the future. Finally, as a more complex example,

13

https://api.semanticscholar.org/CorpusID:249063060
https://api.semanticscholar.org/CorpusID:259341893
https://api.semanticscholar.org/CorpusID:259341893
https://api.semanticscholar.org/CorpusID:259262077
https://api.semanticscholar.org/CorpusID:259262077
https://api.semanticscholar.org/CorpusID:141460759
https://api.semanticscholar.org/CorpusID:141460759

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the formula Xb ∧ aUc asserts that b holds at the second time step, c holds at some future time, and
a holds at all preceding time steps.

An LTL formula is evaluated over a trace, which represents a sequence of truth values for atomic
propositions over time. In this work, as in DeepLTL (Hahn et al., 2021), we consider symbolic traces
of infinite length. These traces are expressed in what is known as a lasso form, denoted uvω , where
u is a finite prefix, and v is a finite sequence that repeats indefinitely.

A symbolic trace represents all traces that satisfy the propositional formulae at the respective time
steps. For example, the symbolic trace a, a ∧ ¬b, (c)ω describes all traces in which a holds at the
first two time steps, b does not hold at the second time step, and c holds at every step from the third
onward. This symbolic trace satisfies the formulae TUc and X¬b∧aUc, but it violates the formula
XXb since b is not guaranteed to hold at the third time step. Symbolic traces, such as this one,
can be underspecified, meaning that certain propositions (e.g., a and b) may take arbitrary values at
some time steps.

The LTL solving problem involves identifying a symbolic trace in lasso form uvω that satisfies a
given input formula ϕ. We approach this as an autoregressive language modeling task: given an
LTL formula and a partially generated symbolic trace, the model predicts the probabilities for the
next token in the trace.

For compatibility with the dataset from DeepLTL (Hahn et al., 2021), both our traces and formulae
are represented in Polish (prefix) notation, where operators precede their operands. For instance,
a ∧ b is written as \&ab, which avoids the need for parentheses to resolve ambiguities.

As described earlier, we assume that traces are infinite and represented in lasso form uvω . Along-
side atomic propositions, constants (True:1 and False:0), and logical operators, we use special
symbols in the notation: “;” is a position delimiter, and “{” and “}” enclose the repeating period v.
For example, the string “a;&ab;{b}” represents the symbolic trace a, a ∧ b, (b)ω .

A.3 HYPERPARAMETERS

The constant hyperparameter choices for all experiments are given in Table 4. These hyperparam-
eters are kept constant within an experiment. The hyperparameters for the LTL task is taken from
DeepLTL (Hahn et al., 2021).

Table 4: Hyperparameter choices.

Experiment Embedding Layers Heads FC size Batch Size Train Steps
Copy (Sections 5.1.1 and 5.1.2) 64 2 4 64 512 20K

Copy (Section 5.1.4) 128 6 8 128 512 20K
LTL (Section 5.2) 128 8 8 1024 768 52K

A.3.1 HYPERPARAMETER SEARCH

On the smaller copying task, we train multiple models that use different random embedding methods
(Section 4.2) with different dβ values. While altering dβ , we keep the total number of embedding
dimensions dα + dβ constant. We train each model at least 3 times with different seeds and report
the results for the best one in Tables 5 (proposed method) and 6 (baselines).

Table 5: Mean edit distance for various models using proposed method. The numbers in the header
row represents dβ for each random embedding method. In the first column, enabled normalization
features are listed. AC refers to AdaCos, which can only be enabled when ffn is used.

Enabled Normal Distribution Neighboring Points Hypercube Vertices
Features 2 4 8 16 32 4 6 8 16 32 5 6 8 16 32

fbn + ffn + AC 13.6 5.4 4.6 8.1 8.1 1.9 13.0 2.2 1.0 2.1 2.8 0.4 7.5 8.4 3.9
ffn + AC 7.6 13.1 4.6 2.2 5.2 8.7 11.5 2.8 2.9 2.2 0.5 3.7 3.2 4.2 4.1
fbn + ffn 13.7 10.6 8.3 3.8 11.8 11.9 5.7 3.7 7.4 8.3 2.2 13.1 21.5 19.4 20.9

ffn 15.4 10.6 8.2 3.7 10.1 8.1 12.3 6.4 13.4 9.9 2.5 1.7 12.5 2.1 12.8
fbn 10.6 16.6 11.8 6.9 8.2 5.8 3.0 0.6 7.8 14.3 12.8 13.8 19.4 22.9 11.6

- 16.5 11.6 12.6 12.5 9.0 12.5 3.7 9.5 5.9 13.5 12.7 9.6 8.6 15.9 16.6

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Mean edit distance for various baseline models. In the first column, enabled normalization
features are listed. AC refers to AdaCos, which can only be enabled when ffn is used. Note that
fbn is not applicable for baseline models. The results for the first type of baseline are omitted since
it cannot generalize to larger vocabularies. The second baseline was trained on a dataset with a
vocabulary size of 30. The third baseline uses the same limited vocabulary dataset like the proposed
method, but uses alpha-renaming as data augmentation.

