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ABSTRACT

Group imbalance has been a known problem in empirical risk minimization (ERM),
where the achieved high average accuracy is accompanied by low accuracy in a
minority group. Despite algorithmic efforts to improve the minority group accuracy,
a theoretical generalization analysis of ERM on individual groups remains elusive.
By formulating the group imbalance problem with the Gaussian Mixture Model,
this paper quantifies the impact of individual groups on the sample complexity, the
convergence rate, and the average and group-level testing performance. Although
our theoretical framework is centered on binary classification using a one-hidden-
layer neural network, to the best of our knowledge, we provide the first theoretical
analysis of the group-level generalization of ERM in addition to the commonly
studied average generalization performance. Sample insights of our theoretical
results include that when all group-level co-variance is in the medium regime and
all mean are close to zero, the learning performance is most desirable in the sense of
a small sample complexity, a fast training rate, and a high average and group-level
testing accuracy. Moreover, we show that increasing the fraction of the minority
group in the training data does not necessarily improve the generalization perfor-
mance of the minority group. Our theoretical results are validated on both synthetic
and empirical datasets such as CelebA and CIFAR-10 in image classification.

1 INTRODUCTION

Training neural networks with empirical risk minimization (ERM) is a common practice to reduce the
average loss of a machine learning task evaluated on a dataset. However, recent findings (Blodgett
et al., 2016; Tatman, 2017; Hashimoto et al., 2018; Buolamwini & Gebru, 2018; McCoy et al., 2019;
Sagawa et al., 2020; Sagawa* et al., 2020; Mehrabi et al., 2021) have shown empirical evidence about
a critical challenge of ERM, known as group imbalance, where a well-trained model that has high
average accuracy may have significant errors on the minority group that infrequently appears in the
data. Moreover, the group attributes that determine the majority and minority groups are usually
hidden and unknown during training. The training set can be augmented by data augmentation
methods (Shorten & Khoshgoftaar, 2019) with varying performance, such as cropping and rotation
(Krizhevsky et al., 2012), noise injection (Moreno-Barea et al., 2018), and generative adversarial
network (GAN)-based methods (Goodfellow et al., 2014; Bowles et al., 2018; Radford et al., 2016).

As ERM is a prominent method and enjoys great empirical success, it is important to characterize
the impact of ERM on group imbalance theoretically. However, the technical difficulty of analyzing
the nonconvex ERM problem of neural networks results from the concatenation of nonlinear func-
tions across layers, and the existing generalization analyses of ERM often make overly simplistic
assumptions and only focus on the average generalization performance. For example, the neural
tangent kernel type of analysis (Arora et al., 2019; Allen-Zhu et al., 2019b;a; Cao & Gu, 2019; Chen
et al., 2020; Du et al., 2019; Jacot et al., 2018; Zou et al., 2020; Zou & Gu, 2019) linearizes the
neural network around the random initialization to remove the nonconvex interactions across layers.
The generalization bounds are independent of the feature distribution and cannot be exploited to
analyze the impact of individual groups. Li & Liang (2018) provides the sample complexity analysis
when the data comes from the mixtures of well-separated distributions but still cannot characterize
the learning performance of individual groups. Another line of works (Du et al., 2018a; Ghorbani
et al., 2020; Goldt et al., 2020; Li & Liang, 2018; Mei et al., 2018; Mignacco et al., 2020; Yoshida
& Okada, 2019) considers one-hidden-layer neural networks because the ERM problem is already

1



Under review as a conference paper at ICLR 2023
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Figure 1: Group imbalance experiment. (a) Binary classification on CelebA dataset using Gaussian
augmentation to control the minority group co-variance. (b) Test accuracy against the augmented
noise level.

highly nonconvex, and the analytical complexity increases tremendously when the number of hidden
layers increases. In these works, the input features are usually assumed to be i.i.d. samples drawn
from the standard Gaussian distribution, and this data model cannot differentiate the majority and
minority groups.

Contribution: To the best of our knowledge, this paper provides the first theoretical characterization
of both the average and group-level generalization of a one-hidden-layer neural network trained by
ERM on data generated from a mixture of distributions. This paper considers the binary classification
problem with the cross entropy loss function, with training data generated by a ground-truth neural
network with known architecture and unknown weights. The optimization problem is challenging
due to a high non-convexity from the multi-neuron architecture and the non-linear sigmoid activation.

Assuming the features follow a Gaussian Mixture Model (GMM), where samples of each group are
generated from a Gaussian distribution with an arbitrary mean vector and co-variance matrix, this
paper quantifies the impact of individual groups on the sample complexity, the training convergence
rate, and the average and group-level test error. The training algorithm is the gradient descent
following a tensor initialization and converges linearly. Our key results include

(1) Medium-range group-level co-variance enhances the learning performance. When a group-
level co-variance deviates from the medium regime, the learning performance degrades in terms
of higher sample complexity, slower convergence in training, and worse average and group-level
generalization performance. As shown in Figure 1(a), we introduce Gaussian augmentation to control
the co-variance level of the minority group in the CelebA dataset (Liu et al., 2015). The learned
model achieves the highest test accuracy when the co-variance is at the medium level, see Figure 1(b).
Another implication is that the diverse performance of different data augmentation methods might
partially result from the different group-level co-variance introduced by these methods. Furthermore,
although our setup does not directly model the batch normalization approach (Ioffe & Szegedy, 2015;
Bjorck et al., 2018; Chai et al., 2020; Santurkar et al., 2018) that modifies the mean and variance
in each layer to achieve fast and stable convergence, our result provides a theoretical insight that
co-variance indeed affects the learning performance.

(2) Group-level mean shifts from zero hurt the learning performance. When a group-level mean
deviates from zero, the sample complexity increases, the algorithm converges slower, and both the
average and group-level test error increases. Thus, the learning performance is improved if each
distribution is zero-mean. This paper provides a similar theoretical insight to practical tricks such as
whitening LeCun et al. (1998), subgroup shift (Koch et al., 2022; Ma et al., 2021), population shift
(Biswas & Mukherjee, 2021; Giguere et al., 2022) and the pre-processing of making data zero-mean
(Lecun et al., 1998), that data mean affects the learning performance.

(3) Increasing the fraction of the minority group in the training data does not always improve its
generalization performance. The generalization performance is also affected by the mean and co-
variance of individual groups. In fact, increasing the fraction of the minority group in the training
data can have a completely opposite impact in different datasets.

2



Under review as a conference paper at ICLR 2023

2 BACKGROUND AND RELATED WORK

Improving the minority-group performance with known group attributes. With known group
attributes, distributionally robust optimization (DRO) (Sagawa* et al., 2020) minimizes the worst-
group training loss instead of solving ERM. DRO is more computationally expensive than ERM and
does not always outperform ERM in the minority-group test error. Spurious correlations (Sagawa
et al., 2020) can be viewed as one reason of group imbalance, where strong associations between labels
and irrelevant features exist in training samples. Different from the approaches that address spurious
correlations, such as down-sampling the majority (Japkowicz & Stephen, 2002; Haixiang et al., 2017;
Buda et al., 2018), up-weight the minority group (Shimodaira, 2000; Byrd & Lipton, 2019), and
removing spurious features (Garg et al., 2019; Elhabian et al., 2008; Zemel et al., 2013), this paper
does not require the special model of spurious correlations and any group attribute information.

Fairness in machine learning has received a lot of interest recently (Barocas & Selbst, 2016), and a
substantial body of work has been developed to enhance the fairness under various notions (Dwork
et al., 2012; Feldman et al., 2015; Hardt et al., 2016; Kleinberg et al., 2017; Kearns et al., 2018;
Chen et al., 2018; Makhlouf et al., 2021; Li et al., 2021). For example, DRO maximizes the welfare
of the worst group, satisfying the fairness notion of (Rawls, 2001). Different from the majority of
these works, this paper solves ERM directly without group attribute information. Moreover, this
paper focuses on characterizing the generalization performance of ERM as a function of the input
distribution but does not attempt to evaluate fairness across groups.

Generalization performance with the standard Gaussian input for one-hidden-layer neural
networks. (Brutzkus & Globerson, 2017; Du et al., 2018b; Ge et al., 2018; Liang et al., 2018; Li &
Yuan, 2017; Shamir, 2018; Safran & Shamir, 2018; Tian, 2017) consider infinite training samples.
(Zhong et al., 2017b;a) characterize the sample complexity of fully connected neural networks with
smooth activation functions. Zhang et al. (2019; 2020b) extend to the non-smooth ReLU activation
for fully-connected and convolutional neural networks, respectively. Fu et al. (2020) analyzes the
cross entropy loss function for binary classification problems. Zhang et al. (2020a) analyzes the
generalizability of graph neural networks for both regression and binary classification problems.

Theoretical characterization of learning performance from other input distributions for one-
hidden-layer neural networks. Yoshida & Okada (2019) analyzes the training loss with a single
Gaussian with an arbitrary co-variance. Mignacco et al. (2020) quantifies the SGD evolution trained
on the Gaussian mixture model. When the hidden layer only contains one neuron, Du et al. (2018a)
analyzes rotationally invariant distributions. With an infinite number of neurons and an infinite input
dimension, Mei et al. (2018) analyzes the generalization error based on the mean-field analysis for
distributions like Gaussian Mixture with the same mean. Ghorbani et al. (2020) considers inputs with
low-dimensional structures. No sample complexity is provided in all these works.

Notations:Z is a matrix, and z is a vector. zi denotes the i-th entry of z, and Zi,j denotes the (i, j)-th
entry of Z. [K] denotes the set including integers from 1 to K. Id and ei represent the identity
matrix in Rd×d and the i-th standard basis vector, respectively. δi(Z) denotes the i-th largest singular
value of Z. The matrix norm ∥Z∥ = δ1(Z). f(x) = O(g(x)) (or Ω(g(x)), Θ(g(x))) means that
f(x) increases at most, at least, or in the order of g(x), respectively.

3 PROBLEM FORMULATION AND ALGORITHM

We consider the classification problem with an unbalanced dataset using fully connected neural
networks over n independent training examples {(xi, yi)}Ni=1 from a data distribution. The learning
algorithm is to minimize the empirical risk function via gradient descent (GD). In what follows, we
will present the data model and neural network model considered in this paper.

Data Model. Let x ∈ Rd and y ∈ R denote the input feature and label, respectively. We consider
an unbalanced dataset that consists of L (L ≥ 2) groups of data, where the feature x in the group l
(l ∈ [L]) is drawn from a multi-variate Gaussian distribution with mean µl ∈ Rd, and covariance
Σl ∈ Rd×d. Specifically, x follows the Gaussian mixture model (GMM) (Pearson, 1894; Titterington
et al., 1985; Hsu & Kakade, 2013; Vempala & Wang, 2004; Moitra & Valiant, 2010; Regev &
Vijayaraghavan, 2017), denoted as x ∼

∑L
l=1 λlN (µl,Σl). λl ∈ (0, 1) is the probability of

sampling from distribution-l and represents the expected fraction of group-l data.
∑L
l=1 λl = 1.
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Group l is defined as a minority group if λl is less than 1/L. We use Ψ = {λl,µl,Σl,∀l} to denote
all parameters of the mixture model1. We consider binary classification with label y generated by
a ground-truth neural network with unknown weights W ∗ = [w∗

1 , ...,w
∗
K ] ∈ Rd×K and sigmoid

activation2. function ϕ(x) = 1
1+exp(−x) , where

P(y = 1|x) = H(W ∗,x) :=
1

K

K∑
j=1

ϕ(w∗
j
⊤x). (1)

Learning model. Learning is performed over a neural network that has the same architecture as
in (1), which is a one-hidden-layer fully connected neural network3 with its weights denoted by
W ∈ Rd×K . Given n training samples {xi, yi}ni=1 where xi follows the GMM model, and yi is
from (1), we aim to find the model weights via minimizing the nonconvex empirical risk fn(W ) as

min
W∈Rd×K

fn(W ) :=
1

n

n∑
i=1

ℓ(W ;xi, yi), (2)

where ℓ(W ;xi, yi) is the cross-entropy loss function, i.e.,

ℓ(W ;xi, yi) = −yi · log(H(W ,xi))− (1− yi) · log(1−H(W ,xi)). (3)

Note that for any permutation matrix P , WP corresponds permuting neurons of a network with
weights W . Therefore, H(W ,x) = H(WP ,x), and fn(WP ) = fn(W ). The estimation is
considered successful if one finds any column permutation of W ∗.

The average generalization performance of a learned model W is evaluated by the average risk

f̄(W ) = Ex∼
∑L

l=1 λlN (µl,Σl)
ℓ(W ;xi, yi), (4)

and the generalization performance on group l is evaluated by the group-l risk

f̄l(W ) = Ex∼N (µl,Σl)ℓ(W ;xi, yi). (5)

Training Algorithm. Our algorithm starts from an initialization W0 ∈ Rd×K computed based
on the tensor initialization method (Subroutine 1 in Section B.1) and then updates the iterates Wt

using gradient descent with the step size4 η0. The computational complexity of tensor initialization
is O(Knd). The per-iteration complexity of the gradient step is O(Knd). We defer the details of
Algorithm 1 in Section B of the supplementary material.

4 MAIN THEORETICAL RESULTS

We will formally present our main theory below, and the insights are summarized in Section 4.1. For
the convenience of presentation, some quantities are defined here, and all of them can be viewed
as constant. Define σmax = maxl∈[L]{∥Σl∥

1
2 }, σmin = minl∈[L]{∥Σ−1

l ∥−
1
2 }. Let τ = σmax

σmin
. We

assume τ = Θ(1), indicating that σmax and σmin are in the same order. Let δi(W ∗) denote the i-th
largest singular value of W ∗. Let κ = δ1(W

∗)
δK(W ∗) , and define η =

∏K
i=1

δi(W
∗)

δK(W ∗) .

