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Abstract 

In recent years, the compression of large language 
models (LLMs) has emerged as a key problem in 
facilitating LLM deployment on resource-limited 
devices, reducing compute costs, and mitigating 
the environmental footprint due to large-scale AI 
infrastructure. Here, we establish the foundations 
of LLM quantization from a rate–distortion theory 
perspective and propose a quantization technique 
based on simple rate–distortion optimization. Our 
technique scales to models containing hundreds of 
billions of weight parameters and offers users the 
flexibility to compress models, post-training, to a 
model size or accuracy specified by the user. 

1. Introduction 

Large Language Models (LLMs) have become a universal 
framework for solving a wide range of problems in natural 
language processing, ranging from text summarization and 
translation to conversational AI. While LLMs have already 
surpassed traditional methods in many of these tasks, they 
involve tens to hundreds of billions of weight parameters 
(!), rendering their deployment onto devices with limited 
resources challenging—model weights and activations far 
exceed the available on-chip memory so that weights need 
to be loaded from the off-chip (global) memory throughout 
inference, rendering LLM inference memory-bound (Yuan 
et al., 2024). This greatly hinders the applicability of LLMs 
particularly in time-sensitive applications and exacerbates 
the environmental footprint of large-scale AI infrastructure 
required by LLMs. 

One way to reduce the memory requirements of LLMs for 
inference is by simplifying the model representation post-
training. Quantization of the model weights and activation 
has proven to be particularly apt at compressing models to 
low bit depths or even arbitrary model sizes (Dettmers et 
al., 2022; Yao et al., 2022; Frantar et al., 2022; Frantar & 
Alistarh, 2022; Kim et al., 2024; Shao et al., 2024; Lee et 
al., 2024; Guan et al., 2024). Using state-of-the-art model 
quantization techniques, it is possible to compress 10–100 

billion-parameter LLMs to 3–4 bits per weight on average 
and incur only a negligible loss in model accuracy (Chee et 
al., 2024; Frantar et al., 2022; Lin et al., 2024). This enables 
LLM inference on a single consumer-grade GPU. 

Despite the practical advances made in model quantization 
methods in recent years, rate–distortion theoretic aspects of 
LLM quantization are seldom studied in earlier works. By 
far, the most extensively studied and extended framework 
for LLM quantization is Optimal Brain Compression and 
GPTQ of Frantar et al. (2023), itself an adaptation of the 
classic Optimal Brain Surgery (OBS) algorithm (Hassibi & 
Storck, 1992). Since OBS operates outside the framework 
of rate and distortion—which serves as the basis of many 
related compression problems—a rate–distortion theoretic 
characterization and exposition of LLM compression can 
significantly enhance our understanding of the problem at 
hand and guide the design of LLM compression methods. 

In this paper, we tackle the problem of LLM compression 
using a rate–distortion framework. We begin by analyzing 
how a model’s weights should be quantized to maximize 
quantized model accuracy at a given average bit depth (bit 
rate). After this, we propose a stochastic gradient descent-
type method to solve this optimization problem exactly and 
efficiently, post-training—in minutes for billion-parameter 
models and in a few hours for 10–100-billion-parameter 
models. Compared with OPTQ and its extensions (Frantar 
et al., 2022; Frantar & Alistarh, 2022; Huang et al., 2024; 
Lee et al., 2024; van Baalen et al., 2024), in which weights 
must be fine-tuned during quantization, our rate–distortion 
framework more simply determines optimal bit depths and 
uses integer rounding heuristic for the actual quantization 
the optimum bit depths have been determined. This renders 
our framework also suited for quantizing the intermediate 
activations, which can further reduce the memory footprint 
of batched inference. 

More specifically, our contributions are as follows. 

• We formulate a rate–distortion theoretic framework for 
rate–distortion optimal quantization of LLMs. 

• We design a stochastic ascent algorithm for solving the 
resulting rate–distortion optimization problem. 

• We quantize LLMs across model types and sizes and 
show the rate–distortion behavior of quantized LLMs. 

2. Previous Work 

Earlier work on neural network model quantization can be 
traced back to Vanhoucke et al. (2011), who demonstrated 
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that 8-bit integer arithmetic is sufficient for neural network 
training and inference without incurring a significant loss 
of model accuracy. In general, quantization-aware training 
(QAT) (Zhou et al., 2017; Jacob et al., 2018; D. Zhang et 
al., 2018; Esser et al., 2019; Y. Choi et al., 2017; Wang et 
al., 2019) integrates the quantization process into training 
by allowing the model to adapt to the reduced bit precision 
in weights (Esser et al., 2019; Jacob et al., 2018; D. Zhang 
et al., 2018; Zhou et al., 2017) and activations (Y. Choi et 
al., 2017; Wang et al., 2019), determining the optimal bit 
depth (Wang et al., 2019; D. Zhang et al., 2018) and step 
size (Esser et al., 2019) using backpropagation to facilitate 
the flow of gradient through to quantization operators. One 
shortcoming of QAT methods is that model training needs 
to be repeated for different quantized model bit depths and 
accuracy, which can render them less suited for quantizing 
larger neural network models such as LLMs. 

More recent quantization methods for language and vision 
models aim to facilitate compression of pre-trained models 
for rapid deployment without additional training (Dong et 
al., 2019; Chen et al., 2021; Dettmers et al., 2022; Yao et 
al., 2022; Frantar et al., 2022; Dettmers et al., 2023; Xiao 
et al., 2023; Lin et al., 2024; Kim et al., 2024; Shao et al., 
2024; Lee et al., 2024). These methods quantize weights to 
3–4 or 8 bits for integer-arithmetic-only inference (Jacob et 
al., 2018) by using mixed bit depth quantization (Wang et 
al., 2019; Chen et al., 2021) or by a separate handling of 
outlier channels (Zhao et al., 2019) to improve the accuracy 
of the quantized model. Loss-aware quantization methods 
(Hou & Kwok, 2018; Nahshan et al., 2020; Qu et al., 2020) 
seek to minimize the accuracy loss in quantized models by 
calibrating quantization and biases on a set of calibration 
examples. Data-free quantization (Nagel et al., 2019; Xu et 
al., 2020; K. Choi et al., 2021; Qian et al., 2023) attempts 
to remove the need for real calibration data by matching the 
distribution of weights instead (Nagel et al., 2019) or using 
synthetic data in place of real calibration data (K. Choi et 
al., 2021). 

For the compression of LLMs in particular, an extension to 
the Optimum Brain Surgeon (OBS) algorithm (Hassibi & 
Stork, 1992) referred to as GPTQ (Frantar et al., 2022) has 
been proposed for compressing 10–100 billion parameter 
models. More recent extensions (Dettmers et al., 2023; Lee 
et al., 2024) to GPTQ incorporate the handling of the more 
sensitive model weights by re-scaling them or by retaining 
the original weight values similar to (Lin et al., 2024; Xiao 
et al., 2023), low-rank decomposition of quantization error 
matrices (Shao et al., 2024) as well as orthogonal transform 
of weight matrices prior to their quantization (Ashkboos et 
al., 2024). While mixed-precision weight quantization is a 
promising paradigm for handling weights with different 
sensitivity, current mixed-precision approaches (Wang et 
al., 2019; Chen et al., 2021; Lee et al., 2024; Dettmers et 
al., 2023) assign different bit depths from a limited set of 
bit-depth options (e.g., 4 or 16 bits) or only across different 
layers. This is due to the combinatorial nature of mixed bit 

depth assignment and limits the attainable quantized model 
accuracy especially for LLMs with hundreds of billions of 
parameters. Appealing to a rate–distortion framework can 
not only overcome the combinatorial nature of determining 
the optimal bit depths (0, 1, . . . , 8 bits) at a finer level of 
granularity (e.g., per channel or per weight group) but also 
enhance our understanding the LLM compression problem 
through the lens of rate–distortion theory, which has been 
fundamental to understanding and solving the quantization 
problem in image, audio and video domains. Extensions to 
transform coding and activation quantization are discussed 
in the sequel. 

3. Quantization Framework 

Here, we use the task of next-token prediction in language 
modeling as a running example. For our purposes, the end-
to-end mapping of input token embeddings to its predicted 
next-token embeddings by a pretrained language model can 
be expressed in the most general form as 

 𝐙 = 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1, . . . , 𝚯𝑁 , 𝐛1, . . . , 𝐛𝑁 ), (1) 

in which 𝐗 ∈ ℝ𝐿×𝐸  denotes a sequence of 𝐿 tokens, each 
one residing in some 𝐸-dimensional embedding space, and 
𝐙 ∈ ℝ𝐿×𝐸  are embeddings of 𝐿 predicted next tokens. The 
𝑚th block of weight matrices (𝚯𝑚𝑀+1, . . . , 𝚯(𝑚+1)𝑀 ) and 
the bias vectors (𝐛𝑚𝑀+1, . . . , 𝐛(𝑚+1)𝑀 ) parametrize the 𝑚th 
transformer block, which refines the embeddings produced 
by the (𝑚 − 1)th transformer block. LLM frameworks used 
in language modeling typically also require an embedding 
matrix 𝚯0 ∈ ℝ𝐸×𝑉  and prediction head 𝚯𝑁+1 ∈ ℝ𝑉 ×𝐸  to 
convert between embeddings and tokens from a vocabulary 
of some size 𝑉 . In this work, we focus on the compression 
of transformer block weights as customarily done in most 
model weight quantization work (Frantar et al., 2022; Lee 
et al., 2024; Lin et al., 2024). 

To get a sense of the number of weight matrices and their 
sizes in a typical language model, the 13 billion-parameter 

Figure 1: Optimum bit depths. Consider two weight matrices 
such that their distortion functions are given by 𝑑1 and 𝑑2, where 
𝑑𝑛(𝐵𝑛) = 𝐺𝑛

2𝑆𝑛
22−2𝐵𝑛. For any value of the dual 𝑉 , optimal bit 

depths 𝐵1
∗ and 𝐵2

∗ are found where the derivative of 𝑑1 (resp. 𝑑2) 
is −𝑉  (left). These points correspond to the intersections between 
𝑉  and −𝑑𝑛

′ = (2 ln 2) 𝑑𝑛 (right). Integerized bit depths are on −𝑑�̂�
′. 
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model in the Meta OPT family contains 𝑁 = 240 weight 
matrices in blocks of 𝑀 = 6, with each block comprising 
12𝐸2 weights in an embedding dimension 𝐸 = 5120. The 
embedder and prediction head are jointly parameterized by 
one matrix containing 𝑉𝐸 weights, where the vocabulary 
size 𝑉 = 50272. Each transformer block also contains 9𝐸 
bias parameters but due to their relative scarcity, these bias 
parameters can be communicated losslessly and still have 
little to no impact on the overall compression performance 
(Frantar et al., 2022). 

