
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAFEDIFFUSER: SAFE PLANNING WITH DIFFUSION
PROBABILISTIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have shown promise in data-driven planning. While these plan-
ners are commonly employed in applications where decisions are critical, they still
lack established safety guarantees. In this paper, we address this limitation by in-
troducing SafeDiffuser, a method to equip diffusion models with safety guarantees
via control barrier functions. The key idea of our approach is to embed finite-time
diffusion invariance, i.e., a form of specification consisting of safety constraints,
into the denoising diffusion procedure. This way we enable data generation under
safety constraints. We show that SafeDiffusers maintain the generative performance
of diffusion models while also providing robustness in safe data generation. We
evaluate our method on a series of tasks, including maze path generation, legged
robot locomotion, and 3D space manipulation, and demonstrate the advantages of
robustness over vanilla diffusion models1.

1 INTRODUCTION
Diffuser

SafeDiffuser

𝑝𝜃(𝝉
𝑖−1|𝝉𝑖)

𝑞(𝝉𝑖|𝝉𝑖−1)

𝑝𝜃(𝝉
𝑖−1|𝝉𝑖)

+ Invariance

𝑞(𝝉𝑖|𝝉𝑖−1)

Safety
specifications

With guarantees

Without guarantees

⊙

⊙

⊗

⊗

Figure 1: Our proposed SafeDiffuser (lower) generates safe trajectories
with guarantees, while the diffuser (upper) fails (from

⊙
to

⊗
).

Diffusion models Sohl-
Dickstein et al. (2015) Ho
et al. (2020) are a family
of generative modeling ap-
proaches that have enabled
major breakthroughs in
image synthesis Dhariwal
& Nichol (2021) Du et al.
(2020b) Saharia et al.
(2022). Recently, diffusion
models, termed diffusers
Janner et al. (2022), have
shown promise in trajectory
planning for a variety of
robotic tasks. Compared to existing planning methods, diffusion models (a) enable long-horizon plan-
ning with multi-modal action distributions and stable training, (b) easily scale to high-dimensional
trajectory planning, and (c) offer flexiblity for behavior synthesis.

During inference, the diffuser, conditioned on the current state and objectives, begins with Gaussian
noise to generate clean planning trajectories. From these, a control policy is derived. After applying
this control policy for one step forward, a new state is obtained, and the diffusion procedure is rerun
to generate a new planning trajectory. This process repeats until the objective is achieved.

Although these planners are primarily applied in safety-critical applications, no known safety guar-
antees have been established for them. For instance, the planning trajectory could easily violate
safety constraints in the maze (as shown in Fig. 1). This shortcoming necessitates a fundamental im-
provement to diffusion models, ensuring the safe generation of planning trajectories in safety-critical
applications, such as trustworthy policy learning Xiao et al. (2023a).

In this paper, we propose to equip diffusion models with specification guarantees using finite-time
diffusion invariance (i.e., safety satisfaction within finite diffusion time for all planning times). An

1Videos can be viewed here: https://safediffuser.github.io/safediffuser/

1

https://safediffuser.github.io/safediffuser/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

invariant set is a form of specification primarily consisting of safety constraints in planning tasks.
We ensure that diffusion models are invariant to uncertainties concerning safety during the diffusion
procedure. We achieve safety by combining receding horizon control (RHC) with diffusion models.
In RHC, we compute safe paths incrementally. The key insight in this work is to replace traditional
planning with diffusion-based path generation, allowing a broader exploration of the path space and
simplifies the incorporation of additional constraints. The computed path is integrated with simulation
to ensure it can be safely executed.

To equip diffusers with specifications guarantees, we first find diffusion dynamics for the denoising
diffusion procedure. Then, we use control barrier functions (CBFs) Ames et al. (2017) Glotfelter et al.
(2017) Nguyen & Sreenath (2016) Xiao & Belta (2019), to formally guarantee the satisfaction of
specifications. CBFs work well in planning time using robot dynamics. However, applying CBFs to
diffusion models poses extra challenges since the generated data is not directly associated with robot
dynamics. This makes the use of CBFs non-trivial. In contrast to existing literature, (i) we suggest
embedding invariance directly into the diffusion time for diffusers. Thus, finite-time invariance is
required in diffusers since specifications are usually violated as the trajectory is initially Gaussian
noise. (ii) We propose to add diffusion time components in invariance to address local trap problems
(i.e., trajectory points that get stuck at obstacle boundaries) that are prominent in planning. (iii) We
present an optimization approach to incorporate invariance into diffusion to maximally preserve the
performance.

This paper contributes the following:
• We introduce formal guarantees for diffusion probabilistic models via control-theoretic invariance.
• We present a novel notion of finite-time diffusion invariance, as well as using a class of CBFs to

incorporate it into the diffusion. We propose three different safe diffusers, and show how we may
address the local trap problem from specifications that are prominent in planning tasks.

• We demonstrate the effectiveness of our method on a variety of planning tasks using diffusion,
including safe planning in maze, robot locomotion, and manipulation.

2 PRELIMINARIES

In this section, we provide background on diffusion models and forward invariance in control theory.

Diffusion Probabilistic Models. Diffusion probabilistic models Sohl-Dickstein et al. (2015); Ho
et al. (2020); Janner et al. (2022) are a type of latent variable models. They describe the process of
data generation as a series of iterative denoising steps. Here, the model is represented as pθ (τ

i−1|τ i),
i ∈ {1, . . . ,N}, where τ 1, . . . ,τN are latent variables mirroring the dimension of the original, noise-
free data τ 0 ∼ q(τ 0), and N signifies the total number of denoising steps. This denoising sequence is
essentially the inverse of a forward diffusion process denoted as q(τ i|τ i−1) where the initial clean
data is progressively degraded by adding noise. The process of generating data through denoising is
expressed as Janner et al. (2022):

pθ (τ
0)=

∫
pθ (τ

0:N)dτ 1:N =
∫

p(τN)
N

∏
i=1

pθ (τ
i−1|τ i)dτ 1:N . (1)

In this equation, p(τN) represents a standard Gaussian prior distribution. The joint distribution
pθ (τ

0:N) is defined as a Markov chain with learned Gaussian transitions that commence at p(τN)
Janner et al. (2022). The optimization parameter θ is achieved by minimizing the common variational
bound on the negative log-likelihood of the reverse process, formalized as Janner et al. (2022):θ ∗ =
argminθ Eτ 0

[
−log pθ (τ

0)
]
. The forward diffusion process, denoted as q(τ i|τ i−1) , is typically

predefined. Conversely, the reverse process is frequently characterized as a Gaussian process,
featuring a mean and variance that vary depending on time.

Notations. For the sake of consistency, we keep our notations as that proposed in Janner et al. (2022)
as follows: Here, two distinct ‘times’ are discussed: one associated with the diffusion process and
the other with the planning horizon. These are differentiated as follows: superscripts (employing i
when unspecified) indicate the diffusion time of a trajectory or state, whereas subscripts (using k
when unspecified) denote the planning time of a state within the trajectory. For instance, τ 0 refers to
the trajectory at the initial denoising diffusion time step, which is a noiseless trajectory. In a similar

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

vein, τ 0
k represents the state at the kth planning time step during the first denoising diffusion step,

indicating a noiseless state. When clarity permits, we simplify this notation to τk = τ 0
k (and similarly

τ = τ 0). Moreover, a trajectory τ i is conceptualized as a sequence of states across planning time,
articulated as τ i = (τ i

0,τ
i
1, . . . ,τ

i
k, . . . ,τ

i
H), where H ∈ N defines the planning horizon.

Forward Invariance in Control Theory. We consider an affine control system:

ẋt = f (xt)+g(xt)ut , (2)

where xt ∈ Rn, f : Rn→ Rn and g : Rn→ Rn×q are locally Lipschitz, and ut ∈U ⊂ Rq, where U
denotes a control constraint set. ẋt denotes the (planning) time derivative.

Consider a safety specification b(xt)≥ 0 for (2), where b : Rn→ R is continuously differentiable,
we define a safe set: C := {xt ∈ Rn : b(xt)≥ 0}.
Definition 2.1. (Control Barrier Function (CBF) Ames et al. (2017)): A function b : Rn→ R is a
CBF if there exists an extended class K function α (strictly increasing and passing the origin) s.t.

sup
ut∈U

[L f b(xt)+ [Lgb(xt)]ut +α(b(xt))]≥ 0, (3)

for all xt ∈C. Where L f b(xt) =
db(xt)

dxt
f (xt) and Lgb(xt) =

db(xt)
dxt

g(xt).