1In practice, Ψ can be estimated by the EM algorithm (Redner & Walker, 1984) and the moment-based
method (Hsu & Kakade, 2013). The EM algorithm returns model parameters within Euclidean distance O(( d

n
)
1
2 )

when the number of mixture components L is known. When L is unknown, one usually over-specifies an estimate
L̄ > L, then the estimation error by the EM algorithm scales as O(( d

n
)
1
4 ). Please refer to (Ho & Nguyen, 2016;

Ho et al., 2020; Dwivedi et al., 2020a;b) for details.
2The results can be generalized to any activation function ϕ with bounded ϕ, ϕ′ and ϕ′′, where ϕ′ is even.

Examples include tanh and erf .
3All the weights in the second layer are assumed to be fixed to facilitate the analysis. This is a standard

assumption in theoretical generalization analysis (Zhang et al., 2019; Fu et al., 2020; Zhang et al., 2020a).
4Algorithm 1 employs a constant step size. One can potentially speed up the convergence, i.e., reduce v, by

using a variable step size. We leave the corresponding theoretical analysis for future work.
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Theorem 1. There exist ϵ0 ∈ (0, 1
4 ) and positive value functionsB(Ψ) (sample complexity parameter),

q(Ψ) (convergence rate parameter), and Ew(Ψ), E(Ψ), El(Ψ) (generalization parameters) such that
as long as the sample size n satisfies

n ≥ nsc := poly(ϵ−1
0 , κ, η, τ,K, δ1(W

∗))B(Ψ)d log2 d, (6)

we have that with probability at least 1− d−10, the iterates {Wt}Tt=1 returned by Algorithm 1 with

step size η0 = O
((∑L

l=1 λl(∥µl∥ + ∥Σl∥
1
2 )2

)−1
)

converge linearly with a statistical error to a

critical point Ŵn with the rate of convergence v, i.e.,

||Wt − Ŵn||F ≤ v(Ψ)t||W0 − Ŵn||F +
η0ξ

1− v(Ψ)

√
dK log n/n, (7)

v(Ψ) = 1−K−2q(Ψ), (8)
where ξ ≥ 0 is the upper bound of the entry-wise additive noise in the gradient computation.

Moreover, there exists a permutation matrix P ∗ such that

||Ŵn −W ∗P ∗||F ≤ Ew(Ψ) · poly(κ, η, τ, δ1(W ∗))Θ
(
K

5
2 (1 + ξ) ·

√
d log n/n

)
. (9)

The average population risk f̄ and the group-l risk f̄l satisfy

f̄ ≤ E(Ψ) · poly(κ, η, τ, δ1(W ∗))Θ
(
K

5
2 (1 + ξ) ·

√
d log n/n

)
(10)

f̄l ≤ El(Ψ) · poly(κ, η, τ, δ1(W ∗))Θ
(
K

5
2 (1 + ξ) ·

√
d log n/n

)
(11)

The closed-form expressions of B, q, Ew, E , and El are in Section D of the supplementary material and
skipped here. The quantitative impact of the GMM model parameters Ψ on the learning performance
varies in different regimes and can be derived from Theorem 1. The following corollary summarizes
the impact of Ψ on the learning performance in some sample regimes.

Table 1: Impact of GMM parameters on the learning performance in sample regimes
Σl changes

µl changes
λl changes, constant ∥Σj∥’s, equal ∥µj∥’s

∥Σl∥ = o(1) ∥Σl∥ = Ω(1) if ∥Σl∥ = σ2
min if ∥Σl∥ = σ2

max

B(Ψ), sample compl. nsc O(|Σl∥−3) O∥Σl∥3) O(poly(∥µl∥))
5

O( 1
(1+λl)

2 ) O(1)− Θ(1)

(1+λl)
2

conv. rate v(Ψ) ∝ −q(Ψ) 1 − Θ(∥Σl∥3) 1−Θ( 1
1+∥Σl∥

) 1−Θ( 1
∥µl∥2+1

) Θ( 1
1+λl

) 1 − Θ( 1
1+λl

)

Ew(Ψ),∥Ŵn − W ∗P∥F O(1)−Θ(∥Σl∥3) O(
√

∥Σl∥) O(1 + ∥µl∥) O( 1
1+

√
λl

) O(1 +
√

λl)

E(Ψ), average risk f̄ O(1)−Θ(∥Σl∥3) O(∥Σl∥) O(1 + ∥µl∥2) O( 1
1+λl

) O(1) − Θ(1)
1+λl

El(Ψ), group-l risk f̄l O(1)−Θ(∥Σl∥3) O(∥Σl∥) O(1 + ∥µl∥2) O( 1
1+

√
λl

) O(1 +
√

λl)

Corollary 1. When we vary one parameter of group l for any l ∈ [L] of the GMM model Ψ and
fix all the others, the learning performance degrades in the sense that the sample complexity nsc,
the convergence rate v, ∥Ŵn −W ∗P ∥F , average risk f̄ and group-l risk f̄l all increase (details
summarized in Table 1), as long as any of the following conditions happens,

(i) ∥Σl∥ approaches 0; (ii) ∥Σl∥ increases from some constant; (iii) ∥µl∥ increases from 0,

(iv) λl decreases, provided that ∥Σl∥ = σ2
min, i.e., group l has the smallest group-level co-variance,

where ∥Σj∥ are all constants, and ∥µi∥ = ∥µj∥ for all i, j ∈ [L].

(v) λl increases, provided that ∥Σl∥ = σ2
max, i.e., group l has the largest group-level co-variance,

where ∥Σj∥ are all constants, and ∥µi∥ = ∥µj∥ for all i, j ∈ [L].

To the best of our knowledge, Theorem 1 provides the first characterization of the sample complexity,
learning rate, and generalization performance under the Gaussian mixture model. It also firstly
characterizes the per-group generalization performance in addition to the average generalization.

5poly(∥µl∥) is ∥µl∥4 for ∥µl∥ ≤ 1, and ∥µl∥12 for ∥µl∥ > 1.
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4.1 THEORETICAL INSIGHTS

We summarize the crucial implications of Theorem 1 and Corollary 1 as follows.

(P1). Training convergence and generalization guarantee. The iterates Wt converge to a critical
point Ŵn linearly, and the distance between Ŵn and W ∗P ∗ is O(

√
d log n/n) for a certain

permutation matrix P ∗. When the computed gradients contain noise, there is an additional error term
of O(ξ

√
d log n/n), where ξ is the noise level (ξ = 0 for noiseless case). Moreover, the average risk

of all groups and the risk of each individual group are both O((1 + ξ)
√
d log n/n).

(P2). Sample complexity. For a given GMM, the sample complexity is Θ(d log2 d), where d is
the feature dimension. This result is in the same order as the sample complexity for the standard
Gaussian input in (Fu et al., 2020) and (Zhong et al., 2017b). Our bound is almost order-wise optimal
with respect to d because the degree of freedom is dK. The additional multiplier of log2 d results
from the concentration bound in the proof technique. We focus on the dependence on the feature
dimension d and treat the network width K as constant. The sample complexity in (Fu et al., 2020)
and (Zhong et al., 2017b) is also d · poly(K, log d).

(P3). Learning performance is improved at a medium regime of group-level co-variance. On the
one hand, when ∥Σl∥ is Ω(1), the learning performance degrades as ∥Σl∥ increases in the sense that
the sample complexity nsc, the convergence rate v, the estimation error of W ∗, the average risk f̄ ,
and the group-l risk f̄l all increase. This is due to the saturation of the loss and gradient when the
samples have a large magnitude. On the other hand, when ∥Σl∥ is o(1), the learning performance
also degrades when ∥Σl∥ approaches zero. The intuition is that in this regime, the input data are
concentrated on a few vectors, and the optimization problem does not have a benign landscape.

(P4). Increasing the fraction of the minority group data does not always improve the general-
ization, while the performance also depends on the mean and co-variance of individual groups. Take
∥Σj∥ = Θ(1) for all group j, and ∥µj∥ is the same for all j as an example (columns 5 and 6 of Table
1). When ∥Σl∥ is the smallest among all groups, increasing λl improves the learning performance.
When ∥Σl∥ is the largest among all groups, increasing λl actually degrades the performance. The
intuition is that from (P3), the learning performance is enhanced at a medium regime of group-level
co-variance. Thus, increasing the fraction of a group with a medium level of co-variance improves
the performance, while increasing the fraction of a group with large co-variance degrades the learning
performance. Similarly, when augmenting the training data, an argumentation method that introduces
medium variance could improve the learning performance, while an argumentation method that
introduces a significant level of variance could hurt the learning performance.

(P5). Group-level mean shifts from zero degrade the learning performance. The learning
performance degrades as ∥µl∥ increases. An intuitive explanation of the degradation is that some
training samples have a significant large magnitude such that the sigmoid function saturates.

4.2 PROOF IDEA AND TECHNICAL NOVELTY

Different from the analysis based on generalized linear models, our paper deals with more technical
challenges of nonconvex optimization due to the multi-neuron architecture, the GMM model, and a
more complicated activation and loss. The main idea of proof is to show that the nonconvex empirical
risk fn(W ) in a small neighborhood around W ∗ (or any permutation W ∗P ) is almost convex with
a sufficiently large n. Then if W0 can be initialized in any of these local regions, gradient-based
iterates can be proved to converge to W ∗ (or W ∗P ). The idea of tensor initialization is to first
find quantities (see Qj in (14) in the supplementary material) which are proven to be functions of
tensors of w∗

i . Then the method approximates these quantities numerically using training samples
and then applies the tensor decomposition method on the estimated quantities to obtain W0, which is
an estimation of W ∗. With a large number of training samples n, the estimation W0 can be proved
to be in the local convex region. The full proof is in Section D of the supplementary material.

Our algorithmic and analytical framework is built upon some recent works on the generalization
analysis of one-hidden-layer neural networks, see, e.g., (Zhong et al., 2017b; Zhang et al., 2019;
Fu et al., 2020; Zhang et al., 2020a; 2021b), which assume that xi follows the standard Gaussian
distribution and cannot be directly extended to GMM. This paper makes new technical contributions
from the following aspects. First, we characterize the local convex region near W ∗ for the GMM
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model, while existing results only hold for standard Gaussian data. Second, new tools including
matrix concentration bounds are develped to explicitly quantify the impact of Ψ on the sample
comeplxity. Third, we design and analyze new tensors for the mixture model to initialize properly,
while the previous tensor methods in (Zhong et al., 2017b; Zhang et al., 2019; Fu et al., 2020; Zhang
et al., 2020a) utilize the rotation invariant property that only holds for zero mean Gaussian.

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTS ON SYNTHETIC DATASETS

We first verify the theoretical bounds in Theorem 1 on synthetic data. Each entry of W ∗ ∈ Rd×K
is generated from N (0, 1). The training data {xi, yi}ni=1 is generated using the GMM model and
(1). If not otherwise specified, L = 2, d = 5, and K = 36. To reduce the computational time, we
randomly initialize near W ∗ instead of computing the tensor initialization7.

Sample complexity. We first study the impact of d on the sample complexity. Let µ1 = 1 in Rd
and let µ2 = 0. Let Σ1 = Σ2 = I . λ1 = λ2 = 0.5. We randomly initialize M times and let
Ŵ

(m)
n denote the output of Algorithm 1 in the mth trail. Let W̄n denote the mean values of all

Ŵ
(m)
n , and let VW =

√∑M
m=1 ||ŵm

n − W̄n||2/M denote the variance. An experiment is successful
if VW ≤ 10−3 and fails otherwise. M is set to 20. For each pair of d and n, 20 independent sets of
W ∗ and the corresponding training samples are generated. Figure 2 (a) shows the success rate of
these independent experiments. A black block means that all the experiments fail. A white block
means that they all succeed. The sample complexity is indeed almost linear in d, as predicted by (6).

(a) (b) (c)

Figure 2: The sample complexity (a) when the feature dimension changes, (b) when one mean
changes, (c) when one co-variance changes.

We next study the impact on the sample complexity of the GMM model. In Figure 2 (b), Σ1 =
Σ2 = I , and let µ1 = µ · 1, µ2 = −1. ∥µ1∥ varies from 0 to 5. Figure 2(b) shows that when the
mean increases, the sample complexity increases. In Figure 2 (c), we fix µ1 = 1, µ2 = −1, and let
Σ1 = σ2I and Σ2 = I . σ varies from 10−1 to 101. The sample complexity increases both when
∥Σ1∥ increases and when ∥Σ1∥ approaches zero. All results match predictions in Corollary 1.

Convergence analysis. We next study the convergence rate of Algorithm 1. Figure 3(a) shows the
impact of ∥µl∥. λ1 = λ2 = 0.5, µ1 = −µ2 = C · 1 for a positive C, and Σ1 = Σ2 = Λ⊤DΛ.
Here Λ is generated by computing the left-singular vectors of a d × d random matrix from the
Gaussian distribution. D = diag(1, 1.1, 1.2, 1.3, 1.4). n = 1× 104. Algorithm 1 always converges
linearly when ∥µ1∥ changes. Moreover, as ∥µ1∥ increases, Algorithm 1 converges slower. Figure
3 (b) shows the impact of the variance of the Gaussian mixture model. λ1 = λ2 = 0.5, µ1 = 1,
µ2 = −1, Σ1 = Σ2 = Σ = σ2 ·Λ⊤DΛ. n = 5× 104. We change ∥Σ∥ by changing σ. Among

6Like Zhong et al. (2017b); Zhang et al. (2019); Fu et al. (2020), we consider a small-sized network in
synthetic experiments to reduce the computational time, especially for computing the sample complexity in
Figure 2. Our results hold for large networks too.