Notionally, the elements of 𝚯𝑛 are continuously valued so 
they require quantization for efficient communication and 
storage. Compared with vector quantization techniques of 
(Egiazarian et al., 2024; Gong et al., 2015; van Baalen et 
al., 2024), scalar quantization (Frantar et al., 2022; Lin et 
al., 2024) simplifies decoding and even enables operations 
directly on quantization indices, which obviates the need 
for a separate dequantization process. If mid-rise uniform 
scalar quantization is used, dequantization of a weight 𝜃 at 
a bit-depth of 𝐵 bits and a step size 𝐷 can be expressed as 

 𝜃𝑞(𝐵, 𝐷) = 𝐷(clip(⌊𝜃 𝐷⁄ ⌋, −2𝐵−1, 2𝐵−1 − 1) + 2−1) (2) 

for 𝐵 = 0, 1, 2, . . . , and 𝜃𝑞 = 𝜃 when 𝐵 = ∞ for notational 
convenience. The problem of compressing a model 𝑓  then 
boils down to determining the optimal bit depth 𝐵 and the 
quantization step 𝐷 for each group of model weights. It is 
impractical, of course, to determine a separate (𝐵, 𝐷) for 
each weight 𝜃 in the model since the cost of signaling the 
choice of (𝐵, 𝐷) for each one would greatly exceed the bit 
savings derived from quantization. Typically, a (𝐵, 𝐷) pair 
is used to quantize a small group of weights (e.g., an entire 
matrix or rows or columns thereof) in which case the cost 
of signaling (𝐵, 𝐷) is borne by a group of quantized weight 
parameters as a negligible per-weight overhead. 

3.1. Bit Depth Assignment 

Suppose we want to compress 𝑓  by quantizing each matrix 
𝚯𝑛 containing 𝑃𝑛 elements according to its own bit depth 
𝐵𝑛 and step size 𝐷𝑛

∗(𝐵𝑛). Generally speaking, weights that 
are more sensitive to output distortion should be allocated 
more bits to “balance the scales” while the total number of 
bits is kept under some model bit budget. We can formalize 
this notion by expressing the quantization problem at hand 
as a constrained least-squares problem: 

 
min  𝑑({𝐵𝑛}) = 𝔼𝐗‖𝑓 (𝐗, {𝚯𝑛

𝑞(𝐵𝑛)}𝑛=1
𝑁 ) − 𝑓 (𝐗)‖

2
 

 s. t.   𝑟({𝐵𝑛}) = ∑ 𝑃𝑛𝐵𝑛 − (∑ 𝑃𝑛
𝑁
𝑛=1 )𝑅 = 0𝑁

𝑛=1 ,   
(3) 

in which 𝑅 is a user-specified average model bit depth (or 
bit rate) and 𝚯𝑛

𝑞(𝐵𝑛) = 𝚯𝑛
𝑞(𝐵𝑛, 𝐷𝑛

∗(𝐵𝑛)) for brevity. This is 
a problem similar to optimal resource allocation, where the 
objective is to maximize some utility (minimizing output 
distortion in this context) by optimally spending down a 
given budget (the total number of bits). In this section and 
next, we provide insights into problem (3) and discuss its 
optimization and solution; see Algorithm 1. 

To apply the machinery of numerical optimization, we can 
relax the discrete constraint on the bit depths 𝐵1, . . . , 𝐵𝑁  
of (3) while solving the problem and round off the solution 
𝐵1

∗, . . . , 𝐵𝑁
∗  to their nearest integers after we have obtained 

them. Expressing the Lagrangian of (3) as ℒ ({𝐵𝑛}, 𝑉 ) =
𝑑({𝐵𝑛}) + 𝑉𝑟({𝐵𝑛}), where 𝑉 ∈ ℝ is the dual variable for 
the equality constraint of (3), we set equal to 0 the partials 
of ℒ  with respect to 𝐵1, . . . , 𝐵𝑁 	, 𝑉 . This yields the first 
order, rate–distortion optimality conditions 

 
1

𝑃𝑛

𝜕𝑑({𝐵𝑛})
𝜕𝐵𝑛

=  −𝑉  for all 𝐵𝑛, 𝑟({𝐵𝑛}) = 0, (4) 

so, problem (3) can be solved by alternately updating the 
bit depths 𝐵1, . . . , 𝐵𝑁  (primal variables) and the trade-off 
𝑉  (dual variable) until all optimality conditions are met. In 
other words, the optimality conditions are reached once the 
marginal decrease in the output distortion by assigning an 
infinitesimal bit is equal across layers at −𝑉  and once we 
have assigned exactly 𝑅 bits per weight on average. 

Since the quantization function (2) is constant a. e., a naive 
computation of the partial derivatives of 𝑑 with respect to 
𝐵1, . . . , 𝐵𝑁  using the chain rule of differentiation does not 
provide a useful direction for descent. A classic result from 
rate–distortion theory (Gersho  & Gray, 1991) is that for 
any random variable with finite variance, its quantization 
error decreases by half with every additional bit at a 
sufficiently high bit depth. Specifically, to our problem, one 
can verify that (Appendix B) 

 −
1

2 ln 2
𝜕𝑑({𝐵𝑛})

𝜕𝐵𝑛
≈ 𝔼𝐗 ‖

𝜕𝑓 ({𝚯𝑛
𝑞(𝐵𝑛)}𝑛=1

𝑁 )
𝜕𝚯𝑛

Δ𝑛
 𝑞 (𝐵𝑛)

‖

2

≈ 𝑃𝑛𝐻𝑛𝐺𝑛
2𝑆𝑛

22−2𝐵𝑛 ≝ 𝑑𝑛(𝐵𝑛) 
(5) 

in which 𝐺𝑛
2 and 𝑆𝑛

2 represent the variances of the elements 

Algorithm 1. Radio: Rate–Distortion Optimization for LLM  
Compression 
1 Input: f ( ⋅ ,Θ1, . . . ,ΘN) (model), {X} (calibration set), 
2   R (target bit rate), Bmax ← 8 (max bit depth) 
3 Output: B1, . . . ,BN (bit depths), S1, . . . ,SN (weight scales), 
4  µ1, . . . ,µN (weight means) 
5 Initialize: U ← pca_basis ({X}) ∈ ℝE×E', V ← 10"6 
6  Bn ← ∞, Gn

2 ← 0,  µn ← mean(Θn), Sn ← std(Θn), 
7  Θn

q ← Θn, bn
q ← bn, X&n ← 0 forall n 

8 for iter in 1, . . . ,max_iter do 
9  for X in minibatch do 
10   Z,X1, . . . ,XN ← f (X,Θ1

q, . . . ,ΘN
q ,B1

q, . . . ,BN
q ) 

11   X&n ← (1	 − α)X&n + (α/L)1TXn forall n 
12   Γ1, . . . ,ΓN ← autograd(STZU, Θ1

q, . . . , ΘN
q )  

13   Gn
2  ← (1 − α)Gn

2 + (α/Pn)  trace (Γn
TΓn) forall n 

14  for _ in 1, . . . ,10 do  
15   Bn ← clamp( 1

2 log2 (2 ln 2Gn
2Sn

2/V),0, Bmax) forall n 
16   V    ← V+ β (sum(PnBn)− (sum(Pn))R)  
17  Θn

q ← compand_quantize (Θn,Bn,Sn,	µn),  
18    bn

q ← bn + (Θn
q −Θn)X&n forall n 
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of 𝜕𝚯𝑛𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 ), and of 𝚯𝑛
𝑞, respectively, and 𝐻𝑛 

is a quantization coefficient that depends only on the type 
of weight distribution, with 𝐻𝑛 = 1.42 for Gaussian, 0.72 
for Laplace, etc. (Gersho & Gray, 1991). Assuming weights 
are distributed across layers with 𝐻1 = ⋅ ⋅ ⋅ = 𝐻𝑁 , factors 
𝐻𝑛 and the constant − 1

2 ln 2 can be removed from the above 
expression without affecting the solution of (3). 

Coupled with the above closed-form expression (5) for the 
partial derivatives, optimality conditions (4) naturally lend 
themselves to dual ascent methods for solving (3). The idea 
underlying dual ascent (Boyd et al., 2011) is to alternately 
update the primal 𝐵1, . . . , 𝐵𝑁 , and dual 𝑉  variables, with 
one set held fixed while updating the other variables. After 
initializing 𝐵1 = ⋅ ⋅ ⋅ 𝐵𝑁 = ∞ , 𝑉  to some small positive 
number, and computing 𝐺1

2, . . . , 𝐺𝑁
2 , both sets of variables 

{𝐵𝑛}, 𝑉  can be updated iteratively via  

 
𝐵𝑛 ← clamp (

1
2

log2 (
𝐺𝑛

2𝑆𝑛
2

𝑉 /2 ln 2) , 0, 𝐵max = 8) 

𝑉    ← 𝑉 + 𝛽(∑ 𝑃𝑛𝐵𝑛
𝑁
𝑛=1 − (∑ 𝑃𝑛

𝑁
𝑛=1 )𝑅)  

(6) 

in which 𝛽 represents a step size for dual update. Figure 1 
illustrates the optimality conditions for bit depths. With 𝐺𝑛

2 
and 𝑆𝑛

2 fixed, dual ascent steps (6) converge within a few 
iterations (tol = 10−6 bit, step size 𝛽 = 2) after which the 
obtained 𝐵𝑛 are rounded to integers. The non-linear nature 
of the least squares objective 𝑑 (3) means that iteration (6) 
needs to be repeated once bit depths 𝐵𝑛 are updated. Using 
the updated 𝐵𝑛, the quantized weights 𝚯𝑛

𝑞(𝐵𝑛) are obtained 
along with the new gradient variances 𝐺𝑛

2, based on which 
the variables {𝐵𝑛} can be further updated via (6).  
Evaluating 𝜕𝚯𝑛𝑓 (𝐗, {𝚯𝑛

𝑞(𝐵𝑛)}𝑛=1
𝑁 ) across the entire set of 

calibration examples at every iteration can be prohibitively 
expensive due to the dimensions of 𝑓 (𝐗) ∈ ℝ𝐿×𝐸  and the 
cost of back-propagating its elements of through 𝑓 . We can 
overcome this difficulty by performing PCA on 𝑓 (𝐗) along 
the embedding dimension (of 𝐸) and sub-sampling across 

the token dimension (of 𝑇 ), and accumulating variances of 
gradients by back-propagating only a batch of examples at 
every iteration: 

 𝐺𝑛
2 ← 𝐺𝑛

2 +   𝔼𝐗∼batch ‖
𝜕𝐒𝑓 (𝐗, {𝚯𝑛

𝑞(𝐵𝑛)}𝑛=1
𝑁 )𝐔

𝜕𝚯𝑛 ‖

2

, (7) 

in which 𝐒𝑇  and 𝐔 denote the PCA projection, and the sub-
sampling operators, respectively. In practice, we accelerate 
the variance accumulation further by cycling through PCA 
coefficients and back-propagating only one coefficient per 
sample in every minibatch. 

