
Radio: Rate–Distortion Optimization for Large Language Model Compression

Sean I. Young 1 2

1

 1 Martinos Center, Harvard Medical School, Boston, MA, USA.
 2 Computer Science and Artificial Intelligence Lab (CSAIL),
MIT, Cambridge, MA, USA. Correspondence to: Sean I. Young
<siyoung@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Abstract

In recent years, the compression of large language
models (LLMs) has emerged as a key problem in
facilitating LLM deployment on resource-limited
devices, reducing compute costs, and mitigating
the environmental footprint due to large-scale AI
infrastructure. Here, we establish the foundations
of LLM quantization from a rate–distortion theory
perspective and propose a quantization technique
based on simple rate–distortion optimization. Our
technique scales to models containing hundreds of
billions of weight parameters and offers users the
flexibility to compress models, post-training, to a
model size or accuracy specified by the user.

1. Introduction

Large Language Models (LLMs) have become a universal
framework for solving a wide range of problems in natural
language processing, ranging from text summarization and
translation to conversational AI. While LLMs have already
surpassed traditional methods in many of these tasks, they
involve tens to hundreds of billions of weight parameters
(!), rendering their deployment onto devices with limited
resources challenging—model weights and activations far
exceed the available on-chip memory so that weights need
to be loaded from the off-chip (global) memory throughout
inference, rendering LLM inference memory-bound (Yuan
et al., 2024). This greatly hinders the applicability of LLMs
particularly in time-sensitive applications and exacerbates
the environmental footprint of large-scale AI infrastructure
required by LLMs.

One way to reduce the memory requirements of LLMs for
inference is by simplifying the model representation post-
training. Quantization of the model weights and activation
has proven to be particularly apt at compressing models to
low bit depths or even arbitrary model sizes (Dettmers et
al., 2022; Yao et al., 2022; Frantar et al., 2022; Frantar &
Alistarh, 2022; Kim et al., 2024; Shao et al., 2024; Lee et
al., 2024; Guan et al., 2024). Using state-of-the-art model
quantization techniques, it is possible to compress 10–100

billion-parameter LLMs to 3–4 bits per weight on average
and incur only a negligible loss in model accuracy (Chee et
al., 2024; Frantar et al., 2022; Lin et al., 2024). This enables
LLM inference on a single consumer-grade GPU.

Despite the practical advances made in model quantization
methods in recent years, rate–distortion theoretic aspects of
LLM quantization are seldom studied in earlier works. By
far, the most extensively studied and extended framework
for LLM quantization is Optimal Brain Compression and
GPTQ of Frantar et al. (2023), itself an adaptation of the
classic Optimal Brain Surgery (OBS) algorithm (Hassibi &
Storck, 1992). Since OBS operates outside the framework
of rate and distortion—which serves as the basis of many
related compression problems—a rate–distortion theoretic
characterization and exposition of LLM compression can
significantly enhance our understanding of the problem at
hand and guide the design of LLM compression methods.

In this paper, we tackle the problem of LLM compression
using a rate–distortion framework. We begin by analyzing
how a model’s weights should be quantized to maximize
quantized model accuracy at a given average bit depth (bit
rate). After this, we propose a stochastic gradient descent-
type method to solve this optimization problem exactly and
efficiently, post-training—in minutes for billion-parameter
models and in a few hours for 10–100-billion-parameter
models. Compared with OPTQ and its extensions (Frantar
et al., 2022; Frantar & Alistarh, 2022; Huang et al., 2024;
Lee et al., 2024; van Baalen et al., 2024), in which weights
must be fine-tuned during quantization, our rate–distortion
framework more simply determines optimal bit depths and
uses integer rounding heuristic for the actual quantization
the optimum bit depths have been determined. This renders
our framework also suited for quantizing the intermediate
activations, which can further reduce the memory footprint
of batched inference.

More specifically, our contributions are as follows.

• We formulate a rate–distortion theoretic framework for
rate–distortion optimal quantization of LLMs.

• We design a stochastic ascent algorithm for solving the
resulting rate–distortion optimization problem.

• We quantize LLMs across model types and sizes and
show the rate–distortion behavior of quantized LLMs.

2. Previous Work

Earlier work on neural network model quantization can be
traced back to Vanhoucke et al. (2011), who demonstrated

2

Radio: Rate–Distortion Optimization for Large Language Model Compression

that 8-bit integer arithmetic is sufficient for neural network
training and inference without incurring a significant loss
of model accuracy. In general, quantization-aware training
(QAT) (Zhou et al., 2017; Jacob et al., 2018; D. Zhang et
al., 2018; Esser et al., 2019; Y. Choi et al., 2017; Wang et
al., 2019) integrates the quantization process into training
by allowing the model to adapt to the reduced bit precision
in weights (Esser et al., 2019; Jacob et al., 2018; D. Zhang
et al., 2018; Zhou et al., 2017) and activations (Y. Choi et
al., 2017; Wang et al., 2019), determining the optimal bit
depth (Wang et al., 2019; D. Zhang et al., 2018) and step
size (Esser et al., 2019) using backpropagation to facilitate
the flow of gradient through to quantization operators. One
shortcoming of QAT methods is that model training needs
to be repeated for different quantized model bit depths and
accuracy, which can render them less suited for quantizing
larger neural network models such as LLMs.

More recent quantization methods for language and vision
models aim to facilitate compression of pre-trained models
for rapid deployment without additional training (Dong et
al., 2019; Chen et al., 2021; Dettmers et al., 2022; Yao et
al., 2022; Frantar et al., 2022; Dettmers et al., 2023; Xiao
et al., 2023; Lin et al., 2024; Kim et al., 2024; Shao et al.,
2024; Lee et al., 2024). These methods quantize weights to
3–4 or 8 bits for integer-arithmetic-only inference (Jacob et
al., 2018) by using mixed bit depth quantization (Wang et
al., 2019; Chen et al., 2021) or by a separate handling of
outlier channels (Zhao et al., 2019) to improve the accuracy
of the quantized model. Loss-aware quantization methods
(Hou & Kwok, 2018; Nahshan et al., 2020; Qu et al., 2020)
seek to minimize the accuracy loss in quantized models by
calibrating quantization and biases on a set of calibration
examples. Data-free quantization (Nagel et al., 2019; Xu et
al., 2020; K. Choi et al., 2021; Qian et al., 2023) attempts
to remove the need for real calibration data by matching the
distribution of weights instead (Nagel et al., 2019) or using
synthetic data in place of real calibration data (K. Choi et
al., 2021).

For the compression of LLMs in particular, an extension to
the Optimum Brain Surgeon (OBS) algorithm (Hassibi &
Stork, 1992) referred to as GPTQ (Frantar et al., 2022) has
been proposed for compressing 10–100 billion parameter
models. More recent extensions (Dettmers et al., 2023; Lee
et al., 2024) to GPTQ incorporate the handling of the more
sensitive model weights by re-scaling them or by retaining
the original weight values similar to (Lin et al., 2024; Xiao
et al., 2023), low-rank decomposition of quantization error
matrices (Shao et al., 2024) as well as orthogonal transform
of weight matrices prior to their quantization (Ashkboos et
al., 2024). While mixed-precision weight quantization is a
promising paradigm for handling weights with different
sensitivity, current mixed-precision approaches (Wang et
al., 2019; Chen et al., 2021; Lee et al., 2024; Dettmers et
al., 2023) assign different bit depths from a limited set of
bit-depth options (e.g., 4 or 16 bits) or only across different
layers. This is due to the combinatorial nature of mixed bit

depth assignment and limits the attainable quantized model
accuracy especially for LLMs with hundreds of billions of
parameters. Appealing to a rate–distortion framework can
not only overcome the combinatorial nature of determining
the optimal bit depths (0, 1, . . . , 8 bits) at a finer level of
granularity (e.g., per channel or per weight group) but also
enhance our understanding the LLM compression problem
through the lens of rate–distortion theory, which has been
fundamental to understanding and solving the quantization
problem in image, audio and video domains. Extensions to
transform coding and activation quantization are discussed
in the sequel.

3. Quantization Framework

Here, we use the task of next-token prediction in language
modeling as a running example. For our purposes, the end-
to-end mapping of input token embeddings to its predicted
next-token embeddings by a pretrained language model can
be expressed in the most general form as

 𝐙 = 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1, . . . , 𝚯𝑁 , 𝐛1, . . . , 𝐛𝑁), (1)

in which 𝐗 ∈ ℝ𝐿×𝐸 denotes a sequence of 𝐿 tokens, each
one residing in some 𝐸-dimensional embedding space, and
𝐙 ∈ ℝ𝐿×𝐸 are embeddings of 𝐿 predicted next tokens. The
𝑚th block of weight matrices (𝚯𝑚𝑀+1, . . . , 𝚯(𝑚+1)𝑀) and
the bias vectors (𝐛𝑚𝑀+1, . . . , 𝐛(𝑚+1)𝑀) parametrize the 𝑚th
transformer block, which refines the embeddings produced
by the (𝑚 − 1)th transformer block. LLM frameworks used
in language modeling typically also require an embedding
matrix 𝚯0 ∈ ℝ𝐸×𝑉 and prediction head 𝚯𝑁+1 ∈ ℝ𝑉 ×𝐸 to
convert between embeddings and tokens from a vocabulary
of some size 𝑉 . In this work, we focus on the compression
of transformer block weights as customarily done in most
model weight quantization work (Frantar et al., 2022; Lee
et al., 2024; Lin et al., 2024).

To get a sense of the number of weight matrices and their
sizes in a typical language model, the 13 billion-parameter

Figure 1: Optimum bit depths. Consider two weight matrices
such that their distortion functions are given by 𝑑1 and 𝑑2, where
𝑑𝑛(𝐵𝑛) = 𝐺𝑛

2𝑆𝑛
22−2𝐵𝑛. For any value of the dual 𝑉 , optimal bit

depths 𝐵1
∗ and 𝐵2

∗ are found where the derivative of 𝑑1 (resp. 𝑑2)
is −𝑉 (left). These points correspond to the intersections between
𝑉 and −𝑑𝑛

′ = (2 ln 2) 𝑑𝑛 (right). Integerized bit depths are on −𝑑�̂�
′.

101

100

10–1

 0 1 2 3 4
Bit depth (𝐵)

D
er

iv
at

iv
e

of
 d

is
to

rt
io

n

4

3

2

1

0
 0 1 2 3 4

N
or

m
al

iz
ed

 d
is

to
rt

io
n

Bit depth (𝐵)

𝑑2

𝑑1

Feasible
region

𝑉 = 1 𝐵1
∗

𝐵2

∗

𝑉 = 1

𝑉 = 4

𝐵2
∗

−𝑑2
′ −𝑑2̂

′

3

Radio: Rate–Distortion Optimization for Large Language Model Compression

model in the Meta OPT family contains 𝑁 = 240 weight
matrices in blocks of 𝑀 = 6, with each block comprising
12𝐸2 weights in an embedding dimension 𝐸 = 5120. The
embedder and prediction head are jointly parameterized by
one matrix containing 𝑉𝐸 weights, where the vocabulary
size 𝑉 = 50272. Each transformer block also contains 9𝐸
bias parameters but due to their relative scarcity, these bias
parameters can be communicated losslessly and still have
little to no impact on the overall compression performance
(Frantar et al., 2022).