Theorem 2.2 (Ames et al. (2017)). Given a CBF b(xt) as in Def. 2.1, if x0 ∈C, then any Lipschitz
continuous controller ut that satisfies (3), ∀t ≥ 0 renders C forward invariant for (2), i.e. b(xt)≥ 0,∀t.

If we need to differentiate b(xt) more than once along the dynamics (2) until the control ut explicitly
shows, we use a high-order CBF Nguyen & Sreenath (2016) Xiao & Belta (2019) as a general form
of CBF to guarantee safety for (2). CBFs are usually used to transform nonlinear optimal control
problems into convex optimizations. Time is usually discretized, and the inter-sampling effect is
considered Ames et al. (2017). This discretization method matches with the diffusion procedure in
which we have to generate data within each diffusion (discretized) time step. In this work, we map
the forward invariance in control theory to finite time diffusion invariance in diffusion models, where
we incorporate CBFs into the diffusion time ·i as opposed to their regular applications in planning
time ·k. In addition, we show how we may address the local traps (i.e., trajectory points getting stuck
at obstacle boundaries) during diffusion.

3 SAFE DIFFUSER

In this section, we propose three different safe diffusers to ensure the safe generation of data in
diffusion, i.e., to ensure the satisfaction of specifications b(τk) ≥ 0,∀k ∈ {0, . . . ,H}. Each of the
proposed safe diffusers has its own flexibility, such as avoiding local traps in planning. We consider
discretized system states in the sequel. Safety in continuous planning time can be guaranteed using a
lower hierarchical control framework employing other CBFs, as in Ames et al. (2017); Nguyen &
Sreenath (2016); Xiao & Belta (2019).

In the denoising diffusion procedure, since the learned Gaussian transitions start at p(τN)∼N (0,I),
it is highly likely that specifications are initially violated, i.e., ∃k ∈ {0, . . . ,H},b(τN

k)< 0. For safe
data generation, we wish to have b(τ 0

k)≥ 0(i.e., b(τk)≥ 0),∀k ∈ {0, . . . ,H}. Since the maximum
denoising diffusion step N is limited, this needs to be guaranteed in a finite diffusion time step.
Therefore, we propose the finite-time diffusion invariance of the diffusion procedure as follows:

Definition 3.1. [Finite-time Diffusion Invariance] If there exists i ∈ {0, . . . ,N} such that b(τ j
k)≥

0,∀k ∈ {0, . . . ,H},∀ j ≤ i, then a denoising diffusion procedure pθ (τ
i−1|τ i), i ∈ {1, . . . ,N} with

respect to a specification b(τk)≥ 0,∀k ∈ {0, . . . ,H} is finite-time diffusion invariant.

The above definition can be interpreted as that if b(τN
k) ≥ 0,k ∈ {0, . . . ,H} (i.e., initial condition

is within the safe set), then we require b(τ i
k) ≥ 0,∀i ∈ {0, . . . ,N} (i.e., the system is always in the

safe set; similar to the forward invariance in Thm. 2.2); otherwise, we require that b(τ j
k)≥ 0,∀ j ∈

{0, . . . , i}, i ∈ {0, . . . ,N}, where i is a finite diffusion time, (i.e., the system converges to the safe set).
The finite-time diffusion invariance implies safety of generated outputs from diffusion models.

We also formally define the local trap problem for navigation planning problems as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 3.2. [Local trap] A local trap problem happens for the denoising diffusion procedure If
there exists k ∈ {0, . . . ,H} such that b(τk) = 0 and ||τk−τk−1||> δ , where δ > 0 is some threshold.

In the following, we propose three methods for finite-time diffusion invariance. The first method is a
general form of the safe-diffuser (Sec. 3.1), and the other two (Sec. 3.2-3.3 are variants to address
local traps in planning. We show their comparisons in Table 1 and the choice principles at the end.

Table 1: Comparison of RoS, ReS, and TVS
diffusers. Items in the first row are short for
Local-Trap Free (LTF), safety enforcing ap-
proach (APPROACH), Dimension of Decision
variable (DD), Hyper-Parameter Free (HPF).

METHOD LTF APPROACH DD HPF

ROS × ROBUST H
√

RES
√

ROBUST 2H ×
TVS

√
TIME FUNCTION H ×

The safe denoising diffusion procedure is consid-
ered at every diffusion step. Following (1), a sample
τ j, j ∈ {0, . . . ,N−1} follows the data distribution
at the diffusion time j ∈ {0, . . . ,N− 1} , and it is
given by:

τ j ∼ pθ (τ
j)=

∫
p(τN)

N

∏
i= j+1

pθ (τ
i−1|τ i)dτ j+1:N .

(4)

The denoising diffusion dynamics are then given by:

τ̇ j = lim
∆τ→0

τ j−τ j+1

∆τ
, (5)

where τ̇ is the (diffusion) time derivative of τ . ∆τ > 0 is a small enough diffusion time step length
during implementations, and τ j+1 is available from the last diffusion step. Notably, we enforce
invariance along diffusion dynamics instead of robot dynamics (commonly in control theory). The
diffusion models (1) could be in discrete Janner et al. (2022) or continuous time (such as those based
on stochastic differentiable equations Song et al. (2020)). If the models are in discrete time, as the
outputs of the model are bounded, the above diffusion dynamics are Lipschitz; Otherwise, the above
model is also practically Lipschitz as long as the activation functions are Lipschitz (the stochastic
components are practically sampled from bounded distributions). Further, the Lipschitz constant can
be reduced using the sharing conditions Yang et al. (2023) in the diffusion time interval with large
Lipschitz constants.

In order to impose finite-time diffusion invariance on the diffusion procedure, we wish to make
diffusion dynamics (5) controllable. We reformulate (5) as

τ̇ j = lim
∆τ→0

τ j−τ j+1

∆τ
+∆ν j := ν j, (6)

where ∆ν j is a perturbation to the diffusion procedure in order to make the generated trajectory safe.
The above equation corresponds to the system dynamics (2) (∆ν j is the corresponding control). On
the other hand, we wish to make ∆ν j→ 0 in order to maximally preserve the diffusion performance.
For simplicity, we define the whole part as ν j, a new control variable of the same dimensionality as
τ j. Equivalently, we wish ν j to stay close to τ j−τ j+1

∆τ
in order to maximally preserve the performance

of the diffusion model. The above model can be rewritten in terms of each state on the trajectory τ j:
τ̇ j

k = ν j
k , where ν j

k is the kth component of ν j. Then, we can use the CBF method to enforce the
invariance of the diffusion.

We define the general form of a SafeDiffuser as the following:
Definition 3.3 (SafeDiffuser). A denoising diffusion procedure (1) is defined to be a SafeDiffuser if
the corresponding diffusion dynamics (6) satisfy the following certificate:

db(τ j
k)

dτ j
k

ν j
k +hk,1(j)+α(b(τ j

k)−hk,2(j))≥ 0,∀k ∈ {0, . . . ,H},∀ j ∈ {0, . . . ,N−1}, (7)

where hk,1 : R→ R,hk,2 : R→ R are two relaxation terms that ensure the diffusion procedure is
not overly constrained (e.g., from the initial time T). Their exact forms are explicitly given in the
following.

3.1 ROBUST-SAFE (ROS) DIFFUSER

We first present the robust-safe Diffuser, and it has the following form to show the finite-time diffusion
invariance (proof is given in Appendix A.1, recall H is the planning horizon, N is the diffusion step):

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 3.4. Let the diffusion dynamics be defined as in (5) whose controllable form is defined
as in (6). If the robust term γ : R2→ R is chosen such that γ(N,ε) ≥ |γ(N,ε)−b(τN

k)|e−εN ,∀k ∈
{0, . . . ,H} and

h(ν j
k |τ

j
k)≥ 0,∀k ∈ {0, . . . ,H},∀ j ∈ {0, . . . ,N−1}, (8)

where h(ν j
k |τ

j
k) =

db(τ j
k)

dτ j
k

ν j
k + ε(b(τ j

k)− γ(N,ε)),ε > 0 correponds to a linear class K function in

CBF (3), then the diffusion procedure pθ (τ
i−1|τ i), i ∈ {1, . . . ,N} is finite-time diffusion invariant.