3.2. Quantization Step Sizes  

Suppose now that weight matrices 𝚯1, . . . , 𝚯𝑁  need to be 
assigned bit depths 𝐵1, . . . , 𝐵𝑁  (which are not necessarily 
optimal yet.) We now investigate how the quantization step 
size 𝐷𝑛 should be decided given bit depth 𝐵𝑛. In the classic 
round-to-nearest scheme (RTN, Figure 2, left), 𝐷𝑛 is often 
chosen so that the quantizer’s 2𝐵𝑛 steps just cover the full 
range of original weight values, and 𝐷𝑛 is halved as 𝐵𝑛 is 
increased by one. These criteria optimize step sizes when 
the weights are uniformly distributed and if the objective is 
to minimize distortion in quantized weights.  

For LLMs, the elements 𝜃 of a weight matrix can typically 
exhibit a light-tailed distribution 𝑝𝜃 (Gauss, Laplace, etc.) 
(Zhao et al., 2019), and partitioning the weight range into 
2𝐵𝑛 equal steps is sub-optimal especially at low bit depths 
(Cover & Thomas, 2006; Gersho & Gray, 1991). A simple 
alternative to non-uniform quantization using the Lloyd–
Max algorithm (Lloyd, 1982; Max, 1960)—which can be 
computationally expensive—is “companded” quantization 
(Gray & Neuhoff, 1998), in which a sigmoid transform is 
applied to 𝜃 prior to uniform quantization to achieve finer 
quantization in regions of high 𝑝𝜃 and coarser quantization 
in regions of low 𝑝𝜃; see Figure 2 (right). When the weights 
𝜃 are Laplace-distributed with mean 𝜇 and variance 𝑆2, an 
asymptotically optimal choice of sigmoid function can be 
shown to be (Appendix C): 

 𝜎(𝜃, 𝑆, 𝜇) =
1 + sgn(𝜃 − 𝜇) 

2
exp ( −

√2 abs(𝜃 − 𝜇)
3𝑆 ) (8) 

that is, the normalized cubic root of a Laplace cumulative 
distribution function with the mean 𝜇 and variance 𝑆2. The 
companded weights 𝜃𝜎 = 𝜎(𝜃, 𝑆, 𝜇) can then be quantized 
uniformly in the range (0, 1) and communicated along with 
bit depth 𝐵, scale 𝑆, and mean 𝜇 for dequantization using 
lookup tables. In practice, (𝑆, 𝜇) can be treated as hyper-
parameters and fine-tuned efficiently on coarse 1D grids in 
post-processing (Young et al., 2021) after Algorithm 1 has 
completed its course. 

Quantization invariably causes deterministic differences to 
arise between the original (non-quantized) weights 𝚯 and 
quantized weights 𝚯𝑞. While these errors are customarily 
modeled as zero-mean noise in theoretical analyses, they 
are seldom zero-mean empirically, leading to a systematic 

Figure 2: Companding quantization. Illustrated here for a 4-bit 
quantizer (16 quantization levels) on Gaussian weights with zero 
mean and unit variance. Uniform quantization of the entire range 
of weight values (left) leads to unduly large quantization bins 
(hence quantization errors) for probable weights. Companding (a 
sigmoid transformation) of weights to the range (0,1) prior to 
quantizing reduces quantization errors for more probable weights 
(right), which reduces output distortion. 
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bias in the model output and reduces prediction accuracy 
significantly. To compensate for the non-zero mean of the 
quantization errors, one can update the bias vectors for the 
model as 𝐛𝑛

𝑞 ← 𝐛𝑛 + (𝚯𝑛
𝑞 − 𝚯𝑛) X"n every time the weights 

𝚯𝑛 are quantized. Here, X"n is a vector of running means of 
the inputs to the 𝑛th layer, which is accumulated during the 
forward pass in a manner analogous to the accumulation of 
𝐺𝑛

2 during the backward pass. The corrected biases 𝐛𝑛
𝑞 are 

then used whenever the corresponding quantized matrices 
𝚯𝑛

𝑞 are used, both during gradient variance accumulation at 
compression time as well as inference at test time. 

3.3. Grouping Weights 

Rather than quantize at the granularity of the whole weight 
matrix, we can split each matrix into a collection of row or 
column matrices, assigning optimal bit depth and step size 
to each group of weights. In this case, the total number of 
matrices 𝑁  in (3) can be reinterpreted as the total number 
of weight groups collected across the model, and similarly 
reinterpret 𝐵𝑛, 𝐷𝑛 and 𝑃𝑛 as the bit-depth, step size and the 
number of elements of the 𝑛th weight group. Quantizing at 
the granularity of these weight groups does not increase the 
complexity of variance accumulation, as the same squared 
gradients computed via back-propagation can be averaged 
per weight group to produce the corresponding per-group 
gradient variances. To analyze the rate–distortion gain, we 
assume that each weight group is a column of a matrix. 

For a weight matrix 𝚯 with gradient and weight variances 
𝐺2  and 𝑆2 , whose per-column variances are 𝐺1

2, . . . , 𝐺𝑁
2  

and 𝑆1
2, . . . , 𝑆𝑁

2 , respectively, the theoretical gain (average 
bit depth saving) from weight grouping can be written as 

 𝛾group = 1
2 (log2(𝐺2𝑆2) − 1

𝑁 ∑ log2(𝐺𝑛
2𝑆𝑛

2)
𝑁
𝑛=1 ), (9) 

a non-negative quantity owing to Jensen’s inequality. This 
quantity represents the bit-rate (average bit-depth) savings 
that can be achieved when the 𝑛th column is assigned 𝐵𝑛 =

1
2 log2(𝐺𝑛

2𝑆𝑛
2) + 𝐵 bits for some baseline 𝐵, compared with 

assigning a uniform bit depth 𝐵𝑛 = 1
2 log2(𝐺2𝑆2) + 𝐵 bits 

across all columns when identical distribution is assumed 
across the 𝑁  columns. Figure 3 (left) plots the per-matrix 
bit-depth savings derived by grouping the (𝑄, 𝐾, 𝑉  and 𝑂) 
projection matrices of the OPT-125m model by its rows or 
columns. The sorted per-channel breakdown of the savings 
is also shown for the zeroth 𝑉  proj matrix. 

In addition to the grouping of matrices into columns, one 
may want to sub-divide each column into a fixed number 
of sub-groups of weight rows to exploit the row bit saving 
as well. To sub-group the columns of a weight matrix 𝚯 ∈
ℝ𝑁×𝑁 , one can split its rows into 𝑀  similarly sized groups 
based on their total row variances: 𝐺1

2𝑆1
2, . . . , 𝐺𝑁

2 𝑆𝑁
2 . By 

applying the same grouping to all columns of a matrix, we 
can signal the grouping index for each row using ⌈log2 𝑀⌉ 
bits—a negligible per-weight overhead for typical number 
of columns in a large weight matrix and number of groups 
used in practice. We illustrate partitioning and subdivision 
in Figure 3. In Section 4, we show the accuracy of models 
quantized with different numbers of row weight groups to 
demonstrate that the grouping mechanism used in the AWQ 
and GPTQ also improves rate–distortion characteristics. 

4. Quantization Experiments 

To study the rate–distortion behavior of a typical quantized 
LLM, we apply Algorithm 1 to the quantization of the Meta 
Open Pretrained Transformer (OPT) (S. Zhang et al., 2022) 
and Llama-2 (Touvron et al., 2023) families of language 
models (obtained from the HuggingFace Hub), comparing 
the performance of the proposed quantization method with 
baselines on next token prediction  and question answering 
tasks. For calibration data, we source 128 examples from 
the training split of the C4 dataset (Raffel et al., 2020). We 
test on the test splits of WikiText2 (Merity et al., 2022) and 
C4 for next token prediction and those of GSM8K (Cobbe 
et al., 2021), ARC (Clark et al., 2018), HellaSwag (Zellers 
et al., 2019), PIQA (Bisk et al., 2019), and WinoGrande 
(Sakaguchi et al., 2021) for question-answering tasks. 

Next Token Prediction. As our first set of experiments, we 
quantize the Meta OPT and Llama 2 models to 3 and 4 bits 
on average and measure the performance of the quantized 
models via perplexity, a stringent accuracy metric. We use 
a combined row–column group size of 512 for OPT (768 
for 125M, 66B) and 256 for Llama 2 models, batch size of 
16, and 17 tokens from each sequence of tokens of length 
2048, and optimize for a maximum of 64 iterations. Table 
1 lists the perplexity (PPL) of our quantized models on the 
test split of WikiText2. We select the final quantized model 
based on WikiText2 (best validation) but selecting the last 
quantized model produces similar test accuracy (within 1% 
of the unquantized model perplexity). For comparison, we 
include the perplexities of the same models quantized using 
round-to-nearest, GPTQ (Frantar et al., 2022), OWQ (Lee 
et al., 2024), AWQ (Lin et al., 2024) as well as QuIP (Chee 

Figure 3: Bit saving from grouping for OPT-125m. Saving is 
derived by splitting each weight matrix into a collection of row or 
column matrices and assigning each sub-matrix its own bit depth. 
Savings differ across the (𝑄, 𝐾 , 𝑉  and 𝑂) projection matrices of 
the model’s 12 transformer blocks (left). Per- row bit saving 
(right—block 3, 𝑂 -proj) can dip below zero but are always 
positive on average owing to Jensen’s inequality. 
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et al., 2024) based on the code provided by the respective 
authors; see Appendix D for details. Relative to the next 
best performing methods, the proposed method provides a 
perplexity reduction of up to 4.55 for the 3-bit OPT-125M 
model but minor perplexity gains (0.00–0.01) are observed 

for the 3-bit OPT-66B and Llama 2 70B models. In this 
comparison, AWQ uses a group size of 128, incurring 2–4 
times as many overhead bits as the proposed method, and 
OWQ, by its nature, operates at average bit depths that are 
0.01–0.05 bits higher per weight on average than proposed. 
Hyperparameters/Ablations. To analyze the influence of 
Radio hyperparameters on the accuracy of the quantized 
models, we quantize the OPT-1.3B and -13B models over 
a range of minibatch sizes and token counts (optimization 
hyperparameters) as well as the group size (quantization 
hyperparameter), with each hyperparameter varied while 
keeping the others fixed at their optimized values. (The 
optimal hyperparameter values are batch size: 16, token 
count: 17, and group size: 512.) The perplexity of the 
quantized models is then measured on the C4 test data. 
Table 2 (a–b) demonstrates that Radio is largely insensitive 
to the values of optimization hyperparameters over a wide 
range. From Table 2 (c), we see that smaller group sizes 
generally improve the performance of the quantized 
models at lower average bit depths, but this also leads to 