Notionally, the elements of 𝚯𝑛 are continuously valued so
they require quantization for efficient communication and
storage. Compared with vector quantization techniques of
(Egiazarian et al., 2024; Gong et al., 2015; van Baalen et
al., 2024), scalar quantization (Frantar et al., 2022; Lin et
al., 2024) simplifies decoding and even enables operations
directly on quantization indices, which obviates the need
for a separate dequantization process. If mid-rise uniform
scalar quantization is used, dequantization of a weight 𝜃 at
a bit-depth of 𝐵 bits and a step size 𝐷 can be expressed as

 𝜃𝑞(𝐵, 𝐷) = 𝐷(clip(⌊𝜃 𝐷⁄ ⌋, −2𝐵−1, 2𝐵−1 − 1) + 2−1) (2)

for 𝐵 = 0, 1, 2, . . . , and 𝜃𝑞 = 𝜃 when 𝐵 = ∞ for notational
convenience. The problem of compressing a model 𝑓 then
boils down to determining the optimal bit depth 𝐵 and the
quantization step 𝐷 for each group of model weights. It is
impractical, of course, to determine a separate (𝐵, 𝐷) for
each weight 𝜃 in the model since the cost of signaling the
choice of (𝐵, 𝐷) for each one would greatly exceed the bit
savings derived from quantization. Typically, a (𝐵, 𝐷) pair
is used to quantize a small group of weights (e.g., an entire
matrix or rows or columns thereof) in which case the cost
of signaling (𝐵, 𝐷) is borne by a group of quantized weight
parameters as a negligible per-weight overhead.

3.1. Bit Depth Assignment

Suppose we want to compress 𝑓 by quantizing each matrix
𝚯𝑛 containing 𝑃𝑛 elements according to its own bit depth
𝐵𝑛 and step size 𝐷𝑛

∗(𝐵𝑛). Generally speaking, weights that
are more sensitive to output distortion should be allocated
more bits to “balance the scales” while the total number of
bits is kept under some model bit budget. We can formalize
this notion by expressing the quantization problem at hand
as a constrained least-squares problem:

min 𝑑({𝐵𝑛}) = 𝔼𝐗‖𝑓 (𝐗, {𝚯𝑛

𝑞(𝐵𝑛)}𝑛=1
𝑁) − 𝑓 (𝐗)‖

2

 s. t.  𝑟({𝐵𝑛}) = ∑ 𝑃𝑛𝐵𝑛 − (∑ 𝑃𝑛
𝑁
𝑛=1)𝑅 = 0𝑁

𝑛=1 ,
(3)

in which 𝑅 is a user-specified average model bit depth (or
bit rate) and 𝚯𝑛

𝑞(𝐵𝑛) = 𝚯𝑛
𝑞(𝐵𝑛, 𝐷𝑛

∗(𝐵𝑛)) for brevity. This is
a problem similar to optimal resource allocation, where the
objective is to maximize some utility (minimizing output
distortion in this context) by optimally spending down a
given budget (the total number of bits). In this section and
next, we provide insights into problem (3) and discuss its
optimization and solution; see Algorithm 1.

To apply the machinery of numerical optimization, we can
relax the discrete constraint on the bit depths 𝐵1, . . . , 𝐵𝑁
of (3) while solving the problem and round off the solution
𝐵1

∗, . . . , 𝐵𝑁
∗ to their nearest integers after we have obtained

them. Expressing the Lagrangian of (3) as ℒ ({𝐵𝑛}, 𝑉) =
𝑑({𝐵𝑛}) + 𝑉𝑟({𝐵𝑛}), where 𝑉 ∈ ℝ is the dual variable for
the equality constraint of (3), we set equal to 0 the partials
of ℒ with respect to 𝐵1, . . . , 𝐵𝑁 	, 𝑉 . This yields the first
order, rate–distortion optimality conditions

1

𝑃𝑛

𝜕𝑑({𝐵𝑛})
𝜕𝐵𝑛

= −𝑉 for all 𝐵𝑛, 𝑟({𝐵𝑛}) = 0, (4)

so, problem (3) can be solved by alternately updating the
bit depths 𝐵1, . . . , 𝐵𝑁 (primal variables) and the trade-off
𝑉 (dual variable) until all optimality conditions are met. In
other words, the optimality conditions are reached once the
marginal decrease in the output distortion by assigning an
infinitesimal bit is equal across layers at −𝑉 and once we
have assigned exactly 𝑅 bits per weight on average.

Since the quantization function (2) is constant a. e., a naive
computation of the partial derivatives of 𝑑 with respect to
𝐵1, . . . , 𝐵𝑁 using the chain rule of differentiation does not
provide a useful direction for descent. A classic result from
rate–distortion theory (Gersho & Gray, 1991) is that for
any random variable with finite variance, its quantization
error decreases by half with every additional bit at a
sufficiently high bit depth. Specifically, to our problem, one
can verify that (Appendix B)

 −
1

2 ln 2
𝜕𝑑({𝐵𝑛})

𝜕𝐵𝑛
≈ 𝔼𝐗 ‖

𝜕𝑓 ({𝚯𝑛
𝑞(𝐵𝑛)}𝑛=1

𝑁)
𝜕𝚯𝑛

Δ𝑛
 𝑞 (𝐵𝑛)

‖

2

≈ 𝑃𝑛𝐻𝑛𝐺𝑛
2𝑆𝑛

22−2𝐵𝑛 ≝ 𝑑𝑛(𝐵𝑛)
(5)

in which 𝐺𝑛
2 and 𝑆𝑛

2 represent the variances of the elements

Algorithm 1. Radio: Rate–Distortion Optimization for LLM
Compression
1 Input: f ( ⋅ ,Θ1, . . . ,ΘN) (model), {X} (calibration set),
2 R (target bit rate), Bmax ← 8 (max bit depth)
3 Output: B1, . . . ,BN (bit depths), S1, . . . ,SN (weight scales),
4 µ1, . . . ,µN (weight means)
5 Initialize: U ← pca_basis ({X}) ∈ ℝE×E', V ← 10"6
6 Bn ← ∞, Gn

2 ← 0, µn ← mean(Θn), Sn ← std(Θn),
7 Θn

q ← Θn, bn
q ← bn, X&n ← 0 forall n

8 for iter in 1, . . . ,max_iter do
9 for X in minibatch do
10 Z,X1, . . . ,XN ← f (X,Θ1

q, . . . ,ΘN
q ,B1

q, . . . ,BN
q)

11 X&n ← (1	 − α)X&n + (α/L)1TXn forall n
12 Γ1, . . . ,ΓN ← autograd(STZU, Θ1

q, . . . , ΘN
q)

13 Gn
2  ← (1 − α)Gn

2 + (α/Pn)  trace (Γn
TΓn) forall n

14 for _ in 1, . . . ,10 do
15 Bn ← clamp(1

2 log2 (2 ln 2Gn
2Sn

2/V),0, Bmax) forall n
16 V    ← V+ β (sum(PnBn)− (sum(Pn))R)
17 Θn

q ← compand_quantize (Θn,Bn,Sn,	µn),
18   bn

q ← bn + (Θn
q −Θn)X&n forall n

4

Radio: Rate–Distortion Optimization for Large Language Model Compression

of 𝜕𝚯𝑛𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞), and of 𝚯𝑛
𝑞, respectively, and 𝐻𝑛

is a quantization coefficient that depends only on the type
of weight distribution, with 𝐻𝑛 = 1.42 for Gaussian, 0.72
for Laplace, etc. (Gersho & Gray, 1991). Assuming weights
are distributed across layers with 𝐻1 = ⋅ ⋅ ⋅ = 𝐻𝑁 , factors
𝐻𝑛 and the constant − 1

2 ln 2 can be removed from the above
expression without affecting the solution of (3).

Coupled with the above closed-form expression (5) for the
partial derivatives, optimality conditions (4) naturally lend
themselves to dual ascent methods for solving (3). The idea
underlying dual ascent (Boyd et al., 2011) is to alternately
update the primal 𝐵1, . . . , 𝐵𝑁 , and dual 𝑉 variables, with
one set held fixed while updating the other variables. After
initializing 𝐵1 = ⋅ ⋅ ⋅ 𝐵𝑁 = ∞ , 𝑉 to some small positive
number, and computing 𝐺1

2, . . . , 𝐺𝑁
2 , both sets of variables

{𝐵𝑛}, 𝑉 can be updated iteratively via

𝐵𝑛 ← clamp (

1
2

log2 (
𝐺𝑛

2𝑆𝑛
2

𝑉 /2 ln 2) , 0, 𝐵max = 8)

𝑉    ← 𝑉 + 𝛽(∑ 𝑃𝑛𝐵𝑛
𝑁
𝑛=1 − (∑ 𝑃𝑛

𝑁
𝑛=1)𝑅)

(6)

in which 𝛽 represents a step size for dual update. Figure 1
illustrates the optimality conditions for bit depths. With 𝐺𝑛

2
and 𝑆𝑛

2 fixed, dual ascent steps (6) converge within a few
iterations (tol = 10−6 bit, step size 𝛽 = 2) after which the
obtained 𝐵𝑛 are rounded to integers. The non-linear nature
of the least squares objective 𝑑 (3) means that iteration (6)
needs to be repeated once bit depths 𝐵𝑛 are updated. Using
the updated 𝐵𝑛, the quantized weights 𝚯𝑛

𝑞(𝐵𝑛) are obtained
along with the new gradient variances 𝐺𝑛

2, based on which
the variables {𝐵𝑛} can be further updated via (6).
Evaluating 𝜕𝚯𝑛𝑓 (𝐗, {𝚯𝑛

𝑞(𝐵𝑛)}𝑛=1
𝑁) across the entire set of

calibration examples at every iteration can be prohibitively
expensive due to the dimensions of 𝑓 (𝐗) ∈ ℝ𝐿×𝐸 and the
cost of back-propagating its elements of through 𝑓 . We can
overcome this difficulty by performing PCA on 𝑓 (𝐗) along
the embedding dimension (of 𝐸) and sub-sampling across

the token dimension (of 𝑇), and accumulating variances of
gradients by back-propagating only a batch of examples at
every iteration:

 𝐺𝑛
2 ← 𝐺𝑛

2 +   𝔼𝐗∼batch ‖
𝜕𝐒𝑓 (𝐗, {𝚯𝑛

𝑞(𝐵𝑛)}𝑛=1
𝑁)𝐔

𝜕𝚯𝑛 ‖

2

, (7)

in which 𝐒𝑇 and 𝐔 denote the PCA projection, and the sub-
sampling operators, respectively. In practice, we accelerate
the variance accumulation further by cycling through PCA
coefficients and back-propagating only one coefficient per
sample in every minibatch.

3.2. Quantization Step Sizes

Suppose now that weight matrices 𝚯1, . . . , 𝚯𝑁 need to be
assigned bit depths 𝐵1, . . . , 𝐵𝑁 (which are not necessarily
optimal yet.) We now investigate how the quantization step
size 𝐷𝑛 should be decided given bit depth 𝐵𝑛. In the classic
round-to-nearest scheme (RTN, Figure 2, left), 𝐷𝑛 is often
chosen so that the quantizer’s 2𝐵𝑛 steps just cover the full
range of original weight values, and 𝐷𝑛 is halved as 𝐵𝑛 is
increased by one. These criteria optimize step sizes when
the weights are uniformly distributed and if the objective is
to minimize distortion in quantized weights.