7The existing methods based on tensor initialization all use random initialization in synthetic experiments
to reduce the computational time. See Fu et al. (2020); Zhang et al. (2019; 2020a; 2021b;a) as examples. We
compare tensor initialization and local random initialization numerically in Section B.1 of the supplementary
material and show that they have the same performance.
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the values we test, Algorithm 1 converges fastest when ∥Σ∥ = 1. The convergence rate slows down
when ∥Σ∥ increases or decreases from 1. All results are consistent with the predictions in Corollary
1. We then study the impact of K on the convergence rate. λ1 = λ2 = 0.5, µ1 = 1, µ2 = −1,
Σ1 = Σ2 = I . Figure 2 (c) shows that, as predicted by (8), the convergence rate is linear in −1/K2.

(a) (b) (c)

Figure 3: (a) The convergence rate with different µ1. (b) The convergence rate with different Σ. (c)
Convergence rate when the number of neurons K changes.

(a) (b) (c)

Figure 4: (a) The relative error of the learned model when n changes (b) The cross-entropy test loss
when the co-variance of the minority group changes. (c) The cross-entropy test loss when the mean
of the minority group changes.

Average and group-level generalization performance. The distance between Ŵn returned by
Algorithm 1 and W ∗ is measured by ||Ŵn −W ∗||F . n ranges from 2 × 103 to 6 × 104. Σ1 =
Σ2 = 9I , µ1 = 1, µ2 = −1. Each point in Figure 4 (a) is averaged over 20 experiments of different
W ∗ and training set. The error is indeed linear in

√
log(n)/n, as predicted by (7).

We evaluate the impact of one mean/co-variance of the minority group on the generalization. n =
2× 104. Let λ1 = 0.8, λ2 = 0.2, µ1 = −1, Σ1 = I . First, we let µ2 = µ2 · 1 and Σ2 = I . Figure
4 (c) shows that both the average risk and the group-2 risk increase as µ2 increases, consistent with
(P5). Then we set µ2 = 2 · 1, Σ2 = σ2

2 · I . Figure 4 (b) indicates that both the average and the
group-2 risk will first decrease and then increase as the σ2 increases, consistent with (P3).

Next, we study the impact of increasing the fraction of the minority group. µ1 = µ2 = 0. Let
group 2 be the minority group. In Figure 5 (a), Σ1 = 10 · I and Σ2 = I , the minority group has a
smaller level of co-variance. Then when λ2 increases from 0 to 0.5, both the average and group-2
risk decease. In Figure 5 (b), Σ1 = I and Σ2 = 10 · I , and the minority group has a higher-level of
co-variance. Then when λ2 increases from 0 to 0.3, both the average and group-2 risk increase. As
predicted by insight (P4), increasing λ2 does not necessarily improve the generalization of group 2.

5.2 IMAGE CLASSIFICATION ON DATASET CELEBA

We choose the attribute “blonde hair” as the binary classification label. ResNet 9 He et al. (2016)
is selected to be the learning model here because it was applied in many simple computer vision
tasks Wu et al. (2018); Dutta et al. (2020). To study the impact of co-variance, we pick 4000 female
(majority) and 1000 male (minority) images and implement Gaussian data augmentation to create
additional 300 images for the male group. Specifically, we select 300 out of 1000 male images
and add i.i.d. noise drawn from N (0, δ2) to every entry. The test set includes 500 male and 500

8
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(a) (b)

Figure 5: The test loss (cross entropy loss) of synthetic data with different λ2 values. (a) Group 2 has
a smaller level of co-variance. (b) Group 2 has a larger level of co-variance.

female images. Figure 1 shows that when δ2 increases, i.e., when the co-variance of the minority
group increases, both the minority-group and average test accuracy increase first and then decrease,
coinciding with our insight (P3).

Then we fix the total number of training data to be 5000 and vary the fractions of the two groups.
From Figure 6(a)8 and (b), we observe opposite trends if we increase the fraction of the minority
group in the training data with the male being the minority and the female being the minority. This is
consistent with Insight (P4). Due to space limit, our results on the CIFAR10 dataset are deferred to
Section A in the supplementary material.

(a) (b)

Figure 6: The test accuracy on CelebA dataset has opposite trends when the minority group fraction
increases. (a) Male group is the minority (b) Female group is the minority

6 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

This paper provides a novel theoretical framework for characterizing neural network generalization
with group imbalance. The group imbalance is formulated using the Gaussian mixture model, and
this paper explicitly quantifies the impact of each group on the sample complexity, convergence rate,
and the average and the group-level generalization. The learning performance is enhanced when the
group-level covariance is at a medium regime, and the group-level mean is close to zero. Moreover,
increasing the fraction of minority group does not guarantee improved group-level generalization.

Our results are limited to one-hidden-layer neural networks for binary classification problems. One
future direction is to extend the analysis to multiple-hidden-layer neural networks and multi-class
classification. Because of the concatenation of nonlinear activation functions, the analysis of the
landscape of the empirical risk and the design of a proper initialization is more challenging and
requires the development of new tools. Like many existing works, our sample complexity analysis is
also based on the sufficient condition for training success, although it is already almost order-wise
optimal. Another future direction is to formally characterize the information-theoretic lower bound
of the sample complexity. We see no ethical or immediate negative societal consequence of our work.

8In Figure 6(a), when the minority fraction is less than 0.01, the minority group distribution is almost
removed from the Gaussian mixture model in the analysis. Then the O(1) constants in the last column of Table
1 have some minor changes, and the order-wise analyses do not reflect the minor fluctuations in this regime.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. In Advances in neural information processing systems,
pp. 6158–6169, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019b.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. In 36th
International Conference on Machine Learning, ICML 2019, pp. 477–502. International Machine
Learning Society (IMLS), 2019.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.

Arpita Biswas and Suvam Mukherjee. Ensuring fairness under prior probability shifts. In Proceedings
of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 414–424, 2021.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normaliza-
tion. In Advances in Neural Information Processing Systems, pp. 7694–7705, 2018.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor. Demographic dialectal variation in social
media: A case study of african-american english. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 1119–1130, 2016.

Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger Gunn, Alexander Hammers,
David Alexander Dickie, Maria Valdés Hernández, Joanna Wardlaw, and Daniel Rueckert. Gan
augmentation: Augmenting training data using generative adversarial networks. arXiv preprint
arXiv:1810.10863, 2018.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp.
605–614. JMLR. org, 2017.

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on fairness, accountability and transparency, pp. 77–91.
PMLR, 2018.

Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In
International Conference on Machine Learning, pp. 872–881. PMLR, 2019.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. In Advances in Neural Information Processing Systems, pp. 10836–10846, 2019.

Elaina Chai, Mert Pilanci, and Boris Murmann. Separating the effects of batch normalization on cnn
training speed and stability using classical adaptive filter theory. In 2020 54th Asilomar Conference
on Signals, Systems, and Computers, pp. 1214–1221. IEEE, 2020.

Chaofan Chen, Kangcheng Lin, Cynthia Rudin, Yaron Shaposhnik, Sijia Wang, and Tong Wang. An
interpretable model with globally consistent explanations for credit risk. NIPS 2018 Workshop on
Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability,
Accuracy, and Privacy, 2018.

Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. A generalized neural tangent kernel
analysis for two-layer neural networks. Advances in Neural Information Processing Systems, 33,
2020.

Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter easy to learn? In
International Conference on Learning Representations, 2018a.

10



Under review as a conference paper at ICLR 2023

Simon S Du, Jason D Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent
learns one-hidden-layer cnn: Don’t be afraid of spurious local minima. In International Conference
on Machine Learning, pp. 1338–1347, 2018b.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1eK3i09YQ.

Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho, Atal Narayan Sahu, Marco
Canini, and Panos Kalnis. On the discrepancy between the theoretical analysis and practical
implementations of compressed communication for distributed deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pp. 3817–3824, 2020.

Raaz Dwivedi, Nhat Ho, Koulik Khamaru, Michael I. Jordan, Martin J. Wainwright, and Bin Yu.
Singularity, misspecification, and the convergence rate of em. To appear, Annals of Statistics,
2020a.

Raaz Dwivedi, Nhat Ho, Koulik Khamaru, Martin Wainwright, Michael Jordan, and Bin Yu. Sharp
analysis of expectation-maximization for weakly identifiable models. In Silvia Chiappa and
Roberto Calandra (eds.), Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 1866–
1876, Online, 26–28 Aug 2020b. PMLR.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp.
214–226, 2012.

Shireen Y Elhabian, Khaled M El-Sayed, and Sumaya H Ahmed. Moving object detection in spatial
domain using background removal techniques-state-of-art. Recent patents on computer science, 1
(1):32–54, 2008.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 259–268, 2015.

Haoyu Fu, Yuejie Chi, and Yingbin Liang. Guaranteed recovery of one-hidden-layer neural networks
via cross entropy. IEEE Transactions on Signal Processing, 68:3225–3235, 2020.

Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly, Ed H Chi, and Alex Beutel. Counterfactual
fairness in text classification through robustness. In Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, pp. 219–226, 2019.

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=BkwHObbRZ.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? Advances in Neural Information Processing Systems, 33:
14820–14830, 2020.

Stephen Giguere, Blossom Metevier, Yuriy Brun, Philip S. Thomas, Scott Niekum, and Bruno Castro
da Silva. Fairness guarantees under demographic shift. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=wbPObLm6ueA.

Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modeling the influence of
data structure on learning in neural networks: The hidden manifold model. Physical Review X, 10
(4):041044, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

11

https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=BkwHObbRZ
https://openreview.net/forum?id=BkwHObbRZ
https://openreview.net/forum?id=wbPObLm6ueA


Under review as a conference paper at ICLR 2023

Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing. Learning
from class-imbalanced data: Review of methods and applications. Expert systems with applications,
73:220–239, 2017.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances
in neural information processing systems, 29, 2016.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. In International Conference on Machine Learning,
pp. 1929–1938. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Nhat Ho and XuanLong Nguyen. Convergence rates of parameter estimation for some weakly
identifiable finite mixtures. Ann. Statist., 44(6):2726–2755, 12 2016. doi: 10.1214/16-AOS1444.
URL https://doi.org/10.1214/16-AOS1444.

Nhat Ho, Raaz Dwivedi, Koulik Khamaru, Martin J. Wainwright, Michael I . Jordan, and Bin Yu.
Instability, computational efficiency and statistical accuracy. Arxiv preprint Arxiv: 2005.11411,
2020.

Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: moment methods and
spectral decompositions. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, pp. 11–20, 2013.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pp.
8571–8580, 2018.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Score function features for discriminative
learning: Matrix and tensor framework. arXiv preprint arXiv:1412.2863, 2014.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intelligent
data analysis, 6(5):429–449, 2002.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering:
Auditing and learning for subgroup fairness. In International Conference on Machine Learning,
pp. 2564–2572. PMLR, 2018.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Lisa M. Koch, Christian M. Schürch, Arthur Gretton, and Philipp Berens. Hidden in plain sight:
Subgroup shifts escape OOD detection. In Medical Imaging with Deep Learning, 2022. URL
https://openreview.net/forum?id=aZgiUNye2Cz.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Volodymyr Kuleshov, Arun Chaganty, and Percy Liang. Tensor factorization via matrix factorization.
In Artificial Intelligence and Statistics, pp. 507–516, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

12

https://doi.org/10.1214/16-AOS1444
https://openreview.net/forum?id=aZgiUNye2Cz


Under review as a conference paper at ICLR 2023

Yann LeCun, Leon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
Networks: Tricks of the Trade, pp. 9–50. Springer, 1998.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8157–8166,
2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
In Advances in neural information processing systems, pp. 597–607, 2017.

Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. Towards personalized
fairness based on causal notion. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 1054–1063, 2021.

Shiyu Liang, Ruoyu Sun, Jason D Lee, and R Srikant. Adding one neuron can eliminate all bad local
minima. In Advances in Neural Information Processing Systems, pp. 4355–4365, 2018.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. Advances in Neural Information Processing Systems, 34, 2021.

Karima Makhlouf, Sami Zhioua, and Catuscia Palamidessi. On the applicability of machine learning
fairness notions. ACM SIGKDD Explorations Newsletter, 23(1):14–23, 2021.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 3428–3448, 2019.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for non-convex losses.
arXiv preprint arXiv:1607.06534, 2016.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynamical
mean-field theory for stochastic gradient descent in gaussian mixture classification. Advances in
Neural Information Processing Systems, 33:9540–9550, 2020.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of gaussians. In
2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 93–102. IEEE, 2010.

Francisco J Moreno-Barea, Fiammetta Strazzera, José M Jerez, Daniel Urda, and Leonardo Franco.
Forward noise adjustment scheme for data augmentation. In 2018 IEEE symposium series on
computational intelligence (SSCI), pp. 728–734. IEEE, 2018.

Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transactions of
the Royal Society of London. A, 185:71–110, 1894.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.06434.

John Rawls. Justice as fairness: A restatement. Harvard University Press, 2001.

Richard A Redner and Homer F Walker. Mixture densities, maximum likelihood and the em algorithm.
SIAM review, 26(2):195–239, 1984.

13

http://arxiv.org/abs/1511.06434


Under review as a conference paper at ICLR 2023

Oded Regev and Aravindan Vijayaraghavan. On learning mixtures of well-separated gaussians. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 85–96.
IEEE, 2017.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks.
In International Conference on Machine Learning, pp. 4430–4438, 2018.

Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=ryxGuJrFvS.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. In International Conference on Machine
Learning, pp. 8346–8356. PMLR, 2020.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In Advances in Neural Information Processing Systems, pp. 2483–2493,
2018.

Ohad Shamir. Distribution-specific hardness of learning neural networks. The Journal of Machine
Learning Research, 19(1):1135–1163, 2018.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

Rachael Tatman. Gender and dialect bias in youtube’s automatic captions. In Proceedings of the first
ACL workshop on ethics in natural language processing, pp. 53–59, 2017.

Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its
applications in convergence and critical point analysis. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 3404–3413. JMLR. org, 2017.

D Michael Titterington, Adrian FM Smith, and Udi E Makov. Statistical analysis of finite mixture
distributions. Wiley„ 1985.

Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models. Journal of
Computer and System Sciences, 68(4):841–860, 2004.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad,
Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9127–9135, 2018.

Yuki Yoshida and Masato Okada. Data-dependence of plateau phenomenon in learning with neu-
ral network — statistical mechanical analysis. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32, pp. 1722–1730. Curran Associates, Inc., 2019.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
In International conference on machine learning, pp. 325–333. PMLR, 2013.

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Fast learning of graph neural
networks with guaranteed generalizability: One-hidden-layer case. In International Conference on
Machine Learning, pp. 11268–11277. PMLR, 2020a.

Shuai Zhang, Meng Wang, Jinjun Xiong, Sijia Liu, and Pin-Yu Chen. Improved linear convergence
of training cnns with generalizability guarantees: A one-hidden-layer case. IEEE Transactions on
Neural Networks and Learning Systems, 2020b.

14

https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS


Under review as a conference paper at ICLR 2023

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. How unlabeled data improve
generalization in self-training? a one-hidden-layer theoretical analysis. In International Conference
on Learning Representations, 2021a.

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Why lottery ticket wins?
a theoretical perspective of sample complexity on sparse neural networks. Advances in Neural
Information Processing Systems, 34, 2021b.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu
networks via gradient descent. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1524–1534. PMLR, 2019.

Kai Zhong, Zhao Song, and Inderjit S Dhillon. Learning non-overlapping convolutional neural
networks with multiple kernels. arXiv preprint arXiv:1711.03440, 2017a.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 4140–4149, 2017b. URL https://arxiv.org/pdf/
1706.03175.pdf.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. In Advances in Neural Information Processing Systems, pp. 2055–2064, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine Learning, 109(3):467–492, 2020.

15

https://arxiv.org/pdf/1706.03175.pdf
https://arxiv.org/pdf/1706.03175.pdf


Under review as a conference paper at ICLR 2023

We begin our Appendix here.

Section A provides more experiment results as a supplement of Section 5.

Section B introduces the algorithm, especially the tensor initialization in detail.

Section C includes some definitions and properties as a preliminary to our proof.

Section D shows the proof of Theorem 1 and Corollary 1, followed by Section E, F, and G as
the proof of three key Lemmas about local convexity, linear convergence and tensor initialization,
respectively.

A MORE EXPERIMENT RESULTS

We present our experiment resultson empirical datasets CelebA (Liu et al., 2015) and CIFAR-10
9 in this section. To be more specific, we evaluate the impact of the variance levels introduced by
different data augmentation methods on the learning performance. We also evaluate the impact of
the minority group fraction in the training data on the learning performance. All the experiments
are reported in a format of “mean±2×standard deviation” with a random seed equal to 10. We
implement our experiments on an NVIDIA GeForce RTX 2070 super GPU and a work station with 8
cores of 3.40GHz Intel i7 CPU.

A.1 TESTS ON CELEBA

In addition to the Gaussian augmentation method in Figure 7 (a) and Figure 1 (b). We also evaluate
the performance of data augmentation by cropping. The setup is exactly the same as that for Gaussian
augmentation, expect that we augment the data by cropping instead of adding Gaussian noise.
Specifically, to generate an augmented image, we randomly crop an image with a size w × w × 3
and then resize back to 224 × 224 × 3. One can observe that the minority-group and average test
accuracy first increase and then decrease as w increases, which is in accordance with Insight (P3).

(a)

Figure 7: The test accuracy of CelebA dataset with the data augmentation method of cropping.

A.2 TESTS ON CIFAR-10

Group 1 contains images with attributes “bird”, “cat”, “deer”, “dog”, “frog” and “horse.” Group 2
contains “airplane” images. In this setting, Group 1 has a larger variance. Because each image in
CIFAR-10 only has one attribute, we consider the binary classification setting where all images in
Group 1 are labeled as “animal” and all images are labeled as “airplane.” This is a special scenario
that the group label is also the classification label. Note that our results hold for general setups where
group labels and classification labels are irrelevant, like our previous results on CelebA. LeNet 5
Lecun et al. (1998) is selected to be the learning model.

9Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. www.cs.toronto.edu/
~kriz/cifar.html

1

www.cs.toronto.edu/~kriz/cifar.html
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We first pick 8000 animal images (majority) and 2000 airplane images (minority). We select 1000 out
of 2000 airplane images to implement data augmentation, including both Gaussian augmentation and
random cropping. For Gaussian augmentation, we add i.i.d. Gaussian noise drawn from N (0, δ2) to
each entry10. For random cropping, we randomly crop the image with a certain size w×w×3 and then
resizing back to 32× 32× 3. Figure 8 shows that when δ or w increase, i.e., the variance introduced
by either augmentation method increases, both the minority-group and average test accuracy increase
first and then decrease, which is consistent with our Insight (P3).

Then we fix the total number of training data to be 5000 and vary the fractions of the two groups.
One can see opposite trends in Figure 9 if we increase the fraction of the minority group with the
airplane being the minority and the animal being the minority, which reflects our Insight (P4).

(a) (b)

Figure 8: The test accuracy of CIFAR-10 dataset with different data augmentation methods (a)
Gaussian noise (b) cropping.

(a) (b)

Figure 9: The test accuracy of CIFAR-10 dataset has opposite trends when the minority group fraction
increases (a) Airplane group is the minority. (b) Animal group is the minority.

B ALGORITHM

We first introduce new notations to be used in this part and summarize key notions in Table 2.
We write f(x) ≲ (≳)g(x) if f(x) ≤ (≥)Θ(g(x). The gradient and the Hessian of a function f(W )
are denoted by ∇f(W ) and ∇2f(W ), respectively. A ⪰ 0 means A is a positive semi-definite
(PSD) matrix. A

1
2 means that A = (A

1
2 )2. The outer product of vectors zi ∈ Rni , i ∈ [l],

is defined as T = z1 ⊗ · · · ⊗ zl ∈ Rn1×···×nl with Tj1···jl = (z1)j1 · · · (zl)jl . Given a tensor
T ∈ Rn1×n2×n3 and matrices A ∈ Rn1×d1 , B ∈ Rn2×d2 , C ∈ Rn3×d3 , the (i1, i2, i3)-th entry of
the tensor T (A,B,C) is given by

n1∑
i′1

n2∑
i′2

n3∑
i′3

Ti′1,i′2,i′3Ai′1,i1
Bi′2,i2

Ci′3,i3
. (12)

10In this experiment, the noise is added to the raw image where the pixel value ranges from 0 to 255, while in
the experiment of CelebA (Figure 1 (b)), the noise is added to the image after normalization where the pixel
value ranges from 0 to 1.

2
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Table 2: Summary of notations
λl, µl, Σl, l ∈ [L] The fraction, mean, and covariance of the l-th component in the Gaussian

mixture distribution, respectively.
d, n, K The feature dimension, the number of training samples, and the number

of neurons, respectively.
W ∗, Wt W ∗ is the ground truth weight. Wt is the updated weight in the t-th

iteration.
fn, f̄ , ℓ fn is the empirical risk function. f̄ is the average risk or the population

risk function. ℓ is the cross-entropy loss function.
Ψ, σmax, σmin, τ Ψ denotes our Gaussian mixture model (λl,µl,Σl,∀l). σmax =

maxl∈[L]{∥Σl∥
1
2 }. σmin = minl∈[L]{∥Σ−1

l ∥−
1
2 }. τ = σmax/σmin.

δi(W
∗), η, κ, i ∈ [K] δi(W

∗) is the i-th largest singular value of W ∗. η and κ are two
functions of W ∗.

ρ(u, σ), Γ(Ψ), Dm(Ψ) These items are functions of the Gaussian mixture distribution Ψ used
to develop our Theorem 1.

νi, ξ νi is the gradient noise. ξ is the upper bound of the noise level.
Qj , j = 1, 2, 3 Qj’s are tensors used in the initialization.
B(Ψ) A parameter appeared in the sample complexity bound (6).
v(Ψ), q(Ψ) v(Ψ) is the convergence rate (7). q(Ψ) is a parameter in the definition

of v(Ψ) (8).
Ew(Ψ), E , El Generalization parameters. Ew(Ψ) appears in the error bound of the

model (9). E(Ψ) and El(Ψ) are to characterize the average risk (10) and
the group-l risk (11), respectively.

The method starts from an initialization W0 ∈ Rd×K computed based on the tensor initialization
method (Subroutine 1) and then updates the iterates Wt using gradient descent with the step size
η0. To model the inaccuracy in computing the gradient, an i.i.d. zero-mean noise {νi}ni=1 ∈ Rd×K
with bounded magnitude |(νi)jk| ≤ ξ (j ∈ [d], k ∈ [K]) for some ξ ≥ 0 are added in (13) when
computing the gradient of the loss in (3).

Algorithm 1 Our proposed learning algorithm

1: Input: Training data {(xi, yi)}ni=1, the step size η0 = O
((∑L

l=1 λl(∥µ̃l∥∞ + ∥Σ
1
2

l ∥)2
)−1

)
,

the total number of iterations T
2: Initialization: W0 ← Tensor initialization method via Subroutine 1
3: Gradient Descent: for t = 0, 1, · · · , T − 1

Wt+1 = Wt − η0 ·
1

n

n∑
i=1

(∇l(W ,xi, yi) + νi)

= Wt − η0

(
∇fn(W ) +

1

n

n∑
i=1

νi

) (13)

4: Output: WT

Our tensor initialization method in Subroutine 1 is extended from Janzamin et al. (2014) and Zhong
et al. (2017b). The idea is to compute quantities (Qj in (14)) that are tensors of w∗

i and then apply
the tensor decomposition method to estimate w∗

i . Because Qj can only be estimated from training
samples, tensor decomposition does not return w∗

i exactly but provides a close approximation, and
this approximation is used as the initialization for Algorithm 1. Because the existing method on
tensor construction only applies to the standard Gaussian distribution, we exploit the relationship
between probability density functions and tensor expressions developed in Janzamin et al. (2014) to
design tensors suitable for the Gaussian mixture model. Formally,

Definition 1. For j = 1, 2, 3, we define

Qj := Ex∼
∑L

l=1 λlN (µl,Σl)
[y · (−1)jp−1(x)∇(j)p(x)], (14)

3
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where p(x), the probability density function of GMM is defined as

p(x) =

L∑
l=1

λl(2π)
− d

2 |Σl|−
1
2 exp

(
− 1

2
(x− µl)Σ

−1
l (x− µl)

)
(15)

If the Gaussian mixture model is symmetric, the symmetric distribution can be written as

x ∼


L
2∑
l=1

λl
(
N (µl,Σl) +N (−µl,Σl)

)
L is even

λ1N (0,Σ1) +

L−1
2∑
l=2

λl
(
N (µl,Σl) +N (−µl,Σl)

)
L is odd

(16)

Qj is a jth-order tensor of w∗
i , e.g., Q3 = 1

K

∑K
i=1 Ex∼

∑L
l=1 λlN (µl,Σl)

[ϕ′′′(w∗
i
⊤x)]w∗

i
⊗3. These

quantifies cannot be directly computed from (14) but can be estimated by sample means, denoted by
Q̂j (j = 1, 2, 3), from samples {xi, yi}ni=1. The following assumption guarantees that these tensors
are nonzero and can thus be leveraged to estimate W ∗.
Assumption 1. The Gaussian Mixture Model in (16) satisfies the following conditions:

1. Q1 and Q3 are nonzero.

2. If the distribution is not symmetric, then Q2 is nonzero.

Assumption 1 is a very mild assumption11. Moreover, as indicated in Janzamin et al. (2014), in the
rare case that some quantities Qi (i = 1, 2, 3) are zero, one can construct higher-order tensors in a
similar way as in Definition 1 and then estimate W ∗ from higher-order tensors.

Subroutine 1 describes the tensor initialization method, which estimates the direction and magnitude
of w∗

j , j ∈ [K], separately. The direction vectors are denoted as w̄∗
j = w∗

j /∥w∗
j ∥ and the magnitude

∥w∗
j ∥ is denoted as zj . Lines 2-6 estimate the subspace Û spanned by {w∗

1 , · · · ,w∗
K} using Q̂2 or,

in the case that Q2 = 0, a second-order tensor projected by Q̂3. Lines 7-8 estimate w̄∗
j by employing

the KCL algorithm Kuleshov et al. (2015). Lines 9-10 estimate the magnitude zj . Finally, the returned
estimation of W ∗ is used as an initialization W0 for Algorithm 1. The computational complexity of
Subroutine 1 is O(Knd) based on similar calculations as those in Zhong et al. (2017b).

B.1 NUMERICAL EVALUATION OF TENSOR INITIALIZATION

Figure 10 shows the accuracy of the returned model by Algorithm 1. Here n = 2 × 105, d = 50,
K = 2, λ1 = λ2 = 0.5, µ1 = −0.3 · 1 and µ2 = 0. We compare the tensor initialization with a
random initialization in a local region {W ∈ Rd×K : ||W −W ∗||F ≤ ϵ}. Each entry of W ∗ is
selected from [−0.1, 0.1] uniformly. Tensor initialization in Subroutine 1 returns an initial point close
to one permutation of W ∗, with a relative error of 0.65. If the random initialization is also close
to W ∗, e.g., ϵ = 0.1, then the gradient descent algorithm converges to a critical point from both
initializations, and the linear convergence rate is the same. We also test a random initialization with
each entry drawn from N (0, 25). The initialization is sufficiently far from W ∗, and the algorithm
does not converge. On a MacBook Pro with Intel(R) Core(TM) i5-7360U CPU at 2.30GHz and
MATLAB 2017a, it takes 5.52 seconds to compute the tensor initialization. Thus, to reduce the
computational time, we consider a random initialization with ϵ = 0.1 in the experiments instead of
computing tensor initialization.