Figure 4: Perplexity across optimization iterations. Calibrated 
on C4 (train) using a batch size of 16. Row groups of size 512 
used. Perplexity decreases rapidly across the first thirty iterations, 
after which iterations can be early terminated. Note monotonicity 
for C4 (test), whose distribution is more like the calibration data.  
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Perplexity (PPL) 
WikiText2 (↓) 

Meta OPT (Open Pretrained Transformer)  Meta Llama 2 
 125M  350M  1.3B  2.7B  6.7B  13B  30B 66B  7B 13B 70B 

 Full Precision (FP16) 27.65  22.00 14.63 12.47 10.86 10.13 9.56 9.34  5.47 4.88 3.32 

4 
bi

ts
 

Round-to-nearest (RTN) 37.28 25.94 48.17 16.92 12.10 11.32 10.98 111.36  5.73 4.98 3.46 
GPTQ (Frantar et al., 2022) 32.05 23.87 15.47 12.83 11.14 10.29 9.57 9.34  6.07 5.20 3.59 
GPTQ/256 (Frantar et al., 2022) 30.53 23.83 14.91 12.52 11.02 10.22 9.60 9.46  5.70 5.02 3.44 
QuIP (Chee et al., 2024) 35.93 23.15 15.96 12.67 11.10 10.33 9.60 9.40  5.69 5.06 3.46 
OWQ (4.01 bits) (Lee et al., 2024) 29.47 23.19 15.01 12.39 10.87 10.26 9.50 9.25  5.63 5.01 3.43 
AWQ/128 (Lin et al., 2024) 29.11 – 14.95 12.74 10.93 10.22 9.59 9.39  5.60 4.97 3.41 
OmniQuant/128 (Shao et al., 2024) 28.86 – 14.88 12.65 10.96 10.20 9.62 9.37  5.58 4.95 3.40 
SqueezeLLM (Kim et al., 2024) – – 14.94 12.80 11.03 10.24 9.65 –  5.62 4.99 3.41 
Radio (4.0000 bits) (Ours) 27.23 22.89 14.20 12.12 10.52 10.08 9.45 9.13  5.57 4.97 3.40 

3 
bi

ts
 

RTN 1.3e3 64.57 119.47 298.00 23.54 46.04 18.80 6.1e3  6.66 5.52 3.98 
GPTQ 53.43 32.28 20.90 16.55 12.88 11.58 10.29 9.90  9.23 6.69 3.87 
GPTQ/256 41.22 29.96 16.98 13.94 11.39 10.41 9.81 11.13  6.75 5.59 4.00 
QuIP (Chee et al., 2024) 34.43 26.02 17.33 13.84 12.35 10.57 9.92 9.46  6.36 5.50 3.86 
OWQ (3.01 bits) (Lee et al., 2024) 35.26 26.59 16.40 13.21 11.21 11.48 9.59 9.28  6.21 5.36 3.77 
AWQ/128 36.77 – 16.32 13.54 11.41 10.67 9.85 9.63  6.24 5.32 3.74 
OmniQuant/128 (Shao et al., 2024) 32.25 – 15.71 13.18 11.27 10.47 9.79 9.53  6.03 5.28 3.78 
SqueezeLLM (Kim et al., 2024) – – 16.30 13.85 11.70 11.76 10.17 –  6.18 5.36 3.77 
Radio (3.0000 bits) (Ours) 30.71 25.94 14.83 12.42 11.07 10.28 9.56 9.24  6.04 5.25 3.72 

 

Table 1: WikiText2 perplexity (test). We quantize the Meta OPT and Llama 2 families of LLMs to 3–4 bits per weight on average via 
the proposed quantization method (Radio), reporting the perplexity of each quantized model on WikiText2 (test). For comparison, we 
also include the perplexities of models quantized using RTN, GPTQ, QuIP, OWQ, AWQ and SqueezeLLM. 

Table 2: Effect of hyperparameters on quantized model accuracy. Quantized model accuracy is relatively insensitive to the minibatch 
size (a) and number of tokens per sequence (b) used for the optimization. Smaller groups can improve quantized model accuracy at low 
average bit depths (c). 

 (a) Minibatch size and PPL (b) Number of tokens and PPL (c) Group size and PPL 

 PPL 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 

1.3B 13B  1.3B 13B 
FP16 16.07 12.06  16.07 12.06 

B
at

ch
 s

iz
e 2 16.24 12.12  16.94 12.36 

4 16.24 12.12  16.94 12.35 
8 16.25 12.11  16.90 12.34 

16 16.22 12.11  16.86 12.32 
32 16.24 12.12  16.88 12.36 

 

PPL 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 

1.3B 13B  1.3B 13B 
FP16 16.07 12.06  16.07 12.06 

gr
ou

p 
si

ze
 64 16.16 12.10  16.62 12.26 

128 16.17 12.10  16.70 12.29 
256 16.20 12.10  16.77 12.32 
512 16.22 12.11  16.86 12.32 

1024 16.23 12.11  16.99 12.42 
 

PPL 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 

1.3B 13B  1.3B 13B 
FP16 16.07 12.06  16.07 12.06 

N
um

 to
ke

ns
  3 16.40 12.29  17.05 12.47 

5 16.28 12.18  16.93 12.37 
9 16.24 12.12  16.91 12.35 

17 16.22 12.11  16.86 12.32 
33 16.21 12.10  16.87 12.34 
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higher overheads (discussed later). Figure 4 plots quantized 
model accuracy across optimization iterations in the case 
where baseline hyperparameter values are used. It appears 
that about 20 iterations are needed for quantization 
parameters (bit depth decisions) to reach their optima. 
Table 3 (a) shows ablations of our quantized OPT models 
by starting with RTN and adding different components 
(Jeon et al., 2023). See Table 5 for C4 perplexity results. 

Pruning Due to Quantization. Our method quantizes very 
low-variance weights of weight matrices to zero and effects 
a form of weight pruning, which has been demonstrated to 
improve test accuracy (Hassibi & Stork, 1992). Table 3 (b) 
lists the percentages of zero-quantized weights in the OPT-
1.3B and 13B models quantized to 3 and 4 bits per weight 
on average. We observe that using smaller grouping sizes 
increases the number of pruned weights since this enables 
lower-variance weights in each column to be grouped 
together and quantized to zero. However, smaller groups 
lead to higher overheads so that small improvements in 
generalization due to pruning come at the cost of signaling 
the overhead bits. Table 3 (c) lists the number of overhead 
bits (group indices and FP16 encodings of the location and 
scale parameters of each weight group) as a percentage of 

the total quantized weight bits. These overheads are in line 
with those of other algorithms which must similarly signal 
zero points and step sizes of the quantization grid (Lee et 
al., 2024). 

2.x-bit Llama-2. We study the accuracy of Llama 2 models 
quantized to 2.x bits using Radio and OWQ, both of which 
are capable of quantizing models to fractional average bit 
depths. To allow a more comprehensive study, we compare 
against OWQ with no grouping, as well as with group sizes 
of 128 and 256. We can see from Table 4 (a) that Radio-
quantized Llama-2 models are considerably more accurate 
at these bit depths than their OWQ counterparts. This is 
expected since Radio assigns bit depths from the range 
(0, 𝐵max) commensurately with gradient variances whereas 
OWQ opts to preserve the most sensitive weights in FP16 
and quantize the rest to 2 bits (Lee et al., 2024). In terms of 
execution time, Radio (for 64 iterations) and OWQ/GPTQ 
require 47 minutes and 18 minutes, respectively (excluding 
testing), to quantize the 7B model on an Nvidia A100. 

Downstream Tasks (Common Sense QA, GSM8K). To 
show the impact of model quantization on downstream 
tasks, we list in Table 4 (b–c) the accuracy of our quantized 

Table 4: 2.x-bit quantization and downstream tasks. Quantized to 2.x bits per weight, Radio reduces perplexity considerably 
compared with OWQ models quantized to the same (a). Quantized model accuracy measured by performance on tasks such as GSM8K 
(b). Group size of 256 is used. 

 (a) Perplexity of 2.1–2.8-bit Llama 2 models (b) Scores for 3-bit Llama-2 models on GSM8K and QA  
Score (%) 

Llama-2 (↑) 
GSM8K  Average QA 

7B 13B 70B  7B 13B 70B 
FP16 (Full Precision) 64.83 67.82 72.36  14.10 23.43 53.90 
RTN (Round-To-Nearest) 1.82 1.67 6.14  39.32 52.15 58.22 
GPTQ/256 (Frantar et al., 2022) 6.60 14.48 46.47  61.40 64.94 70.58 
AWQ/256 (Lin et al., 2024) 6.97 16.76 48.07  62.48 65.95 71.29 
Radio/256 (3.0000 bits) (Ours) 7.81 18.20 49.81  62.82 66.37 71.87 

 

Perplexity 
WikiText2 (↓)  

Llama 2 7B (2.1–2.8 bits) 
2.1 2.2 2.4  2.6  2.8 

FP16 (Full Precision) 5.47 5.47 5.47 5.47 5.47 
OWQ (Lee et al., 2024) 39.56 11.25 10.79 10.43 10.24 
OWQ/256 10.34 10.01 9.98 9.50 9.26 
OWQ/128 10.01 9.66 9.42 9.38 9.14 
Radio/256 (Ours) 9.47 8.39 7.05 6.56 6.21 
 

Score (%) 
Llama-2 (↑) 

Arc (Challenge)  Arc (Easy)  HellaSwag  PIQA  Winogrande  

7B 13B 70B  7B 13B 70B  7B 13B 70B  7B 13B 70B  7B 13B 70B  
FP16 (Full Precision) 43.34 48.38 54.27  76.30 79.42 82.74  57.13 60.04 64.76  78.07 79.05 82.15  69.30 72.22 77.90  
RTN (Round-To-Nearest) 20.73 30.63 37.20  34.97 60.65 65.66  31.09 43.73 51.01  57.34 70.40 73.12  52.49 55.33 64.09  
GPTQ/256 (Frantar et al., 2022) 38.23 43.34 52.13  72.26 76.64 80.85  53.02 57.65 62.60  75.63 77.48 80.52  67.88 69.61 76.80  
QuIP/256 (Chee et al., 2024) 38.74 45.39 52.30  72.77 – 80.68  54.08 76.77 63.04  77.09 78.78 81.12  66.85 70.40 76.72  
AWQ/256 (Lin et al., 2024) 41.13 45.05 53.24  73.36 77.95 81.69  54.06 57.83 63.64  75.84 77.26 81.66  68.03 71.67 76.24  
Radio/256 (3.0000 bits) (Ours) 41.21 45.73 53.84  72.60 77.95 82.32  53.95 58.55 63.86  77.20 78.51 81.88  69.14 71.11 77.43  

 

(c) Scores for 3-bit Llama-2 models on common sense QA (Arc-Challenging, Arc-Easy, HellaSwag, PIQA, Winogrande)  

Table 3: Ablations and pruning effects of quantization. A small fraction of weights is quantized to zero and pruned away due to low 
variance, with smaller groups increasing the degree of pruning (a). Quantization incurs overhead bits for signaling group indices and 
location and scale parameters of groups (b). 