In the above, hk,1(j) = 0,hk,2(j) = γ(N,ε) corresponding to Def. 3.3. We show how to construct a
constraint equation 8 toward the satisfaction of safety (Def. 3.1), resulting in solving a quadratic
program (QP) in diffusion process as later shown in equation 13.

One possible issue in the robust-safe diffusion is that if b(τ j
k)≥ 0 when j is close to the diffusion

step N, then τ j
k can never violate the specification after diffusion step j. The state τ j

k may get stuck
at local traps from specifications during diffusion (see Fig. 6 of appendix), i.e., the intermediate
generated sample fails to move toward high-likelihood regime via diffusion due to safety constraints.
In order to address this issue, we propose a relaxed-safe diffuser and a time-varying-safe diffuser.

3.2 RELAXED-SAFE (RES) DIFFUSER

In order to address the local trap problems imposed by specifications during the denoising diffusion
procedure, we propose a variation of the robust-safe diffuser. We define the diffusion dynamics and
their controllable form as in (5) - (6). The modified versions for CBFs are in the form:

h(ν j
k ,r

j
k|τ

j
k) :=

db(τ j
k)

dτ j
k

ν j
k +α(b(τ j

k))−wk(j)r j
k ≥ 0,k ∈ {0, . . . ,H}, j ∈ {0, . . . ,N−1}, (9)

where r j
k ∈ R is a relaxation variable that is to be determined (later shown in equation 13). wk(j)≥ 0

is a diffusion time-varying weight on the relaxation variable such that it decreases to 0 as j→ N0,
0 ≤ N0 ≤ N−1, and wk(j) = 0 for all j ≤ N0 (see details in C.1). When wk(j) > 0, the condition
(9) is relaxed to reduce barrier from diffusion toward high likelihood; when it decreases to 0, the
condition becomes a hard constraint. The theorem below shows the finite-time diffusion invariance
(proof is given in Appendix A.2):
Theorem 3.5. Let the diffusion dynamics be defined as in (5) whose controllable form is defined as
in (6). If the robust term γ : R2→ R is chosen such that γ(N0,ε) ≥ |γ(N0,ε)−b(τN0

k)|e−εN0 ,∀k ∈
{0, . . . ,H},0≤ N0 ≤ N−1 and there exists a time-varying wk(j) with wk(j) = 0,∀ j ≤ N0 s.t.

h(ν j
k ,r

j
k|τ

j
k)≥ 0,∀k ∈ {0, . . . ,H},∀ j ∈ {0, . . . ,N−1}, (10)

where h(ν j
k ,r

j
k|τ

j
k) =

db(τ j
k)

dτ j
k

ν j
k + ε(b(τ j

k)− γ(N0,ε))−wk(j)r j
k,ε > 0 corresponds to a linear class

K function in CBF (3), then the diffusion procedure pθ (τ
i−1|τ i), i ∈ {0, . . . ,N} is finite-time diffu-

sion invariant.

In the above, hk,1(j) =−wk(j)r j
k,hk,2(j) = γ(N0,ε) corresponding to Def. 3.3. Here, a relaxation

variable r with a time-varying weight w are introduced upon Sec. 3.1 to soften safety constraints and
avoid local traps with additional effort to solve for r and to design w. This is implemented as a QP
later shown in (14).

3.3 TIME-VARYING-SAFE (TVS) DIFFUSER

As an alternative to the relaxed-safe diffuser, we propose another safe diffuser called the time-varying-
safe diffuser in this subsection. The proposed time-varying-safe diffuser can also address the local
trap issues induced by specifications.

In this case, we directly modify the specification b(τ j
k) ≥ 0 by a diffusion time-varying function

σk : j→ R (as opposed to the last two safe diffusers with a constant robust term γ(N,ε)) in the form:

b(τ j
k)−σk(j)≥ 0,k ∈ {0, . . . ,H}, j ∈ {0, . . . ,N}, (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Enforcing invariance in diffusion models within a diffusion step

Input: the last trajectory of diffusion τ j+1 at diffusion step j ∈ {0, . . . ,N}
Output: safe diffusion state τ j∗.
(a) Run diffusion procedure and sample as in (4) at step j and get τ j.
(b) Find diffusion dynamics as in (5) - (6).
if Robust-safe diffuser then

Formulate the QP (13), solve it and get ν j∗.
else if Relaxed-safe diffuser then

Define the time-varying weight wk(j) in (9), formulate the QP (14), solve it and get ν j∗,r j∗.
else

Design the time-varying function σk(j) in (11), formulate the QP (13), solve it and get ν j∗.
end if
(c) Update dynamics (6) with ν j = ν j∗ and get τ j∗. Finally, τ j← τ j∗.

where σk(j) is continuously differentiable, and is defined such that σk(N)≤ b(τN
k) and σk(0) = 0.

Finally, we have the following theorem to show the finite-time diffusion invariance:
Theorem 3.6. Let the diffusion dynamics be defined as in (5) whose controllable form is defined
as in (6). If there exist an extended class K function α and a time-varying function σk(j) where
σk(N)≤ b(τN

k) and σk(0) = 0 s.t.

h(ν j
k |τ

j
k ,σk(j))≥ 0,∀k ∈ {0, . . . ,H},∀ j ∈ {0, . . . ,N−1}, (12)

where h(ν j
k |τ

j
k ,σk(j)) =

db(τ j
k)

dτ j
k

ν j
k − σ̇k(j) + α(b(τ j

k) − σk(j)), then the diffusion procedure

pθ (τ
i−1|τ i), i ∈ {0, . . . ,N} is finite-time diffusion invariant.

In the above, hk,1(j) =−σ̇k(j),hk,2(j) = σk(j) corresponding to Def. 3.3. Here, we show an alter-
native to avoid local traps via a time-varying b−σk(j) in contrast to Sec. 3.2. This is implemented
similar to Sec. 3.1 with additional time-varying σk, later shown in (13).

Principles of choosing the three SafeDiffusers. We first determine if the unsafe set defined by
the safety constraint is convex or not, and determine if there are any intersections between any two
unsafe sets, as well as determine if the union of those intersected unsafe sets is convex or not. Then,
we run the following algorithm to determine which one to choose: If all the unsafe sets are convex
and the unions of intersected unsafe sets are convex (if they exist), which implies that there are no
traps, then we choose the RoS diffuser; Else if we wish to have the freedom to choose nonlinear class
K functions in designing, then we choose the TVS diffuser; Otherwise, we choose the ReS diffuser.
In cases where unsafe sets are hard to determine the convexity, we may simultaneously implement
the above three SafeDiffusers as they are computationally efficient (closed-form solutions are given
later). Then, we can select the most desired trajectory (e.g., no local trap points) from them.

4 ENFORCING INVARIANCE IN DIFFUSER

We show how we may incorporate the three proposed methods into diffusion models. In this section,
we propose a minimum-deviation quadratic program (QP) approach to achieve that. We wish to
enforce these conditions at every step of the diffusion as those states that are far from the specification
boundaries can also be optimized accordingly, and thus, the model may generate coherent trajectories.

Enforcing Invariance for RoS and TVS Diffusers. During implementation, the diffusion time
step length ∆τ in (5) is chosen to be small enough, and we wish the control ν j to stay close to the
right-hand side of (5). Thus, we can formulate the following QP-based optimization to find the
optimal control for ν j that satisfies the condition in Thms. 3.4 or 3.6:

ν j∗ = argmin
ν j
||ν j− τ j−τ j+1

∆τ
||2, s.t., (8) if RoS diffuser else s.t., (12), (13)

where || · || denotes the 2-norm of a vector. If we have more than one specification, we can add the
corresponding conditions in Thm. 3.4 for each of them to the above QP. After we solve the above

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Maze planning (blue to red) denoising diffusion procedure with ReS diffuser in a narrow
setting. Left to right: diffusion time steps 256, 5, 3, 0, respectively. Red areas denote unsafe regions.
The proposed ReS diffuser can guarantee safety at the end of diffusion.

