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Abstract

Process reward models (PRMs) offer fine-grained, step-level evaluations that facili-
tate deeper reasoning processes in large language models (LLMs), proving effective
in complex tasks like mathematical reasoning. However, developing PRMs is chal-
lenging due to the high cost and limited scalability of human-annotated data.
Synthetic data from Monte Carlo (MC) estimation is a promising alternative but
suffers from a high noise ratio, which can cause overfitting and hinder large-scale
training. In this work, we conduct a preliminary study on the noise distribution in
synthetic data from MC estimation, identifying that annotation models tend to both
underestimate and overestimate step correctness due to limitations in their anno-
tation capabilities. Building on these insights, we propose Self-Denoising Monte
Carlo Annotation (SCAN), an efficient data synthesis and noise-tolerant learning
framework. Our key findings indicate that: (1) Even lightweight models (e.g., 1.5B
parameters) can produce high-quality annotations through a self-denoising strategy,
enabling PRMs to achieve superior performance with only 6% the inference cost
required by vanilla MC estimation. (2) With our robust learning strategy, PRMs can
effectively learn from this weak supervision, achieving a 39.2 F1 score improve-
ment (from 19.9 to 59.1) in ProcessBench. Despite using only a compact synthetic
dataset, our models surpass strong baselines, including those trained on large-scale
human-annotated datasets such as PRM80OK. Furthermore, performance continues
to improve as we scale up the synthetic data, highlighting the potential of SCAN
for scalable, cost-efficient, and robust PRM training.

1 Introduction

The recent advent of large language models (LLMs) such as OpenAl ol [} [13]] and DeepSeek
R1 [9] has sparked significant interest in scaling test-time compute to encourage slower and deeper
reasoning processes. In this context, process reward models [17,35] have emerged as a promising
approach, offering fine-grained, step-level evaluations that facilitate iterative self-refinement [29]]
and exploration of solution spaces [[L8]. This proves to be particularly effective in tackling complex
problems like mathematical reasoning tasks.

However, a critical challenge for developing process reward models (PRMs) lies in data annotation.
While human-annotated methods [[17] can produce high-quality data that effectively guides PRM
training, they come at a high cost. To address this, many works [35} (18 [26] have explored synthetic
data generation via Monte Carlo estimation. However, synthetic data still falls short of matching
the quality of human-annotated data, as explored by Zheng et al. [44]]. The primary challenge stems
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from the high noise ratio inherent in Monte Carlo-generated data, as models tend to quickly overfit
noisy samples, hindering effective training at larger data scales. Recent studies [30} 28| i43]] have
demonstrated that introducing stronger supervision from large-scale critic models (e.g., Qwen-72B)
is an effective strategy for mitigating noise by retaining only consensus samples agreed upon by both
the critic model and Monte Carlo estimation [} [14]]. However, how noise is distributed and how
to train PRMs robustly in the presence of such noise are still underexplored. In this paper, we
investigate the full potential of denoising in MC estimation itself and robust learning in PRMs,
without relying on any external stronger supervision. 70 the best of our knowledge, we are the
first to systematically explore Process Reward Learning from the perspective of noise distribution
and robust learning.

We begin with a preliminary study to investigate the noise distribution present in synthetic data
generated through Monte Carlo estimation. Our findings indicate that this noise arises mainly
from two factors: the annotation model tends to under-estimate and over-estimate step correctness,
primarily due to inherent limitations in its annotation capabilities. To address this issue, we introduce
a self-confidence metric designed to assess the reliability of model-generated annotations. Guided by
these insights, we propose strategies to mitigate two distinct types of noise: noisy positive samples and
inaccurate negative samples. We develop a selective sampling approach to reduce overall sample noise
and design a model-wise self-denoising loss for robust learning. By leveraging the self-confidence
metric, we systematically reduce the annotation model’s bias and enhance the overall data quality.
Furthermore, to improve data synthesis efficiency, we selectively apply Monte Carlo annotation to
the most informative samples, optimizing both accuracy and computational resources.

Using weak supervision from a lightweight annotation model, Qwen2.5-Math-1.5B-Instruct [39]], we
construct a synthetic dataset consisting of 101K samples. We evaluate the trained PRM from two per-
spectives: test-time scaling (best-of-8 evaluation) and step-wise error detection (ProcessBench [44]).
The results demonstrate that our model consistently outperforms strong existing baselines, achieving
performance comparable to that of the human-annotated dataset PRM80O0K. Further scaling with an
additional 97K synthetic samples generated by Llama3.2-3B-Instruct and Qwen2.5-Math-7B-Instruct
leads to our PRM surpassing the performance of the human-annotated PRM80OK on both evaluation
benchmarks. As the dataset size continues to grow, we observe further scaling potential.

2 Preliminary: Unveiling the Noise Distribution in Monte Carlo Annotaion

2.1 Problem Definition

Monte Carlo Estimation In the context of process annotation, Monte Carlo estimation [33] is
proposed as an automated approach for evaluating the correctness of each step. Formally, given a
question ¢ and a corresponding response x containing n steps, i.e., X = [x1,Z2, ..., ], the correct-
ness score of the ¢! step, denoted as c;, can be estimated by a completer model through multiple
rollouts or simulations. Specifically, the completer model is prompted to sample k completions based

on the question ¢ and prefix steps x<; = [z1, ..., 2] until a terminate state is reached.
L
¢t = Erpy(laxan T (1 a")], & = - le(w),a*), 6
i=

where J (r, a*) is an indicator function that equals 1 if the sampled response r matches the ground
truth answer a*, and O otherwise.

PRM Training After obtaining the correctness score c; for each step, we can train the PRM using
binary classification loss:

Lpce(9) = ~E(ar, yo)~ Do (Y2 108(Po (yt|q, x<t)) + (1 — ye) log(1 — Po(yelg, x<t))],  (2)

where 7, represents the correctness label of for the #*" step. We use hard labels to annotate 7/;, defined

as y; = 1[¢; > 0], assigning y; = 1 for any positive correctness score and y; = 0 otherwise. We
consider a step correct if at least one rollout leads to the correct final answer.

Noise issue in MC estimation A significant effectiveness gap exists between synthetic data and
human-annotated data [44] for training PRMs. This discrepancy can be attributed to the noise label
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Figure 1: Noise distribution analysis of Llama3.1-8B-Instruct and Qwen2.5-Math-7B-Instruct. Left:
Overall distribution of noise samples across varying self-confidence levels. Middle: Noise distribu-
tion in predicted positive samples where t,,..q = inf. Right: Distance distribution between ?,,..q and
tirue fOr inaccurate negative samples. Additional results of more models can be found in Figure E}

issue inherent in Monte Carlo estimation [[18, 42], where the correctness of each reasoning step is
often misestimated, primarily due to the limitations of the completer model. More specifically, the
correctness of the current step is annotated by the completer model based on whether the completions
lead to the correct final answer. As a result, the PRM trained on this data only estimates the potential
of the “completer model” to reach the correct final answer from the current step. This differs
significantly from the correctness of the current step, as the completer model is not perfect and can
make mistakes. This is why the noise phenomenon exists in Monte Carlo estimation.