 (a) Ablations (mixed precision and step sizes) (b) Pruned columns (%) (c) Overhead bits (%) 

 Overhead 
bits (%) 

Meta OPT (4 bits) 

350M 1.3B 13B 30B 

G
ro

up
 s

iz
e 64 10.33 10.30 10.28 13.70 

128  5.18  5.16  5.15  6.86 
256  2.60  2.59  2.58  3.44 
512  1.30  1.30  1.30  1.72 

1024  0.64  0.65  0.65  0.86 
 

Pruned 
(%) 

Meta OPT (4 bits) 

350M 1.3B 13B 

G
ro

up
 s

iz
e 64 0.57 2.13 2.18 

128 0.61 2.19 2.31 
256 0.67 2.10 2.16 
512 0.68 2.07 2.00 

1024 0.68 2.08 1.92 
 

Perplexity 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 
1.3B 13B  1.3B 13B 

 RTN (Round-To-Nearest) 24.51 13.36  4.2e3 3.2e3 
 + MMSE Step Sizes 16.98 12.26  21.64 13.34 
     + Mixed Precision Depths 16.29 12.12  18.48 12.73 
         + Companding 16.22 12.11  16.86 12.32 
         = Radio (Ours) 16.22 12.11  16.86 12.32 
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Llama-2 models on the ARC-C, -E (Clark et al., 2018), 
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019) 
and Winogrande (Sakaguchi et al., 2021) common sense 
question answering, and GSM8K (Cobbe et al., 2021) math 
problem solving tasks. We set our group size and the group 
size of GPTQ and AWQ to 256. We observe that Radio 
produces slightly higher scores than the GPTQ and AWQ 
quantized 3-bit models while RTN leads to severely 
diminished scores despite having similar perplexity scores 
as Radio on WikiText2 (Table 1). We include example 
responses to GSM8K questions produced by different 3-bit 
quantized Llama-2-70B models in Appendix E. 

Timing results. To show the running time behavior of the 
proposed quantization method, Table 6 lists running times 
of Radio on Llama 2 models of different sizes, measured 
on Nvidia A100. It can be seen that Radio’s running time 
grows close to linearly with model size. Table 7 lists the 
acceleration achieved by our custom quantized matrix-
vector multiply kernel, with acceleration ranging between 
1.4 and 3.3 depending on the embedding dimensionality. 

5. Discussion 

Formulating weight quantization as a convex optimization 
problem as we have done here yields two benefits. First, it 
explicates the objective we seek to optimize (minimizing 
output distortion in this case) and sets us on a path to solve 
the right problem using modern automatic differentiation 
tools e.g. PyTorch’s autograd library. Second, it enables us 
to interpret many earlier Hessian-based methods (Frantar 
et al., 2022; Lee et al., 2024; Dong et al., 2019; Chen et al., 
2021) as heuristics for approximate optimization of the true 

underlying quantization objective. Note (2) is a non-linear 
system of equations in the bit depth variables, so that any 
non-iterative solution is necessarily only an approximate 
one if one’s goal is to optimize an objective like (2). Recent 
high-performance model quantization techniques (Chee et 
al., 2024; Frantar et al., 2022; Frantar & Alistarh, 2022; Lee 
et al., 2024) ultimately trace their lineage back to the 
classic Optimal Brain Surgeon (OBS) algorithm (Hassibi 
& Stork, 1992), which is a convex formulation for weight 
pruning, not quantization (Appendix F). As a result, these 
methods inherit the need for fine-tuning weights as part of 
the quantization process, making them less suitable for the 
quantization of activations at inference time, where fine-
tuning would lead to unacceptable delays in the inference 
pipeline. 

Our experimental results demonstrate that a more accurate 

Perplexity (PPL) 
C4 (↓) 

Meta OPT (Open Pretrained Transformer)  Meta Llama 2 
 125M  350M  1.3B  2.7B  6.7B  13B  30B 66B  7B 13B 70B 

 Full Precision (FP16) 26.56 22.59 16.07 14.34 12.71 12.06 11.44 10.99  6.97 6.46 5.52 

4 
bi

ts
 

Round-to-nearest (RTN) 33.91 16.21 24.51 18.43 14.36 13.36 13.46 283.31  7.86 7.16 6.01 
GPTQ (Frantar et al., 2022) 29.42 24.14 16.73 14.85 12.99 12.24 11.56 11.08  7.86 7.06 5.90 
GPTQ/256 (Frantar et al., 2022) 28.36 24.18 16.47 14.64 12.88 12.15 11.50 11.12  7.58 6.88 5.79 
QuIP (Chee et al., 2024) 27.85 23.39 17.20 14.58 12.87 12.17 11.51 11.03  7.57 6.91 5.80 
OWQ (4.01 bits) (Lee et al., 2024) 27.93 23.37 16.49 14.60 12.83 12.17 11.49 11.02  7.59 6.94 5.81 
AWQ/128 (Lin et al., 2024) 27.79 – 16.42 14.58 12.84 12.15 11.50 11.04  7.44 6.84 5.77 
OmniQuant/128 (Shao et al., 2024) 27.59 – 16.38 14.56 12.82 12.16 11.50 11.04  7.12 6.56 5.58 
SqueezeLLM (Kim et al., 2024) – – 16.36 14.55 12.82 12.15 11.50 –  7.12 6.57 5.58 
Radio (4.0000 bits) (Ours) 27.27 23.20 16.24 14.44 12.79 12.11 11.48 11.01  7.40 6.83 5.76 

3 
bi

ts
 

RTN 839.97 55.96 4.2e3 1.1e4 4.4e3 3.2e3 1.1e3 3.5e3  521.22 14.01 11.06 
GPTQ 42.64 29.90 20.46 17.48 14.56 13.16 12.14 11.53  11.44 8.98 7.12 
GPTQ/256 (Frantar et al., 2022) 35.00 28.84 18.07 15.84 13.50 12.57 11.78 12.29  8.92 7.65 6.21 
QuIP (Chee et al., 2024) 31.37 25.58 18.15 15.92 13.66 12.40 11.67 11.16  8.48 7.49 6.10 
OWQ (3.01 bits) (Lee et al., 2024) 31.28 26.40 17.69 15.36 13.23 13.29 11.69 11.17  8.59 7.65 6.16 
AWQ/128 32.91 – 17.81 15.49 13.34 12.55 11.75 11.26  8.30 7.31 6.04 
OmniQuant/128 (Shao et al., 2024) 31.30 – 17.46 15.33 13.28 12.50 11.73 11.22  7.75 6.98 5.85 
SqueezeLLM (Kim et al., 2024) – – 17.19 15.62 13.41 13.55 11.85 –  7.72 6.97 5.73 
Radio (3.0000 bits) (Ours) 30.05 26.20 16.88 14.91 13.14 12.35 11.62 11.19  8.04 7.22 5.99 

 

Table 5: C4 perplexity (validation). We quantize the Meta OPT and Llama 2 families of LLMs to 3–4 bits per weight on average using 
the proposed quantization method, reporting the perplexity of each quantized model on the C4 dataset. For comparison, we also include 
the perplexities of models quantized using RTN, GPTQ, QuIP, OWQ, and AWQ. 

Quantization runtimes with 128 
examples from C4 (seq length 2048) 

Meta Llama 2 
7B 13B 70B 

 Full Precision (FP16) 0m 0m 0m 

3 
bi

ts
 

RTN <1m <1m 5m 
GPTQ/256 (Frantar et al., 2022) 10m 18m 90m 
QuIP (Chee et al., 2024) 36m 80m 9h 
OWQ (3.01 bits) (Lee et al., 2024) 28m 50m 4h 
AWQ/128 7m 17m 87m 
OmniQuant/128 (Shao et al., 2024) 56m 132m 15h 
SqueezeLLM (Kim et al., 2024) 11m 23m 92m 
Radio (3.0000 bits) (Ours) 47m 97m 11h 

 

Table 6: Radio running times. We quantize the Meta Llama 2 
family of LLMs to ~3 bits per weight on average and measure the 
running time of the proposed method. We also include the running 
times of GPTQ, QuIP, OWQ, AWQ, and SqueezeLLM. 
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characterization of the LLM quantization problem can lead 
to better compression outcomes. While the smaller OPT-
125M model is too limited for practical usefulness in most 
situations, its relative incompressibility helps contrast the 
performance of the different weight quantization methods 
themselves (Table 1). With larger models like OPT-66B 
and Llama 2-66B, most quantization techniques (including 
RTN) perform similarly, suggesting that larger language 
models are more compressible generally. At first glance, a 
RTN may seem sufficient for quantizing larger models, but 
upon a closer look, RTN-quantized models lead to severely 
reduced accuracy on downstream tasks such as GSM8K 
(Table 4 (a)), which highlights the importance of validating 
the accuracy of quantized models across multiple tasks and 
datasets (Jaiswal et al., 2024). Interestingly, increasing the 
number of calibration examples (from 128 to 1024) did not 
noticeably affect the quantized model’s perplexity on C4 (± 
0.01), which agrees with findings from previous works; see 
(Kim et al., 2024; Hubara et al., 2021). We will discuss the 
quantization of activations and more advanced methods for 
model quantization in the sequel. 