Enabled Baseline Baseline
Features 2nd Type 3rd Type
ffn + AC 6.1 1.9

ffn 4.9 11.3
- 5.5 12.9

The results in Tables 5 and 6 exhibit high variance with no clear patterns that indicate which methods
are better. Therefore, we perform an analysis based on correlation coefficients between these hyper-
parameters and the edit distance using the results from all 277 models we’ve trained (not including
the baseline models). For this analysis, we assume that the value of Boolean properties (such as fbn,
ffn and AdaCos) are 0 or 1. The correlation coefficients are as follows:

N.D. N.P. H.V. dβ fbn ffn AdaCos
0.02 -0.14 0.11 0.01 0.10 -0.29 -0.41

First three columns are the random embedding methods as listed in Table 1, the fourth column is
dβ , and the last three columns represent whether the given feature is enabled. Accordingly, the best
random embedding method is “Neighboring Points” since it’s the only one that correlates negatively
with edit distance. The correlation observed for dβ is negligible. Introducing fbn increases the edit
distance, but the statistical significance is not ideal (p-value 0.04). Both ffn and AdaCos loss have
a positive and statistically significant impact on edit distance, with p-values smaller than 10−6.

A.4 LTL EXPERIMENT WITH LIMITED DATASET

This is a continuation of the experiment from Section 5.2.1. Table 7 contains evaluations of the
baseline, the alpha-renaming model, and the proposed model trained with a severely limited number
of samples: 80,000 instead of 799,909. We kept the number of epochs constant, and as a result, the
number of training steps were also divided by ten (approximately).

The result of limiting the number of training samples is similar to the dataset perturbation, albeit
much less pronounced for the baseline model. Instead of seeing the performance of the baseline
model plummet as in the perturbation experiment, we observe that all models trained on the limited
dataset perform similarly in terms of correctness ratio. The biggest difference is observed in the
alpha-covariance values, particularly in the 5 AP category, whose ranking aligns with the perturba-
tion experiment.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Evaluation of the baselines and our method trained on different versions of LTLRandom35.
The same results from Table 2 are shown for easier comparison. The alpha-renaming baseline
was trained using 5 AP embeddings since vocabulary generalization is not valuated here. First two
columns denote the training dataset and the model. Next two columns indicate the ratio of the correct
predictions and exact matches on 99,989 test set samples as evaluated by spot. Last three columns
display mean alpha-covariance values for varying atomic proposition (AP) counts, evaluated on all
alpha-equivalent variants of 1000 test samples.

Training Evaluation Alpha-Covariance
Dataset Model Correct Exact 3 AP 4 AP 5 AP
Normal Baseline 98.23% 83.23% 96.87% 95.86% 91.80%
Perturbed Baseline 34.13% 12.12% 64.93% 57.99% 40.91%
Perturbed Alpha-Renaming 97.96% 77.66% 99.55% 99.49% 98.86%
Perturbed Proposed 95.94% 76.45% 97.66% 97.76% 98.29%
Limited Baseline 87.47% 63.61% 94.37% 91.70% 85.64%
Limited Alpha-Renaming 89.50% 64.15% 99.02% 98.67% 97.82%
Limited Proposed 87.32% 59.04% 97.94% 96.12% 94.34%

16

	Introduction
	Related Work
	Problem Definition
	Proposed Method
	Embedding matrix
	Random embedding generation
	Projection

	Experiments
	Copying with Extendable Vocabulary
	Generalization to larger vocabularies
	Generalization to larger vocabularies and lengths
	Sensitivity to randomness in embeddings
	Scaling up

	LTL Solving
	Dataset Perturbations
	Alpha-Covariance
	Generalization

	Conclusion
	Appendix
	Preliminary: Language models
	Temporal logic overview
	Hyperparameters
	Hyperparameter Search

	LTL Experiment with Limited Dataset