2.2 Noise Distribution in MC estimation

Given a question ¢ and a corresponding response x = [z1, Z3, . .., Z,], we focus only on the first
error step during the training [17] and evaluation [44] of the PRM. We denote the first error location
predicted by the completer through Monte Carlo estimation as ¢4, wWhile the ground truth error
location is t4,.. For cases where the response is entirely correct, we use the label “inf” (i.e., 4-00) to
indicate the absence of any errors.

Then we can categorize the mistakes made by the completer model into the following two types (fully
correct samples are also taken into account):

* Under-Estimation (t,,cq < t:rue): This likely occurs because the completer struggles with
complex or nuanced reasoning. Even when provided with correct prefix steps, it may fail to
generate correct rollouts, leading to early error detection.

* Over-Estimation (f,,.q > t:r4c): This happens when the completer initially corrects an error,
producing a correct rollout. However, as subsequent errors accumulate, the model cannot fully
address them, causing delayed detection of the true error location.

To quantify this relationship between the noise distribution and the completer’s problem-solving
capability, we propose a metric called self-confidence, which measures the confidence level of the
completer model on the annotated question:

SC@((]) = ETNP9(~\q)~7(T» a*)v 3

where 7 (r,a*) is an indicator function that evaluates whether the response r matches the ground
truth answer a*. In practice, SCy(q) is estimated by computing the empirical mean over multiple
randomly sampled responses given question q.

Experimental Settings We select four representative open-source models, i.e., Llama3.1-
8B-Instruct, Llama3.2-3B-Instruct [6], Qwen2.5-Math-1.5B-Instruct, and Qwen2.5-Math-7B-
Instruct [39], as the completer models. For the dataset, we use ProcessBench [44], which contains



3,400 human-annotated process data points spanning multiple difficulty levels. To compute self-
confidence, we sample 16 completions for each question. For evaluating step correctness, we perform
8 rollouts per step to determine its correctness.

Key Observations The left of figure|l|illustrates the overall noise distribution of different models
across different self-confidence values)’| We mainly have the following observations:

* Observation 1: Noisy cases where tpreq < t¢rye are predominantly concentrated in low self-
confidence regions, supporting the under-estimation hypothesis discussed before.

* Observation 2: The noise distribution of ¢,,cq > t4rye varies across models. For the more
capable Qwen model, its stronger error-correction ability results in noise being concentrated in
high self-confidence regions. In contrast, noise is more evenly distributed for the Llama model.

* Observation 3: Clean samples (t,req = true) are primarily located in high self-confidence regions.
Overall, high-confidence regions exhibit a lower proportion of noise.

2.3 Detailed Analysis of Noise Distribution

At a finer granularity, we classify noise into two distinct categories: Noisy Positive Samples and
Inaccurate Negative Samples.

Noisy Positive Samples Samples observed as fully correct positives with ¢4 = inf, but actually
contain errors, i.e., t4e 7 inf. These cases indicate that the model fails to detect existing errors,
leading to noisy positives in its predictions. For clarity, we categorize self-confidence into three
levels: low confidence as [0, 0.25], medium confidence as (0.25, 0.75), and high confidence as [0.75,
1]. These thresholds are empirically determined through the overall noise distribution. The middle of
figure [Tillustrates the distribution of noise positive samples, from which we can conclude that:

* Observation 4: For predicted positive samples (¢,..q = inf), the noise positive ratio is significantly
lower in high self-confidence samples, making them more suitable for training.

Inaccurate Negative Samples Samples observed as containing errors (t,..q 7 inf), but the
predicted error location is incorrect, i.e., tpred 7 terue. This reflects the model’s inability to precisely
identify the true error location, even when it detects the presence of errors. From Observations 1, 3,
4, we can conclude that the completer model makes fewer mistakes in high self-confidence samples.
Therefore, we focus on the high-confidence subset to investigate how noise is distributed in inaccurate
negative samples. We visualize the relationship between t,..q and ¢, in the right of figure E], from
which we can conclude:

* Observation 5: In most cases, the model can roughly predict the error location but often lacks
precision. Furthermore, the model tends to overestimate the error location, i.e., tpred > tirues
and the number of noisy samples decreases as the deviation increases. This also supports the
over-estimation hypothesis discussed before.

3 Methodology

Building on the observations of noise distribution discussed in section [2] we propose targeted
approaches to address key challenges in Monte Carlo annotation. Specifically, our method contains
two modules: (1) an efficient data synthesis framework to reduce substantial inference costs, and (2)
robust training methods to mitigate the high noise ratio in synthetic data and enable robust learning
with noisy labels. Figure[2]illustrates the overall workflow of our proposed method.

3.1 Efficient Data Synthesis Framework

Generate Responses The synthesis process begins with a dataset of questions and their corre-
sponding golden answers, denoted as D = {(g;, a;)}.,. For each question ¢;, a generator model

2We include fully correct samples, assigning them an error location label of +oco for convenience.
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Figure 2: Overview of our data synthesis and robust training framework.
parameterized by m; produces N responses, denoted as {r; 1,7; 2, ..., 7~ }. The confidence score
of the generator in g; is then computed as:
1
_ (4)
SCr (i) = N E J(r;”,ai), wherer; ~ Pp(- | q;) “4)
j=1

where J (ng ), a') evaluates the correctness of the generated response. Next, we collect the negative
samples with ¢,,..q 7 inf from these responses for further step-wise annotation. In this process, we do
not select the annotated correct (positive) samples for subsequent annotation. Although these positive
samples may contain false positives that could potentially be filtered out through detailed step-wise
correctness checks, we find that the annotation cost for this process is prohibitively high. For instance,
performing 8 rollouts for each step in a 10-step response requires 8 x 10 = 80 rollouts per sample.
Moreover, the positive samples, particularly those in high self-confidence regions, contain minimal
noise (from Observation 4). Therefore, we directly use these high-confidence samples as positive
examples for training without further annotation. By applying Monte Carlo estimation exclusively to
negative samples, we ensure 100% sample utilization—every sample annotated through Monte Carlo
estimation is included in the final training dataset.

Step-wise correctness annotation Negative samples with high self-confidence scores, SC, (g;) >
€, are selected for step-wise correctness annotation using a completer model parameterized by 7.
We employ vLLM [15] and implement distributed inference via Ray [22]] to accelerate the annotation
process. To support the subsequent robust learning process, we also need to collect the self-confidence
scores SChr,(q;) during annotation. For convenience, we use the same model as the generator and
completer models, i.e., m; = my = 7, allowing us to reuse the self-confidence scores and further
enhance data generation efficiency.