Finally, our CUDA matmul kernel (Appendix A) provides 
acceleration for matrix-vector multiplies by dequantizing 
mixed precision weights to a floating-point representation 
(FP16) dynamically then multiplying them by activations 
of the same representation. For the 12288 ×  49152 weight 
matrix of Meta’s OPT-175B quantized to 3 bits per weight 
on average, our custom CUDA kernel leads to a 3.8x speed 
up over the FP16 matrix-vector multiply performed using 
the default cuBLAS matmul on Nvidia A6000. Accelerated 
matrix-vector multiply and low quantization complexity of 
our quantization approach allows us to apply Radio also to 
the quantization of batched activations, where quantization 
efficiency becomes paramount. 

6. Conclusion 

Here, we showed that a rate–distortion framework can lead 
to better LLM quantization outcomes. Despite numerous 
advances in methods for LLM compression, there has not 
been an extensive study in the rate–distortion-theory 
aspects of model quantization and optimization techniques 
required to solve the resulting optimization problem. This 

work fills the gap in the current literature by introducing 
the rate–distortion framework and a stochastic numerical 
solver for the rate–distortion optimization problem. 

Reproducibility Statement 

To ensure the reproducibility of results in this work, we 
make our PyTorch Radio program available on our GitHub 
project website, where readers can also ask questions about 
this work. Appendix A lists our CUDA kernel. Appendices 
B–C provide derivations for our main theoretical results 
and  Appendix D additionally details the PyTorch code and 
command line options used to obtain the results of GPTQ 
(Frantar et al., 2022), OWQ (Lee et al., 2024), and AWQ 
(Lin et al., 2024). 

Impact Statement 

This paper aims to advance the theory of rate and distortion 
for LLM compression. There are many potential societal 
consequences of our work, none which we feel needs to be 
specifically highlighted here. 
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A. Radio Kernel for Matrix-Vector Multiplication 

For completeness, we provide here a reference implementation for multiplication between a mixed-precision quantized 
matrix and full-precision vector multiplication. Here, we assign a single bit depth to each group of 4 rows, leading to e.g. 
12288 different bit depths in the case of the 49152 ×  12288 weight matrix (MLP layer) of the OPT-175B model. Consider 
a thread block size of 256 ×  256 . Each of 256 ×  256  block, in turn, entails 1 ×  256  threads, with each thread 
dequantizing a 256 × 1 column of weights and multiplying them with the matching 1 ×  256 segment of a vector input. 
Bit depth changes every 4 rows but every thread will go through the same bit depth change in the course of multiplication, 
allowing divergence-free (and uniform memory access) operations. 
 
__constant__ float lutable[256] = { DEQUANT }; // dequantized values defined in macros.h  
 
template <typename scalar_t> 
__global__ void VecQuant3MatMulKernel( 
    const  scalar_t* __restrict__ vec, 
    const       int* __restrict__ mat, 
           scalar_t* __restrict__ mul, 
    const   uint8_t* __restrict__ depths, 
    const  scalar_t* __restrict__ scales, 
    const       int* __restrict__ i_s, 
    const   uint8_t* __restrict__ shifts, 
 
    int height, 
    int width) { 
  int row = BLOCKHEIGHT * blockIdx.x; 
  int col =  BLOCKWIDTH * blockIdx.y + threadIdx.x; 
 
  __shared__ scalar_t blockvec[BLOCKWIDTH]; 
  __shared__ scalar_t lut[BLOCKWIDTH]; 
 
  blockvec[threadIdx.x] = scales[threadIdx.x / 4] * vec[(row / BLOCKHEIGHT) * BLOCKWIDTH + 
threadIdx.x]; 
  lut[threadIdx.x] = lutable[threadIdx.x]; 
  __syncthreads(); 
 
  scalar_t res = 0; 
  int i = i_s[blockIdx.x * gridDim.y + blockIdx.y] + threadIdx.x; 
  // int i = width * row + col; 
  int shift = shifts[blockIdx.x * gridDim.y + blockIdx.y]; 
 
  uint64_t tmp_curr; 
  uint32_t tmp_read; 
  uint32_t depth_; 
 
  int j = 0, k = 0; 
 
  tmp_read = reinterpret_cast<const uint32_t*>(mat)[i]; 
  tmp_curr = static_cast<uint64_t>(tmp_read) << 32; 
  shift += 32; 
  i += width; 
 
  while (k < BLOCKWIDTH) { 
    depth_ = reinterpret_cast<const uint32_t*>(depths)[j]; 
 
    int depth, bmask; 
    uint32_t index; 
    scalar_t szero, *table; 
    for (int d = 0; d < 32; d += 8) { // for each of the 4 depth groups (represented in 8 
bits)        
      depth = (depth_ >> (d + 0)) &  7; 
      bmask = (1 << depth) - 1; 
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      szero = (static_cast<int>((depth_ >> (d + 3)) & 31) - 16) * 0.03125f; 
      table = reinterpret_cast<scalar_t*>(lut + (1 << depth)); 
 
      if (shift + 4 * depth > 64) { // will run out of bits, read more  
        tmp_read = reinterpret_cast<const uint32_t*>(mat)[i]; 
        tmp_curr = static_cast<uint64_t>(tmp_read) << 32 | 
static_cast<uint64_t>(tmp_curr) >> 32; 
        shift -= 32; 
        i += width; 
      } 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
      res += blockvec[k + 0] * (szero + table[index]); 
      shift += depth; 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
      res += blockvec[k + 1] * (szero + table[index]); 
      shift += depth; 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
      res += blockvec[k + 2] * (szero + table[index]); 
      shift += depth; 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
      res += blockvec[k + 3] * (szero + table[index]); 
      shift += depth; 
 
      k += 4; 
    } 
    j += 1; 
  } 
  atomicAdd(&mul[col], res); 
} 
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B. Derivation of Equation (5) 
To derive our main equation (5), we appeal to a linearized relationship between model weights and output, as well as 
standard results from rate–distortion theory (Gersho & Gray, 1991) that relate the quantization error of a random source to 
output distortion at a high bit depth, where the linearized model relationship is a good approximation. Let us start with our 
quantization objective 

 𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁 ) = 𝔼𝐗‖𝑓 (𝐗, 𝚯1
𝑞(𝐵1), 𝚯2

𝑞(𝐵2), . . . , 𝚯𝑁
𝑞 (𝐵𝑁 )) − 𝑓 (𝐗)‖𝐹

2 , (10) 

in which 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1(𝐵1), 𝚯2(𝐵2), . . . , 𝚯𝑁 (𝐵𝑁 )) denotes the output of the unquantized model given input 𝐗. We can 
write the residual and Jacobian of 𝑓  at (𝐗, 𝚯1

𝑞(𝐵1), 𝚯2
𝑞(𝐵2), . . . , 𝚯𝑁

𝑞 (𝐵𝑁 )) as 

𝑟 (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 )   = (𝑟1, . . . , 𝑟𝑀 ) (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ) = 𝑓 (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 ) − 𝑓 (𝐗) 

(11) 
𝐽 (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ) = (
𝜕𝑓 (𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞 )

𝜕𝚯1
,
𝜕𝑓 (𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞 )

𝜕𝚯2
, . . . ,

𝜕𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 )
𝜕𝚯𝑁 ) 

and proceed to write the gradient and Hessian of the objective (10) in terms of the 𝑟 and 𝐽above as 

  ∇𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 ) = (𝐽 𝑇 𝑟) (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ) 
(12) 

∇2𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 ) = (𝐽 𝑇 𝐽 )(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ) + ∑ (𝑟𝑚∇2𝑟𝑚)(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 )𝑀

𝑚=1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≈ 0

 

in which the second term of ∇2𝑑 is approximately zero either because the residuals 𝑟𝑚 are relatively small, or they are 
close to affine in (𝚫1

𝑞 , 𝚫2
𝑞 , . . . , 𝚫𝑁

𝑞 ) so that ∇2𝑟𝑚 are relatively small, which is the case in the vicinity of the solution. 

Using (12), we can now express the local quadratic approximation of (10) about (𝐵1, . . . , 𝐵𝑁 ) as 

�̂�(𝐵1, . . . , 𝐵𝑁 ) =
(a)

𝔼𝐗 [(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁 ))((𝐽 𝑇 𝐽 )(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 ))(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁 ))
𝑇

] 

 
+ 𝔼𝐗 [(Δ1(𝐵1), . . . , Δ𝑁 (𝐵𝑁 ))

𝑇
((𝐽 𝑇 𝑟)(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ))]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 0

 (13) 

=
(b)

∑ 𝔼𝐗[(𝐽 𝑇 𝐽 )𝑛𝑛(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 )]𝔼[Δ𝑛
2 (𝐵𝑛)]

𝑁
𝑛=1

=
(c)

∑ 𝑃𝑛𝐺𝑛
2𝐻𝑛𝑆𝑛

22−2𝐵𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 𝑑𝑛(𝐵𝑛)

𝑁
𝑛=1

  

in which the zero expectation of the linear term in (a) follows from the zero means of quantization errors Δ1, . . . , Δ𝑁 , (b) 
follows from the uncorrelatedness of Δ1, . . . , Δ𝑁 , and (c) follows from our definition of gradient variance 𝐺𝑛

2 =
𝑃𝑛

−1𝔼𝐗[(𝐽 𝑇 𝐽 )𝑛𝑛(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 )] together with the result from rate–distortion theory (Gersho & Gray, 1991) that relates 
the variance of random quantization error 𝔼[Δ𝑛

2 (𝐵𝑛)] = 𝐻𝑛𝑆𝑛
22−2𝐵𝑛  to the variance 𝑆𝑛

2  of the random source, and the 
coefficient 𝐻𝑛, and bit depth 𝐵𝑛 of quantization. Expression (5) for the partial derivatives of 𝑑 with respect to 𝐵𝑛 follows 
directly from the properties of the derivative of an exponential. 

Since (10) is a non-linear least-squares objective and its gradient depends on the gradient variances 𝐺1
2, 𝐺2

2, . . . , 𝐺𝑁
2 , its 

minimization requires an iterative update of 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞  via the choice of 𝐵1, 𝐵2, . . . , 𝐵𝑁  and re-evaluation of the 

gradient variances 𝐺1
2, 𝐺2

2, . . . , 𝐺𝑁
2  at 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 . This is similar to the local Hessian evaluated by the Gauss–Newton 
method (Nocedal & Wright, 2006) every time the descent direction is re-computed. One can think of 𝐺1

2, 𝐺2
2, . . . , 𝐺𝑁

2  as 
the diagonal elements of a non-diagonal Hessian matrix used in e.g. the Gauss–Newton method, but whose off-diagonal 
elements disappear in the expectation due to multiplication by uncorrelated quantization errors 𝚫1

𝑞 , . . . , 𝚫𝑁
𝑞 .  