Table 2: Maze planning comparisons. Items are short for minimum metrics of satisfaction of simple
specifications (S-SPEC) and complex specifications (C-SPEC), score of planning tasks (SCORE),
computation time at each diffusion step (TIME) in seconds, and negative log likelihood (NLL),
respectively. In the method column, items are short for Truncate (Trunc.), Classifier-guidance (CG),
Invariant neural ODE (InvODE), relaxed-safe diffuser with last 10 step invariance (ReS-DIFFUSER-
l10), respectively. The CG−ε method applies (safe) gradient when the state is ε > 0 close to the
boundary. The TRAP RATE r denotes the trap rate with the number of trapped trajectory points ≥ r.

METHOD S-SPEC(↑
&≥ 0)

C-SPEC(↑
&≥ 0)

SCORE (↑) TIME NLL TRAP
RATE 1 (↓)

TRAP
RATE 2 (↓)

DIFFUSER JANNER ET AL. (2022) -0.983 -0.894 1.598±0.174 0.006 4.501±0.475

TRUNC. BROCKMAN ET AL. (2016) -1.192e−7 -0.759 1.577±0.242 0.024 4.494±0.465
CG DHARIWAL & NICHOL (2021) -0.789 -0.979 0.384±0.020 0.053 6.962±0.350

CG−ε DHARIWAL & NICHOL (2021) -0.853 -0.995 0.383±0.017 0.061 6.975±0.343
INVODE XIAO ET AL. (2023B) 14.000 1.657e−5 -0.025±0.000 0.018 –

ROS-DIFFUSER (OURS) 0.010 0.010 1.519±0.330 0.106 4.584±0.646 100% 100%
ROS-DIFFUSER-CF (OURS) 0.010 0.010 1.536±0.306 0.007 4.481±0.298 100% 100%

RES-DIFFUSER (OURS) 0.010 0.010 1.557±0.289 0.107 4.434±0.561 46% 17%
RES-DIFFUSER-CF (OURS) 0.010 0.010 1.544±0.280 0.007 4.619±0.652 36% 16%

TVS-DIFFUSER (OURS) 0.003 0.003 1.543±0.303 0.107 4.533±0.494 47% 21%
TVS-DIFFUSER-CF (OURS) 0.003 0.003 1.588±0.231 0.007 4.462±0.431 48% 18%
RES-DIFFUSER-L10 (OURS) 0.010 0.010 1.527±0.291 0.011 4.571±0.693 39% 8%

QP and get ν j∗, we update (6) by setting ν j = ν j∗ within the time step and get a new state for the
diffusion procedure. Note that all of these happen at the end of each diffusion step.

Enforcing Invariance for ReS Diffuser. In this case, since we have relaxation variables for each of
the safety specifications, we wish to minimize these relaxations in the cost function to drive all the
states towards the satisfaction of specifications. In other words, we have the following QP:

ν j∗,r j∗ = arg min
ν j ,r j
||ν j− τ j−τ j+1

∆τ
||2 + ||r j||2, s.t., (10), (14)

where r j is the concatenation of r j
k for all k ∈ {0, . . . ,H}. As an alternative, all the constraints above

may share the same relaxation variable, i.e., the dimension of r j is only one. After we solve the QP
and get ν j∗, we update (6) by setting ν j = ν j∗ within the time step and get a new state.

Complexity/Improving efficiency. The computational complexity of a QP is O(q3), where q is
the dimension of the decision variable. The SafeDiffusers are more computationally expensive than
existing models as they are involved with solving QPs. However, this can be addressed by: (a)
Applying the proposed methods to limited diffusion steps while ensuring the satisfaction of the
conditions in Thms. 3.4-3.6 are satisfied to guarantee safety; (b) Using the Batch QP solving method
from the OptNet Amos & Kolter (2017); (c) Merging a number of safety constraints into a single one
Lindemann & Dimarogonas (2018) or consider the most-violating two constraints at each time step,
and then we can find the closed-form solution of the QP Ames et al. (2017) (See Appendix Sec. B for
more details). The algorithm for enforcing invariance includes the construction of proper conditions,
the solving of QP, and the update of diffusion state. We summarize the algorithm in Alg. 1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We set up experiments to answer the following questions: Does our method match the theoretical
potential in various tasks quantitatively and qualitatively? How does our method compare with
state-of-the-art approaches in enforcing safety specifications? How does our proposed method affect
the performance of diffusion under guaranteed specifications? We focus on three experiments from
D4RL (Farama-foundation): maze (maze2d-large-v1), gym robots (Walker2d-v2 and Hopper-v2),
and manipulation. The training data is publicly available, see Janner et al. (2022). The experiment
details and metrics used are shown in Appendix. The safe diffusers generate both planning trajectory
and control for the robots, and the score/reward is based on closed-loop control.

5.1 SAFE PLANNING IN MAZE

We focus on the case that the training data does not satisfy safety constraints to show how our methods
can be generalized to new constraints. For cases where the training data satisfies safety constraints,
diffusers may still violate such constraints, while our methods still work (see Fig. 8 of Appendix).

The diffuser cannot guarantee the satisfaction of any specifications. The classifier-based guidance
in diffusion for safety specifications generates trajectories that largely deviate from the desired one
with no safety. The proposed RoS-diffuser may introduce local trap problems (as shown in Fig.
6 of Appendix), but this can be addressed by ReS-diffuser and TVS-diffuser. The safe diffusers
can all guarantee the satisfaction of specifications, even when the specifications are complex (as
long as they are differentiable), as shown in Table 2. The proposed methods can also maximally
preserve the performance of diffusion models, and this is demonstrated by the scores and negative log
likelihood (NLL) in Table 2, as well as shown by Fig. 2 lower case. The NLL metric quantifies the
similarity between different distributions, and the proposed safe diffusers can achieve similar NLL as
the baseline diffuser. The computation time of safe diffusers can be significantly reduced by applying
the invariance method to limited diffuser steps, as shown in the last column of Table 2 (0.011s v.s.
0.007s of diffuser). The invariant neural ODE method Xiao et al. (2023b) can guarantee safety for
planning, but it does not work well in the closed-loop control (Fig. 7 of appendix), as shown by the
score (-0.025) in Table 2. More ablation studies are given in Appendix C.1

5.2 SAFE PLANNING FOR ROBOT LOCOMOTION

Table 3: Robot safe planning comparisons with benchmarks. Abbreviations are the same as Table 2.

EXPERIMENT METHOD S-SPEC(↑
&≥ 0)

C-SPEC(↑
&≥ 0)

SCORE (↑) TIME

DIFFUSER JANNER ET AL. (2022) -9.375 -4.891 0.346±0.106 0.037
TRUNC. BROCKMAN ET AL. (2016) 0.0 × 0.286±0.180 0.105

WALKER2D CG DHARIWAL & NICHOL (2021) -0.575 -0.326 0.208±0.140 0.053
ROS-DIFFUSER (OURS) 0.000 0.010 0.312±0.165 0.183

ROS-DIFFUSER-CF (OURS) 0.000 0.010 0.321±0.119 0.040

DIFFUSER JANNER ET AL. (2022) -2.180 -1.862 0.455±0.038 0.038
TRUNC. BROCKMAN ET AL. (2016) 0.0 × 0.436±0.067 0.046

HOPPER CGDHARIWAL & NICHOL (2021) -0.894 -0.524 0.478±0.038 0.047
ROS-DIFFUSER (OURS) 0.000 0.010 0.430±0.040 0.170

ROS-DIFFUSER-CF (OURS) 0.000 0.010 0.464±0.028 0.040

In robot locomotion, there is no local trap problem, we only consider RoS-diffuser. Others work
similarly. As expected, collisions with the roof are very likely to happen in the walker and hopper
using the diffuser since there are no guarantees, as shown in Table 3. The truncation method can work
for simple specifications (S-spec), but not for complex specifications (C-spec). The classifier-based
guidance can improve the satisfaction of specifications but without guarantees. Collision-free is
guaranteed using the RoS-diffuser, and one example of diffusion procedure is shown in Fig. 3.

5.3 SAFE PLANNING FOR MANIPULATION

In manipulation, specifications are joint limitations to avoid collision in joint space. In this case, the
truncation method still fails to work for complex specifications (speed-dependent joint limitations).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

t = 20

t = 10

t = 0
Figure 3: Walker2D planning denoising diffusion with the robust-safe diffuser (Up to down: diffusion
time steps 20, 10, 0, respectively). The red line denotes the roof the walker needs to safely avoid
during locomotion (safety specifications). Safety is violated at step 20 since the trajectory is initially
Gaussian noise, but is eventually guaranteed (step 0). Note that the robot top could touch the roof,
and this is not a collision. This can be avoided by defining a more strict safety constraint.