3.2 Robust Learning with Noisy Labels

The final annotated dataset, denoted as D f;y,q1, consists of tuples (¢, x, ¢, SCr(q)), where ¢ is the
question, X = [z1, 2, ..., T, represents the n-step responses, and ¢ = [c1, ¢a, . . ., ¢,,] contains the
corresponding correctness scores annotated via Monte Carlo (MC) estimation. The term SC(q)
denotes the self-confidence score of the completer model 7 for question g. We then train PRMs with
the reweighted step label:

Lscan(0) = —E(a_, y,)~ Dy [Y2 108(Po (ye|q, x<1)) + (1 — y1) log(1 — Py(ytlq, x<t))]

. {min(ct/SCﬂ(q), 1), ift ,—t<d
Y =

where ¢; = P,(y; = correct|q, x
I(e; > 0), Otherwise ’ “ (ve 14, %<0),

&)
where ¢7 . ; denotes the first error location with ¢; = 0. Compared to the traditional BCE loss, our
modifications focus on two main aspects: noise-tolerant labeling and confidence-wise reweighting.



Noise-tolerant Labeling The completer model tends to overestimate the correctness of the current
step due to its strong self-correction capability. As errors continue to accumulate, the model eventually
makes mistakes, leading to ¢p,.cq > t¢rue, With a high probability of similar errors occurring at nearby
positions (Observation 5). To enable more robust learning with these noisy labels, we propose a
noise-tolerant labeling strategy that applies soft labels to steps preceding the error, within a tolerance
distance d. We discuss the choice of d in section[d.4] Through experiments, we demonstrate that the
strategy allows the PRM to learn more effectively from noisy labels without overfitting.

Confidence-wise Reweighting After applying the denoising process, a critical issue remains: the
annotated labels are still heavily influenced by the capability of the completer model, i.e.,

¢; = P(y; = correct|mgoud, ¢, X<¢), While ¢; = P(y; = correct|mg, ¢, X<¢). (6)

Here, ¢ represents the true correctness probability assigned by an assumed golden annotator g,
while c; is the estimated probability derived from the completer model 7g. Since we can only estimate
¢; through rollouts performed by the imperfect completer g, the true label ¢} remains unobservable.
To mitigate the model-dependent bias, we introduce a correction factor 6; = ¢} /c;. We leverage the
self-confidence score SC(q) to approximate and reduce this model-induced bias. The rationale
behind this approach is as follows: consider two models annotating the same sample—a strong model
with SCqyong (¢) and a weak model with SClyeax(¢). Naturally, the stronger model will yield a higher
correctness score ¢;. However, we aim for the final corrected scores to be consistent across models,
regardless of their inherent strengths. Thus, we adjust the estimated correctness score using the
self-confidence score as follows:

¢ = min(c;/SCx(q), 1). ©)

This adjustment helps to normalize the influence of model capability on the annotated labels, leading
to more reliable and unbiased training data. This reweighting procedure is particularly effective when
integrating annotations from multiple completer models, as demonstrated by the experimental results
in section

4 Experiment

4.1 Training Dataset Construction

ScaAaN-Base (101K) We use 7,500 questions with golden answers from the MATH training set.
For each question, we generate k responses and perform eight rollouts per step to annotate process
correctness via MC estimation. We set tolerance distance d to 2, with discussion in section 4.4
ScAN-Base is generated by Qwen2.5-Math-1.5B-Instruct [39] as both the generator and completer.
We experiment with varying numbers of responses from k € {64, 128} and found that a larger number
of responses provides a more accurate estimation of the model’s self-confidence, which is crucial for
denoising and robust learning processes, as elaborated in Appendix Additionally, we explore
other data sources, including GSMS8K [2] and Numina-Math [16], and discover that the MATH
dataset offers a more suitable level of difficulty and higher data quality for training (Appendix [B.4).

ScAN-Pro (197K) We further incorporate Qwen2.5-Math-7B-Instruct [39] and Llama3.2-3B-
Instruct [6] for Monte Carlo estimation. With these two models, we generate an additional 97K
data points. Integrated with SCAN-Base, we construct a mixed dataset containing 197K samples.
More dataset details are shown in Appendix [A.T] We observe that (1) combining these two datasets
increases the diversity of the data, thereby boosting model performance, and (2) the model-wise
reweighted loss design mitigates any data inconsistency arising from the capability gap between the
annotation models, with experiment results in section @

4.2 Experimental Setup

We evaluate the effectiveness of the Process Reward Model (PRM) from two key perspectives:

Best-of-N (BoN) Evaluation In this evaluation, the PRM functions as a verifier to select the best
response from multiple candidate answers generated by a policy model. Specifically, the PRM assigns
scores to each step within a response and then aggregates these step-wise scores into an overall



Table 1: Best-of-8 evaluation results of the policy model Qwen2.5-Math-7B-Instruct. Results of
policy model Llama3.1-8B-Instruct can be found in Appendix [B.3] To reduce potential errors, we
re-evaluated all these models based on the same set of responses.

Training Annotation College Olympiad
Model Samples Method GSMSK ~ MATH Math Bench Avg.
Greedy 95.6 83.6 46.9 40.6 66.7
Majority Vote @8 96.9 87.3 474 43.0 68.7
Pass@8 (Upper Bound) 98.0 92.0 52.3 60.4 75.7
UniversalPRM-7B 690K MC, KD 96.8 86.9 47.6 48.0 69.8
Qwen2.5-Math-PRM-7B 1500K MC, KD 96.8 88.1 47.7 47.6 70.1
RLHFlow-PRM-Mistral-8B 273K MC-Only 97.1 87.3 47.3 43.0 68.7
RLHFlow-PRM-DeepSeek-8B 253K MC-Only 96.8 87.3 47.9 439 69.0
EurusPRM-Stagel 463K Implicit 96.9 86.0 474 42.8 68.3
EurusPRM-Stage?2 693K Implicit 97.0 86.7 47.9 453 69.2
Math-PSA-7B 1395K MC-Only 96.4 86.0 47.7 459 69.0
Qwen2.5-Math-7B-Math-Shep 445K MC-Only 96.9 86.8 47.6 42.3 68.3
Skywork-PRM-Qwen2.5-7B - - 97.0 87.9 47.8 44.6 69.3
Qwen2.5-Math-7B-PRM800K 264K Human 97.0 87.6 47.7 45.0 69.3
Qwen2.5-Math-7B-SCAN-Base 101K MC-Only 97.1 86.9 47.8 444 69.1
Qwen2.5-Math-7B-SCAN-Pro 197K MC-Only 97.1 87.3 48.1 47.7 70.1

Table 2: Evaluation Results on ProcessBench. MC denotes Monte Carlo estimation, while KD
represents knowledge distillation from more capable critic models (with 32B or larger parameters).