C. Derivation of Equation (8) 

To derive our sigmoid companding function (8), we turn to results from rate–distortion theory that relate the mean square 
error of quantization of weights 𝜃 to the density 𝑝𝜃 of 𝜃 and the density 𝜆(𝜃) of quantization levels, where 2𝐵 ∫ 𝜆(𝜃) d𝜃𝑏

𝑎  
expresses the number of quantization levels of a 𝐵 -bit quantizer within any interval [𝑎, 𝑏] . Writing Π𝑖  for the 𝑖 th 
quantization cell and Π(𝜃) for the width of the cell containing 𝜃, we can write the mean square error of quantized weights 
as 
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𝔼|𝜃 − 𝜃𝑞|2 = ∑ ℙ[𝜃 ∈ Π𝑖]
2𝐵

𝑖=1
𝔼[|𝜃 − 𝜃𝑖

𝑞|2 | 𝜃 ∈ Π𝑖] 

(14)  ≈
(a)

∑ ℙ[𝜃 ∈ Π𝑖]
|Π𝑖|2

12
2𝐵

𝑖=1
≈
(b)

∫ 𝑝𝜃(𝜃) Π2(𝜃)
12

d𝜃 

 ≈
(c) 1

22𝐵 ∫ 𝑝𝜃(𝜃) 𝜆−2(𝜃)
12

d𝜃 

in which (a) follows from our assumption that weight distribution is approximately uniform within each quantization cell, 
(b) follows from an integral approximation of the finite sum, and (c) follows from the relationship 2𝐵𝜆−1(𝜃) = Π(𝜃), all of 
which hold approximately when 𝐵 is sufficiently large. 

To find the density 𝜆 of quantization levels that leads to the minimum quantization error when 𝜃 has density 𝑝𝜃, we use 
Hölder’s inequality: ∫ 𝑝𝜃

1/3 ≤ (∫ 𝑝𝜃𝜆−2)1/3(∫ 𝜆)2/3. Since ∫ 𝜆 = 1, we have that ∫ 𝑝𝜃𝜆−2 ≥ (∫ 𝑝𝜃
1/3)3, which sets a lower 

bound on the last term of (14). This lower bound and hence minimum quantization error is attained iff 𝑝𝜃𝜆−2 ∝ 𝜆. The 
optimal density for quantization levels is therefore given by 

 𝜆(𝜃) ∝ 𝑝𝜃
1/3(𝜃) ⟺ Π−1(𝜃) ∝ 𝑝𝜃

1/3(𝜃). (15) 

Rather than optimize the density 𝜆 to minimize the quantization error for a given 𝑝𝜃, we could equivalently transform the 
weights 𝜃 as 𝜃𝜎 = 𝜎(𝜃) via a non-linear 𝜎, so that uniform quantization applied to 𝜃𝜎 ∼ 𝑝𝜃𝜎  leads to the same minimum 
quantization error. The width Π(𝜃)  of non-uniform quantization cells quantizing 𝜃  relates to the width of uniform 
quantization cells of the companded (transformed) weights 𝜃𝜎 = 𝜎(𝜃) as 

 d𝜎(𝜃) = d𝜃
Π(𝜃)

∝ 𝑝𝜃
1/3(𝜃) d𝜃 ⟹ 𝜎′(𝜃) ∝ 𝑝𝜃

1/3(𝜃), (16) 

in which the first proportionality follows from (15). We can find the optimal nonlinear transform 𝜎 by integrating 𝑝𝜃
1/3(𝜃) 

and normalizing (for convenience) the range of the integral to [0, 1]: 

 𝜎(𝜃) = (∫ 𝑝𝜃
1/3(𝑡) d𝑡

∞

−∞ )

−1

( ∫ 𝑝𝜃
1/3(𝑡) d𝑡

𝜃

−∞ ) (17) 

(Gersho & Gray, 1991). Finally, we obtain (8) by substituting the expression for the density of a Laplace distribution 
(parameterized by mean 𝜇 and standard deviation 𝑆) into 𝑝! above. Transform 𝜎 is asymptotically optimal as 𝐵 → ∞ in 
(14). 

D. Algorithm Parameters 

To aid the reproducibility of the results in Table 1, we document the code we used for all algorithms (RTN, GPTQ, OWQ, 
and AWQ) along with the command line arguments. 

RTN. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in the provided owq conda 
environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run python main.py meta-llama/Llama-2-
7b-hf c4 --wbits 3 --nearest. 

GPTQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in the provided owq 
conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run the provided command python main.py 
meta-llama/Llama-2-7b-hf c4 --wbits 3. For results based on the group size of 256, we run python main.py 
meta-llama/Llama-2-7b-hf c4 --wbits 3 –groupsize 256. 

OWQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in the provided owq conda 
environment. In the case of e.g. Llama-2-7b-hf quantized to 3.01 bits, we run the provided command python main.py 
meta-llama/Llama-7b-hf c4 --wbits 3 --target_bit 3.01. 

AWQ. We use the AWQ code https://github.com/mit-han-lab/llm-awq/tree/3665e1a in the provided awq 
conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run the provided command python -m 
awq.entry –model_path meta-llama/Llama-7b-hf --w_bit 3 --q_group_size 128 --run_awq --tasks 
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wikitext. 

E. Output Produced By Different Quantized Models 
Table 8 lists output produced by different quantized Llama-2-70b models in response to questions taken from the GSM8K 
dataset. For each question, a prompt is created by prepending the question text with five other question and target pairs 
from the dataset (known as a 5-shot evaluation). This allows the model to establish a context for the required output and 
format. It is interesting to note that severe quantization errors (as in the case of RTN) manifest as non sequiturs and errors 
in logic rather than unintelligible output. 

F. Convex Weight Pruning (Hassibi & Stork, 1992) 

To facilitate comparison between convex weight quantization (this work) and the convex weight pruning work of Hassibi 
& Stork (1992), we provide a derivation of Hassibi & Stork’s Optimum Brain Surgeon (OBS) algorithm (presented slightly 
differently), together with our commentary for additional clarification. 

For simplicity, let us rewrite model (4) as 𝑓 ( ⋅ , 𝚯1, 𝚯2, . . . , 𝚯𝑁 ) = 𝑓 ( ⋅ , 𝚯), where 𝚯 is a vector of all model weights 
across different layers of the model. The objective of convex weight pruning is to set some number of elements of 𝚯 to 
zero while fine-tuning the remaining elements to minimize the difference between the output of the pruned model 𝑓 ( ⋅ , 𝚯𝑝) 
and the output of the unpruned model 𝑓 ( ⋅ , 𝚯). Writing the pruned weights as 𝚯𝑝 = 𝚯 + 𝚫𝑝, where 𝚫𝑝 is a vector of 
updates to be made to weights 𝚯, it is apparent that 𝛥𝑖

𝑝 = −𝜃𝑖 if the 𝑖th weight is to be pruned, otherwise 𝛥𝑖
𝑝 should be 

chosen to maximally compensate for the effect of other pruned weights on the output. Suppose we have decided to prune 
the 𝑝th element of 𝚯. The updated set of weights 𝚯𝑝 can be found by solving 

 minimize  𝑑(𝚫𝑝) = 𝔼𝐗‖𝑓 (𝐗, 𝚯 + 𝚫𝑝) − 𝑓 (𝐗)‖2
2 ≈ 𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽 )(𝐗, 𝚯)𝚫𝑝] 

(18) 
 subject to  𝑟(𝚫𝑝)   = 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0 

in which 𝐽 (𝐗, 𝚯) represents the Jacobian of 𝑓 (𝐗, 𝚯) with respect to 𝚯, and 𝐞𝑝
𝑇  is an operator that picks out the 𝑝th element 

of a vector. The Lagrangian of this problem becomes 

 ℒ (𝚫𝑝, λ) = 1
2

𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽 )(𝐗, 𝚯)𝚫𝑝] + λ(𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝) (19) 

in which λ represents the dual variable associated with the equality constraint 𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝 = 0.  

To solve (18), we differentiate ℒ  with respect to 𝚫𝑝, λ and set all obtained derivatives equal to 0 to obtain the first-order 
optimality conditions 𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝚫𝑝 + 𝐞𝑝λ = 𝟎 and 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0. After  
some algebraic manipulations, we obtain the optimizing values 

 𝚫𝑝 = −𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]
−1𝐞𝑝λ, λ = −

𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑝𝑝
−1, (20) 

in which the expression for λ is obtained by substituting the expression for 𝚫𝑝 above into the second optimality condition 
𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0 and solving for λ. Combining both expressions finally produces an update 𝚫𝑝 that minimizes the objective 
in (18):  

 𝚫𝑝 = −
𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑝𝑝
−1 𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]

−1𝐞𝑝, 𝑑(𝚫𝑝) = 1
2

𝜃𝑝
2

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑝𝑝
−1. (21) 

So far, we assumed that we were given the index 𝑝 of the weight to prune from 𝚯. To actually pick the best weights to 
prune away, we can compute the pruning loss 𝑑(𝚫𝑖) for all indices 𝑖, picking the index 𝑖 associated with minimum loss. 
That is, 

 𝑝 = argmin
𝑖

1
2

𝜃𝑖
2

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑖𝑖
−1, (22) 

after which 𝚫𝑝 can be calculated (and consequently 𝚯𝑝), and further weights to prune can be picked by initializing 𝚯 ←
𝚯𝑝 and repeating the process until some pruning criterion has been met. 
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Table 8: Output to questions from the GSM8K dataset (test) by 3-bit-quantized Llama-2 70B. Scores computed across 1319 answers obtained using the flexible extract filter.  