C PRELIMINARIES OF THE MAIN PROOF

In this section, we introduce some definitions and properties that will be used to prove the main
results.

First, we define the sub-Gaussian random variable and sub-Gaussian norm.
11By mild, we mean given L, if Assumption 1 is not met for some Ψ0, there exists an infinite number of Ψ′ in

any neighborhood of Ψ0 such that Assumption 1 holds for Ψ′,

4
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Subroutine 1 Tensor Initialization Method
1: Input: Partition n pairs of data {(xi, yi)}ni=1 into three disjoint subsets D1, D2, D3

2: if the Gaussian Mixture distribution is not symmetric then
3: Compute Q̂2 using D1. Estimate the subspace Û by orthogonalizing the eigenvectors with

respect to the K largest eigenvalues of Q̂2

4: else
5: Pick an arbitrary vector α ∈ Rd, and use D1 to compute Q̂3(Id, Id,α). Estimate Û by

orthogonalizing the eigenvectors with respect to the K largest eigenvalues of Q̂3(Id, Id,α).
6: end if
7: Compute R̂3 = Q̂3(Û , Û , Û) from data set D2

8: Employ the KCL algorithm to compute vectors {v̂i}i∈[K], which are the estimates of
{Û⊤w̄∗

i }Ki=1. Then the direction vectors {w̄∗
i }Ki=1 can be approximated by {Û v̂i}Ki=1.

9: Compute Q̂1 from data set D3.
10: Estimate the magnitude ẑ by solving the optimization problem

ẑ = arg min
α∈RK

1

2
∥Q̂1 −

K∑
j=1

αjw̄
∗
j ∥2 (17)

11: Return: Use ẑjÛ v̂j as the jth column of W0, j ∈ [K].

Figure 10: Comparison between tensor initialization, a random initialization near W ∗, and an
arbitrary random initialization

Definition 2. We say X is a sub-Gaussian random variable with sub-Gaussian norm K > 0, if
(E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted ∥X∥ψ2

, is defined
as ∥X∥ψ2

= supp≥1 p
− 1

2 (E|X|p)
1
p .

Then we define the following three quantities. ρ(µ, σ) is motivated by the ρ parameter for the
standard Gaussian distribution in Zhong et al. (2017b), and we generalize it to a Gaussian with
an arbitrary mean and variance. We define the new quantities Γ(Ψ) and Dm(Ψ) for the Gaussian
mixture model.
Definition 3. (ρ-function). Let z ∼ N (u, Id) ∈ Rd. Define αq(i,u, σ) = Ezi∼N (ui,1)[ϕ

′(σ · zi)zqi ]
and βq(i,u, σ) = Ezi∼N (ui,1)[ϕ

′2(σ · zi)zqi ], ∀ q ∈ {0, 1, 2}, where zi and ui is the i-th entry of z
and u, respectively. Define ρ(u, σ) as

ρ(u, σ) = min
i,j∈[d],j ̸=i

{(u2
j + 1)(β0(i,u, σ)− α0(i,u, σ)

2), β2(i,u, σ)−
α2(i,u, σ)

2

u2
i + 1

} (18)

Definition 4. (Γ-function). With (18) and κ, η defined in Section 3, we define

Γ(Ψ) =

L∑
l=1

λl
τKκ2η

∥Σ−1
l ∥−1

σ2
max

ρ(
W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ) (19)

5
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Definition 5. (D-function). Given the Gaussian Mixture Model and any positive integer m, define
Dm(Ψ) as

Dm(Ψ) =

L∑
l=1

λl(
∥µl∥

∥Σ−1
l ∥−

1
2

+ 1)m, (20)

ρ-function is defined to compute the lower bound of the Hessian of the population risk with Gaussian
input. Γ function is the weighted sum of ρ-function under mixture Gaussian distribution. This
function is positive and upper bounded by a small value. Γ goes to zero if all ∥µl∥ or all σl goes to
infinity. D-function is a normalized parameter for the means and variances. It is lower bounded by 1.
D-function is an increasing function of ∥µl∥ and a decreasing function of σl.

Property 1. Given W ∗ = UV ∈ Rd×k, where U ∈ Rd×K is the orthogonal basis of W ∗. For
any µ ∈ Rd, we can find an orthogonal decomposition of µ based on the colomn space of W ∗, i.e.
µ = µU + µU⊥ . If we consider the recovery problem of FCN with a dataset of Gaussian Mixture
Model, in which xi ∼ N (µh,Σh) for some h ∈ [L], the problem is equivalent to the problem of
FCN with xi ∼ N (µUh,Σh). Hence, we can assume without loss of generality that µl belongs to
the column space of W ∗ for all l ∈ [L].

Proof:
From (1) and (3), the recovery problem can be formulated as

min
W ∗

g(W ∗⊤xi, yi)

For any xi ∼ N (µh,Σh), xi can be written as

xi = z + µh

where z ∼ N (0,Σh). Therefore,

W ∗⊤xi = W ∗⊤(z + µh) = W ∗⊤(z + µUh + µU⊥h) = W ∗⊤(z + µUh)

The final step is because W ∗⊤µU⊥ = 0. So the problem is equivalent to the recovery problem of
FCN with xi ∼ N (µUh,Σh).

Recall that the gradient noise νi ∈ Rd×K is zero-mean, and each of its entry is upper bounded by
ξ > 0.

Property 2. We have that ∥νi∥F is a sub-Gaussian random variable with its sub-Gaussian norm
bounded bu ξ

√
dK.

Proof:

(E∥νi∥pF )
1
p ≤ (E|

√
dKξ|p)

1
p ≤ ξ

√
dK (21)

We state some general properties of the ρ function defined in Definition 3 in the following.

Property 3. ρ(u, σ) in Definition 3 satisfies the following properties,

1. (Positive) ρ(u, σ) > 0 for any u ∈ Rd and σ ̸= 0.

2. (Finite limit point for zero mean) ρ(u, σ) converges to a positive value function of σ as ui
goes to 0, i.e. limui→0 ρ(u, σ) := Cm(σ).

3. (Finite limit point for zero variance) When all ui ̸= 0 (i ∈ [d]), ρ(uσ , σ) converges to a
strictly positive real function of u as σ goes to 0, i.e. limσ→0 ρ(

u
σ , σ) := Cs(u). When

ui = 0 for some i ∈ [d], limσ→0 ρ(
u
σ , σ) = 0.

4. (Lower bound function of the mean) When everything else except |ui| is fixed,
ρ( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is lower bounded by a strictly positive real function,

Lm( (ΛW ∗)⊤Λu
σδK(W ∗) , σδK(W ∗)), which is monotonically decreasing as |ui| increases.

6
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5. (Lower bound function of the variance) When everything else except σ is
fixed, ρ( W ∗⊤u

σδK(W ∗) , σδK(W ∗)) is lower bounded by a strictly positive real function,

Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)), which satisfies the following conditions: (a) there exists ζs′ > 0,

such that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is an increasing function of σ when σ ∈ (0, ζs′);

(b) there exists ζs > 0 such that Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is a decreasing function of σ

when σ ∈ (ζs,+∞).

Proof:
(1) From Cauchy Schwarz’s inequality, we have

Ezi∼N (ui,1)[ϕ
′(σ · zi)] ≤

√
Ezi∼N (ui,1)[ϕ

′2(σ · zi)] (22)

Ezi∼N (ui,1)[ϕ
′(σ · zi)zi · zi] ≤

√
Ezi∼N (ui,1)[ϕ

′2(σ · zi)z2i ] ·
√

Ezi∼N (ui,1)[z
2
i ]

=
√
Ezi∼N (ui,1)[ϕ

′2(σ · zi)z2i ] ·
√

u2
i + 1

(23)

The equalities of the (22) and (23) hold if and only if ϕ′ is a constant function. Since that ϕ is the
sigmoid function, the equalities of (22) and (23) cannot hold.
By the definition of ρ(u, σ) in Definition 3, we have

β0(i,u, σ)− α2
0(i,u, σ) > 0, (24)

β2(i,u, σ)−
α2
2(i,u, σ)

u2
i + 1

> 0. (25)

Therefore,
ρ(u, σ) > 0 (26)

(2) We can derive that

lim
ui→0

(
u2
j

σ2
+ 1)

(
β0(i,u, σ)− α2

0(i,u, σ)
)

= lim
ui→0

(
u2
j

σ2
+ 1)

( ∫ ∞

−∞
ϕ′2(σ · zi)(2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi

− (

∫ ∞

−∞
ϕ′(σ · zi)(2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi)

2
)

=(
u2
j

σ2
+ 1)

( ∫ ∞

−∞
ϕ′2(σ · zi)(2π)−

1
2 exp(−∥zi∥

2

2
)dzi − (

∫ ∞

−∞
ϕ′(σ · zi)(2π)−

1
2 exp(−∥zi∥

2

2
)dzi)

2
)
,

(27)
where the first step is by Definition 3, and the second step comes from the limit laws. Similarly, we
also have

lim
ui→0

(
β2(i,u, σ)−

1

u2
i + 1

α2
2(i,u, σ)

)
= lim
ui→0

∫ ∞

−∞
ϕ′2(σ · zi)z2i (2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi

− (
1

u2
i + 1

∫ ∞

−∞
ϕ′(σ · zi)z2i (2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi)

2

=

∫ ∞

−∞
ϕ′2(σ · zi)z2i (2π)−

1
2 exp(−∥zi∥

2

2
)dzi − (

∫ ∞

−∞
ϕ′(σ · zi)z2i (2π)−

1
2 exp(−∥zi∥

2

2
)dzi)

2

(28)

Since that (27) and (28) are positive due to Jensen’s inequality, we can derive that ρ(u, σ) converges
to a positive value function of σ as ui goes to 0, i.e.

lim
u→0

ρ(u, σ) := Cm(σ) (29)

7
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(3) When all ui ̸= 0 (i ∈ [d]),

lim
σ→0

(
β2(i,

u

σ
, σ)− 1

u2
i

σ2 + 1
α2
2(i,

u

σ
, σ)

)
= lim
σ→0

∫ ∞

−∞
ϕ′2(σ · zi)z2i (2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

− 1
u2
i

σ2 + 1

( ∫ ∞

−∞
ϕ′(σ · zi)z2i (2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

)2
= lim
σ→0

∫ ∞

−∞
ϕ′2(ui · xi)

u2
i

σ2
x2
i (2π

σ2

u2
i

)−
1
2 exp(−∥xi − 1∥2

2σ
2

u2
i

)dxi

− 1
u2
i

σ2 + 1

( ∫ ∞

−∞
ϕ′(ui · xi)

u2
i

σ2
x2
i (2π

σ2

u2
i

)−
1
2 exp(−∥xi − 1∥2

2σ
2

u2
i

)dxi
)2

zi =
ui
σ
xi

= lim
σ→0

ϕ′2(ui)
u2
i

σ2
− 1

u2
i

σ2 + 1
(ϕ′(ui)

u2
i

σ2
)2

= lim
σ→0

ϕ′2(ui)
u2
i

σ2

(
1−

u2
i

σ2

1 +
u2
i

σ2

)
= lim
σ→0

ϕ′2(ui)
1

1 + σ2

u2
i

=ϕ′2(ui)

(30)

The first step of (30) comes from Definition 3. The second step and the last three steps are derived
from some basic mathematical computation and the limit laws. The third step of (30) is by the fact
that the Gaussian distribution goes to a Dirac delta function when σ goes to 0. Then the integral will
take the value when xi = 1. Similarly, we can obtain the following

lim
σ→0

(
β0(i,

u

σ
, σ)− α2

0(i,
u

σ
, σ)

)
= lim
σ→0

∫ ∞

−∞
ϕ′2(σ · zi)(2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

−
( ∫ ∞

−∞
ϕ′(σ · zi)(2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

)2
=ϕ′2(ui)− ϕ′2(ui) = 0

(31)

8
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lim
σ→0

( ∂

∂σ

(
β0(i,

u

σ
, σ)− α2

0(i,
u

σ
, σ)

))
= lim
σ→0

( ∂

∂σ

(∫ ∞

−∞
ϕ′2(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)dxi

−
( ∫ ∞

−∞
ϕ′(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)dxi

)2))
xi = σ · zi

= lim
σ→0

(∫ ∞

−∞
ϕ′2(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)(−σ−1 + ∥xi − ui∥2σ−2)dxi

− 2
( ∫ ∞

−∞
ϕ′(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)dxi

)
·
∫ ∞

−∞
ϕ′(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)(−σ−1 + ∥xi − ui∥2σ−2)dxi

)
= lim
σ→0

(ϕ′2(ui)

−σ
− 2ϕ′(ui)

ϕ′(ui)

−σ

)
= lim
σ→0

ϕ′2(ui)

σ
= +∞

(32)

Therefore, by L’Hopital’s rule and (31), (32), we have

lim
σ→0

(
u2
j

σ2
+ 1)(β0(i,

u

σ
, σ)− α0(i,

u

σ
, σ))

= lim
σ→0

u2
i

2σ

∂

∂σ
(β0(i,

u

σ
, σ)− α0(i,

u

σ
, σ))

= +∞

(33)

Combining (33) and (30), we can derive that ρ(uσ , σ) converges to a positive value function of u as σ
goes to 0, i.e.

lim
σ→0

ρ(
u

σ
, σ) := Cs(u). (34)

When ui = 0 for some i ∈ [d], limσ→0(
u2
i

σ2 + 1)(β0(j,
u
σ , σ)− α2(j, u

σ , σ)) = 0 by (31). Then from
the Definition 3, we have

lim
σ→0

ρ(
u

σ
, σ) = 0 (35)

(4) We can define Lm( (ΛW ∗)⊤Λu
σδK(W ∗) , σδK(W ∗)) as

Lm(
(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗)) = min

vi∈[0,ui]

{
ρ(

(ΛW ∗)⊤Λv

σlδK(W ∗)
, σδK(W ∗)) : vj = uj for all j ̸= i

}
(36)

Then by this definition, we have

0 < Lm(
(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗)) ≤ ρ(

(ΛW ∗)⊤Λu

σlδK(W ∗)
, σδK(W ∗)) (37)

Meanwhile, for any 0 ≤ u′
i ≤ u∗

i , since that [0, u′
i] ⊂ [0, u∗

i ], we can obtain

Lm(
(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗))|ui=u′

i
≥ Lm(

(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗))|ui=u∗

i
(38)

Hence, Lm( (ΛW ∗)⊤Λu
σδK(W ∗) , σδK(W ∗)) is a strictly positive real function which is monotonically de-

creasing.
(5) Therefore, we only need to show the condition (a).
When (W ∗⊤u)i ̸= 0 for all i ∈ [K],

lim
σ→0

ρ(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = Cs(u) > 0. (39)

9
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Therefore, there exists ζs > 0, such that when 0 < σ < ζs,

ρ(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) >

Cs(W ∗⊤u)

2
. (40)

Then we can define

Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) :=

Cs(W ∗⊤u)

2ζs
σ2 (41)

such that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is an increasing function of σ below

ρ( W ∗⊤u
σδK(W ∗) , σδK(W ∗)).