Model | GSMSK MATH Olympiad Bench Omni Math | Avg.
| error correct F1 |error correct F1 |error correct F1 |error correct F1 | F1
Criric Models (LLM-as-a-judge)
GPT-40-0806 70.0 912 792|544 766 63.6|458 584 514|452 656 535|619
Qwen2.5-Math-7B-Instruct 155 1000 268|148 968 257 | 7.7 917 142 69 88.0 12.7]199
Llama-3.3-70B-Instruct 725 969 829|433 832 594 |31.0 941 46.7]282 905 43.0]58.0
Qwen2.5-72B-Instruct 628 969 762|463 931 61.8|387 926 546|366 909 522|612
QwQ-32B-Preview 81.6 953 880|781 793 787|614 546 578|557 680 613|715
Process Reward Models (MC + KD)
UniversalPRM-7B - - 85.8 - - 77.7 - - 67.6 - - 66.4 | 74.3
Qwen2.5-Math-PRM-7B 720 964 824|680 904 77.6|557 855 675|552 830 663|735

7-8B Process Reward Models (w/o KD)

RLHFlow-PRM-Mistral-8B 338 99.0 504|217 722 334| 82 431 138] 9.6 452 158284
RLHFlow-PRM-Deepseek-8B | 24.2 984 388|214 800 33.8|10.1 51.0 169|109 519 169 |26.6
EurusPRM-Stagel 469 420 443|333 382 356|239 198 21.7|219 245 231|312
EurusPRM-Stage2 512 440 473|364 350 357|257 180 212|231 191 209|313
Qwen2.5-Math-7B-Math-Shep | 46.4 959 625|189 966 31.6| 74 938 137| 40 950 7.7 |289
Skywork-PRM-Qwen2.5-7B 61.8 829 708|438 622 53.6|179 319 229|140 419 210|421
Qwen2.5-Math-7B-PRM800K | 53.1 953 682|480 90.1 62.6|357 873 50.7|298 863 443|565
Qwen2.5-Math-7B-SCAN-Base | 67.1 819 73.8|55.6 695 617|449 454 452|416 527 46.5|56.8
Qwen2.5-Math-7B-SCAN-Pro | 729 90.7 80.9 | 586 73.6 65.3|442 478 459|378 53.1 442|591

reward score for the entire response. The response with the highest reward score is selected as the
final answer. For the aggregation process, we take the lowest score among all steps as the overall
reward score. Further experiments and discussions regarding different aggregation methods are
provided in Appendix[d] The evaluation datasets cover various difficulty levels, including GSMSK [2]]
(elementary), MATH [11]] (competition), College Math [31] (college), and Olympiad Bench [[10]
(Olympiad). We employ Qwen2.5-Math-7B-Instruct and Llama3.1-8B-Instruct as the policy model
and set N to 8 (a reasonably practical setting in real-world applications). We report the majority
voting [36] as the baseline and pass@8 as the upper bound.

Step-wise Error Detection We further investigate the PRM’s ability to detect error locations within
responses accurately. We use ProcessBench [44] as the evaluation benchmark, which measures the
PRM’s capability to identify the first error location in a given response. This evaluation focuses on
the model’s performance in recognizing fully correct samples and accurately identifying the error
in incorrect responses. Formally, the evaluation metrics can be defined as: The final F1 score is the
harmonic mean of the accuracies on correct and erroneous samples.
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Compared Baselines Our primary comparisons are against 7B-scale process reward models,
including Math-Shepherd [35]], RLHFlow-PRM [38]], Skywork-PRM [23]], Math-PSA [34]], and
EurusPRM [40, 3]. We also include models trained with strong supervision, such as Qwen2.5-
Math-PRM-7B[42]] and UniversalPRM[30], as points of reference. However, we do not include
direct comparisons with these strongly supervised models, as they rely on large-scale external critic
models for guidance. As shown in Table[2] these critic models are already highly capable, and their
supervision, typically via knowledge distillation, plays a key role in the final PRM performance.
However, we address a different issue from these approaches, i.e., denoising MC estimation itself. For
the Best-of-N evaluation, we directly test the publicly available checkpoints of the compared models.
For ProcessBench, the results are directly sourced from Zheng et al. [44]).

4.3 Main Results

Best-of-8 Evaluation Table[I] presents the Best-of-8 evaluation results based on the policy model
Qwen?2.5-Math-7B-Instruct. With only 101K synthetic samples from the SCAN-Base dataset, gener-
ated by the 1.5B model, the Qwen2.5-Math-7B-SCAN-Base model outperforms PRMs trained on
larger synthetic datasets and approaches the performance of PRMs trained on human-annotated data
(PRM800K). Notably, when trained with additional synthetic data generated by the 7B model, the
resulting Qwen2.5-Math-7B-SCAN-Pro model surpasses PRM80OK. This demonstrates that even
with a 1.5B model, it is possible to synthesize data of comparable quality to human annotations.

ProcessBench Table 2] presents the evaluation results on ProcessBench. Both Qwen2.5-Math-7B-
SCcAN-Base and Qwen2.5-Math-7B-SCAN-Pro outperform all other process reward models, including
those trained on PRM80O0K. Remarkably, their error detection capabilities even surpass those of the
70B-scale critic model Llama-3.3-70B-Instruct. Through the SCAN approach, Qwen2.5-Math-7B-Ins
is able to generate process data for self-training, leading to a substantial improvement in its own error
detection capability (from 19.9 to 59.1), demonstrating strong self-improvement potential.

4.4 Ablation Study

We conducted an ablation study to further demonstrate the effectiveness of each component. Addi-
tional results can be seen in Appendix

Scaling Curve of SCAN-Base and SCAN-Pro The left of figure [3] illustrates the performance
variation of the model during training. We observe that without any denoising strategy, the model
quickly overfits to noisy samples (see Baseline results). Our denoising strategy enables the model to
grow steadily without overfitting to noisy samples and further improves the model’s performance. By
comparing the results of SCAN-Base and SCAN-Pro, we conclude that incorporating additional data
sources enhances the diversity of the data, which in turn optimizes the model’s upper bound.

Choices of Tolerance Distance Choosing an appropriate tolerance distance d is critical, as both
very small and very large values can introduce noise. When d = 0, it results in hard labeling, leading
to severe noise, as shown in the scaling curve. Conversely, when d = n, it becomes soft labeling,



which also adds significant noise and hinders scaling [42]. The middle of figure [3|shows the results
for different values of d. We find that d = 2 offers a good balance, reducing overfitting during
training.