Table 4: Manipulation planning comparisons. Abbreviations are the same as Table 2.

METHOD S-SPEC(↑
&≥ 0)

C-SPEC(↑
&≥ 0)

REWARD (↑) TIME

DIFFUSER JANNER ET AL. (2022) -0.057 -0.065 0.650±0.107 0.038

TRUNC. BROCKMAN ET AL. (2016) 1.631e−8 × 0.575±0.112 0.069
CG DHARIWAL & NICHOL (2021) -0.050 -0.053 0.800±0.328 0.075

ROS-DIFFUSER (OURS) 0.072 0.069 0.925±0.107 0.088
ROS-DIFFUSER-CF (OURS) 0.093 0.002 0.800±0.114 0.039

Our proposed RoS-diffuser can work for all specifications as long as they are differentiable. An
interesting observation is that the proposed RoS-diffuser can even improve the performance (reward)
of diffusion models in this case, as shown in Table 4. This may be due to the fact that the satisfaction
of joint limitations can avoid collision in the joint space of the robot as Pybullet is a physics simulator.
The computation time of the proposed RoS-diffuser is comparable to other methods. An illustration
of the safe diffusion and manipulation procedure is shown in Fig. 4.

6 RELATED WORKS

Diffusion models and planning Diffusion models Sohl-Dickstein et al. (2015) Ho et al. (2020) are
data-driven generative modeling tools, widely used in applications to image generations Dhariwal
& Nichol (2021) Du et al. (2020b), in planning Hafner et al. (2019) Janner et al. (2021) Ozair et al.
(2021) Janner et al. (2022), and in language Saharia et al. (2022) Liu et al. (2023a). Generative models
are combined with reinforcement learning to explore dynamic models in the form of convolutional
U-networks Kaiser et al. (2019), stochastic recurrent networks Ke et al. (2019), neural ODEs Du
et al. (2020a), generative adversarial networks Eysenbach et al. (2022), neural radiance fields Li
et al. (2022), and transformers Chen et al. (2022). Further, planning tasks are becoming increasingly
important for diffusion models Lambert et al. (2021) Ozair et al. (2021) Janner et al. (2022) as they
can generalize well in all kinds of robotic problems. Existing methods for improving the safety of
diffusion models employ safety constraints to guide the diffusion process Yuan et al. (2022) Ajay
et al. (2023) Liu et al. (2023b). However, there are no methods to equip diffusion models with safety,
which is especially important for many applications. Here, we address this issue using the proposed
finite-time diffusion invariance.

Set invariance and CBFs. An invariant set has been widely used to represent the safe behavior of
dynamical systems Preindl (2016) Rakovic et al. (2005) Ames et al. (2017) Glotfelter et al. (2017)
Xiao & Belta (2019). In the state of the art of control, Control Barrier Functions (CBFs) are also
widely used to prove set invariance Aubin (2009), Prajna et al. (2007), Wisniewski & Sloth (2013).
CBFs can be traced back to optimization problems Boyd & Vandenberghe (2004), and are Lyapunov-
like functions Wieland & Allgöwer (2007). For time-varying systems, CBFs can also be adapted
accordingly Lindemann & Dimarogonas (2018). Existing CBF approaches are usually applied in
planning time since they are closely coupled with system dynamics. There are few studies of CBFs
in other space, such as the diffusion time. Our work addresses all these limitations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Manipulation planning denoising diffusion procedure with the proposed robust-safe diffuser
(Left to right: diffusion time steps 1000, 100, 0, and execution time step 100, respectively). The red
dots denote the planning trajectory of the end-effector.

Guarantees in neural networks. Differentiable optimization methods show promise for neural
network controllers with guarantees Pereira et al. (2020); Amos et al. (2018); Xiao et al. (2023a).
They are usually served as a layer (filter) in the neural networks. In Amos & Kolter (2017), a
differentiable quadratic program (QP) layer, called OptNet, was introduced. OptNet with CBFs
has been used in neural networks as a filter for safe controls Pereira et al. (2020), in which CBFs
are not trainable, thus, potentially limiting the system’s learning performance. In Deshmukh et al.
(2019); Zhao et al. (2021); Ferlez et al. (2020), safety guaranteed neural network controllers have
been learned through verification-in-the-loop training. The verification approaches cannot ensure
coverage of the entire state space. More recently, CBFs have been incorporated into neural ODEs to
equip them with specification guarantees Xiao et al. (2023b). However, none of these methods can be
applied in diffusion models, which we address in this paper.

7 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We have proposed finite-time diffusion invariance for diffusion models to ensure safe planning. The
proposed robust-safe diffuser can guarantee safety in general settings, but it may be subject to local
trap issues. The proposed relaxed-safe and time-varying safe diffusers can address the local trap
problem. Through a series of robotic planning tasks, we have demonstrated the effectiveness of our
theoretical results. Our methods work better than existing approaches, while maximally preserving
the model performance. Nonetheless, our method faces a few shortcomings motivating for future
work.

Limitations. Specifically, specifications for diffusion models are expressed as differentiable con-
straints that may be unknown for planning tasks. Further work may explore how to learn specifications
from history trajectory data Robey et al. (2020). The computation time is much higher than the
diffuser if we apply invariance to every diffusion step. This can be improved by applying invariance
to a limited number of diffusion steps or merging safety constraints into a single one and find the
closed-form solution Ames et al. (2017). Moreover, there may be some errors when estimating the
diffusion dynamics in the current framework. This can be addressed using stochastic differential
equations in diffusion models Song et al. (2020).

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2023.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2017.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70, pp.
136–145, 2017.

Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter.
Differentiable mpc for end-to-end planning and control. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 8299–8310. Curran Associates Inc.,
2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jean-Pierre Aubin. Viability theory. Springer, 2009.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, New York, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with
transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Jyotirmoy V. Deshmukh, James P. Kapinski, Tomoya Yamaguchi, and Danil Prokhorov. Learning
deep neural network controllers for dynamical systems with safety guarantees: Invited paper. In
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–7, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. Model-based reinforcement learning for
semi-markov decision processes with neural odes. Advances in Neural Information Processing
Systems, 33:19805–19816, 2020a.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models.
Advances in Neural Information Processing Systems, 33:6637–6647, 2020b.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230–23243, 2022.

James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody Fleming. Shieldnn: A provably safe nn
filter for unsafe nn controllers. preprint arXiv:2006.09564, 2020.

P. Glotfelter, J. Cortes, and M. Egerstedt. Nonsmooth barrier functions with applications to multi-robot
systems. IEEE control systems letters, 1(2):310–315, 2017.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Modeling the long term future in model-based reinforcement learning. In
International Conference on Learning Representations, 2019.

Hassan K. Khalil. Nonlinear Systems. Prentice Hall, third edition, 2002.

Nathan Lambert, Albert Wilcox, Howard Zhang, Kristofer SJ Pister, and Roberto Calandra. Learn-
ing accurate long-term dynamics for model-based reinforcement learning. In 2021 60th IEEE
Conference on Decision and Control (CDC), pp. 2880–2887. IEEE, 2021.

Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba. 3d neural scene
representations for visuomotor control. In Conference on Robot Learning, pp. 112–123. PMLR,
2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

L. Lindemann and D. V. Dimarogonas. Control barrier functions for signal temporal logic tasks. In
Proc. of 57th IEEE Conference on Decision and Control, 2018. to appear.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023a.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao. Con-
strained decision transformer for offline safe reinforcement learning. In International Conference
on Machine Learning, pp. 21611–21630. PMLR, 2023b.

David G Luenberger. Optimization by vector space methods. John Wiley & Sons, 1997.

Mitio Nagumo. Über die lage der integralkurven gewöhnlicher differentialgleichungen. In Proceed-
ings of the Physico-Mathematical Society of Japan. 3rd Series. 24:551-559, 1942.

Quan Nguyen and Koushil Sreenath. Exponential control barrier functions for enforcing high relative-
degree safety-critical constraints. In 2016 American Control Conference (ACC), pp. 322–328.
IEEE, 2016.

Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aaron Van Den Oord, and Oriol Vinyals.
Vector quantized models for planning. In International Conference on Machine Learning, pp.
8302–8313. PMLR, 2021.