For LLMs, the elements 𝜃 of a weight matrix can typically
exhibit a light-tailed distribution 𝑝𝜃 (Gauss, Laplace, etc.)
(Zhao et al., 2019), and partitioning the weight range into
2𝐵𝑛 equal steps is sub-optimal especially at low bit depths
(Cover & Thomas, 2006; Gersho & Gray, 1991). A simple
alternative to non-uniform quantization using the Lloyd–
Max algorithm (Lloyd, 1982; Max, 1960)—which can be
computationally expensive—is “companded” quantization
(Gray & Neuhoff, 1998), in which a sigmoid transform is
applied to 𝜃 prior to uniform quantization to achieve finer
quantization in regions of high 𝑝𝜃 and coarser quantization
in regions of low 𝑝𝜃; see Figure 2 (right). When the weights
𝜃 are Laplace-distributed with mean 𝜇 and variance 𝑆2, an
asymptotically optimal choice of sigmoid function can be
shown to be (Appendix C):

 𝜎(𝜃, 𝑆, 𝜇) =
1 + sgn(𝜃 − 𝜇)

2
exp (−

√2 abs(𝜃 − 𝜇)
3𝑆) (8)

that is, the normalized cubic root of a Laplace cumulative
distribution function with the mean 𝜇 and variance 𝑆2. The
companded weights 𝜃𝜎 = 𝜎(𝜃, 𝑆, 𝜇) can then be quantized
uniformly in the range (0, 1) and communicated along with
bit depth 𝐵, scale 𝑆, and mean 𝜇 for dequantization using
lookup tables. In practice, (𝑆, 𝜇) can be treated as hyper-
parameters and fine-tuned efficiently on coarse 1D grids in
post-processing (Young et al., 2021) after Algorithm 1 has
completed its course.

Quantization invariably causes deterministic differences to
arise between the original (non-quantized) weights 𝚯 and
quantized weights 𝚯𝑞. While these errors are customarily
modeled as zero-mean noise in theoretical analyses, they
are seldom zero-mean empirically, leading to a systematic

Figure 2: Companding quantization. Illustrated here for a 4-bit
quantizer (16 quantization levels) on Gaussian weights with zero
mean and unit variance. Uniform quantization of the entire range
of weight values (left) leads to unduly large quantization bins
(hence quantization errors) for probable weights. Companding (a
sigmoid transformation) of weights to the range (0,1) prior to
quantizing reduces quantization errors for more probable weights
(right), which reduces output distortion.

4

2

0

–2

–4
 –4 –2 0 2 4

Q
ua

nt
iz

ed
 v

al
ue

4

2

0

–2

–4
 –4 –2 0 2 4

Original weight value Original weight value
Q

ua
nt

iz
ed

 v
al

ue

5

Radio: Rate–Distortion Optimization for Large Language Model Compression

bias in the model output and reduces prediction accuracy
significantly. To compensate for the non-zero mean of the
quantization errors, one can update the bias vectors for the
model as 𝐛𝑛

𝑞 ← 𝐛𝑛 + (𝚯𝑛
𝑞 − 𝚯𝑛) X"n every time the weights

𝚯𝑛 are quantized. Here, X"n is a vector of running means of
the inputs to the 𝑛th layer, which is accumulated during the
forward pass in a manner analogous to the accumulation of
𝐺𝑛

2 during the backward pass. The corrected biases 𝐛𝑛
𝑞 are

then used whenever the corresponding quantized matrices
𝚯𝑛

𝑞 are used, both during gradient variance accumulation at
compression time as well as inference at test time.

3.3. Grouping Weights

Rather than quantize at the granularity of the whole weight
matrix, we can split each matrix into a collection of row or
column matrices, assigning optimal bit depth and step size
to each group of weights. In this case, the total number of
matrices 𝑁 in (3) can be reinterpreted as the total number
of weight groups collected across the model, and similarly
reinterpret 𝐵𝑛, 𝐷𝑛 and 𝑃𝑛 as the bit-depth, step size and the
number of elements of the 𝑛th weight group. Quantizing at
the granularity of these weight groups does not increase the
complexity of variance accumulation, as the same squared
gradients computed via back-propagation can be averaged
per weight group to produce the corresponding per-group
gradient variances. To analyze the rate–distortion gain, we
assume that each weight group is a column of a matrix.

For a weight matrix 𝚯 with gradient and weight variances
𝐺2 and 𝑆2 , whose per-column variances are 𝐺1

2, . . . , 𝐺𝑁
2

and 𝑆1
2, . . . , 𝑆𝑁

2 , respectively, the theoretical gain (average
bit depth saving) from weight grouping can be written as

 𝛾group = 1
2 (log2(𝐺2𝑆2) − 1

𝑁 ∑ log2(𝐺𝑛
2𝑆𝑛

2)
𝑁
𝑛=1), (9)

a non-negative quantity owing to Jensen’s inequality. This
quantity represents the bit-rate (average bit-depth) savings
that can be achieved when the 𝑛th column is assigned 𝐵𝑛 =

1
2 log2(𝐺𝑛

2𝑆𝑛
2) + 𝐵 bits for some baseline 𝐵, compared with

assigning a uniform bit depth 𝐵𝑛 = 1
2 log2(𝐺2𝑆2) + 𝐵 bits

across all columns when identical distribution is assumed
across the 𝑁 columns. Figure 3 (left) plots the per-matrix
bit-depth savings derived by grouping the (𝑄, 𝐾, 𝑉 and 𝑂)
projection matrices of the OPT-125m model by its rows or
columns. The sorted per-channel breakdown of the savings
is also shown for the zeroth 𝑉 proj matrix.

In addition to the grouping of matrices into columns, one
may want to sub-divide each column into a fixed number
of sub-groups of weight rows to exploit the row bit saving
as well. To sub-group the columns of a weight matrix 𝚯 ∈
ℝ𝑁×𝑁 , one can split its rows into 𝑀 similarly sized groups
based on their total row variances: 𝐺1

2𝑆1
2, . . . , 𝐺𝑁

2 𝑆𝑁
2 . By

applying the same grouping to all columns of a matrix, we
can signal the grouping index for each row using ⌈log2 𝑀⌉
bits—a negligible per-weight overhead for typical number
of columns in a large weight matrix and number of groups
used in practice. We illustrate partitioning and subdivision
in Figure 3. In Section 4, we show the accuracy of models
quantized with different numbers of row weight groups to
demonstrate that the grouping mechanism used in the AWQ
and GPTQ also improves rate–distortion characteristics.

4. Quantization Experiments

To study the rate–distortion behavior of a typical quantized
LLM, we apply Algorithm 1 to the quantization of the Meta
Open Pretrained Transformer (OPT) (S. Zhang et al., 2022)
and Llama-2 (Touvron et al., 2023) families of language
models (obtained from the HuggingFace Hub), comparing
the performance of the proposed quantization method with
baselines on next token prediction and question answering
tasks. For calibration data, we source 128 examples from
the training split of the C4 dataset (Raffel et al., 2020). We
test on the test splits of WikiText2 (Merity et al., 2022) and
C4 for next token prediction and those of GSM8K (Cobbe
et al., 2021), ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2019), and WinoGrande
(Sakaguchi et al., 2021) for question-answering tasks.

Next Token Prediction. As our first set of experiments, we
quantize the Meta OPT and Llama 2 models to 3 and 4 bits
on average and measure the performance of the quantized
models via perplexity, a stringent accuracy metric. We use
a combined row–column group size of 512 for OPT (768
for 125M, 66B) and 256 for Llama 2 models, batch size of
16, and 17 tokens from each sequence of tokens of length
2048, and optimize for a maximum of 64 iterations. Table
1 lists the perplexity (PPL) of our quantized models on the
test split of WikiText2. We select the final quantized model
based on WikiText2 (best validation) but selecting the last
quantized model produces similar test accuracy (within 1%
of the unquantized model perplexity). For comparison, we
include the perplexities of the same models quantized using
round-to-nearest, GPTQ (Frantar et al., 2022), OWQ (Lee
et al., 2024), AWQ (Lin et al., 2024) as well as QuIP (Chee

Figure 3: Bit saving from grouping for OPT-125m. Saving is
derived by splitting each weight matrix into a collection of row or
column matrices and assigning each sub-matrix its own bit depth.
Savings differ across the (𝑄, 𝐾 , 𝑉 and 𝑂) projection matrices of
the model’s 12 transformer blocks (left). Per- row bit saving
(right—block 3, 𝑂 -proj) can dip below zero but are always
positive on average owing to Jensen’s inequality.

4

3

2

1

0
 0 1 2 3 4 5 6 7 8 9 1011

Pe
r-

m
at

ri
x

bi
t s

av
in

gs

Transformer block index

 Row
Column

Pe
r-

co
lu

m
n

bi
t s

av
in

gs

 0 192 384 576 768

6

4

2

0

–2

Sorted column index

Column partition

Average

𝑉 proj (block 0)

6

Radio: Rate–Distortion Optimization for Large Language Model Compression

et al., 2024) based on the code provided by the respective
authors; see Appendix D for details. Relative to the next
best performing methods, the proposed method provides a
perplexity reduction of up to 4.55 for the 3-bit OPT-125M
model but minor perplexity gains (0.00–0.01) are observed

for the 3-bit OPT-66B and Llama 2 70B models. In this
comparison, AWQ uses a group size of 128, incurring 2–4
times as many overhead bits as the proposed method, and
OWQ, by its nature, operates at average bit depths that are
0.01–0.05 bits higher per weight on average than proposed.
Hyperparameters/Ablations. To analyze the influence of
Radio hyperparameters on the accuracy of the quantized
models, we quantize the OPT-1.3B and -13B models over
a range of minibatch sizes and token counts (optimization
hyperparameters) as well as the group size (quantization
hyperparameter), with each hyperparameter varied while
keeping the others fixed at their optimized values. (The
optimal hyperparameter values are batch size: 16, token
count: 17, and group size: 512.) The perplexity of the
quantized models is then measured on the C4 test data.
Table 2 (a–b) demonstrates that Radio is largely insensitive
to the values of optimization hyperparameters over a wide
range. From Table 2 (c), we see that smaller group sizes
generally improve the performance of the quantized
models at lower average bit depths, but this also leads to

Figure 4: Perplexity across optimization iterations. Calibrated
on C4 (train) using a batch size of 16. Row groups of size 512
used. Perplexity decreases rapidly across the first thirty iterations,
after which iterations can be early terminated. Note monotonicity
for C4 (test), whose distribution is more like the calibration data.