Effectiveness of each component The right of figure 3| shows the effectiveness of each component.
We begin with a baseline where no denoising strategy is applied to the SCAN-Pro dataset. As
we progressively incorporate denoising techniques, we observe consistent improvements in model
performance across both best-of-n and ProcessBench evaluations. Both tolerance distance labeling
and confidence reweighting contribute to performance gains. Tolerance distance labeling enhances
the model’s robustness when handling noisy samples, while confidence reweighting helps de-bias the
probability estimation from different models on annotated samples.

5 Related Work

Reward Models in Reasoning Tasks Reward models play a crucial role in enhancing the capabili-
ties of large language models (LLMs), particularly in complex reasoning tasks such as mathematical
problem-solving [6} 39]] and competitive programming [[12]. In this context, reward models act as
verifiers to assess the correctness of generated responses [4] or directly enhance LLM capabilities
through preference alignment [[19} 27]. Unlike outcome reward models (ORMs), which evaluate only
the correctness of the final answer, process reward models [32, [20] (PRMs) provide more fine-grained
evaluations by assessing each step of the reasoning process. Recent advancements 35, (18} 133]] have
demonstrated the significant potential of PRMs in scaling test-time compute [26} 42] and preference
learning [35} 18], further highlighting their importance in the development of more capable and reliable
LLMs.

Process Reward Learning Human-annotated data [20] is the primary solution, but due to the
complexity of the task, manual annotation is highly costly. Recent works show the potential of Monte
Carlo estimation as a promising alternative; however, it also introduces considerable noise [35}[18}144].
This noise can be mitigated by incorporating critic models [21} 41} 7} 137], where LLMs are prompted
to assess the correctness of each step directly. However, recent research [44]] indicates that only
large-scale models (e.g., Qwen2.5-Math-72B-Instruct) possess strong critic capabilities. Thus, this
approach essentially distills the error-detection ability of large models into smaller process reward
models through data distillation. Numerous works extend the strong supervision to more complex
methods, like code verification [43]], reverse verification [30]], and data synthesis for preference
learning [28]]. Another line of work [40, 3] focuses on a different training paradigm by simply
training an ORM on response-level labels, as optimized language models inherently function as
reward models as well [24]]. Our work takes a novel noisy-learning perspective and aims to address
two key challenges in Monte Carlo annotation: high computational overhead and high noise ratio
problem.

6 Conclusion

In this paper, we introduce an effective approach to improving process reward models from the
perspective of data annotation. We first conduct a preliminary study to reveal the noise distribution in
the Monte Carlo annotation process by introducing a confidence metric. We then propose an efficient
data synthesis and robust learning framework to address the key challenges in Monte Carlo estimation.
Through extensive experiments, we demonstrate the effectiveness of our proposed approach and the
potential of model self-improvement from a robust learning perspective.
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A Data Synthesis and Training Details

A.1 Data Synthesis Details

Table 3: Data component of SCAN-Base and SCAN-Pro datasets.

Dataset Samples Generator & Completer 1(3 enerate Response Perform Rollouts GPU hours
temp. top_p | k temp. top_p
15K Qwen2.5-Math-1.5B-Instruct | 64 0.7 0.8 8 0.7 0.8
16K Qwen2.5-Math-1.5B-Instruct | 64 1.0 1.0 8 0.7 0.8
ScaN-Base | 3ig Qwen2.5-Math-1.5B-Instruct | 128 07 08 |8 07 08 174.4
40K Qwen2.5-Math-1.5B-Instruct | 128 1.0 1.0 8 0.7 0.8
SCAN-Pro 13K Qwen2.5-Math-7B-Instruct 64 0.7 0.8 8 0.7 0.8
(Increment) 13K Qwen2.5-Math-7B-Instruct 64 1.0 1.0 8 0.7 0.8 200.1
71K Llama3.2-3B-Instruct 128 1.0 1.0 8 0.7 0.8
SCAN-Pro 374.5
(Full) (Total)

Data Components and Inference Cost Table [3| presents the composition of the SCAN-Base and
SCAN-Pro datasets, along with specific hyperparameter settings, including the total inference cost.
Through our efficient framework design, we generated 197K samples using 374.5 GPU hours. All
experiments were conducted on a single machine equipped with 8 GPUs, requiring only 47 hours in
real time.

Monte Carlo Tree Search Regarding the choice of inference strategy, we found that the commonly
used Monte Carlo Tree Search (MCTS) method is inefficient for large-scale data synthesis. Annotating
a single sample with MCTS involves multiple sequential steps, where each action depends on the
state of the tree, making parallelization impractical. Additionally, maintaining extensive tree node
information for each sample results in substantial memory overhead. As an alternative, we adopted
the vanilla Monte Carlo method for annotation. This approach not only delivers strong annotation
performance but also achieves results comparable to those of MCTS [18]], while offering significantly
higher efficiency.

Implementation Details For inference deployment, we explored two approaches: (1) launching
multiple vLLM servers and making API calls, using distributed routing strategies powered by
FastChat [435]], and (2) batching multiple queries and utilizing Ray to schedule resources for distributed
inference. We found the second approach to be significantly more efficient, achieving over twice the
speed of the first method. When estimating step-wise correctness via Monte Carlo (MC) estimation,
we begin from the first step of the response and proceed sequentially until encountering the first
position where c; = 0, at which point the evaluation stops. While this introduces some dependency
between steps, the depth of dependency is limited to the number of steps, which is considerably
shallower and less complex compared to the recursive depth of Monte Carlo Tree Search (MCTS).

A.2 PRM Training
We train our process reward models based on Qwen2.5-Math-7B-Instruct with a constant learning
rate of 7 x 107% and batch size of 128. The model is trained for one epoch, as we observed that

multiple epochs lead to rapid overfitting, particularly on synthetic data. Although overfitting occurs
more slowly on human-annotated data, it remains a concern with extended training.

B Additional results

B.1 Noise Distribution Across More Models
We present the noise distribution of additional models in Figure 4] including Llama-3.2-3B-instruct,

Llama3.1-8B-Instruct, Qwen2.5-Math-1.5B-Instruct and Qwen2.5-Math-7B-Instruct. Overall, the
observations discussed in section 2] remain consistent across these models as well.
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Figure 4: Noise distribution of additional models. Similar observations can be concluded across these
models, further validating the consistency of our findings.

Table 4: Best-of-8 evaluation results of Qwen2.5-Math-7B-SCAN-Base and Qwen2.5-Math-7B-
SCAN-Pro using different aggregation methods.