Question Target FP16 (Score: 53.90%) RTN (Score: 6.14%) GPTQ (Score: 46.47%) Ours (Score: 48.60%) 

Question: Every day, Wendi 
feeds each of her chickens 
three cups of mixed chicken 
feed, containing seeds, 
mealworms and vegetables to 
help keep them healthy.  She 
gives the chickens their feed 
in three separate meals. In the 
morning, she gives her flock 
of chickens 15 cups of feed.  
In the afternoon, she gives 
her chickens another 25 cups 
of feed.  How many cups of 
feed does she need to give 
her chickens in the final meal 
of the day if the size of 
Wendi’s flock is 20 
chickens?\nAnswer: 
 

If each chicken eats 3 cups of 
feed per day, then for 20 
chickens they would need 
3*20=<<3*20=60>>60 cups 
of feed per day.\nIf she feeds 
the flock 15 cups of feed in 
the morning, and 25 cups in 
the afternoon, then the final 
meal would require 60-15-
25=<<60-15-25=20>>20 
cups of chicken feed.\n#### 
20 
 

Wendi feeds each chicken 3 
cups of feed per day.\nShe 
feeds her flock 15 cups of 
feed in the morning and 25 
cups of feed in the 
afternoon.\nThe total amount 
of feed she gives her flock is 
15 cups + 25 cups = 
<<15+25=40>>40 
cups.\nSince each chicken 
gets 3 cups of feed per day, 
the total number of chickens 
in her flock is 40 cups / 3 
cups = 
<<40/3=13.33333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
3333333333333333333 

15 cups + 25 cups + 10 cups 
= <<15+25+10=50>>50 cups 
of feed.\n#### 50\n 

15 cups in the morning + 25 
cups in the afternoon = 
<<15+25=40>>40 cups of 
feed\nEach chicken gets 3 
cups of feed, so 40 cups of 
feed / 3 cups per chicken = 
<<40/3=13.33>>13.33 
chickens\nSince there are 20 
chickens, the number of cups 
of feed in the final meal is 20 
- 13.33 = <<20-
13.33=6.67>>6.67 
cups\n#### 6.67\n\n 

15 cups + 25 cups = 
<<15+25=40>>40 cups of 
feed\n20 chickens x 3 cups = 
<<20*3=60>>60 cups of 
feed\n60 cups - 40 cups = 
<<60-40=20>>20 cups of 
feed\n#### 20\n\n 

Question: A robe takes 2 
bolts of blue fiber and half 
that much white fiber.  How 
many bolts in total does it 
take?\nAnswer: 

It takes 2/2=<<2/2=1>>1 bolt 
of white fiber\nSo the total 
amount of fabric is 
2+1=<<2+1=3>>3 bolts of 
fabric\n#### 3 

2 + 2/2 = <<2+2/2=3>>3 
bolts\n#### 3\n\n 

2 blue bolts + 2 white bolts = 
<<2+2=4>>4 bolts in 
total.\n#### 4\np 

2 + 1 = <<2+1=3>>3 
bolts\n#### 3\n\n 

2 + 2/2 = <<2+2/2=3>>3 
bolts\n#### 3\n\n 

Question: Josh decides to try 
flipping a house.  He buys a 
house for $80,000 and then 
puts in $50,000 in repairs.  
This increased the value of 
the house by 150%.  How 
much profit did he 
make?\nAnswer: 

The cost of the house and 
repairs came out to 
80,000+50,000=$<<80000+5
0000=130000>>130,000\nHe 
increased the value of the 
house by 
80,000*1.5=<<80000*1.5=1
20000>>120,000\nSo the 
new value of the house is 
120,000+80,000=$<<120000
+80000=200000>>200,000\n
So he made a profit of 
200,000-
130,000=$<<200000-
130000=70000>>70,000\n##
## 70000 

The house is now worth 
150% of $80,000, which is 
$80,000 * 150/100 = 
<<80000*150/100=120000>
>$120,000.\nSo he made 
$120,000 - $80,000 - $50,000 
= <<120000-80000-
50000=20000>>$20,000.\n##
## 20000\n\n 

Josh bought the house for 
$80,000 and spent $50,000 
on repairs. So he spent 
$80,000 + $50,000 = 
$<<80,000+50,000=130,000
>>$130,000 on the 
house.\nSo Josh spent 
$130,000 on the 
house.\n#### $130,000\n 

Josh bought the house for 
$80,000 and put in $50,000 
in repairs.\nThe value of the 
house increased by 150%, so 
the new value is 
1.5*$80,000+$50,000 = 
$<<1.5*80,000+50,000=180,
000>>180,000.\nSo Josh 
made $180,000 - $80,000 - 
$50,000 = $<<180,000-
80,000-
50,000=50,000>>50,000 in 
profit.\n#### 50,000\n\n 

The value of the house 
increased by 150%, so it’s 
now 150% of $80,000, which 
is $120,000.\nJosh spent 
$80,000 + $50,000 = 
<<80000+50000=130000>>$
130,000 on the house, so he 
made $120,000 - $130,000 = 
<<120000-130000=-
10000>>-$10,000.\n#### -
10000\n\n 
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Kylar went to the store to buy 
glasses for his new 
apartment. One glass costs 
$5, but every second glass 
costs only 60% of the price. 
Kylar wants to buy 16 
glasses. How much does he 
need to pay for them?", 
"answer 

The discount price of one 
glass is 60/100 * 5 = 
$<<60/100*5=3>>3.\nIf 
every second glass is cheaper, 
that means Kylar is going to 
buy 16 / 2 = <<16/2=8>>8 
cheaper glasses.\nSo for the 
cheaper glasses, Kylar is 
going to pay 8 * 3 = 
$<<8*3=24>>24.\nAnd for 
the regular-priced glasses, 
Kylar will pay 8 * 5 = 
$<<8*5=40>>40.\nSo in total 
Kylar needs to pay 24 + 40 = 
$<<24+40=64>>64 for the 
glasses he wants to 
buy.\n#### 64 

The first glass costs $5.\nThe 
second glass costs $5 * 60% 
= $<<5*60%=3>>3.\nThe 
third glass costs $5.\nThe 
fourth glass costs $5 * 60% = 
$<<5*60%=3>>3.\nThe fifth 
glass costs $5.\nThe sixth 
glass costs $5 * 60% = 
$<<5*60%=3>>3.\nThe 
seventh glass costs $5.\nThe 
eighth glass costs $5 * 60% = 
$<<5*60%=3>>3.\nThe 
ninth glass costs $5.\nThe 
tenth glass costs $5 * 60% = 
$<<5*60%=3>>3.\nThe 
eleventh glass costs $5.\nThe 
twelfth glass costs $5 * 60% 
= $<<5*60%=3>>3.\nThe 
thirteenth glass costs 
$5.\nThe fourteenth glass 
costs $5 * 60% = 
$<<5*60%=3>>3.\nThe 
fifteenth glass costs $5.\nThe 
sixteenth glass costs $5 * 
60% 

The cost of one glass is $5, 
and the cost of the second 
glass is $5 * 
$<<5*2=10>>10>>10 is the 
cost of the third glass.\nThe 
cost of the fourth glass is $5 
* $<<5*3=15>>15 is the cost 
of the fifth glass.\nThe cost 
of the sixth glass is $5 * 
$<<5*4=20>>20 is the cost 
of the seventh glass.\nThe 
cost of the eighth glass is $5 
* $<<5*5=25>>25 is the cost 
of the ninth glass.\nThe cost 
of the tenth glass is $5 * 
$<<5*6=30>>30 is the cost 
of the eleventh glass.\nThe 
cost of the twelfth glass is $5 
* $<<5*7=35>>35 is the cost 
of the thirteenth glass.\nThe 
cost of the fourteenth glass is 
$5 * $<<5*8=40>>40 is the 
cost of the fifteenth 
glass.\nThe cost of the 
sixteenth glass is $5 * 
$<<5*9=45>>4 

The first glass costs $5.\nThe 
second glass costs $5 * 60% 
= $<<5*60%=3>>3.\nThe 
third glass costs $5 * 60% * 
60% = 
$<<5*60%*60%=1.8>>1.8.\
nThe fourth glass costs $5 * 
60% * 60% * 60% = 
$<<5*60%*60%*60%=1.08
>>1.08.\nThe fifth glass costs 
$5 * 60% * 60% * 60% * 
60% = 
$<<5*60%*60%*60%*60%
=0.648>>0.648.\nThe sixth 
glass costs $5 * 60% * 60% * 
60% * 60% * 60% = 
$<<5*60%*60%*60%*60%*
60%=0.3888>>0.3888.\nThe 
seventh glass costs $5 * 6 

The first glass costs $5.\nThe 
second glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nThe third 
glass costs 60% of $5, which 
is $<<5*60%=3>>3.\nThe 
fourth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nThe fifth 
glass costs 60% of $5, which 
is $<<5*60%=3>>3.\nThe 
sixth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nThe 
seventh glass costs 60% of 
$5, which is 
$<<5*60%=3>>3.\nThe 
eighth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nThe 
ninth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nThe tenth 
glass costs 60% of $5, which 
is $<<5*60%=3>>3.\nThe 
eleventh glass costs 60% 

Question: Janet’s ducks lay 
16 eggs per day. She eats 
three for breakfast every 
morning and bakes muffins 
for her friends every day with 
four. She sells the remainder 
at the farmers’ market daily 
for $2 per fresh duck egg. 
How much in dollars does 
she make every day at the 
farmers’ market?\nAnswer: 

Janet sells 16 - 3 - 4 = <<16-
3-4=9>>9 duck eggs a 
day.\nShe makes 9 * 2 = 
$<<9*2=18>>18 every day at 
the farmer’s market.\n#### 
18 

Janet eats 3 eggs for 
breakfast and bakes 4 
muffins, so she uses 3 + 4 = 
<<3+4=7>>7 eggs.\nShe 
sells the remainder, so she 
sells 16 - 7 = <<16-7=9>>9 
eggs.\nShe sells each egg for 
$2, so she makes $2 * 9 = 
<<2*9=18>>18 
dollars.\n#### 18\n\n 

Janet sold 16 eggs per day. 
She sold three eggs for 
breakfast every morning, so 
she sold 16 - 3 = <<16-
3=13>>13 eggs for 
breakfast.\nShe sold four 
eggs for her friends every 
day, so she sold 16 - 4 = 
<<16-4=12>>12 eggs for her 
friends.\nShe sold twelve 
eggs at the farmers’ market 
daily, so she sold twelve eggs 
at the farmers’ market daily, 
so she sold twelve eggs at the 
farmers’ market daily, so she 
sold twelve eggs at the 
farmers’ market daily, so she 
sold twelve eggs at 

Janet eats 3 eggs and bakes 4, 
so she sells 16 - 3 - 4 = <<16-
3-4=9>>9 eggs.\nShe sells 9 
eggs for $2 each, so she 
makes $2 * 9 = 
<<2*9=18>>18 
dollars.\n#### 18\n\n 

Janet eats 3 eggs for 
breakfast and bakes 4 
muffins, so she uses 3 + 4 = 
<<3+4=7>>7 eggs.\nShe 
sells the remainder at $2 per 
egg, so she makes $2 * (16 - 
7) = <<2*(16-
7)=2*9=18>>$18 per 
day.\n#### 18\n\n 

 