When (W ∗⊤u)i = 0 for some i ∈ [K], then

lim
σ→0

ρ(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = 0. (42)

We can define

Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = σ · min

vi∈[ui,ζs′ ]

{
ρ(

W ∗⊤v

σδK(W ∗)
, σδK(W ∗)) : vj ̸= uj for all j ̸= i

}
(43)

Then,

σ−1Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = min

vi∈[ui,ζs′ ]

{
ρ(

W ∗⊤v

σδK(W ∗)
, σδK(W ∗)) : vj = uj for all j ̸= i

}
(44)

For any 0 ≤ u′
i ≤ u∗

i < ζs′ , since that [u∗
i , ζs′ ] ⊂ [u′

i, ζs′ ], we can obtain

σ−1Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗))|ui=u′

i
≤ σ−1Ls(

W ∗⊤u

σδK(W ∗)
, σδK(W ∗))|ui=u∗

i
(45)

Therefore, we can derive that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is monotonically increasing. Following

the steps in (4), we can have that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is a strictly positive real function

which is upper bounded by ρ( W ∗⊤u
σδK(W ∗) , σδK(W ∗)).

In conclusion, condition (a) is proved.
For condition (b), since that ζs > 0, ρ( W ∗⊤u

σlδK(W ∗) , σδK(W ∗)) is continuous and positive, we can
obtain

ρ(
W ∗⊤v

σδK(W ∗)
, σδK(W ∗))

∣∣∣
σ=ζs

> 0 (46)

Then condition (b) can be easily proved as in (4).

We then characterize the order of the ρ function in different cases as follows.

Property 4. To specify the order with regard to the distribution parameters, ρ(u, σ) in Definition 3
satisfies the following properties,

1. (Small variance) limσ→0+ ρ(u, σ) = Θ(σ4).

2. (Large variance) For any ϵ > 0, limσ→∞ ρ(u, σ) ≥ Θ( 1
σ3+ϵ ).

3. (Large mean) For any ϵ > 0, limµ→∞ ρ(u, σ) ≥ Θ(e−
∥u∥2

2 ) 1
∥u∥3+ϵ .

10
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Proof:
(1)

β0(i,u, σ)− α0(i,u, σ)
2

=Ez∼N (µ,1)[ϕ
′2(σ · z)]− (Ez∼N (µ,1)[ϕ

′(σ · z)])2

=

∫ ∞

−∞
ϕ′2(σ · z) 1√

2π
e−

(z−µ)2

2 dz − (

∫ ∞

−∞
ϕ′(σ · z) 1√

2π
e−

(z−µ)2

2 dz)2

=

∫ ∞

−∞
(
1

4
− t2

16
+

t4

96
· · · )2 1√

2πσ
e−

(t−µσ)2

2σ2 dt

− (

∫ ∞

−∞
(
1

4
− t2

16
+

t4

96
+ · · · ) 1√

2πσ
e−

(t−µσ)2

2σ2 dt)2

=(
1

16
− 1

32
(µ2σ2 + σ2) +

7

768
(3σ4 + 6µ2σ4 + µ4σ4) + · · · )

− (
1

4
− µ2σ2 + σ2

16
+

3σ4 + 6µ2σ4 + µ4σ4

192
+ · · · )2

=
1

128
σ4 +

µ2σ4

64
+ o(σ4), as σ → 0+.

(47)

The first step of (47) is by Definition 3. The second step and the last steps come from some basic
mathematical computation. The third step is from Taylor expansion. Hence,

lim
σ→0+

(β0(i,u, σ)− α0(i,u, σ)
2) =

1

128
σ4 +

µ2σ4

64
+ o(σ4) (48)

Similarly, we can obtain

β2(i,u, σ)−
α2(i,u, σ)

2

µ2 + 1

=Ez∼N (0,1)[ϕ
′2(σ · z)z2]−

(Ez∼N (0,1)[ϕ
′(σ · z)z2])2

µ2 + 1

=

∫ ∞

−∞
ϕ′2(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz − 1

µ2 + 1
(

∫ ∞

−∞
ϕ′(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz)2

=

∫ ∞

−∞
(
t

4σ
− t3

16σ
+

t5

96σ
· · · )2 1√

2πσ
e−

(t−µσ)2

2σ2 dt

− 1

µ2 + 1
(

∫ ∞

−∞
(
t2

4σ2
− t4

16σ2
+

t6

96σ2
+ · · · ) 1√

2πσ
e−

(t−µσ)2

2σ2 dt)2

=(
1 + µ2

16
− 3σ2 + 6µ2σ2 + µ4σ2

32
+ · · · )

− 1

µ2 + 1
(
1 + µ2

4
− 15σ2 + 45µ2σ2 + 15µ4σ2 + µ6σ2

32
+ · · · )2

=
9

64
σ2 +

33

64
µ2σ2 +

13

64
µ4σ2 +

1

64
µ6σ2 + o(σ2), as σ → 0+

(49)

Hence,

lim
σ→0+

(β2(i,u, σ)−
α2(i,u, σ)

2

µ2 + 1
) =

9

64
σ2 + o(σ2) (50)

Therefore,

lim
σ→0+

ρ(u, σ) = min
j∈[d],uj ̸=µ

{(u2
j + 1)} 1

128
σ4 (51)

11
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(2) Note that by some basic mathematical derivation,∫ ∞

−∞
ϕ′2(σ · z) 1√

2π
e−

(z−µ)2

2 dz =

∫ ∞

−∞

1

(eσ·z + e−σ·z + 2)2
1√
2π

e−
(z−µ)2

2 dz

≥ 2

∫ ∞

0

1

16e2σ·z
1√
2π

e−
(z+|µ|)2

2 dz

=
1

8
e2|µ|σ+2σ2

∫ ∞

0

1√
2π

e−
(z+2σ)2

2 dz

=
1

8
√
2π

e2|µ|σ+2σ2

∫ ∞

|µ|+2σ

e−
t2

2 dt

(52)

We then provide the following Claim with its proof to give a lower bound for (52).
Claim:

∫∞
|µ|+2σ

e−
t2

2 dt > e−2|µ|σ−2σ2−k1 log σ for k1 > 1.

Proof: Let

f(σ) =

∫ ∞

|µ|+2σ

e−
t2

2 dt− e−2|µ|σ−2σ2−k1 log σ. (53)

Then,

f ′(σ) = e−2σ2

((2|µ|+ 4σ +
k1
σ
)σ−k1 − 2e−

1
2µ

2

). (54)

It can be easily verified that for a given |µ| ≥ 0, f ′(σ) < 0 when σ is large enough if k1 > 1.
Combining that limσ→∞ f(σ) = 0, we have f(σ) > 0 when σ is large enough by showing the
contradiction in the following:
Suppose there is a strictly increasing function f(x) > 0 with limx→∞ f(x) = 0 when x is large
enough. Then there exists x0 > 0 such that for any ϵ > 0, f(x) < ϵ for x > x0. Pick ϵ = f(x0) > 0,
then for x1 > x0, f(x1) > f(x0) = ϵ. Contradiction!
Similarly, we also have∫ ∞

−∞
ϕ′(σ · z) 1√

2π
e−

z2

2 dz =

∫ ∞

−∞

1

eσ·z + e−σ·z + 2

1√
2π

e−
(z−µ)2

2 dz

≤ 2

∫ ∞

0

1

eσ·z
1√
2π

e−
(z−µ)2

2 dz

= e|µ|σ+
1
2σ

2

∫ ∞

0

2√
2π

e−
(z+|µ|+σ)2

2 dz

=
2√
2π

e|µ|σ+
1
2σ

2

∫ ∞

|µ|+σ
e−

t2

2 dt,

(55)

and the Claim:
∫∞
|µ|+σ e

− t2

2 dt < e−|µ|σ− 1
2σ

2−k2 log σ for k2 ≤ 1 to give an upper bound for (55).

Therefore, combining (52, 55) and two claims, we have that for any ϵ > 0,

β0(i,u, σ)− α0(i,u, σ)
2 ≥ 1

8
√
2π

1

σk1
− 1

2π

1

σ2k2
≳

1

σ1+ϵ
(56)

(The above inequality holds for any 2k2 > k1 where k1 > 1 and k2 ≤ 1.)
Similarly, ∫ ∞

−∞
ϕ′2(σ · z)z2 1√

2π
e−

z2

2 dz =

∫ ∞

−∞

z2

(eσ·z + e−σ·z + 2)2
1√
2π

e−
(z−µ)2

2 dz

≥ 2

∫ ∞

0

z2

16e2σ·z
1√
2π

e−
(z+|µ|)2

2 dz

=
1

8
√
2π

e|µ|σ+2σ2

∫ ∞

2|µ|+2σ

(t− 2σ)2e−
t2

2 dt

(57)

Claim:
∫∞
|µ|+2σ

(t− 2σ)2e−
t2

2 dt ≥ e−2|µ|σ−2σ2−k1 log σ if k1 > 3.
Proof: Let

f(σ) =

∫ ∞

|µ|+2σ

(t− 2σ)2e−
t2

2 dt− e−2|µ|σ−2σ2−k1 log σ. (58)

12
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f ′(σ) = 8σ

∫ ∞

|µ|+2σ

e−
t2

2 dt+ e−2|µ|σ−2σ2

(4σ1−k1 + k1σ
−1−k1 + 2|µ|σ−k1 − 4e−

1
2µ

2

). (59)

We need f ′(σ) < 0 when σ is large enough. Since that f ′(σ)→ 0, f ′′(σ)→ 0 when σ is large, we
need f ′′(σ) > 0 and f ′′′(σ) < 0 recursively. Hence,

f ′′′(σ) =e−2|µ|σ−2σ2

(64σ3−k1 + 96µσ2−k1 + 16(3k1 − 3 + µ2)σ1−k1 + 8µ(−µ2 − 3 + 6k1)σ
−k1

+ 4k1(3k1 + µ2)σ−1−k1 + 2k1(1 + k1)(µ+ 2)σ−2−k1

+ k1(1 + k1)(2 + k1)σ
−3−k1 − 16e−

1
2µ

2

) < 0
(60)

requires k1 > 3.
Similarly, we have∫ ∞

−∞
ϕ′(σ · z)z2 1√

2π
e−

z2

2 dz ≤ 2

∫ ∞

0

1

eσ·z
1√
2π

z2e−
z2

2 dz =
2√
2π

e
1
2σ

2

∫ ∞

σ

(t− σ)2e−
t2

2 dt

(61)
and the Claim:

∫∞
σ

(t− σ)2e−
t2

2 dt < e−
σ2

2 −k2 log σ . Hence,

β2(i,u, σ)−
α2(i,u, σ)

2

µ2 + 1
≥ 1

8
√
2π

1

σk1
− 2

π(µ2 + 1)

1

σ2k2
≳

1

σ3.1
(62)

(The above inequality holds for any 2k2 > k1 where k1 > 3 and k2 < 3.)
Therefore, by combining (56) and (62), for any ϵ > 0

lim
σ→∞

ρ(u, σ) ≥ Θ(
1

σ3+ϵ
). (63)

(3) Let σ be fixed. For any ϵ > 0, following the steps in (2), we can obtain∫ ∞

−∞
ϕ′2(σ · z) 1√

2π
e−

(z−µ)2

2 dz =

∫ ∞

−∞

1

(eσ·z + e−σ·z + 2)2
1√
2π

e−
(z−µ)2

2 dz

≥ 2

∫ ∞

0

1

16e2σ·z
1√
2π

e−
(z+|µ|)2

2 dz

=
1

8
√
2π

e2|µ|σ+2σ2

∫ ∞

|µ|+2σ

e−
t2

2 dt

≥ 1

8
√
2π

e−
µ2

2
1

µ1+ϵ

(64)

∫ ∞

−∞
ϕ′(σ · z) 1√

2π
e−

(z−µ)2

2 dz =

∫ ∞

−∞

1

eσ·z + e−σ·z + 2

1√
2π

e−
(z−µ)2

2 dz

≤ 2

∫ ∞

0

1

eσ·z
1√
2π

e−
(z−µ)2

2 dz

=
2√
2π

e−
µ2

2
1

µ1−ϵ

(65)

Similarly, ∫ ∞

−∞
ϕ′2(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz ≥ 1

8
√
2π

e−
µ2

2
1

µ3+ϵ
(66)∫ ∞

−∞
ϕ′(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz ≤ 2√
2π

e−
µ2

2
1

µ3−ϵ (67)

We can conclude that limµ→∞ ρ(u, σ) ≥ Θ(e−
∥u∥2

2 ) 1
∥u∥3+ϵ .