Aggregation College Olympiad

Models Method GSMS8K MATH Math Bench Average
Min-Max 97.1 869 478 44.4 69.1
| Min-Vote 96.9 875 477 449 69.3
Qwen2.5-Math-7B-SCAN-Base |/ o\ N 96.8 868 481 453 69.3
Last-Vote 96.8 874 476 453 69.3
Min-Max 97.1 873 431 477 70.1
Min-Vote 97.2 878 479 46.7 70.2
Qwen2.5-Math-7B-SCAN-Pro |/ Max 96.9 864 476 442 68.9
Last-Vote 96.7 873 477 455 69.3

B.2 Aggregation Methods
We experiment with the following four aggregation methods:

* Min-Max: This is the method used in our main experiments. The final selected response is given
by 7* = argmax, min(p), where p = [p1,p2, . .., pt] represents the predicted step scores of the
trained process reward model.

» Last-Max: The final selected response is r* = argmax,.p;, where p; is the reward score of the last
step.
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* Min-Vote: Inspired by the majority vote method, we designed a weighted voting strategy. The final

i
answer is computed as a* = argmax, »_ I(a; = a) X min(p), where I(a; = a) is an indicator
i=1
function that equals 1 if the ¢-th response matches answer a and 0 otherwise.
|B|
* Last-Vote: The final answer is computed as a* = argmax, > I(a; = a) X p;.
i=1

Table [ presents the results. We observe that the voting-based final answer yields better performance
compared to the Min-based strategy. Therefore, if the primary objective is to obtain a single accurate
answer, the Min-Vote strategy may be the more effective choice.

B.3 BoN results on Llama3.1-8B-Instruct

Table 5: Best-of-8 evaluation results of the policy model Llama3.1-8B-Instruct.

Training Annotation College Olympiad
Model Samples Method GSMSK MATH Math Bench Avg.
Greedy 86.1 51.5 34.0 16.9 47.1
Majority Vote@8 90.5 60.3 37.2 24.7 53.2
Pass@8 (Upper Bound) 95.7 75.6 48.3 40.2 65.0
Qwen2.5-Math-PRM-7B 1500K MC, KD 92.5 63.3 40.2 25.6 55.4
UniversalPRM-7B 690K MC, KD 93.3 65.6 40.4 26.5 56.5
RLHFlow-PRM-Mistral-8B 273K MC-Only 90.8 60.4 37.7 243 53.3
RLHFlow-PRM-DeepSeek-8B 253K MC-Only 90.6 60.6 37.1 24.7 53.2
EurusPRM-Stagel 463K Implicit 93.0 64.7 40.7 28.3 56.7
EurusPRM-Stage2 693K Implicit 93.4 66.4 41.3 28.6 57.4
Math-PSA-7B 1395K MC-Only 92.5 63.8 39.8 27.7 56.0
Skywork-PRM-Qwen2.5-7B - - 93.3 67.1 41.3 28.4 57.5
Qwen2.5-Math-7B-PRM800K 264K Human 92.0 64.0 40.9 28.2 56.3
Qwen2.5-Math-7B-SCAN-Base 101K  MC-Only 93.1 64.8 40.9 27.6 56.6
Qwen2.5-Math-7B-SCAN-Pro 197K~ MC-Only 93.0 65.8 41.5 28.4 57.2

In addition to the Qwen model, we also evaluated the performance of our trained PRMs on Llama3.1-
8B-Instruct. The responses were generated with a temperature setting of 0.5. Table[5]presents the
results, showing that with only 197K data samples, our PRM achieves performance comparable to
other PRMs and outperforms the human-annotated PRM800K dataset.

B.4 Ablation in Data Components
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Figure 5: Left: Ablation results of different responses per question estimating self-confidence value.
Right: Ablation results on external data sources.

Accurate Estimation of Self-Confidence We estimate the model’s self-confidence for a given
question by sampling multiple responses. Our findings indicate that a more accurate estimation of
self-confidence scores significantly improves data quality, primarily in: (1) more precise selection
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of high-confidence samples, as high-confidence samples tend to have lower noise, and (2) more
accurate reweighting of step-wise correctness scores, reducing bias in the learning process. We
experiment with different numbers of responses per question, setting k € {64, 128}. Notably, a larger
k leads to more precise self-confidence estimation. The left of figure [5| presents the results. To ensure
a fair comparison, we maintain a fixed training dataset size of 30K samples. Our results demonstrate
that a more accurate self-confidence estimation brings significant improvements in both Best-of-8
and ProcessBench evaluations.

Incorporation More Data Sources We explore the potential of incorporating additional data
sources, including GSMS8K [2] and Numina-Math [16]. Numina-Math consists of various data
sources, such as Olympiad problems and synthetic math datasets. We selected specific subsets from it
for our experiments. Figure[5|presents the results. Incorporating GSM8K provides a certain degree of
improvement; however, we find that generating responses for GSMS8K incurs a higher computational
cost compared to MATH. This is because the model makes fewer errors when generating responses
for GSMSK, given its relatively simpler problem set. Moreover, we observe that incorporating subsets
of synthetic math data significantly degrades performance. Upon further investigation, we suspect
this is due to a high proportion of unsolvable problems or incorrect reference answers in the dataset.
Overall, we find that problem difficulty and the quality of question-answer pairs are two key
factors that significantly impact performance.

B.5 Reduction in Noise Ratio

We further investigate whether our method effectively reduces the noisy data. To quantify this, we
measure the noise ratio levels. While direct noise measurement is infeasible for our generated data
due to the absence of ground truth, we employ ProcessBench as a proxy benchmark, given its similar
data sources (including MATH) and response generation process (using Qwen and Llama series
models). As shown in Table[6] our denoising process achieves a significant reduction in noisy data
content.

Table 6: Noise ratio of synthetic data with and without SCAN denoising.

Completer ‘ Vanilla MC D+ SC.A.N
enoising
Llama-3.1-8B-Ins 56.2% 19.1% (37.1%.)

Qwen2.5-Math-7B-Ins 51.8% 29.4% (22.4%)

B.6 ScCAN Inference Speed

Table[7]shows the comparison of performance and inference speed of SCAN Models and other large
critic models. The inference speed is tested on 4 A100-40G GPUs. Experimental results demonstrate
that discriminative models exhibit significantly superior inference speed compared to critic models.
Particularly, long-chain-of-thought (long CoT) critic models such as DeepSeek-R1-Distill-Qwen-7B
show even more pronounced efficiency bottlenecks.

Table 7: Performance and inference speed comparison between SCAN models and critic models.

Best-of-N  ProcessBench
Model (Avg. Acc.) (Avg. F1) Infer Speed
Qwen2.5-Math-7B-Instruct - 17.3 1.5 samples / s
Qwen?2.5-7B-Instruct - 36.8 10.8 samples / s
DeepSeek-R1-Distill-Qwen-7B - 534 0.5 samples / s
Qwen2.5-Math-7B-SCAN-Base 69.1 56.8 44 samples / s
Qwen2.5-Math-7B-SCAN-Pro 70.1 59.1 44 samples / s
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B.7 Incorporate SCAN with Knowledge Distillation Method

Zheng et al. [42]] demonstrated the effectiveness of consensus filtering, where Monte Carlo estimation
can be combined with knowledge distillation to further improve data quality. Since any improvement
in MC estimation directly benefits downstream pipelines, we integrated our method (SCAN) into a
consensus filtering framework to evaluate its effectiveness.