Te
st

 P
er

pl
ex

ity

16

15

14

13

12
 0 10 20 30 Iter

C4

WT2

C4 (Full)

OPT-2.7B (4 bits)

WT2 (Full)

13

12

11

10

9
 0 10 20 30 Iter

OPT-30B (3 bits)

WT2

C4

C4 (Full)

WT2 (Full)

Perplexity (PPL)
WikiText2 (↓)

Meta OPT (Open Pretrained Transformer) Meta Llama 2
 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B 7B 13B 70B

 Full Precision (FP16) 27.65 22.00 14.63 12.47 10.86 10.13 9.56 9.34 5.47 4.88 3.32

4
bi

ts

Round-to-nearest (RTN) 37.28 25.94 48.17 16.92 12.10 11.32 10.98 111.36 5.73 4.98 3.46
GPTQ (Frantar et al., 2022) 32.05 23.87 15.47 12.83 11.14 10.29 9.57 9.34 6.07 5.20 3.59
GPTQ/256 (Frantar et al., 2022) 30.53 23.83 14.91 12.52 11.02 10.22 9.60 9.46 5.70 5.02 3.44
QuIP (Chee et al., 2024) 35.93 23.15 15.96 12.67 11.10 10.33 9.60 9.40 5.69 5.06 3.46
OWQ (4.01 bits) (Lee et al., 2024) 29.47 23.19 15.01 12.39 10.87 10.26 9.50 9.25 5.63 5.01 3.43
AWQ/128 (Lin et al., 2024) 29.11 – 14.95 12.74 10.93 10.22 9.59 9.39 5.60 4.97 3.41
OmniQuant/128 (Shao et al., 2024) 28.86 – 14.88 12.65 10.96 10.20 9.62 9.37 5.58 4.95 3.40
SqueezeLLM (Kim et al., 2024) – – 14.94 12.80 11.03 10.24 9.65 – 5.62 4.99 3.41
Radio (4.0000 bits) (Ours) 27.23 22.89 14.20 12.12 10.52 10.08 9.45 9.13 5.57 4.97 3.40

3
bi

ts

RTN 1.3e3 64.57 119.47 298.00 23.54 46.04 18.80 6.1e3 6.66 5.52 3.98
GPTQ 53.43 32.28 20.90 16.55 12.88 11.58 10.29 9.90 9.23 6.69 3.87
GPTQ/256 41.22 29.96 16.98 13.94 11.39 10.41 9.81 11.13 6.75 5.59 4.00
QuIP (Chee et al., 2024) 34.43 26.02 17.33 13.84 12.35 10.57 9.92 9.46 6.36 5.50 3.86
OWQ (3.01 bits) (Lee et al., 2024) 35.26 26.59 16.40 13.21 11.21 11.48 9.59 9.28 6.21 5.36 3.77
AWQ/128 36.77 – 16.32 13.54 11.41 10.67 9.85 9.63 6.24 5.32 3.74
OmniQuant/128 (Shao et al., 2024) 32.25 – 15.71 13.18 11.27 10.47 9.79 9.53 6.03 5.28 3.78
SqueezeLLM (Kim et al., 2024) – – 16.30 13.85 11.70 11.76 10.17 – 6.18 5.36 3.77
Radio (3.0000 bits) (Ours) 30.71 25.94 14.83 12.42 11.07 10.28 9.56 9.24 6.04 5.25 3.72

Table 1: WikiText2 perplexity (test). We quantize the Meta OPT and Llama 2 families of LLMs to 3–4 bits per weight on average via
the proposed quantization method (Radio), reporting the perplexity of each quantized model on WikiText2 (test). For comparison, we
also include the perplexities of models quantized using RTN, GPTQ, QuIP, OWQ, AWQ and SqueezeLLM.

Table 2: Effect of hyperparameters on quantized model accuracy. Quantized model accuracy is relatively insensitive to the minibatch
size (a) and number of tokens per sequence (b) used for the optimization. Smaller groups can improve quantized model accuracy at low
average bit depths (c).

 (a) Minibatch size and PPL (b) Number of tokens and PPL (c) Group size and PPL

 PPL
C4 (↓)

OPT (4 bits) OPT (3 bits)

1.3B 13B 1.3B 13B
FP16 16.07 12.06 16.07 12.06

B
at

ch
 s

iz
e 2 16.24 12.12 16.94 12.36

4 16.24 12.12 16.94 12.35
8 16.25 12.11 16.90 12.34

16 16.22 12.11 16.86 12.32
32 16.24 12.12 16.88 12.36

PPL
C4 (↓)

OPT (4 bits) OPT (3 bits)

1.3B 13B 1.3B 13B
FP16 16.07 12.06 16.07 12.06

gr
ou

p
si

ze
 64 16.16 12.10 16.62 12.26

128 16.17 12.10 16.70 12.29
256 16.20 12.10 16.77 12.32
512 16.22 12.11 16.86 12.32

1024 16.23 12.11 16.99 12.42

PPL
C4 (↓)

OPT (4 bits) OPT (3 bits)

1.3B 13B 1.3B 13B
FP16 16.07 12.06 16.07 12.06

N
um

 to
ke

ns
 3 16.40 12.29 17.05 12.47

5 16.28 12.18 16.93 12.37
9 16.24 12.12 16.91 12.35

17 16.22 12.11 16.86 12.32
33 16.21 12.10 16.87 12.34

7

Radio: Rate–Distortion Optimization for Large Language Model Compression

higher overheads (discussed later). Figure 4 plots quantized
model accuracy across optimization iterations in the case
where baseline hyperparameter values are used. It appears
that about 20 iterations are needed for quantization
parameters (bit depth decisions) to reach their optima.
Table 3 (a) shows ablations of our quantized OPT models
by starting with RTN and adding different components
(Jeon et al., 2023). See Table 5 for C4 perplexity results.

Pruning Due to Quantization. Our method quantizes very
low-variance weights of weight matrices to zero and effects
a form of weight pruning, which has been demonstrated to
improve test accuracy (Hassibi & Stork, 1992). Table 3 (b)
lists the percentages of zero-quantized weights in the OPT-
1.3B and 13B models quantized to 3 and 4 bits per weight
on average. We observe that using smaller grouping sizes
increases the number of pruned weights since this enables
lower-variance weights in each column to be grouped
together and quantized to zero. However, smaller groups
lead to higher overheads so that small improvements in
generalization due to pruning come at the cost of signaling
the overhead bits. Table 3 (c) lists the number of overhead
bits (group indices and FP16 encodings of the location and
scale parameters of each weight group) as a percentage of

the total quantized weight bits. These overheads are in line
with those of other algorithms which must similarly signal
zero points and step sizes of the quantization grid (Lee et
al., 2024).

2.x-bit Llama-2. We study the accuracy of Llama 2 models
quantized to 2.x bits using Radio and OWQ, both of which
are capable of quantizing models to fractional average bit
depths. To allow a more comprehensive study, we compare
against OWQ with no grouping, as well as with group sizes
of 128 and 256. We can see from Table 4 (a) that Radio-
quantized Llama-2 models are considerably more accurate
at these bit depths than their OWQ counterparts. This is
expected since Radio assigns bit depths from the range
(0, 𝐵max) commensurately with gradient variances whereas
OWQ opts to preserve the most sensitive weights in FP16
and quantize the rest to 2 bits (Lee et al., 2024). In terms of
execution time, Radio (for 64 iterations) and OWQ/GPTQ
require 47 minutes and 18 minutes, respectively (excluding
testing), to quantize the 7B model on an Nvidia A100.

Downstream Tasks (Common Sense QA, GSM8K). To
show the impact of model quantization on downstream
tasks, we list in Table 4 (b–c) the accuracy of our quantized

Table 4: 2.x-bit quantization and downstream tasks. Quantized to 2.x bits per weight, Radio reduces perplexity considerably
compared with OWQ models quantized to the same (a). Quantized model accuracy measured by performance on tasks such as GSM8K
(b). Group size of 256 is used.

 (a) Perplexity of 2.1–2.8-bit Llama 2 models (b) Scores for 3-bit Llama-2 models on GSM8K and QA
Score (%)

Llama-2 (↑)
GSM8K Average QA

7B 13B 70B 7B 13B 70B
FP16 (Full Precision) 64.83 67.82 72.36 14.10 23.43 53.90
RTN (Round-To-Nearest) 1.82 1.67 6.14 39.32 52.15 58.22
GPTQ/256 (Frantar et al., 2022) 6.60 14.48 46.47 61.40 64.94 70.58
AWQ/256 (Lin et al., 2024) 6.97 16.76 48.07 62.48 65.95 71.29
Radio/256 (3.0000 bits) (Ours) 7.81 18.20 49.81 62.82 66.37 71.87

Perplexity
WikiText2 (↓)

Llama 2 7B (2.1–2.8 bits)
2.1 2.2 2.4 2.6 2.8

FP16 (Full Precision) 5.47 5.47 5.47 5.47 5.47
OWQ (Lee et al., 2024) 39.56 11.25 10.79 10.43 10.24
OWQ/256 10.34 10.01 9.98 9.50 9.26
OWQ/128 10.01 9.66 9.42 9.38 9.14
Radio/256 (Ours) 9.47 8.39 7.05 6.56 6.21

Score (%)
Llama-2 (↑)

Arc (Challenge) Arc (Easy) HellaSwag PIQA Winogrande

7B 13B 70B 7B 13B 70B 7B 13B 70B 7B 13B 70B 7B 13B 70B
FP16 (Full Precision) 43.34 48.38 54.27 76.30 79.42 82.74 57.13 60.04 64.76 78.07 79.05 82.15 69.30 72.22 77.90
RTN (Round-To-Nearest) 20.73 30.63 37.20 34.97 60.65 65.66 31.09 43.73 51.01 57.34 70.40 73.12 52.49 55.33 64.09
GPTQ/256 (Frantar et al., 2022) 38.23 43.34 52.13 72.26 76.64 80.85 53.02 57.65 62.60 75.63 77.48 80.52 67.88 69.61 76.80
QuIP/256 (Chee et al., 2024) 38.74 45.39 52.30 72.77 – 80.68 54.08 76.77 63.04 77.09 78.78 81.12 66.85 70.40 76.72
AWQ/256 (Lin et al., 2024) 41.13 45.05 53.24 73.36 77.95 81.69 54.06 57.83 63.64 75.84 77.26 81.66 68.03 71.67 76.24
Radio/256 (3.0000 bits) (Ours) 41.21 45.73 53.84 72.60 77.95 82.32 53.95 58.55 63.86 77.20 78.51 81.88 69.14 71.11 77.43

(c) Scores for 3-bit Llama-2 models on common sense QA (Arc-Challenging, Arc-Easy, HellaSwag, PIQA, Winogrande)

Table 3: Ablations and pruning effects of quantization. A small fraction of weights is quantized to zero and pruned away due to low
variance, with smaller groups increasing the degree of pruning (a). Quantization incurs overhead bits for signaling group indices and
location and scale parameters of groups (b).

 (a) Ablations (mixed precision and step sizes) (b) Pruned columns (%) (c) Overhead bits (%)

 Overhead
bits (%)

Meta OPT (4 bits)

350M 1.3B 13B 30B

G
ro

up
 s

iz
e 64 10.33 10.30 10.28 13.70

128 5.18 5.16 5.15 6.86
256 2.60 2.59 2.58 3.44
512 1.30 1.30 1.30 1.72

1024 0.64 0.65 0.65 0.86

Pruned
(%)

Meta OPT (4 bits)

350M 1.3B 13B

G
ro

up
 s

iz
e 64 0.57 2.13 2.18

128 0.61 2.19 2.31
256 0.67 2.10 2.16
512 0.68 2.07 2.00

1024 0.68 2.08 1.92

Perplexity
C4 (↓)

OPT (4 bits) OPT (3 bits)
1.3B 13B 1.3B 13B

 RTN (Round-To-Nearest) 24.51 13.36 4.2e3 3.2e3
 + MMSE Step Sizes 16.98 12.26 21.64 13.34
 + Mixed Precision Depths 16.29 12.12 18.48 12.73
 + Companding 16.22 12.11 16.86 12.32
 = Radio (Ours) 16.22 12.11 16.86 12.32

8

Radio: Rate–Distortion Optimization for Large Language Model Compression

Llama-2 models on the ARC-C, -E (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019)
and Winogrande (Sakaguchi et al., 2021) common sense
question answering, and GSM8K (Cobbe et al., 2021) math
problem solving tasks. We set our group size and the group
size of GPTQ and AWQ to 256. We observe that Radio
produces slightly higher scores than the GPTQ and AWQ
quantized 3-bit models while RTN leads to severely
diminished scores despite having similar perplexity scores
as Radio on WikiText2 (Table 1). We include example
responses to GSM8K questions produced by different 3-bit
quantized Llama-2-70B models in Appendix E.