Property 5. If a function f(x) is an even function, then

Ex∼N (µ,Σ)[f(x)] = Ex∼ 1
2N (µ,Σ)+ 1

2N (−µ,Σ)[f(x)] (68)
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Proof:
Denote

g(x) = f(x)(2π|Σ|2)− d
2 exp(−1

2
(x− µ)Σ−1(x− µ)) (69)

By some basic mathematical computation,

Ex∼N (µ,Σ)[f(x)] =

∫
x∈Rd

g(x)dx =

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x1, · · · , xd)dx1 · · · dxd

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ −∞

∞
g(x1, x2, · · · , xd)d(−x1)dx2 · · · dxd

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(−x1, x2 · · · , xd)dx1dx2 · · · dxd

=

∫
x∈Rd

g(−x)dx

=

∫
x∈Rd

f(x)(2π|Σ|2)− d
2 exp(−1

2
(x+ µ)Σ−1(x+ µ))

= Ex∼N (−µ,Σ)[f(x)]

(70)

Therefore, we have

Ex∼N (µ,Σ)[f(x)] = Ex∼ 1
2N (µ,Σ)+ 1

2N (−µ,Σ)[f(x)] (71)

Property 6. Under Gaussian Mixture Model x ∼
∑L
l=1 λlN (µl,Σl) where Σl =

diag(σ2
l1, · · · , σ2

ld), we have the following upper bound.

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||+ ∥Σ
1
2

l ∥)
2t (72)

Proof:
Note that

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] =

L∑
l=1

λlEx∼N (µl,Σl)[(u
⊤x)2t] =

L∑
l=1

λlEy∼N (u⊤µl,u⊤Σlu)[y
2t],

(73)
where the last step is by that u⊤x ∼ N (u⊤µ,u⊤Σlu) for x ∼ N (µl,Σl). By some basic
mathematical computation, we know

Ey∼N (u⊤µl,u⊤Σlu)[y
2t]

=

∫ ∞

−∞
(y − u⊤µl + u⊤µl)

2t 1√
2πu⊤Σlu

e
− (y−u⊤µl)

2

2u⊤Σlu dy

=

∫ ∞

−∞

2t∑
p=0

(
2t

p

)
(u⊤µl)

2t−p(y − u⊤µl)
p 1√

2πu⊤Σlu
e
− (y−u⊤µl)

2

2u⊤Σlu dy

=

2t∑
p=0

(
2t

p

)
(u⊤µl)

2t−p ·
{

0 , p is odd
(p− 1)!!(u⊤Σlu)

p
2 , p is even

≤
2t∑
p=0

(
2t

p

)
|u⊤µl|2t−p(p− 1)!!|u⊤Σlu|

p
2

≤(2t− 1)!!(|u⊤µl|+ |u⊤Σlu|
1
2 )2t

≤(2t− 1)!!∥u∥2t(∥µl∥+ ∥Σ∥
1
2 )2t,

(74)

where the second step is by the Binomial theorem. Hence,

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||+ ∥Σ
1
2

l ∥)
2t (75)
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Property 7. With the Gaussian Mixture Model, we have

Ex∼
∑L

l=1 λlN (µl,Σl)
[||x||2t] ≤ dt(2t− 1)!!

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2t (76)

Proof:

Ex∼
∑L

l=1 λlN (µl,Σl)
[||x||2t2 ]

=Ex∼
∑L

l=1 λlN (µl,Σl)
[(

d∑
i=1

x2
i )
t]

=Ex∼
∑L

l=1 λlN (µl,Σl)
[dt(

d∑
i=1

x2
i

d
)t]

≤Ex∼
∑L

l=1 λlN (µl,Σl)
[dt

d∑
i=1

x2t
i

d
]

=dt−1
d∑
i=1

L∑
j=1

∫ ∞

−∞
(xi − µji + µji)

2tλj
1√

2πσji
exp(− (xi − µji)

2

2σ2
ji

)dxi

=dt−1
d∑
i=1

L∑
j=1

2t∑
k=1

(
2t

k

)
λj |µji|2t−k ·

{
0 , k is odd

(k − 1)!!σkji, k is even

≤dt−1
d∑
i=1

L∑
j=1

2t∑
k=1

(
2t

k

)
λj |µji|2t−kσkj · (2t− 1)!!

=dt−1
d∑
i=1

L∑
j=1

λj(|µji|+ σji)
2t(2t− 1)!!

≤dt(2t− 1)!!

L∑
l=1

λl(∥µ∥+ ∥Σ
1
2

l ∥)
2t

(77)

In the 3rd step, we apply Jensen inequality because f(x) = xt is convex when x ≥ 0 and t ≥ 1. In the
4th step we apply the Binomial theorem and the result of k-order central moment of Gaussian variable.

Property 8. Under the Gaussian Mixture Model x ∼
∑L
l=1 λlN (µl,Σl) where Σl = Λ⊤

l DlΛl,
we have the following upper bound.

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||+ ∥Σ
1
2

l ∥)
2t (78)

Proof:
If x ∼ N (µl,Σl), then u⊤x ∼ N (u⊤µl,u

⊤Σlu) = N ((Λlu)
⊤Λlµl, (Λlu)

⊤Dl(Λlu)). By
Property 6, we have

Ex∼N (µl,Σl)[(u
⊤x)2t] ≤ (2t− 1)!!∥u∥2t(∥µl∥+ ∥Σ

1
2

l ∥)
2t (79)

Then we can derive the final result.

Property 9. The population risk function f̄(W ) is defined as

f̄(W ) = Ex∼
∑L

l=1 λlN (µl,Σl)
[fn(W )]

=Ex∼
∑L

l=1 λlN (µl,Σl)

[ 1
n

n∑
i=1

ℓ(W ;xi, yi)
]

=Ex∼
∑L

l=1 λlN (µl,Σl)
[ℓ(W ;xi, yi)]

(80)
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For any permutation matrix P , where {π(j)}Kj=1 is the indices permuted by P , we have

H(WP ,x) =
1

K

∑
π∗(j)

ϕ(wπ(j)
⊤x)

=
1

K

K∑
j=1

ϕ(wj
⊤x)

= H(W ,x)

(81)

Therefore,
f̄(W ) = f̄(WP ) (82)

Based on (1) and (3), we can derive its gradient and Hessian as follows.

∂ℓ(W ;x, y)

∂wj
= − 1

K

y −H(W )

H(W )(1−H(W ))
ϕ′(w⊤

j x)x = ζ(W ) · x (83)

∂2ℓ(W ;x, y)

∂wj∂wl
= ξj,l · xx⊤ (84)

ξj,l(W ) =

{
1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x)

H(W )2+y−2y·H(W )
H2(W )(1−H(W ))2 , j ̸= l

1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x)

H(W )2+y−2y·H(W )
H2(W )(1−H(W ))2 −

1
Kϕ′′(w⊤

j x)
y−H(W )

H(W )(1−H(W )) , j = l

(85)

Property 10. With Dm(Ψ defined in definition 5, we have

(i) Dm(Ψ)D2m(Ψ) ≤ D3m(Ψ) (86)

(ii)
(
Dm(Ψ)

)2 ≤ D2m(Ψ) (87)

Proof:
To prove (86), we can first compare the terms

∑L
i=1 λiai

∑L
i=1 λia

2
i and

∑L
i=1 λia

3
i , where ai ≥

1, i ∈ [L] and
∑L
i=1 λi = 1.

L∑
i=1

λia
3
i −

L∑
i=1

λiai

L∑
i=1

λia
2
i =

L∑
i=1

λiai ·
(
a2i −

L∑
j=1

λja
2
j

)
=

L∑
i=1

λiai ·
(
(1− λi)a

2
i −

∑
1≤j≤L,j ̸=i

λja
2
j

)
=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λja
2
i −

∑
1≤j≤L,j ̸=i

λja
2
j

)
=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λj(a
2
i − a2j )

)
=

∑
1≤i,j≤L,i̸=j

(
λiλjai(a

2
i − a2j ) + λiλjaj(a

2
j − a2i )

)
=

∑
1≤i,j≤L,i̸=j

λiλj(ai − aj)
2(ai + aj) ≥ 0

(88)

The second to last step is because we can find the pairwise terms λiai · λj(a2i − a2j ) and λjaj ·
λi(a

2
j − a2i ) in the summation that can be putted together. From (88), we can obtain

L∑
i=1

λiai

L∑
i=1

λia
2
i ≤

L∑
i=1

λia
3
i (89)
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Combining (89) and the definition of Dm(Ψ) in (5), we can derive (86).
Similarly, to prove (87), we can first compare the terms (

∑L
i=1 λiai)

2 and
∑L
i=1 λia

2
i , where

ai ≥ 1, i ∈ [L] and
∑L
i=1 λi = 1.

L∑
i=1

λia
2
i − (

L∑
i=1

λiai)
2 =

L∑
i=1

λiai ·
(
ai −

L∑
j=1

λjaj
)

=

L∑
i=1

λiai ·
(
(1− λi)ai −

∑
1≤j≤L,j ̸=i

λjaj
)

=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λjai −
∑

1≤j≤L,j ̸=i

λjaj
)

=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λj(ai − aj)
)

=
∑

1≤i,j≤L,i̸=j

(
λiλjai(ai − aj) + λiλjaj(aj − ai)

)
=

∑
1≤i,j≤L,i̸=j

λiλj(ai − aj)
2 ≥ 0

(90)

The derivation of (90) is close to (88). By (90) we have

(

L∑
i=1

λiai)
2 ≤

L∑
i=1

λia
2
i (91)

Combining (91) and the definition of Dm(Ψ) in (5), we can derive (87).

D PROOF OF THEOREM 1 AND COROLLARY 1

Theorem 1 is built upon three lemmas.

Lemma 1 shows that with O(dK5 log2 d) samples, the empirical risk function is strongly convex in
the neighborhood of W ∗.

Lemma 2 shows that if initialized in the convex region, the gradient descent algorithm converges
linearly to a critical point Ŵn, which is close to W ∗.

Lemma 3 shows that the Tensor Initialization Method in Subroutine 1 initializes W0 ∈ Rd×K in the
local convex region. Theorem 1 follows naturally by combining these three lemmas.

This proving approach is built upon those in Fu et al. (2020). One of our major technical contribution
is extending Lemmas 1 and 2 to the Gaussian mixture model, while the results in Fu et al. (2020)
only apply to Standard Gaussian models. The second major contribution is a new tensor initialization
method for Gaussian mixture model such that the initial point is in the convex region (see Lemma 3).
Both contributions require the development of new tools, and our analyses are much more involved
than those for the standard Gaussian due to the complexity introduced by the Gaussian mixture
model.

To present these lemmas, the Euclidean ball B(W ∗P ∗, r) is used to denote the neighborhood of
W ∗P ∗, where r is the radius of the ball.

B(W ∗P ∗, r) = {W ∈ Rd×K : ||W −W ∗P ∗||F ≤ r} (92)

The radius of the convex region is

r := Θ
(C3ϵ0 ·

∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

K
7
2

(∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)4
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)8
) 1

4

)
(93)
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with some constant C3 > 0.
Lemma 1. (Strongly local convexity) Consider the classification model with FCN (1) and the sigmoid
activation function. There exists a constant C such that as long as the sample size

n ≥C1ϵ
−2
0 ·

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)2

·
( L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )
)−2

dK5 log2 d

(94)

for some constant C1 > 0, ϵ0 ∈ (0, 1
4 ), and any fixed permutation matrix P ∈ RK×K we have for

all W ∈ B(W ∗P , r),

Ω
(1− 2ϵ0

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )
)
· IdK

⪯ ∇2fn(W ) ⪯ C2

L∑
l=1

λl(||µ̃l||∞ + ∥Σ
1
2

l ∥)
2 · IdK

(95)

with probability at least 1− d−10 for some constant C2 > 0.

Lemma 2. (Linear convergence of gradient descent) Assume the conditions in Lemma 1 hold. Given
any fixed permutation matrix P ∈ RK×K , if the local convexity of B(W ∗P , r) holds, there exists a
critical point in B(W ∗P , r) for some constant C3 > 0, and ϵ0 ∈ (0, 1

2 ), such that

||Ŵn −W ∗P ||F ≤ O(
K

5
2

√∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2(1 + ξ)∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

√
d log n

n
)

(96)

If the initial point W0 ∈ B(W ∗P , r), the gradient descent linearly converges to Ŵn, i.e.,

||Wt − Ŵn||F ≤
(
1− Ω

(∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

K2
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
))t
||W0 − Ŵn||F

(97)
with probability at least 1− d−10.

Lemma 3. (Tensor initialization) For classification model, with D6(Ψ) defined in Definition 5, we
have that if the sample size

n ≥ κ8K4τ12D6(Ψ) · d log2 d, (98)

then the output W0 ∈ Rd×K satisfies

||W0 −W ∗P ∗|| ≲ κ6K3 · τ6
√

D6(Ψ)

√
d log n

n
||W ∗|| (99)

with probability at least 1− n−Ω(δ41) for a specific permutation matrix P ∗ ∈ RK×K .