Marcus Aloysius Pereira, Ziyi Wang, Ioannis Exarchos, and Evangelos A. Theodorou. Safe optimal
control using stochastic barrier functions and deep forward-backward sdes. In Conference on
Robot Learning, 2020.

Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Transactions on Automatic Control, 52(8):
1415–1428, 2007.

Matthias Preindl. Robust control invariant sets and lyapunov-based mpc for ipm synchronous motor
drives. IEEE Transactions on Industrial Electronics, 63(6):3925–3933, 2016.

Sasa V Rakovic, Eric C Kerrigan, Konstantinos I Kouramas, and David Q Mayne. Invariant approxi-
mations of the minimal robust positively invariant set. IEEE Transactions on automatic control, 50
(3):406–410, 2005.

Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning control barrier functions from expert demonstrations. In 2020
59th IEEE Conference on Decision and Control (CDC), pp. 3717–3724, 2020.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Peter Wieland and Frank Allgöwer. Constructive safety using control barrier functions. In Proc. of
7th IFAC Symposium on Nonlinear Control System, 2007.

Rafael Wisniewski and Christoffer Sloth. Converse barrier certificate theorem. In Proc. of 52nd IEEE
Conference on Decision and Control, pp. 4713–4718, Florence, Italy, 2013.

Wei Xiao and Calin Belta. Control barrier functions for systems with high relative degree. In Proc.
of 58th IEEE Conference on Decision and Control, pp. 474–479, Nice, France, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Makram Chahine, Alexander Amini, Xiao Li, and
Daniela Rus. Barriernet: Differentiable control barrier functions for learning of safe robot control.
IEEE Transactions on Robotics, 2023a.

Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Mathias Lechner, Yutong Ban, Chuang Gan, and
Daniela Rus. On the forward invariance of neural odes. In International conference on machine
learning, pp. 38100–38124. PMLR, 2023b.

Zhantao Yang, Ruili Feng, Han Zhang, Yujun Shen, Kai Zhu, Lianghua Huang, Yifei Zhang, Yu Liu,
Deli Zhao, Jingren Zhou, et al. Lipschitz singularities in diffusion models. In The Twelfth
International Conference on Learning Representations, 2023.

Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided human
motion diffusion model. arXiv preprint arXiv:2212.02500, 2022.

Hengjun Zhao, Xia Zeng, Taolue Chen, Zhiming Liu, and Jim Woodcock. Learning safe neural
network controllers with barrier certificates. Form Asp Comp, 33:437–455, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF

A.1 PROOF OF THM. 3.4

Proof: Given a continuously differentiable constraint h(xt)≥ 0 (h(x0)≥ 0), by Nagumo’s theorem
Nagumo (1942), the necessary and sufficient condition for the satisfaction of h(xt)≥ 0,∀t ≥ 0 is

ḣ(xt)≥ 0, when h(xt) = 0,

If b(τN
k)− γ(N,ε)≥ 0,k ∈ {0, . . . ,H}, then the condition (8) is equivalent to

db(τ j
k)

dτ j
k

τ̇ j
k + ε(b(τ j

k)− γ(N,ε))≥ 0,

where τ̇ j
k is the diffusion time derivative. The last equation is equivalent to

d(b(τ j
k)− γ(N,ε))

dτ
+ ε(b(τ j

k)− γ(N,ε))≥ 0,

where τ denotes the diffusion time.

Further, we have that
ε(b(τ j

k)− γ(N,ε))→ 0, as b(τ j
k)→ γ(N,ε),

In other words, we have d(b(τ j
k)−γ(N,ε))

dτ
≥ 0 when b(τ j

k) = γ(N,ε). Since b(τN
k) ≥ γ(N,ε),k ∈

{0, . . . ,H}, then by Nagumo’s theorem, we have b(τ j
k)≥ γ(N,ε)> 0,∀ j ∈ {0, . . . ,N−1}. Therefore,

the diffusion procedure pθ (τ
i−1|τ i), i ∈ {1, . . . ,N} is finite-time diffusion invariant, and the finite

time in diffusion invariance is N.

If, on the other hand, b(τN
k)< γ(N,ε),k ∈ {0, . . . ,H}, then we can define a Lyapunov function:

V (τ j
k) = γ(N,ε)−b(τ j

k),k ∈ {0, . . . ,H}, j ∈ {0, . . . ,N}, (15)

and V (xN
k)> 0.

Replacing γ(N,ε)−b(τ j
k) by V (τ j

k), the condition (8) is equivalent to (note that τ̇ j
k = ν j

k)

dV (τ j
k)

dτ j
k

τ̇ j
k + εV (τ j

k)≤ 0,

which is equivalent to
V̇ (τ j

k)+ εV (τ j
k)≤ 0,

Suppose we have
V̇ (τ j

k)+ εV (τ j
k) = 0,

the solution to the above equation is

V (τ j
k) =V (τN

k)e−ε(N− j),

Using the comparison lemma Khalil (2002), equation (8) implies that

V (τ j
k)≤V (τN

k)e−ε(N− j), j ∈ {0, . . . ,N},

At diffusion step 0, i.e., j = 0, the last inequality becomes

V (τk)≤V (τN
k)e−εN ,k ∈ {0, . . . ,H},

Substituting V (τ j
k) = γ(N,ε)−b(τ j

k), j ∈ {0, . . . ,N} into the last equation, we have

γ(N,ε)−b(τk)≤ (γ(N,ε)−b(τN
k))e−εN ,k ∈ {0, . . . ,H},

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Since b(τN
k)< γ(N,ε) in this case, the last equation can be rewritten as

−b(τk)≤ |γ(N,ε)−b(τN
k)|e−εN− γ(N,ε),k ∈ {0, . . . ,H},

Following the condition γ(N,ε)≥ |γ(N,ε)−b(τN
k)|e−εN in the theorem, we have

−b(τk)≤ |γ(N,ε)−b(τN
k)|e−εN− γ(N,ε)≤ 0,k ∈ {0, . . . ,H},

Therefore,
b(τk)≥ 0,∀k ∈ {0, . . . ,H},

the diffusion procedure pθ (τ
i−1|τ i), i ∈ {1, . . . ,N} is finite-time diffusion invariant. ■

A.2 PROOF OF THM. 3.5

Proof: Since the weight wk(j) is chosen such that wk(j) = 0 for all j ≤ N0,0≤ N0 ≤ N−1, then the
condition (10) becomes a hard constraint when j < N0. In other words, equation (10) becomes:

h(ν j
k |τ

j
k) :=

db(τ j
k)

dτ j
k

ν j
k +α(b(τ j

k))≥ 0,k ∈ {0, . . . ,H}, j ∈ {0, . . . ,N0},

Then, the proof is similar to that of the Thm. 3.4, and we have that the diffusion procedure
pθ (τ

i−1|τ i), i ∈ {0, . . . ,N} is finite-time diffusion invariant. ■

A.3 PROOF OF THM. 3.6

Proof: Since σk(N)≤ b(τN
k), we have that s(τ j

k ,σk(j)) := b(τ j
k)−σk(j)≥ 0 when j = N.

The condition (12) is equivalent to

∂ s(τ j
k ,σk(j))

∂τ j
k

ν j
k +

∂ s(τ j
k ,σk(j))
∂ j

+α(s(τ j
k ,σk(j)))≥ 0,

which can be rewritten as
ṡ(τ j

k ,σk(j))+α(s(τ j
k ,σk(j)))≥ 0,

Using the Nagumo’ theorem presented in the proof of Thm. 3.2, we have that

s(τ j
k ,σk(j))≥ 0,∀ j ∈ {0, . . . ,N}

since s(τN
k ,σk(N))≥ 0.

As σk(0) = 0 and s(τ j
k ,σk(j)) := b(τ j

k)−σk(j), we have that b(τ 0
k)≥ 0,∀k ∈ {0, . . . ,H}. Therefore,

the diffusion procedure pθ (τ
i−1|τ i), i ∈ {0, . . . ,N} is finite-time diffusion invariant, and the finite

time in diffusion invariance is 0. ■

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B CLOSED-FORM SOLUTION TO SAFEDIFFUSERS

The enforcement of the proposed SafeDiffusers involve the solving of the QP (13) or (14), which
could be computationally expensive for complex tasks. Here, we propose to find the closed-form
solution to the QP (13) or (14) following Luenberger (1997). We take (13) with the RoS-Diffuser as
an example (the closed-form solution to the TVS-Diffuser or ReS-Diffuser is similar by replacing the
corresponding constraints).