Timing results. To show the running time behavior of the
proposed quantization method, Table 6 lists running times
of Radio on Llama 2 models of different sizes, measured
on Nvidia A100. It can be seen that Radio’s running time
grows close to linearly with model size. Table 7 lists the
acceleration achieved by our custom quantized matrix-
vector multiply kernel, with acceleration ranging between
1.4 and 3.3 depending on the embedding dimensionality.

5. Discussion

Formulating weight quantization as a convex optimization
problem as we have done here yields two benefits. First, it
explicates the objective we seek to optimize (minimizing
output distortion in this case) and sets us on a path to solve
the right problem using modern automatic differentiation
tools e.g. PyTorch’s autograd library. Second, it enables us
to interpret many earlier Hessian-based methods (Frantar
et al., 2022; Lee et al., 2024; Dong et al., 2019; Chen et al.,
2021) as heuristics for approximate optimization of the true

underlying quantization objective. Note (2) is a non-linear
system of equations in the bit depth variables, so that any
non-iterative solution is necessarily only an approximate
one if one’s goal is to optimize an objective like (2). Recent
high-performance model quantization techniques (Chee et
al., 2024; Frantar et al., 2022; Frantar & Alistarh, 2022; Lee
et al., 2024) ultimately trace their lineage back to the
classic Optimal Brain Surgeon (OBS) algorithm (Hassibi
& Stork, 1992), which is a convex formulation for weight
pruning, not quantization (Appendix F). As a result, these
methods inherit the need for fine-tuning weights as part of
the quantization process, making them less suitable for the
quantization of activations at inference time, where fine-
tuning would lead to unacceptable delays in the inference
pipeline.

Our experimental results demonstrate that a more accurate

Perplexity (PPL)
C4 (↓)

Meta OPT (Open Pretrained Transformer) Meta Llama 2
 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B 7B 13B 70B

 Full Precision (FP16) 26.56 22.59 16.07 14.34 12.71 12.06 11.44 10.99 6.97 6.46 5.52

4
bi

ts

Round-to-nearest (RTN) 33.91 16.21 24.51 18.43 14.36 13.36 13.46 283.31 7.86 7.16 6.01
GPTQ (Frantar et al., 2022) 29.42 24.14 16.73 14.85 12.99 12.24 11.56 11.08 7.86 7.06 5.90
GPTQ/256 (Frantar et al., 2022) 28.36 24.18 16.47 14.64 12.88 12.15 11.50 11.12 7.58 6.88 5.79
QuIP (Chee et al., 2024) 27.85 23.39 17.20 14.58 12.87 12.17 11.51 11.03 7.57 6.91 5.80
OWQ (4.01 bits) (Lee et al., 2024) 27.93 23.37 16.49 14.60 12.83 12.17 11.49 11.02 7.59 6.94 5.81
AWQ/128 (Lin et al., 2024) 27.79 – 16.42 14.58 12.84 12.15 11.50 11.04 7.44 6.84 5.77
OmniQuant/128 (Shao et al., 2024) 27.59 – 16.38 14.56 12.82 12.16 11.50 11.04 7.12 6.56 5.58
SqueezeLLM (Kim et al., 2024) – – 16.36 14.55 12.82 12.15 11.50 – 7.12 6.57 5.58
Radio (4.0000 bits) (Ours) 27.27 23.20 16.24 14.44 12.79 12.11 11.48 11.01 7.40 6.83 5.76

3
bi

ts

RTN 839.97 55.96 4.2e3 1.1e4 4.4e3 3.2e3 1.1e3 3.5e3 521.22 14.01 11.06
GPTQ 42.64 29.90 20.46 17.48 14.56 13.16 12.14 11.53 11.44 8.98 7.12
GPTQ/256 (Frantar et al., 2022) 35.00 28.84 18.07 15.84 13.50 12.57 11.78 12.29 8.92 7.65 6.21
QuIP (Chee et al., 2024) 31.37 25.58 18.15 15.92 13.66 12.40 11.67 11.16 8.48 7.49 6.10
OWQ (3.01 bits) (Lee et al., 2024) 31.28 26.40 17.69 15.36 13.23 13.29 11.69 11.17 8.59 7.65 6.16
AWQ/128 32.91 – 17.81 15.49 13.34 12.55 11.75 11.26 8.30 7.31 6.04
OmniQuant/128 (Shao et al., 2024) 31.30 – 17.46 15.33 13.28 12.50 11.73 11.22 7.75 6.98 5.85
SqueezeLLM (Kim et al., 2024) – – 17.19 15.62 13.41 13.55 11.85 – 7.72 6.97 5.73
Radio (3.0000 bits) (Ours) 30.05 26.20 16.88 14.91 13.14 12.35 11.62 11.19 8.04 7.22 5.99

Table 5: C4 perplexity (validation). We quantize the Meta OPT and Llama 2 families of LLMs to 3–4 bits per weight on average using
the proposed quantization method, reporting the perplexity of each quantized model on the C4 dataset. For comparison, we also include
the perplexities of models quantized using RTN, GPTQ, QuIP, OWQ, and AWQ.

Quantization runtimes with 128
examples from C4 (seq length 2048)

Meta Llama 2
7B 13B 70B

 Full Precision (FP16) 0m 0m 0m

3
bi

ts

RTN <1m <1m 5m
GPTQ/256 (Frantar et al., 2022) 10m 18m 90m
QuIP (Chee et al., 2024) 36m 80m 9h
OWQ (3.01 bits) (Lee et al., 2024) 28m 50m 4h
AWQ/128 7m 17m 87m
OmniQuant/128 (Shao et al., 2024) 56m 132m 15h
SqueezeLLM (Kim et al., 2024) 11m 23m 92m
Radio (3.0000 bits) (Ours) 47m 97m 11h

Table 6: Radio running times. We quantize the Meta Llama 2
family of LLMs to ~3 bits per weight on average and measure the
running time of the proposed method. We also include the running
times of GPTQ, QuIP, OWQ, AWQ, and SqueezeLLM.

9

Radio: Rate–Distortion Optimization for Large Language Model Compression

characterization of the LLM quantization problem can lead
to better compression outcomes. While the smaller OPT-
125M model is too limited for practical usefulness in most
situations, its relative incompressibility helps contrast the
performance of the different weight quantization methods
themselves (Table 1). With larger models like OPT-66B
and Llama 2-66B, most quantization techniques (including
RTN) perform similarly, suggesting that larger language
models are more compressible generally. At first glance, a
RTN may seem sufficient for quantizing larger models, but
upon a closer look, RTN-quantized models lead to severely
reduced accuracy on downstream tasks such as GSM8K
(Table 4 (a)), which highlights the importance of validating
the accuracy of quantized models across multiple tasks and
datasets (Jaiswal et al., 2024). Interestingly, increasing the
number of calibration examples (from 128 to 1024) did not
noticeably affect the quantized model’s perplexity on C4 (±
0.01), which agrees with findings from previous works; see
(Kim et al., 2024; Hubara et al., 2021). We will discuss the
quantization of activations and more advanced methods for
model quantization in the sequel.

Finally, our CUDA matmul kernel (Appendix A) provides
acceleration for matrix-vector multiplies by dequantizing
mixed precision weights to a floating-point representation
(FP16) dynamically then multiplying them by activations
of the same representation. For the 12288 × 49152 weight
matrix of Meta’s OPT-175B quantized to 3 bits per weight
on average, our custom CUDA kernel leads to a 3.8x speed
up over the FP16 matrix-vector multiply performed using
the default cuBLAS matmul on Nvidia A6000. Accelerated
matrix-vector multiply and low quantization complexity of
our quantization approach allows us to apply Radio also to
the quantization of batched activations, where quantization
efficiency becomes paramount.

6. Conclusion

Here, we showed that a rate–distortion framework can lead
to better LLM quantization outcomes. Despite numerous
advances in methods for LLM compression, there has not
been an extensive study in the rate–distortion-theory
aspects of model quantization and optimization techniques
required to solve the resulting optimization problem. This

work fills the gap in the current literature by introducing
the rate–distortion framework and a stochastic numerical
solver for the rate–distortion optimization problem.

Reproducibility Statement

To ensure the reproducibility of results in this work, we
make our PyTorch Radio program available on our GitHub
project website, where readers can also ask questions about
this work. Appendix A lists our CUDA kernel. Appendices
B–C provide derivations for our main theoretical results
and Appendix D additionally details the PyTorch code and
command line options used to obtain the results of GPTQ
(Frantar et al., 2022), OWQ (Lee et al., 2024), and AWQ
(Lin et al., 2024).

Impact Statement

This paper aims to advance the theory of rate and distortion
for LLM compression. There are many potential societal
consequences of our work, none which we feel needs to be
specifically highlighted here.

References

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian
Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. QuaRot:
Outlier-Free 4-Bit Inference in Rotated LLMs. In Proc.
NeurIPS, 2024.

Mart van Baalen, Andrey Kuzmin, Markus Nagel et al.
GPTVQ: The blessing of dimensionality for LLM
quantization.
https://doi.org/10.48550/arXiv.2402.15319, 2024.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and
Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method
of multipliers. Found. Trends® Mach. Learn., 3(1):1–
122, 2011.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, Christopher
De Sa. QuIP: 2-bit quantization of large language
models with guarantees. In Proc. NeurIPS, 2023.

Weihan Chen, Peisong Wang, and Jian Cheng. Towards
mixed-precision quantization of neural networks via
constrained optimization. In Proc ICCV, 2021.

Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok
Kim, and Jinho Lee. Qimera: Data-free quantization
with synthetic boundary supporting samples. In Proc.
NeurIPS, 2021.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee.
Towards the limits of network quantization. In Proc.
ICLR, 2017.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,

Model (Embedding)
Acceleration factors

𝐸→𝐸 𝐸→4𝐸 4𝐸→𝐸 Overall

3
bi

ts

OPT-1.3B (𝐸 = 1024) 0.9 2.1 2.7 1.4
OPT-1.3B (𝐸 = 2048) 2.7 2.3 2.5 2.7
OPT-6.7B (𝐸 = 4096) 2.4 3.1 3.1 2.8
OPT-30B (𝐸 = 7168) 3.2 3.2 3.1 3.2
OPT-66B (𝐸 = 9216) 3.2 3.1 3.2 3.2
OPT-175B (𝐸 = 12288) 3.2 3.2 3.8 3.3

Table 7: Acceleration due to quantized mat-vector multiplies
relative to multiplication in FP16. A 3-bit weight matrix of
dimension 𝑁 × 𝑀 multiplies a vector of length 𝑀 to produce a
vector of length 𝑁 (denoted 𝑀 → 𝑁).

10

Radio: Rate–Distortion Optimization for Large Language Model Compression

Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have Solved Question Answering?
Try ARC, the AI2 Reasoning Challenge.
http://arxiv.org/abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian et al.
Training verifiers to solve math word problems.
http://arxiv.org/abs/2110.14168, 2021.

Thomas M. Cover, and Joy A. Thomas. Elements of
Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-
Interscience, USA 2006.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. GPT3.int8(): 8-bit matrix multiplication
for transformers at scale. In Proc. NeurIPS, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian et al.
SpQR: A Sparse-Quantized Representation for near-
lossless LLM weight compression.
http://arxiv.org/abs/2306.03078, 2023.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W.
Mahoney, and Kurt Keutzer. HAWQ: Hessian AWare
Quantization of neural networks with mixed precision.
In Proc. ICCV, 2019.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev,
Elias Frantar, Artem Babenko, and Dan Alistarh.
Extreme compression of large language models via
additive quantization. In Proc. ICML, 2024.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S. Modha.
Learned step size quantization. In Proc. ICLR, 2019.