Table 8: Results of SCAN models with knowledge distillation (KD) from QwQ-32B.

Best-of-N  ProcessBench
Model Method  # Samples (Avg. Acc) (Avg. F1)
Qwen2.5-Math-PRM-7B \ MC & KD 1500K 70.1 73.5
Baseline-7B (w/o denoising) + KD MC & KD 100K 69.0 52.5

SCAN-Base-7B (w/ denoising) + KD | MC & KD 100K 70.3 (+1.3) 60.8 (+8.3)

As shown in Table[8] using SCAN’s denoised MC data with KD (SCAN + KD) significantly outper-
forms using standard MC data with KD (Baseline + KD), especially on the fine-grained ProcessBench.
Therefore, the improved version of MC can be readily used as a plug-in or substitute in any framework
that involves MC estimation, offering further performance gains.

B.8 ScAN Effectiveness in Broader Domains

We further examine the generalization ability of SCAN beyond mathematical reasoning. Specifically,
we extend our Math PRM to a general-domain task, GPQA-Diamond [25]], with results reported in
Table[0] Our PRM consistently outperforms the majority-vote baseline, indicating that the reasoning
capability it acquires is transferable beyond mathematics. This suggests that developing robust,
domain-specialized PRMs represents an important direction for future research.

Table 9: Best-of-N results of SCAN-Pro in GPQA-Diamond.
Method \ N=1 N=2 N=4 N=8

Maj@N | 338 338 389 373
PRM@N | 338 364 404 394

B.9 Analysis of Process Error Types

To further understand the noise in MC-annotated data, we conducted a qualitative analysis by
categorizing errors in 60 samples from ProcessBench, with results illustrated in Table[I0}

Table 10: Error Type Analysis Results and PRM Accuracy.

Error Type Description PRM Accuracy
Calculation Error ~ Mistakes in arithmetic or computation. 15/20
Logical Error Inconsistencies or unjustified steps. 9/20
Conception Error  Misunderstanding of concepts or formulas. 10/20

ScAN-PRM is highly effective at detecting calculation errors but less sensitive to abstract logical
or conceptual mistakes, indicating that SCAN primarily captures procedural correctness. Achieving
deeper semantic accuracy, however, remains more challenging and will require further investigation
in future work.

C Discussion

C.1 Performance discrepancy of models in test-time scaling and ProcessBench

We observe a notable discrepancy between model performance in Best-of-N evaluation and Process-
Bench. For example, models such as Qwen2.5-Math-PRM perform comparably to SCAN models
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under Best-of-N, yet show larger performance gains on ProcessBench. This contrast reflects the
fundamental difference between Monte Carlo (MC) and knowledge distillation (KD) annotation.

* MC annotation is coarse-grained: it judges correctness solely based on the final outcome of a
solution. This provides a strong global signal of solution quality, which explains why MC-trained
models excel in Best-of-N evaluation, where the objective is to identify the best overall response.
KD annotation is fine-grained: a powerful critic model can analyze reasoning step by step,
pinpointing the exact location of errors. Such supervision is crucial for ProcessBench, which
explicitly evaluates step-level error detection.

These differences in supervision quality directly influence model performance. In Best-of-N evalua-
tion (Table[I)), MC-trained models perform well, as their coarse error modeling still captures useful
global signals. However, in ProcessBench (Table[2)), which requires precise step-level correctness,
models trained only with MC supervision underperform due to their weaker error localization ability.
Therefore, while our cost-efficient SCAN method achieves strong results in selecting the best overall
solution, the more expensive fine-grained supervision used by Qwen-PRM naturally yields better
step-level error detection. Notably, our experiments in Table [§]show that integrating SCAN with KD
significantly reduces this performance gap.

C.2 Effectiveness of SCAN Annotator Model

The effectiveness of SCAN is closely tied to the capability of the base annotator, and a central insight
of our work is that this capability must be well-matched to the difficulty of the problem. To quantify
this alignment, we propose a self-confidence metric.

In general, the quality of process annotation depends on two factors: (1) the capability of the base
model and (2) the difficulty of the problem. Effective supervision arises when these two are properly
aligned For instance, if a highly capable model is applied to an extremely simple problem, it may
always recover the correct final answer, even when given erroneous prefix steps, as it can effortlessly
detect and correct mistakes. Conversely, if the model is too weak for a challenging problem (e.g.,
Olympiad-level), it is unlikely to reach the correct answer under any prefix, producing noisy or
uninformative annotations.

The key insight, therefore, is that annotation quality improves when the model’s capability matches
the task difficulty, and this match can be estimated using SCAN’s self-confidence metric.

D Limitations and Future Work
Despite the promising results, our work still faces several limitations.

Limitations of Monte Carlo Estimation During our experiments, we observed a type of noise that
cannot be effectively handled by Monte Carlo (MC) estimation—false positives, where a response is
predicted to be entirely correct but actually contains errors. This issue arises from a strong assumption
underlying MC estimation: if the final answer is correct, all intermediate steps are assumed to be
correct as well. Consequently, step-level errors embedded in seemingly correct responses remain
undetected. This limitation makes purely MC-based annotation strategies insufficient for ensuring
process-level fidelity.

Limitations of Process Reward Models (PRMs) in AI alignment Although PRMs show encour-
aging improvements in test-time scaling and error localization, their effectiveness in Al alignment
and safety remains limited. In particular, PRMs are still vulnerable to reward hacking, where a
model exploits imperfections in the reward signal to achieve high scores without genuine reasoning.
This issue becomes especially pronounced in out-of-distribution evaluations, where models may
inadvertently optimize for misaligned objectives.

A Promising Direction: Generative Process Reward Models (GenPRMs). To address both the
annotation and alignment challenges, we view generative process-level reward models (GenPRMs)
as a promising path forward. Unlike discriminative PRMs, GenPRMs are tasked with producing
explicit rationales that identify both the location and nature of reasoning errors. This grounds the
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reward signal in the actual reasoning process, thereby reducing the likelihood of reward hacking
and improving interpretability. In data synthesis, large critic models can further enhance GenPRMs
by pinpointing step-level mistakes, which can be integrated with MC sampling to yield higher-
quality supervision. We believe GenPRMs represent a key direction for future research, offering
stronger process-consistent reward signals and a safer, more interpretable framework for supervising
high-capability reasoning models.