Consider the following optimization corresponding to (13) for the RoS-Diffuser:

ν j∗ = argmin
ν j
||ν j− τ j−τ j+1

∆τ
||2,

s.t.,
db1(τ

j)

dτ j ν j + ε(b1(τ
j)− γ(N,ε))≥ 0,∀ j ∈ {0, . . . ,N−1},

db2(τ
j)

dτ j ν j + ε(b2(τ
j

k)− γ(N,ε))≥ 0,∀ j ∈ {0, . . . ,N−1},

(16)

where b1,b2 (two vectors corresponding to the planning horizon H) are the two most risky safety spec-
ifications, i.e., b1,b2 have the minimum and second-minimum values (component-wise corresponding
to the planning horizon H) among all the safety specifications at the diffusion step j ∈ {0, . . . ,N−1},
respectively.

Define

g1(τ
j) = [−db1(τ

j)

dτ j], h1(τ
j) = ε(b1(τ

j)− γ(N,ε)),

g2(τ
j) = [−db2(τ

j)

dτ j], h2(τ
j) = ε(b2(τ

j)− γ(N,ε)).

(17)

Since the matrix H(τ j) = I(H,H) is a positive definite (identity of dimension H) matrix in (16), we
further define

[ĝ1(τ
j), ĝ2(τ

j)] = H(τ j)−1[g1(τ
j),g2(τ

j)],[
ĥ1(τ

j)
ĥ2(τ

j)

]
=

[
h1(τ

j)
h2(τ

j)

]
−
[

g1(τ
j)T

g2(τ
j)T

]
ν̂

j (18)

where
ν̂

j =−H(τ j)−1F(τ j),

F(τ j) =−τ j−τ j+1

∆τ
.

(19)

Then, let w j := ν j− ν̂ j and ⟨·, ·⟩ define an inner product with weight matrix H(τ j) so that ⟨w j,w j⟩=
(w j)T H(τ j)w j. The optimization problem (16) is equivalent to:

w j∗ = argmin
w j
⟨w j,w j⟩,

s.t., ⟨ĝ1(τ
j),w j⟩ ≤ ĥ1(τ

j), ∀ j ∈ {0, . . . ,N−1},
⟨ĝ2(τ

j),w j⟩ ≤ ĥ2(τ
j), ∀ j ∈ {0, . . . ,N−1},

(20)

where the optimal solution of (16) is given by

ν j∗ =w j∗+ ν̂
j. (21)

Following Luenberger (1997) [Ch. 3], the unique solution to (20) is given by

w j∗ = λ1(τ
j)ĝ1(τ

j)+λ2(τ
j)ĝ2(τ

j) (22)

where

λ1(τ
j) =

0 if G21(τ

j)max(ĥ2(τ
j),0)−G22(τ

j)ĥ1(τ
j)< 0

max(ĥ1(τ
j),0)

G11(τ j)
if G12(τ

j)max(ĥ1(τ
j),0)−G11(τ

j)ĥ2(τ
j)< 0

max(G22(τ
j)ĥ1(τ

j)−G21(τ
j)ĥ2(τ

j),0)
G11(τ j)G22(τ j)−G12(τ j)G21(τ j)

otherwise .

(23)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

λ2(τ
j) =

max(ĥ2(τ

j),0)
G22(τ j)

if G21(τ
j)max(ĥ2(τ

j),0)−G22(τ
j)ĥ1(τ

j)< 0
0 if G12(τ

j)max(ĥ1(τ
j),0)−G11(τ

j)ĥ2(τ
j)< 0

max(G11(τ
j)ĥ2(τ

j)−G12(τ
j)ĥ1(τ

j),0)
G11(τ j)G22(τ j)−G12(τ j)G21(τ j)

otherwise .

(24)
where G(τ j) = [Gi j(τ

j)] = [⟨ĝi(τ
j), ĝ j(τ

j)⟩], i, j = 1,2 is the Gram matrix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS

Planning Tasks (Farama-foundation/d4rl/wiki/Tasks)

Maze. In maze planning, we aim to impose trajectory constraints on the planning path of a maze. The
initial positions and destinations in maze are randomly generated. The diffusion model is conditioned
on the initial positions and destinations.

Robot locomotion. For robot locomotion (in MuJoCo), we wish the robot to avoid collisions with
obstacles, such as the roof. In this case, since there is no local trap problem, we only consider
robust-safe diffuser (RoS-diffuser). Others work similarly.

Manipulation. For manipulation (in Pybullet), the diffusion models generate joint trajectories (as
controls) for the robot, which are conditioned on the locations of the objects to grasp and place.
Specifications are joint limitations to avoid collision in joint space.

Metrics and methods used in Tables

Metrics used in the paper Xiao et al. (2023b). The X-SPEC, X ∈ {C,S} metric is defined as:

X-SPEC = min
k
{ min

t∈[t0,T]
bX (x(t))}k,k ∈ {1, . . . ,N}, (25)

where N is the number of testing runs (N = 100 in this case). T is the final time of each run. bX (x)≥ 0
is the (complex/simple) safety constraint that is given explicitly in each experiment below.

Classifier-based guidance is done by applying gradients (towards safe space) to the trajectory points
that drive them to the safe side of the space whenever safety constraints are violated. As the trajectory
points frequently enter the unsafe sets due to the lack of set invariance property (while the CBF
method does have), applying classifier-based guidance at all times could mess up the diffusion process
(as shown in Fig. 2). As a result, the classifier-based guidance method would fail to identify the
constraints and thus fail to satisfy them as there is no explicit constraint information involved (the
CBF method does have since it evaluates the derivative of the safety constraints along the diffusion
dynamics).

The score (results from closed-loop control) represents the normalized reward that is used in RL.
The problem uses a sparse reward which has a value of 1.0 when the agent is within a 0.5 unit
radius of the target. Specifically, we use the env.get_normalized_score(returns) function in dr4l to
compute a normalized score for an episode, where returns are the undiscounted total sum of rewards
accumulated during an episode.

S-spec and C-spec. Simple specifications (S-spec) and Complex specifications (C-spec) are cal-
culated by the minimum values of the functions (e.g., b(τk)) among all runs that define the safety
constraints (e.g., b(τk)≥ 0). They are defined by how complex the specifications are. For instance,
in the maze example, the elliptical obstacle is defined as a simple obstacle as we can easily apply a
truncation method to satisfy the safety constraints, while the supper-elliptical obstacle is defined as a
complex obstacle as it is hard to apply the truncation method.

The NLL metrics for all the baselines and our methods follow the function in guided-
diffusion/guided_diffusion/gaussian_diffusion.GaussianDiffusion._vb_terms_bpd from Dhariwal
& Nichol (2021).

C.1 SAFE PLANNING IN MAZE

In this experiment, we aim to impose trajectory constraints on the planning path of a maze. The
training data is publicly available from Janner et al. (2022), in which initial positions and destinations
in maze are randomly generated. The diffusion model is conditioned on the initial positions and
destinations.

Specifications. The simple safety specification for the planning trajectory is defined as a super-
ellipse-shape obstacle: (

x− x0

a

)2

+

(
y− y0

b

)2

≥ 1, (26)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 5: Maze planning (blue to red) denoising diffusion procedure with diffuser (Left to right:
diffusion time steps 256, 4, 3, 0, respectively). Red ellipse and superellipse (outside) denote safe
specifications. Both specifications are violated with the trajectory from diffuser.

where (x,y) ∈ R2 is the state on the planning trajectory, (x0,y0) ∈ R2 is the location of the obstacle.
a > 0,b > 0. Since the state (x,y) is normalized in diffusion models, we also need to normalize
the above constraint accordingly. In other words, we normalize x0,a and y0,b according to the
normalization of (x,y) along the x-axis and y−axis, respectively.

The complex safety specification for the planning trajectory is defined as an ellipse-shape obstacle:(
x− x0

a

)4

+

(
y− y0

b

)4

≥ 1, (27)

We also normalize the above constraint as in the simple case. In this case, it is non-trivial to truncate
the planning trajectory to satisfy the constraint. When we have much more complex specifications, it
is too hard for the truncation method to work.