Elias Frantar, and Dan Alistarh. Optimal Brain
Compression: A framework for accurate post-training
quantization and pruning. In Proc. NeurIPS, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. OPTQ: Accurate quantization for generative
pre-trained transformers. In Proc. ICLR, 2022.

Allen Gersho, and Robert M. Gray. Vector Quantization
and Signal Compression. Kluwer, Norwell, MA, USA
1991.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev.
Compressing deep convolutional networks using vector
quantization. In Proc. ICLR, 2015.

R.M. Gray, and D.L. Neuhoff. Quantization. IEEE Trans.
Inf. Theory, 44(6):2325–2383, 1998.

Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai
Wong, and Hao Yu. APTQ: Attention-aware post-
training mixed-precision quantization for large
language models. In Proc. DAC, 2024.

Babak Hassibi, and David Stork. Second order derivatives
for network pruning: Optimal Brain Surgeon. In Proc.
NIPS, 1992.

Lu Hou, and James T. Kwok. Loss-aware weight
quantization of deep networks. In Proc. ICLR, 2018.

Wei Huang, Haotong Qin, Yangdong Liu et al. SliM-LLM:
Salience-driven mixed-precision quantization for large
language models, https://arxiv.org/abs/2405.14917v1,
2024.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and
Daniel Soudry. Accurate post training quantization with
small calibration sets. In Proc. ICML, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen et al.
Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proc.
CVPR, 2018.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang,
Zhangyang Wang, Yinfei Yang. Compressing LLMs: the
truth is rarely pure and never simple. In Proc. ICLR, 2024.

Yongkweon Jeon, Chungman Lee, Kyungphil Park, Ho-
young Kim. A Frustratingly Easy Post-Training
Quantization Scheme for LLMs. In Proc. EMMLP, 2023.

Sehoon Kim et al. SqueezeLLM: Dense-and-sparse
quantization. In Proc. ICML, 2024.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim,
and Eunhyeok Park. OWQ: Outlier-aware weight
quantization for efficient fine-tuning and inference of
large language models. In Proc. AAAI, 2024.

Ji Lin, Jiaming Tang, Haotian Tang et al. AWQ: Activation-
aware Weight Quantization for on-device LLM
compression and acceleration. In Proc. MLSys, 2024.

S. Lloyd. Least squares quantization in PCM. IEEE Trans.
Inf. Theory, 28(2):129–137, 1982.

J. Max. Quantizing for minimum distortion. IRE Trans. Inf.
Theory, 6(1):7–12, 1960.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
Proc. ICLR, 2022.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight
equalization and bias correction. In Proc. CVPR, 2019.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii
Zheltonozhskii, Ron Banner, Alex M. Bronstein, and
Avi Mendelson. Loss aware post-training quantization.
In Mach Learn 110 3245–3262, Springer, 2020.

Jorge Nocedal, and Stephen J. Wright. Numerical
Optimization. Springer, New York, NY, USA 2009.

Biao Qian, Yang Wang, Richang Hong, and Meng Wang.
Adaptive data-free quantization. In Proc. CVPR, 2023.

Zhongnan Qu, Zimu Zhou, Yun Cheng, and Lothar Thiele.
Adaptive loss-aware quantization for multi-bit networks.
In Proc. CVPR, 2020.

11

Radio: Rate–Distortion Optimization for Large Language Model Compression

Colin Raffel, Noam Shazeer, Adam Roberts et al.
Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res.,
21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. WinoGrande: an adversarial Winograd
schema challenge at scale. Commun. ACM, 64(9):99–
106, 2021.

Wenqi Shao et al. OmniQuant: Omnidirectionally
calibrated quantization for large language models. In
Proc. ICLR, 2024.

Hugo Touvron, Louis Martin, Kevin Stone et al. Llama 2:
Open foundation and fine-tuned chat models.
http://arxiv.org/abs/2307.09288, 2023.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao.
Improving the speed of neural networks on CPUs. In
Proc. NIPS Workshops, 2011.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
HAQ: Hardware-aware automated quantization with
mixed precision. In Proc. CVPR, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien
Demouth, and Song Han. SmoothQuant: Accurate and
efficient post-training quantization for large language
models. In Proc. ICML, 2023.

Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang
Cao, Chuangrun Liang, and Mingkui Tan. Generative
low-bitwidth data free quantization. In Proc. ECCV,
2020.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. ZeroQuant:
Efficient and affordable post-training quantization for

large-scale transformers. In Proc. NeurIPS, 2022.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. PIQA: Reasoning about physical
commonsense in natural language.
http://arxiv.org/abs/1911.11641, 2019.

Sean I. Young, Wang Zhe, David Taubman, and Bernd
Girod. Transform quantization for CNN compression.
IEEE Trans. Pattern Anal. Mach. Intell., 44(9):5700–
5714, 2019.

Zhihang Yuan, Yuzhang Shang, Yang Zhou et al. LLM
inference unveiled: Survey and roofline model insights.
https://arxiv.org/abs/2402.16363, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi,
and Yejin Choi. HellaSwag: Can a Machine Really
Finish Your Sentence? http://arxiv.org/abs/1905.07830,
2019.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. LQ-Nets: Learned quantization for highly
accurate and compact deep neural networks. In Proc.
ECCV, 2018.

Susan Zhang, Stephen Roller, Naman Goyal et al. OPT:
Open Pre-trained Transformer Language Models.
http://arxiv.org/abs/2205.01068, 2022.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and
Zhiru Zhang. Improving neural network quantization
without retraining using outlier channel splitting. In
Proc. ICML, 2019.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong
Chen. Incremental Network Quantization: towards
lossless CNNs with low-precision weights. In Proc.
ICLR, 2017.

12

Radio: Rate–Distortion Optimization for Large Language Model Compression

A. Radio Kernel for Matrix-Vector Multiplication

For completeness, we provide here a reference implementation for multiplication between a mixed-precision quantized
matrix and full-precision vector multiplication. Here, we assign a single bit depth to each group of 4 rows, leading to e.g.
12288 different bit depths in the case of the 49152 × 12288 weight matrix (MLP layer) of the OPT-175B model. Consider
a thread block size of 256 × 256 . Each of 256 × 256 block, in turn, entails 1 × 256 threads, with each thread
dequantizing a 256 × 1 column of weights and multiplying them with the matching 1 × 256 segment of a vector input.
Bit depth changes every 4 rows but every thread will go through the same bit depth change in the course of multiplication,
allowing divergence-free (and uniform memory access) operations.

__constant__ float lutable[256] = { DEQUANT }; // dequantized values defined in macros.h

template <typename scalar_t>
__global__ void VecQuant3MatMulKernel(
 const scalar_t* __restrict__ vec,
 const int* __restrict__ mat,
 scalar_t* __restrict__ mul,
 const uint8_t* __restrict__ depths,
 const scalar_t* __restrict__ scales,
 const int* __restrict__ i_s,
 const uint8_t* __restrict__ shifts,

 int height,
 int width) {
 int row = BLOCKHEIGHT * blockIdx.x;
 int col = BLOCKWIDTH * blockIdx.y + threadIdx.x;

 __shared__ scalar_t blockvec[BLOCKWIDTH];
 __shared__ scalar_t lut[BLOCKWIDTH];

 blockvec[threadIdx.x] = scales[threadIdx.x / 4] * vec[(row / BLOCKHEIGHT) * BLOCKWIDTH +
threadIdx.x];
 lut[threadIdx.x] = lutable[threadIdx.x];
 __syncthreads();

 scalar_t res = 0;
 int i = i_s[blockIdx.x * gridDim.y + blockIdx.y] + threadIdx.x;
 // int i = width * row + col;
 int shift = shifts[blockIdx.x * gridDim.y + blockIdx.y];

 uint64_t tmp_curr;
 uint32_t tmp_read;
 uint32_t depth_;

 int j = 0, k = 0;

 tmp_read = reinterpret_cast<const uint32_t*>(mat)[i];
 tmp_curr = static_cast<uint64_t>(tmp_read) << 32;
 shift += 32;
 i += width;

 while (k < BLOCKWIDTH) {
 depth_ = reinterpret_cast<const uint32_t*>(depths)[j];

 int depth, bmask;
 uint32_t index;
 scalar_t szero, *table;
 for (int d = 0; d < 32; d += 8) { // for each of the 4 depth groups (represented in 8
bits)
 depth = (depth_ >> (d + 0)) & 7;
 bmask = (1 << depth) - 1;

13

Radio: Rate–Distortion Optimization for Large Language Model Compression

 szero = (static_cast<int>((depth_ >> (d + 3)) & 31) - 16) * 0.03125f;
 table = reinterpret_cast<scalar_t*>(lut + (1 << depth));

 if (shift + 4 * depth > 64) { // will run out of bits, read more
 tmp_read = reinterpret_cast<const uint32_t*>(mat)[i];
 tmp_curr = static_cast<uint64_t>(tmp_read) << 32 |
static_cast<uint64_t>(tmp_curr) >> 32;
 shift -= 32;
 i += width;
 }
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);
 res += blockvec[k + 0] * (szero + table[index]);
 shift += depth;
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);
 res += blockvec[k + 1] * (szero + table[index]);
 shift += depth;
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);
 res += blockvec[k + 2] * (szero + table[index]);
 shift += depth;
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);
 res += blockvec[k + 3] * (szero + table[index]);
 shift += depth;

 k += 4;
 }
 j += 1;
 }
 atomicAdd(&mul[col], res);
}

14

Radio: Rate–Distortion Optimization for Large Language Model Compression

B. Derivation of Equation (5)
To derive our main equation (5), we appeal to a linearized relationship between model weights and output, as well as
standard results from rate–distortion theory (Gersho & Gray, 1991) that relate the quantization error of a random source to
output distortion at a high bit depth, where the linearized model relationship is a good approximation. Let us start with our
quantization objective

 𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁) = 𝔼𝐗‖𝑓 (𝐗, 𝚯1
𝑞(𝐵1), 𝚯2

𝑞(𝐵2), . . . , 𝚯𝑁
𝑞 (𝐵𝑁)) − 𝑓 (𝐗)‖𝐹

2 , (10)

in which 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1(𝐵1), 𝚯2(𝐵2), . . . , 𝚯𝑁 (𝐵𝑁)) denotes the output of the unquantized model given input 𝐗. We can
write the residual and Jacobian of 𝑓 at (𝐗, 𝚯1

𝑞(𝐵1), 𝚯2
𝑞(𝐵2), . . . , 𝚯𝑁

𝑞 (𝐵𝑁)) as

𝑟 (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞)   = (𝑟1, . . . , 𝑟𝑀) (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞) = 𝑓 (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞) − 𝑓 (𝐗)

(11)
𝐽 (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞) = (
𝜕𝑓 (𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞)

𝜕𝚯1
,
𝜕𝑓 (𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞)

𝜕𝚯2
, . . . ,

𝜕𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞)
𝜕𝚯𝑁)

and proceed to write the gradient and Hessian of the objective (10) in terms of the 𝑟 and 𝐽above as

  ∇𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞) = (𝐽 𝑇 𝑟) (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞)
(12)

∇2𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞) = (𝐽 𝑇 𝐽)(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞) + ∑ (𝑟𝑚∇2𝑟𝑚)(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞)𝑀

𝑚=1⏟⏟⏟
≈ 0

in which the second term of ∇2𝑑 is approximately zero either because the residuals 𝑟𝑚 are relatively small, or they are
close to affine in (𝚫1

𝑞 , 𝚫2
𝑞 , . . . , 𝚫𝑁

𝑞) so that ∇2𝑟𝑚 are relatively small, which is the case in the vicinity of the solution.