E Human Verification

We further analyze the capability of our trained PRMs through human evaluation. Specifically, we
manually inspect whether the PRM accurately identifies correct and incorrect samples, as well as its
ability to locate errors within responses precisely. Our evaluation focuses on two challenging settings
in the best-of-n scenario:

» High-confidence samples, where almost every response is correct—can the PRM identify the few
erroneous responses hidden among predominantly correct ones?

* Low-confidence samples, where only a few responses are correct—can the PRM successfully
identify those correct responses?

We list some representative cases below, with human verification and analysis.
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Best-0f-N Evaluation Example 1

Task: Best-of-8 Evaluation

Purpose: Whether PRM can select incorrect responses in high-conf
questions.

Dataset Name: GSM8K

Response Generator: Qwen2.5-Math-7B-Instruct

Process Reward Model: Qwen2.5-Math-7B-ScaAN-Pro

Problem:

Carla is downloading a 200 GB file. Normally she can download 2
GB/minute, but 407 of the way through the download, Windows forces

a restart to install updates, which takes 20 minutes. Then Carla has
to restart the download from the beginning. How load does it take to
download the file?

Response (incorrect, 7 others correct):

To determine the total time it takes Carla to download the 200 GB
file, we need to break down the process into segments and calculate
the time for each segment.

Ground Truth: Correct, Predicted Score: 96.1, v

1. *xCalculate the time to download 40% of the file:*x*
- The file size is 200 GB.
- 40% of 200 GB is 0.40 x 200 = 80 GB.
- Carla downloads at a rate of 2 GB per minute.
- Time to download 80 GB is 89 = 40 minutes.

2
Ground Truth: Correct, Predicted Score: 91.8, v

2. **Add the time taken for the restart:x**

- The restart takes 20 minutes.

- Total time so far is 40+ 20 = 60 minutes.
Ground Truth: Correct, Predicted Score: 94.1, v

3. *xCalculate the time to download the remaining 160 GB:**

- The remaining file size is 200 — 80 = 120 GB.

- Carla downloads at a rate of 2 GB per minute.

- Time to download 120 GB is l%1::60 minutes.
Ground Truth: Incorrect, Predicted Score: 3.4, V
Explanation: Since the reboot requires downloading from scratch, she
needs to re-download the entire 200 GB instead of the remaining 120
GB.

4. *xAdd the time taken for the second restart:*x*
- The restart takes 20 minutes.
- Total time so far is 60+ 60 + 20 = 140 minutes.

Therefore, the total time it takes Carla to download the file is
minutes.

Analysis: PRM can select incorrect responses with accurate
error location from numerous correct ones, demonstrating strong
discriminative capability.
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Best-0f-N Evaluation Example 2 (part 1)

Task: Best-of-8 Evaluation

Purpose: Whether PRM can select correct responses in low-conf
questions.

Dataset Name: Olympiad Bench

Response Generator: Qwen2.5-Math-7B-Instruct

Process Reward Model: Qwen2.5-Math-7B-ScaAaN-Base

Problem:

Find2 all triples (a,b,c) of positive integers such that a® + b3 + (3
(abc)?.

Response (correct, 7 others incorrect):

To find all triples (a,b,c) of positive integers such that a® + % + ¢ =
(abc)Q, we start by analyzing the equation and considering possible
values for a, b, and c.

Ground Truth: Correct, Predicted Score: 95.3, v

First, let’s check if there are any small solutions. We start with
a=b=c:

ad+ad+a®=(®)=(%? = 3¢*=0d® = a®*-3a®>=0 = d*@®-3)=0.
Since a is a positive integer, ad # 0, so we have:
=3 = a=73.

Since V/3 is not an integer, a =b = c does not provide a solution.
Ground Truth: Correct, Predicted Score: 85.2, v

Next, let’s try some small distinct values for a, b, and c¢. Suppose
a=1:
B+’ +3=0-b-¢)? = 1+ +c = (be)?.
Rearranging terms, we get:
b 4 ¢ = (be)® — 1.

We need to find positive integers b and c¢ that satisfy this equation.
Let’s try b= 2:

24P =02)02-1 = 8+ =4 -1 = & -4 +9=0.

We test possible integer values for c:

- If c=1, then 1°-4-1249=1-4+9=6#0.
- If c=2, then 22 —4-224+9=8-16+9=1#0.
- If ¢=3, then 3 —4-324+9=27-36+9=0.

So, ¢ = 3 is a solution. Therefore, (a,b,c) = (1,2,3) is a solution.
By symmetry, (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1) are also
solutions.

Ground Truth: Correct, Predicted Score: 67.2, v

(continue on the next page)
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Best-0f-N Evaluation Example 2 (part 2)

Now, let’s check if there are any other solutions. Suppose a = 2:
224 0% 4+ ¢ = (2bc)* = 8+ b + 3 = 4b%
Rearranging terms, we get:
b? 4 ¢ = 4b*c® - 8.

We need to find positive integers b and ¢ that satisfy this equation.
Let’s try b=1:

PBP+=4.122-8 = 1+ =4>-8 = S —4>+9=0.

3

We already know that c¢° — 4¢? +9 = 0 has no positive integer solutions.

Let’s try b= 2:
B 4+3=4-22.2-8 = 8+3=16c>—-8 = & —162+16=0.

We test possible integer values for c:

- If c=1, then 1°-16-12+16=1-16+16=1#0.

- If ¢c=2, then 22 —16-22 +16 =8 — 64+ 16 = —40 # 0.

- If ¢=4, then 43—16-42+16:64—256+16:—176750.

Since ¢® — 16¢?2 + 16 = 0 has no positive integer solutions for ¢ > 2,
there are no other solutions when a = 2.

Ground Truth: Correct, Predicted Score: 61.7, v

By symmetry, there are no other solutions when a = 3 or higher.
Therefore, the only solutions are:

\ (1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2), (3,2, 1) \

Ground Truth: Correct, Predicted Score: 81.3, v

Analysis: PRM can select incorrect responses from numerous incorrect
ones, but it is less confident in some of the correct steps, as
demonstrated by the relatively low step scores of intermediate steps.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We list the key observation (or assumptions) in section 2| to support our design
for our main method (section [3).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our code implementation of our preliminary study and main exper-
iments in https://anonymous.4open.science/r/SCAN-PRM. Detailed configations of
data synthesis, training, and evaluation can be seen in Appendix E] and section

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See supplementary materials.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To reduce the error bars, we use the same responses set to test the Best-of-N
results of all the Process Reward Models, as we detailed in Table [T}

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the information of computer resources in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper fully conforms to the NeurIPS Code of
Ethics in every respect.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and models used in our study are sourced from public repositories,
and our work does not introduce additional risks or modifications that might require new
safeguards.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper and detailed information of assets in section [4]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See supplementary materials in the review system.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not involve LLMs as any important, original, or non-standard compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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