Experiment parameters. In relaxed-safe diffuser, wk(j) is defined as wk(j) = 100 when j ≥ 10;
otherwise, wk(j) = 0 in the maze example. In time-varying-safe diffuser, the CBF corresponding
to (26) (the CBF is similarly defined for (27)) is defined as

(x−x0
a

)2
+
(y−y0

b

)2 ≥ σk(j), where
σk(j) = sigmoid(jbias− j), and jbias = 5, in which case σk(N) is near 0 at the beginning of the
diffusion time j = N. Therefore, the unsafe set is very small such that all the trajectory points are
outside the unsafe set. When j = 0, σk(j) is close to 1, and the safety constraint is satisfied for all
the trajectory points. There are many different ways to define both time-varying functions, and their
definitions do not greatly affect the safety satisfaction as long as the initial (i.e., the unsafe set is very
small such that all the trajectory points are initially outside the unsafe set) and terminal conditions
(the safe set is the same as the safety constraint specification) are satisfied. The robust function γ in
robust-safe diffuser (the same for the relaxed-safe diffuser) is set to 0.01 according to Thm. 3.4 and
the given N and ε (N = 256,ε = 1). The extended class function α is a linear function with slope 1
(i.e., ε = 1 in (8)).

Model setup, training and testing. The diffusion model structure is the same as the open source
one (Maze2D-large-v1) provided in Janner et al. (2022). We set the planning horizon as 384, the
diffusion steps as 256 for the proposed methods. The learning rate is 2e−4 with 2e6 training steps.
The training of the model takes about 10 hours on a Nvidia RTX-3090 GPU. More parameters
are provided in the attached code: “safediffuser/config/maze2d.py”. The switch of different (pro-
posed) methods in testing can be modified in “safediffuser/diffuser/models/diffusion.py” through
“GaussianDiffusion.p_sample()” function.

In Fig. 5, we present a diffusion procedure using the diffuser, in which case the generated trajectory
can easily violate safety constraints. Using the proposed robust-safe diffuser, the generated trajectory
can guarantee safety, but some points on the trajectory may get stuck in local traps, as shown in 6.
Using the proposed relaxed-safe diffuser and time-varying-safe diffuser, the local trap problem could
be addressed.

Invariant neural ODE. The invariant neural ODE method Xiao et al. (2023b) does not work well in
closed-loop control, as shown in Fig. 7.

Ablation study 1: Maze2d-umaze-v1 (training data satisfies safety constraints). In this case, the
training data satisfies the safety constraints (modeled as maze walls). The diffuser may still violate
such safety constraints due to uncertainties in inference, as shown in Fig. 8 left case. While our safe
diffuser can guarantee safety (Initial positions and destinations are randomly generated).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 6: Maze planning (blue to red) denoising diffusion procedure with robust-safe diffuser at
diffusion time step 0. Red ellipse and superellipse (outside) denote safe specifications. Although with
safety guarantees, some trajectory points may get stuck in local traps.

Figure 7: Maze planning (blue to red) using neural ODEs with invariance. Although with safety
guarantees, the neural ODEs fail to work for such a long horizon planning problem.

Ablation study 2: Comparison between one-step safe diffusers and multi-step safe diffusers.
The safe diffusers have to be applied for multiple diffusion steps, otherwise, the safety constraints
may still be violated (as shown in Fig. 9 left case) as the proposed diffusion invariance is a dynamic
process that requires several iterations to drive the trajectory to safe space.

Ablation study 3: Safety portrait statistics. We present in Fig. 10 the distribution of safety portrait
(C-spec) among 100 runs with respect to scores. In summary, our safe diffusers can guarantee safety
while maximally preserving performance.

Ablation study 4: Minimum diffusion steps for safety. We have done ablation studies on the
number of diffusion time steps needed to reduce the computation time while still maintaining the
model performance. It actually only requires at least 3 time steps (this is set to 10 in Table I to ensure
robustness) as the trajectory points can quickly converge to the safe set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 8: Maze planning (blue to red) denoising diffusion procedure using diffuser (left) and
safediffuser (right) when the training data satisfies safety constraints. Red and green super-ellipses
denote safe specifications for the walls. Diffusers may still violate safety constraints.

Figure 9: Maze planning (blue to red) denoising diffusion procedure using safediffuser for the last
step (left) and the last 10 steps (right). The generated trajectory is more smooth with safety guarantees
when running for the last 10 steps.

C.2 SAFE PLANNING FOR ROBOT LOCOMOTION

For robot locomotion (in MuJoCo), we wish the robot to avoid collisions with obstacles, such as
the roof. In this case, since there is no local trap problem, we only consider robust-safe diffuser
(RoS-diffuser). Others work similarly. The training data set is publicly available from Janner et al.
(2022).

Specifications. The simple safety specification for both the Walker2D and Hopper is collision
avoidance with the roof. In other words, the height of the robot head z ∈ R should satisfy the
following constraint:

z≤ hr, (28)

where hr > 0 is the height of the roof. We also need to normalize hr according to the normalization
of the state z in the diffusion model.

The complex safety specification for both the Walker2D and Hopper is a speed-dependent collision
avoidance constraint:

z+ϕvz ≤ hr, (29)

where ϕ > 0, vz ∈ R is the speed of the robot head along the z-axis. The speed-dependent safety
constraint is more robust for the robot to avoid collision with the roof since when the robot jumps
faster, we need to ensure a larger safe distance with respect to the roof in order to account for all
kinds of uncertainties or perturbations. In this case, the simple truncation method is hard to work
since it is not clear how to truncate both z and vz at the same time.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 10: Specification satisfaction metrics (C-spec) v.s. scores in maze planning using diffusion
models (from left to right: diffuser, truncation, classifier guidance, safediffuser). Safediffusers can
guarantee the satisfaction of specifications while making the scores consistently close to 1.6 among
all the runs (mean value: 1.527).

Model setup, training and testing. The diffusion model structures are the same as the open source
ones (Walker2D-Medium-Expert-v2 and Hopper-Medium-Expert-v2) provided in Janner et al. (2022).
We set the planning horizon as 600, the diffusion steps as 20. The learning rate is 2e−4 with 2e6

training steps. The training of the model takes about 16 hours on a Nvidia RTX-3090 GPU. More
parameters are provided in the attached code: “safediffuser/config/locomotion.py”. The switch of
different methods in testing can be modified in “safediffuser/diffuser/models/diffusion.py” through
“GaussianDiffusion.p_sample()” function.

C.3 SAFE PLANNING FOR MANIPULATION

For manipulation (in Pybullet), the diffusion models generate joint trajectories (as controls) for the
robot, which are conditioned on the locations of the objects to grasp and place. The training data set
is publicly available from Janner et al. (2022). Specifications are joint limitations to avoid collision in
joint space.

Specifications. The simple safety specification for the robot is in the joint space, and we are trying to
limit the joint angles of the robot within allowed ranges:

xmin ≤ x≤ xmax, (30)

where x ∈ R7 is the state of 7 joint angles, xmin ∈ R7 and xmax ∈ R7 denotes the minimum and
maximum joint limits. We need to normalize the limits according to how the state x is normalized in
the diffusion model.

The complex safety specifications are speed-dependent joint constraints:

xmin ≤ x+ϕv≤ xmax, (31)

where ϕ > 0, v ∈ R7 is the joint speed corresponding to the joint angle x. In this example, since the
diffusion model does not directly predict v, we evaluate v using x(k) and x(k+1) along the planning
horizon. The joints limits are also normalized as in the simple specification case.

Model setup, training and testing. The diffusion model structure is the same as the open source one
provided in Janner et al. (2022), and we use their pre-trained models to evaluate our methods when
comparing with other approaches.

22

	Introduction
	Preliminaries
	Safe Diffuser
	Robust-Safe (RoS) Diffuser
	Relaxed-Safe (ReS) Diffuser
	Time-Varying-Safe (TVS) Diffuser

	Enforcing Invariance in Diffuser
	Experiments
	Safe Planning in Maze
	Safe Planning for Robot Locomotion
	Safe Planning for Manipulation

	Related Works
	Conclusions, Limitations and Future Work
	Proof
	Proof of Thm. 3.4
	Proof of Thm. 3.5
	Proof of Thm. 3.6

	Closed-Form Solution to SafeDiffusers
	Experiment Details
	Safe Planning in Maze
	Safe Planning for Robot Locomotion
	Safe Planning for Manipulation