Using (12), we can now express the local quadratic approximation of (10) about (𝐵1, . . . , 𝐵𝑁) as

�̂�(𝐵1, . . . , 𝐵𝑁) =
(a)

𝔼𝐗 [(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁))((𝐽 𝑇 𝐽)(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞))(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁))
𝑇

]

+ 𝔼𝐗 [(Δ1(𝐵1), . . . , Δ𝑁 (𝐵𝑁))

𝑇
((𝐽 𝑇 𝑟)(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞))]⏟⏟⏟
= 0

 (13)

=
(b)

∑ 𝔼𝐗[(𝐽 𝑇 𝐽)𝑛𝑛(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞)]𝔼[Δ𝑛
2 (𝐵𝑛)]

𝑁
𝑛=1

=
(c)

∑ 𝑃𝑛𝐺𝑛
2𝐻𝑛𝑆𝑛

22−2𝐵𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 𝑑𝑛(𝐵𝑛)

𝑁
𝑛=1

in which the zero expectation of the linear term in (a) follows from the zero means of quantization errors Δ1, . . . , Δ𝑁 , (b)
follows from the uncorrelatedness of Δ1, . . . , Δ𝑁 , and (c) follows from our definition of gradient variance 𝐺𝑛

2 =
𝑃𝑛

−1𝔼𝐗[(𝐽 𝑇 𝐽)𝑛𝑛(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞)] together with the result from rate–distortion theory (Gersho & Gray, 1991) that relates
the variance of random quantization error 𝔼[Δ𝑛

2 (𝐵𝑛)] = 𝐻𝑛𝑆𝑛
22−2𝐵𝑛 to the variance 𝑆𝑛

2 of the random source, and the
coefficient 𝐻𝑛, and bit depth 𝐵𝑛 of quantization. Expression (5) for the partial derivatives of 𝑑 with respect to 𝐵𝑛 follows
directly from the properties of the derivative of an exponential.

Since (10) is a non-linear least-squares objective and its gradient depends on the gradient variances 𝐺1
2, 𝐺2

2, . . . , 𝐺𝑁
2 , its

minimization requires an iterative update of 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 via the choice of 𝐵1, 𝐵2, . . . , 𝐵𝑁 and re-evaluation of the

gradient variances 𝐺1
2, 𝐺2

2, . . . , 𝐺𝑁
2 at 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 . This is similar to the local Hessian evaluated by the Gauss–Newton
method (Nocedal & Wright, 2006) every time the descent direction is re-computed. One can think of 𝐺1

2, 𝐺2
2, . . . , 𝐺𝑁

2 as
the diagonal elements of a non-diagonal Hessian matrix used in e.g. the Gauss–Newton method, but whose off-diagonal
elements disappear in the expectation due to multiplication by uncorrelated quantization errors 𝚫1

𝑞 , . . . , 𝚫𝑁
𝑞 .

C. Derivation of Equation (8)

To derive our sigmoid companding function (8), we turn to results from rate–distortion theory that relate the mean square
error of quantization of weights 𝜃 to the density 𝑝𝜃 of 𝜃 and the density 𝜆(𝜃) of quantization levels, where 2𝐵 ∫ 𝜆(𝜃) d𝜃𝑏

𝑎
expresses the number of quantization levels of a 𝐵 -bit quantizer within any interval [𝑎, 𝑏] . Writing Π𝑖 for the 𝑖 th
quantization cell and Π(𝜃) for the width of the cell containing 𝜃, we can write the mean square error of quantized weights
as

15

Radio: Rate–Distortion Optimization for Large Language Model Compression

𝔼|𝜃 − 𝜃𝑞|2 = ∑ ℙ[𝜃 ∈ Π𝑖]
2𝐵

𝑖=1
𝔼[|𝜃 − 𝜃𝑖

𝑞|2 | 𝜃 ∈ Π𝑖]

(14) ≈
(a)

∑ ℙ[𝜃 ∈ Π𝑖]
|Π𝑖|2

12
2𝐵

𝑖=1
≈
(b)

∫ 𝑝𝜃(𝜃) Π2(𝜃)
12

d𝜃

 ≈
(c) 1

22𝐵 ∫ 𝑝𝜃(𝜃) 𝜆−2(𝜃)
12

d𝜃

in which (a) follows from our assumption that weight distribution is approximately uniform within each quantization cell,
(b) follows from an integral approximation of the finite sum, and (c) follows from the relationship 2𝐵𝜆−1(𝜃) = Π(𝜃), all of
which hold approximately when 𝐵 is sufficiently large.

To find the density 𝜆 of quantization levels that leads to the minimum quantization error when 𝜃 has density 𝑝𝜃, we use
Hölder’s inequality: ∫ 𝑝𝜃

1/3 ≤ (∫ 𝑝𝜃𝜆−2)1/3(∫ 𝜆)2/3. Since ∫ 𝜆 = 1, we have that ∫ 𝑝𝜃𝜆−2 ≥ (∫ 𝑝𝜃
1/3)3, which sets a lower

bound on the last term of (14). This lower bound and hence minimum quantization error is attained iff 𝑝𝜃𝜆−2 ∝ 𝜆. The
optimal density for quantization levels is therefore given by

 𝜆(𝜃) ∝ 𝑝𝜃
1/3(𝜃) ⟺ Π−1(𝜃) ∝ 𝑝𝜃

1/3(𝜃). (15)

Rather than optimize the density 𝜆 to minimize the quantization error for a given 𝑝𝜃, we could equivalently transform the
weights 𝜃 as 𝜃𝜎 = 𝜎(𝜃) via a non-linear 𝜎, so that uniform quantization applied to 𝜃𝜎 ∼ 𝑝𝜃𝜎 leads to the same minimum
quantization error. The width Π(𝜃) of non-uniform quantization cells quantizing 𝜃 relates to the width of uniform
quantization cells of the companded (transformed) weights 𝜃𝜎 = 𝜎(𝜃) as

 d𝜎(𝜃) = d𝜃
Π(𝜃)

∝ 𝑝𝜃
1/3(𝜃) d𝜃 ⟹ 𝜎′(𝜃) ∝ 𝑝𝜃

1/3(𝜃), (16)

in which the first proportionality follows from (15). We can find the optimal nonlinear transform 𝜎 by integrating 𝑝𝜃
1/3(𝜃)

and normalizing (for convenience) the range of the integral to [0, 1]:

 𝜎(𝜃) = (∫ 𝑝𝜃
1/3(𝑡) d𝑡

∞

−∞)

−1

(∫ 𝑝𝜃
1/3(𝑡) d𝑡

𝜃

−∞) (17)

(Gersho & Gray, 1991). Finally, we obtain (8) by substituting the expression for the density of a Laplace distribution
(parameterized by mean 𝜇 and standard deviation 𝑆) into 𝑝! above. Transform 𝜎 is asymptotically optimal as 𝐵 → ∞ in
(14).

D. Algorithm Parameters

To aid the reproducibility of the results in Table 1, we document the code we used for all algorithms (RTN, GPTQ, OWQ,
and AWQ) along with the command line arguments.

RTN. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in the provided owq conda
environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run python main.py meta-llama/Llama-2-
7b-hf c4 --wbits 3 --nearest.

GPTQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in the provided owq
conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run the provided command python main.py
meta-llama/Llama-2-7b-hf c4 --wbits 3. For results based on the group size of 256, we run python main.py
meta-llama/Llama-2-7b-hf c4 --wbits 3 –groupsize 256.

OWQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in the provided owq conda
environment. In the case of e.g. Llama-2-7b-hf quantized to 3.01 bits, we run the provided command python main.py
meta-llama/Llama-7b-hf c4 --wbits 3 --target_bit 3.01.

AWQ. We use the AWQ code https://github.com/mit-han-lab/llm-awq/tree/3665e1a in the provided awq
conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run the provided command python -m
awq.entry –model_path meta-llama/Llama-7b-hf --w_bit 3 --q_group_size 128 --run_awq --tasks

16

Radio: Rate–Distortion Optimization for Large Language Model Compression

wikitext.

E. Output Produced By Different Quantized Models
Table 8 lists output produced by different quantized Llama-2-70b models in response to questions taken from the GSM8K
dataset. For each question, a prompt is created by prepending the question text with five other question and target pairs
from the dataset (known as a 5-shot evaluation). This allows the model to establish a context for the required output and
format. It is interesting to note that severe quantization errors (as in the case of RTN) manifest as non sequiturs and errors
in logic rather than unintelligible output.

F. Convex Weight Pruning (Hassibi & Stork, 1992)

To facilitate comparison between convex weight quantization (this work) and the convex weight pruning work of Hassibi
& Stork (1992), we provide a derivation of Hassibi & Stork’s Optimum Brain Surgeon (OBS) algorithm (presented slightly
differently), together with our commentary for additional clarification.

For simplicity, let us rewrite model (4) as 𝑓 (⋅ , 𝚯1, 𝚯2, . . . , 𝚯𝑁) = 𝑓 (⋅ , 𝚯), where 𝚯 is a vector of all model weights
across different layers of the model. The objective of convex weight pruning is to set some number of elements of 𝚯 to
zero while fine-tuning the remaining elements to minimize the difference between the output of the pruned model 𝑓 (⋅ , 𝚯𝑝)
and the output of the unpruned model 𝑓 (⋅ , 𝚯). Writing the pruned weights as 𝚯𝑝 = 𝚯 + 𝚫𝑝, where 𝚫𝑝 is a vector of
updates to be made to weights 𝚯, it is apparent that 𝛥𝑖

𝑝 = −𝜃𝑖 if the 𝑖th weight is to be pruned, otherwise 𝛥𝑖
𝑝 should be

chosen to maximally compensate for the effect of other pruned weights on the output. Suppose we have decided to prune
the 𝑝th element of 𝚯. The updated set of weights 𝚯𝑝 can be found by solving

 minimize 𝑑(𝚫𝑝) = 𝔼𝐗‖𝑓 (𝐗, 𝚯 + 𝚫𝑝) − 𝑓 (𝐗)‖2
2 ≈ 𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽)(𝐗, 𝚯)𝚫𝑝]

(18)
 subject to 𝑟(𝚫𝑝)   = 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0

in which 𝐽 (𝐗, 𝚯) represents the Jacobian of 𝑓 (𝐗, 𝚯) with respect to 𝚯, and 𝐞𝑝
𝑇 is an operator that picks out the 𝑝th element

of a vector. The Lagrangian of this problem becomes

 ℒ (𝚫𝑝, λ) = 1
2

𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽)(𝐗, 𝚯)𝚫𝑝] + λ(𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝) (19)

in which λ represents the dual variable associated with the equality constraint 𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝 = 0.

To solve (18), we differentiate ℒ with respect to 𝚫𝑝, λ and set all obtained derivatives equal to 0 to obtain the first-order
optimality conditions 𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝚫𝑝 + 𝐞𝑝λ = 𝟎 and 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0. After
some algebraic manipulations, we obtain the optimizing values

 𝚫𝑝 = −𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]
−1𝐞𝑝λ, λ = −

𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑝𝑝
−1, (20)

in which the expression for λ is obtained by substituting the expression for 𝚫𝑝 above into the second optimality condition
𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0 and solving for λ. Combining both expressions finally produces an update 𝚫𝑝 that minimizes the objective
in (18):

 𝚫𝑝 = −
𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑝𝑝
−1 𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]

−1𝐞𝑝, 𝑑(𝚫𝑝) = 1
2

𝜃𝑝
2

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑝𝑝
−1. (21)

So far, we assumed that we were given the index 𝑝 of the weight to prune from 𝚯. To actually pick the best weights to
prune away, we can compute the pruning loss 𝑑(𝚫𝑖) for all indices 𝑖, picking the index 𝑖 associated with minimum loss.
That is,

 𝑝 = argmin
𝑖

1
2

𝜃𝑖
2

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑖𝑖
−1, (22)

after which 𝚫𝑝 can be calculated (and consequently 𝚯𝑝), and further weights to prune can be picked by initializing 𝚯 ←
𝚯𝑝 and repeating the process until some pruning criterion has been met.

17

Radio: Rate–Distortion Optimization for Large Language Model Compression

Table 8: Output to questions from the GSM8K dataset (test) by 3-bit-quantized Llama-2 70B. Scores computed across 1319 answers obtained using the flexible extract filter.

Question Target FP16 (Score: 53.90%) RTN (Score: 6.14%) GPTQ (Score: 46.47%) Ours (Score: 48.60%)

Question: Every day, Wendi
feeds each of her chickens
three cups of mixed chicken
feed, containing seeds,
mealworms and vegetables to
help keep them healthy. She
gives the chickens their feed
in three separate meals. In the
morning, she gives her flock
of chickens 15 cups of feed.
In the afternoon, she gives
her chickens another 25 cups
of feed. How many cups of
feed does she need to give
her chickens in the final meal
of the day if the size of
Wendi’s flock is 20
chickens?\nAnswer:

If each chicken eats 3 cups of
feed per day, then for 20
chickens they would need
3*20=<<3*20=60>>60 cups
of feed per day.\nIf she feeds
the flock 15 cups of feed in
the morning, and 25 cups in
the afternoon, then the final
meal would require 60-15-
25=<<60-15-25=20>>20
cups of chicken feed.\n####
20

Wendi feeds each chicken 3
cups of feed per day.\nShe
feeds her flock 15 cups of
feed in the morning and 25
cups of feed in the
afternoon.\nThe total amount
of feed she gives her flock is
15 cups + 25 cups =
<<15+25=40>>40
cups.\nSince each chicken
gets 3 cups of feed per day,
the total number of chickens
in her flock is 40 cups / 3
cups =
<<40/3=13.33333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
3333333333333333333

15 cups + 25 cups + 10 cups
= <<15+25+10=50>>50 cups
of feed.\n#### 50\n

15 cups in the morning + 25
cups in the afternoon =
<<15+25=40>>40 cups of
feed\nEach chicken gets 3
cups of feed, so 40 cups of
feed / 3 cups per chicken =
<<40/3=13.33>>13.33
chickens\nSince there are 20
chickens, the number of cups
of feed in the final meal is 20
- 13.33 = <<20-
13.33=6.67>>6.67
cups\n#### 6.67\n\n

15 cups + 25 cups =
<<15+25=40>>40 cups of
feed\n20 chickens x 3 cups =
<<20*3=60>>60 cups of
feed\n60 cups - 40 cups =
<<60-40=20>>20 cups of
feed\n#### 20\n\n

Question: A robe takes 2
bolts of blue fiber and half
that much white fiber. How
many bolts in total does it
take?\nAnswer:

It takes 2/2=<<2/2=1>>1 bolt
of white fiber\nSo the total
amount of fabric is
2+1=<<2+1=3>>3 bolts of
fabric\n#### 3

2 + 2/2 = <<2+2/2=3>>3
bolts\n#### 3\n\n

2 blue bolts + 2 white bolts =
<<2+2=4>>4 bolts in
total.\n#### 4\np

2 + 1 = <<2+1=3>>3
bolts\n#### 3\n\n

2 + 2/2 = <<2+2/2=3>>3
bolts\n#### 3\n\n

Question: Josh decides to try
flipping a house. He buys a
house for $80,000 and then
puts in $50,000 in repairs.
This increased the value of
the house by 150%. How
much profit did he
make?\nAnswer:

The cost of the house and
repairs came out to
80,000+50,000=$<<80000+5
0000=130000>>130,000\nHe
increased the value of the
house by
80,000*1.5=<<80000*1.5=1
20000>>120,000\nSo the
new value of the house is
120,000+80,000=$<<120000
+80000=200000>>200,000\n
So he made a profit of
200,000-
130,000=$<<200000-
130000=70000>>70,000\n##
70000

The house is now worth
150% of $80,000, which is
$80,000 * 150/100 =
<<80000*150/100=120000>
>$120,000.\nSo he made
$120,000 - $80,000 - $50,000
= <<120000-80000-
50000=20000>>$20,000.\n##
20000\n\n

Josh bought the house for
$80,000 and spent $50,000
on repairs. So he spent
$80,000 + $50,000 =
$<<80,000+50,000=130,000
>>$130,000 on the
house.\nSo Josh spent
$130,000 on the
house.\n#### $130,000\n

Josh bought the house for
$80,000 and put in $50,000
in repairs.\nThe value of the
house increased by 150%, so
the new value is
1.5*$80,000+$50,000 =
$<<1.5*80,000+50,000=180,
000>>180,000.\nSo Josh
made $180,000 - $80,000 -
$50,000 = $<<180,000-
80,000-
50,000=50,000>>50,000 in
profit.\n#### 50,000\n\n

The value of the house
increased by 150%, so it’s
now 150% of $80,000, which
is $120,000.\nJosh spent
$80,000 + $50,000 =
<<80000+50000=130000>>$
130,000 on the house, so he
made $120,000 - $130,000 =
<<120000-130000=-
10000>>-$10,000.\n#### -
10000\n\n

	

18

Radio: Rate–Distortion Optimization for Large Language Model Compression

Kylar went to the store to buy
glasses for his new
apartment. One glass costs
$5, but every second glass
costs only 60% of the price.
Kylar wants to buy 16
glasses. How much does he
need to pay for them?",
"answer

The discount price of one
glass is 60/100 * 5 =
$<<60/100*5=3>>3.\nIf
every second glass is cheaper,
that means Kylar is going to
buy 16 / 2 = <<16/2=8>>8
cheaper glasses.\nSo for the
cheaper glasses, Kylar is
going to pay 8 * 3 =
$<<8*3=24>>24.\nAnd for
the regular-priced glasses,
Kylar will pay 8 * 5 =
$<<8*5=40>>40.\nSo in total
Kylar needs to pay 24 + 40 =
$<<24+40=64>>64 for the
glasses he wants to
buy.\n#### 64

The first glass costs $5.\nThe
second glass costs $5 * 60%
= $<<5*60%=3>>3.\nThe
third glass costs $5.\nThe
fourth glass costs $5 * 60% =
$<<5*60%=3>>3.\nThe fifth
glass costs $5.\nThe sixth
glass costs $5 * 60% =
$<<5*60%=3>>3.\nThe
seventh glass costs $5.\nThe
eighth glass costs $5 * 60% =
$<<5*60%=3>>3.\nThe
ninth glass costs $5.\nThe
tenth glass costs $5 * 60% =
$<<5*60%=3>>3.\nThe
eleventh glass costs $5.\nThe
twelfth glass costs $5 * 60%
= $<<5*60%=3>>3.\nThe
thirteenth glass costs
$5.\nThe fourteenth glass
costs $5 * 60% =
$<<5*60%=3>>3.\nThe
fifteenth glass costs $5.\nThe
sixteenth glass costs $5 *
60%

The cost of one glass is $5,
and the cost of the second
glass is $5 *
$<<5*2=10>>10>>10 is the
cost of the third glass.\nThe
cost of the fourth glass is $5
* $<<5*3=15>>15 is the cost
of the fifth glass.\nThe cost
of the sixth glass is $5 *
$<<5*4=20>>20 is the cost
of the seventh glass.\nThe
cost of the eighth glass is $5
* $<<5*5=25>>25 is the cost
of the ninth glass.\nThe cost
of the tenth glass is $5 *
$<<5*6=30>>30 is the cost
of the eleventh glass.\nThe
cost of the twelfth glass is $5
* $<<5*7=35>>35 is the cost
of the thirteenth glass.\nThe
cost of the fourteenth glass is
$5 * $<<5*8=40>>40 is the
cost of the fifteenth
glass.\nThe cost of the
sixteenth glass is $5 *
$<<5*9=45>>4

The first glass costs $5.\nThe
second glass costs $5 * 60%
= $<<5*60%=3>>3.\nThe
third glass costs $5 * 60% *
60% =
$<<5*60%*60%=1.8>>1.8.\
nThe fourth glass costs $5 *
60% * 60% * 60% =
$<<5*60%*60%*60%=1.08
>>1.08.\nThe fifth glass costs
$5 * 60% * 60% * 60% *
60% =
$<<5*60%*60%*60%*60%
=0.648>>0.648.\nThe sixth
glass costs $5 * 60% * 60% *
60% * 60% * 60% =
$<<5*60%*60%*60%*60%*
60%=0.3888>>0.3888.\nThe
seventh glass costs $5 * 6

The first glass costs $5.\nThe
second glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nThe third
glass costs 60% of $5, which
is $<<5*60%=3>>3.\nThe
fourth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nThe fifth
glass costs 60% of $5, which
is $<<5*60%=3>>3.\nThe
sixth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nThe
seventh glass costs 60% of
$5, which is
$<<5*60%=3>>3.\nThe
eighth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nThe
ninth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nThe tenth
glass costs 60% of $5, which
is $<<5*60%=3>>3.\nThe
eleventh glass costs 60%

Question: Janet’s ducks lay
16 eggs per day. She eats
three for breakfast every
morning and bakes muffins
for her friends every day with
four. She sells the remainder
at the farmers’ market daily
for $2 per fresh duck egg.
How much in dollars does
she make every day at the
farmers’ market?\nAnswer:

Janet sells 16 - 3 - 4 = <<16-
3-4=9>>9 duck eggs a
day.\nShe makes 9 * 2 =
$<<9*2=18>>18 every day at
the farmer’s market.\n####
18

Janet eats 3 eggs for
breakfast and bakes 4
muffins, so she uses 3 + 4 =
<<3+4=7>>7 eggs.\nShe
sells the remainder, so she
sells 16 - 7 = <<16-7=9>>9
eggs.\nShe sells each egg for
$2, so she makes $2 * 9 =
<<2*9=18>>18
dollars.\n#### 18\n\n

Janet sold 16 eggs per day.
She sold three eggs for
breakfast every morning, so
she sold 16 - 3 = <<16-
3=13>>13 eggs for
breakfast.\nShe sold four
eggs for her friends every
day, so she sold 16 - 4 =
<<16-4=12>>12 eggs for her
friends.\nShe sold twelve
eggs at the farmers’ market
daily, so she sold twelve eggs
at the farmers’ market daily,
so she sold twelve eggs at the
farmers’ market daily, so she
sold twelve eggs at the
farmers’ market daily, so she
sold twelve eggs at

Janet eats 3 eggs and bakes 4,
so she sells 16 - 3 - 4 = <<16-
3-4=9>>9 eggs.\nShe sells 9
eggs for $2 each, so she
makes $2 * 9 =
<<2*9=18>>18
dollars.\n#### 18\n\n

Janet eats 3 eggs for
breakfast and bakes 4
muffins, so she uses 3 + 4 =
<<3+4=7>>7 eggs.\nShe
sells the remainder at $2 per
egg, so she makes $2 * (16 -
7) = <<2*(16-
7)=2*9=18>>$18 per
day.\n#### 18\n\n