Proof of Theorem 1
From Lemma 2 and Lemma 3, we know that if n is sufficiently large such that the initialization W0

by the tensor method is in the region B(W ∗P , r), then the gradient descent method converges to a
critical point Ŵn that is sufficiently close to W ∗. To achieve that, one sufficient condition is

||W0 −W ∗P ∗||F ≤
√
K||W0 −W ∗P ∗|| ≤ κ6K

7
2 · τ6

√
D6(Ψ)

√
d log n

n
||W ∗P ||

≤ C3ϵ0Γ(Ψ)σ2
max

K
7
2

(∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)4
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)8
) 1

4

(100)
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where the first inequality follows from ||W ||F ≤
√
K||W || for W ∈ Rd×K , the second inequality

comes from Lemma 3, and the third inequality comes from the requirement to be in the region
B(W ∗P , r). That is equivalent to the following condition

n ≥C0ϵ
−2
0 · τ12κ12K14

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

2

· (δ1(W ∗))2D6(Ψ)Γ(Ψ)−2σ−4
max · d log

2 d

(101)

where C0 = max{C4, C
−2
3 }. By Definition 5, we can obtain

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

2 ≤
√
D4(Ψ)D8(Ψ)σ6

max (102)

From Property 10, we have that

√
D4(Ψ)D8(Ψ)D6(Ψ)

≤
√
D12(Ψ)

√
D12(Ψ) = D12(Ψ)

(103)

Plugging (102), (103) into (101), we have

n ≥ C0ϵ
−2
0 · κ12K14(σmaxδ1(W

∗))2τ12Γ(Ψ)−2D12(Ψ) · d log2 d (104)

Considering the requirements on the sample complexity in (94), (98), and (104), (104) shows a
sufficient number of samples. Taking the union bound of all the failure probabilities in Lemma 1, and
3, (104) holds with probability 1− d−10.
By Property 3.4, ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) can be lower bounded by positive and

monotonically decreasing functions Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) when everything

else except |µ̃l(i)| is fixed, or Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) when everything else except

∥Σ
1
2

l ∥ is fixed. Then, by replacing the lower bound of ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) with

these two functions in Γ(Ψ), we can have an upper bound of (σmaxδ1(W
∗))2τ12Γ(Ψ)−2D12(Ψ),

denoted as B(Ψ).
To be more specific, when everything else except |µ̃l(i)| is fixed,

Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) is plugged in B(Ψ). Then since that D12(Ψ) and

Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) are both increasing function of |µ̃l(i)|, B(Ψ) is an

increasing function of |µ̃l(i)|.
When everything else except ∥Σ

1
2

l ∥ is fixed, if ∥Σ
1
2

l ∥ = σmax > ζs, then σ2
maxτ

12D12(Ψ) is an

increasing function of ∥Σ
1
2

l ∥. Since that Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) is a decreasing

function, Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )−2 is an increasing function of ∥Σ

1
2

l ∥. Hence,

B(Ψ) is an increasing function of ∥Σ
1
2

l ∥. Moreover, when all ∥Σ
1
2

l ∥ < ζs′ and go to 0, two

decreasing functions of ∥Σ
1
2

l ∥, σ2
maxLs(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )−2 and D12(Ψ) will

be the dominant term of B(Ψ). Therefore, B(Ψ) increases to infinity as all ∥Σ
1
2

l ∥’s go to 0. In sum,
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we can define a universe B(Ψ) as:

B(Ψ)

=



(σmaxδ1(W
∗))2τ12

(∑L
l=1

λl∥Σ−1
l ∥−1

ησ2
max

Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )
)−2

·D12(Ψ), if S is fixed

(σmaxδ1(W
∗))2τ12

(∑L
l=1

λl∥Σ−1
l ∥−1

ησ2
max

Ls( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )
)−2

·D12(Ψ), if M is fixed

(σmaxδ1(W
∗))2τ12

(∑L
l=1

λl∥Σ−1
l ∥−1

ησ2
max

ρ( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )
)−2

·D12(Ψ), otherwise
(105)

where Lm,Ls and D12 are defined in (38), (43) and Definition 5, respectively.
Hence, we have

n ≥ poly(ϵ−1
0 , κ, η, τK)B(Ψ) · d log2 d (106)

Similarly, by replacing ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) with

Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) when everything else except |µ̃l(i)| is fixed, or

Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) (or ∥Σ−1

l ∥Ls(
W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

for ∥Σ−1
l ∥−1 ≥ 1) when everything else except ∥Σ

1
2

l ∥ is fixed, (97) can also be transferred
to another feasible upper bound. We denote the modified version of the convergence rate as
v = 1 −K−2q(Ψ). Since that q(Ψ) is a ratio between the smallest and the largest singular value
of ∇2f̄(W ∗), we have q(Ψ) ∈ (0, 1). Hence, we can obtain 1 − K−2q(Ψ) ∈ (0, 1) by K ≥ 1.
When everything else except |µ̃l(i)| is fixed, since that Lm( (ΛlW

∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

is monotonically decreasing and
∑L
l=1 λ(∥µl∥ + ∥Σ

1
2

l ∥)2 is increasing as |µ̃l(i)| increases, v

is an increasing function of |µ̃l(i)| to 1. Similarly, when everything else except ∥Σ
1
2

l ∥ is fixed

where ∥Σ
1
2

l ∥ ≥ max{1, ζs}, 1∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

decreases to 0 as ∥Σl∥ increases. We replace

ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) by ∥Σ−1

l ∥Ls(
W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) and

then

∥Σ−1
l ∥

−1 · ∥Σ−1
l ∥Ls(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

=Ls(
W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

(107)

is an decreasing function less than ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ). Therefore, v is an

increasing function of ∥Σ
1
2

l ∥ to 1 when ∥Σ
1
2

l ∥ ≥ max{1, ζs}. When everything else except

all ∥Σ
1
2

l ∥ ≤ ζs′’s go to 0, all Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ’s will decrease and all

∥Σ−1
l ∥−1∑L

l=1 λl(∥µl∥∞+∥Σ
1
2
l ∥)2

’s will decrease to 0. Therefore, v increases to 1.
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q(Ψ) can then be defined as

q(Ψ)

=



Ω
(∑L

l=1 λl
∥Σ−1

l
∥−1

ητKκ2 Lm(
(ΛlW

∗)⊤µ̃l

δK (W∗)∥Σ−1
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1
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2
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)
),

if S is fixed

Ω
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l=1 λl
∥Σ−1

l
∥−1

ητKκ2 Ls(
W∗⊤µl

δK (W∗)∥Σ−1
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,δK(W ∗)∥Σ−1
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)
,

if M is fixed and all ∥Σ
1
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l ∥ ≤ ζs′

Ω
(λl

1

ητKκ2 Ls(
W∗⊤µi

δK (W∗)∥Σ−1
i
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1
2

,δK(W ∗)∥Σ−1
i ∥− 1

2 )+
∑

l ̸=i r(λl,µl,Σl,W
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∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)
,

if M is fixed and one ∥Σ
1
2
i ∥ ≥ max{1, ζs}

Ω
(∑L

l=1 λl
∥Σ−1

l
∥−1

ητKκ2 ρ(
W∗⊤µl

δK (W∗)∥Σ−1
l

∥−
1
2

,δK(W ∗)∥Σ−1
l ∥− 1

2 )

∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)
,

otherwise

.
(108)

where r(λl,µl,Σl,W
∗) = λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ). Note that here the

ρ(·) function is defined in Definition 3. Lm(·) and Ls(·) are defined in (38) and (43), respectively.
The bound of ∥Ŵn −W ∗P ∥F is directly from (96). We can derive that

Ew(Ψ) = O(

√∑L
j=1 λl(∥µj∥+ ∥Σ

1
2
j ∥)2∑L

j=1 λl∥Σ
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j ∥−1ρ(
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δK(W ∗)∥Σ−1
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2
, δK(W ∗)∥Σ−1
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1
2 )

) (109)

E(Ψ) = O(

∑L
j=1 λl(∥µj∥+ ∥Σ

1
2
j ∥)2∑L

j=1 λl∥Σ
−1
j ∥−1ρ(

W ∗⊤µj

δK(W ∗)∥Σ−1
j ∥− 1

2
, δK(W ∗)∥Σ−1

j ∥−
1
2 )

) (110)

El(Ψ) = O(

√∑L
j=1 λl(∥µj∥+ ∥Σ

1
2
j ∥)2(∥µl∥+ ∥Σl∥

1
2 )∑L

j=1 λl∥Σ
−1
j ∥−1ρ(

W ∗⊤µj

δK(W ∗)∥Σ−1
j ∥− 1

2
, δK(W ∗)∥Σ−1

j ∥−
1
2 )

) (111)

The discussion of the monotonicity of Ew(Ψ), E(Ψ) and El(Ψ) can follow the analysis of q(Ψ).
We finish our proof of Theorem 1 here. The parameters B(Ψ), q(Ψ), Ew(Ψ), E(Ψ), and El(Ψ) can
be found in 105, 108, 109, 110, and 111, respectively.

Proof of Corollary 1:
The monotonicity analysis has been included in the proof of Theorem 1. In this
part, we specify our proof for the results in Table 1. For simplicity, we denote
ρl = ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ).

When everything else except ∥Σl∥
1
2 is fixed, if ∥Σl∥ = o(1), by some basic mathematical

computation, then we have

nsc =C0ϵ
−2
0 · η2τ12κ16K14

( L∑
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1
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l ∥)
4

L∑
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λl(∥µ̃l∥+ ∥Σ
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l ∥)
8
) 1

2

(δ1(W
∗))2D6(Ψ)

· ( 1∑L
l=1 λl∥Σ

−1
l ∥−1ρl

)2 · d log2 d

≲poly(ϵ−1
0 , η, τ, κ,K, δ1(W

∗)) · d log2 d ·O(λL
1

∥Σ
1
2

L∥6
)

(112)
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v(Ψ) = 1−
∑L
l=1 λl

∥Σ−1
l ∥−1

ηκ2 ρl

K2(
∑L
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1
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≤ 1− λl
K2ηκ2τK

Θ(∥Σl∥3)

(113)

∥Ŵn −W ∗P ∗∥ ≤ O(
K

5
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√∑L
l=1 λl(∥µl∥+ ∥Σ

1
2
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≲ poly(η, κ, τ, δK(W ∗))

√
d log n
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(114)

f̄l(Wt) = f̄l(Wt)− f̄l(W
∗)

≤ E
[ K∑
k=1

∂(f̄l(Wt)

∂w̃k
)⊤(wt(k) −w∗

k)
]
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1
2 )∑L

j=1 λj∥Σ
−1
j ∥−1ρj

(∥µj∥+ ∥Σj∥
1
2 ) ·

√
d log n

n
ηκ2K2(1 + ξ)

)
≲ poly(η, κ, τ, δK(W ∗))

√
d log n

n
K2(1 + ξ) ·O(

1

1 + ∥Σl∥3
)
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√
d log n
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K2(1 + ξ) ·O(1)−Θ(∥Σl∥3),

(115)

The first inequality of (115) is by the Mean Value Theorem. The second inequality of (115) is from
Property 8, and the third inequality is derived from (96, 97). The last inequality is obtained by the
condition that ∥Σl∥ = o(1). We can similarly have

f̄(Wt) ≤ E
[ K∑
k=1

∂(f̄(Wt)

∂w̃k
)⊤(wt(k) −w∗

k)
]

≲ poly(η, κ, τ, δK(W ∗))

√
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≲ poly(η, κ, τ, δK(W ∗))

√
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(116)

If ∥Σl∥
1
2 = Ω(1), we have

nsc ≲ poly(ϵ−1
0 , η, τ, κ,K, δ1(W

∗)) · d log2 d ·O(∥Σl∥3) (117)

v(Ψ) ≤ 1− 1

K2τKηκ2
Θ(

1

1 + ∥Σl∥
) (118)

∥Ŵn −W ∗P ∗∥F ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K

5
2 (1 + ξ) ·

√
∥Σl∥ (119)

f̄l(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K2(1 + ξ) · ∥Σl∥ (120)

f̄(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K2(1 + ξ) · ∥Σl∥ (121)
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When everything is fixed except ∥µl∥, by combining (94) and (101), we have

nsc ≲ poly(ϵ−1
0 , η, τ, κ,K, δ1(W

∗)) · d log2 d ·
{
O(∥µl∥4), if ∥µl∥ ≤ 1

O(∥µl∥12), if ∥µl∥ ≥ 1
(122)

v(Ψ) ≤ 1− 1

K2τKηκ2
Θ(

1

1 + ∥µl∥2
) (123)

∥Ŵn −W ∗P ∗∥F ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
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5
2 (1 + ξ) · (1 + ∥µl∥) (124)

f̄l(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n
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K2(1 + ξ) · (1 + ∥µl∥2) (125)

f̄(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K2(1 + ξ) · (1 + ∥µl∥2) (126)

When everything else is fixed except λ1, λ2, · · · , λL, where ∥Σj∥ = Ω(1), j ∈ [L] and ∥µj∥ =
∥µi∥, i, j ∈ [L], if ∥Σl∥ ≤ ∥Σj∥, j ∈ [L], we have

nsc ≲poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d ·
(a1λ

2
l + a2λ

3
2

l + a3λl + a4λ
1
2

l + a5)

(
∑L
j=1 λjρj)

2

≤poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d · a5

(
∑L
j=1 λjρj)

2

≲poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d ·O((1 + λl)
−2)

(127)

where a1 = (∥µl∥+∥Σl∥
1
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∥Ŵn −W ∗P ∥F ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n
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2 (1 + ξ) ·O(

1
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√
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) (129)

f̄l(Wt) ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n
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K2(1 + ξ) ·O(
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f̄(Wt) ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n
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K2(1 + ξ) ·O(

1
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If ∥Σl∥ ≥ ∥Σj∥, j ∈ [L], we can similarly derive that

nsc ≲poly(ϵ−1
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v ≤ 1− 1

K2ητKκ2
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1 + λl
) (133)
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E PROOF OF LEMMA 1

We first state some important lemmas used in proof in Section E.1 and describe the proof in Section
E.2. The proofs of these lemmas are provided in Section E.3 to E.7 in sequence. The proof idea
mainly follows from Fu et al. (2020). Lemma 6 shows the Hessian ∇2f̄(W ) of the population risk
function is smooth. Lemma 7 illustrates that∇2f̄(W ) is strongly convex in the neighborhood around
µ∗. Lemma 8 shows the Hessian of the empirical risk function∇2fn(W

∗) is close to its population
risk ∇2f̄(W ∗) in the local convex region. Summing up these three lemmas, we can derive the proof
of Lemma 1. Lemma 4 is used in the proof of Lemma 7. Lemma 5 is used in the proof of Lemma 8.

The analysis of the Hessian matrix of the population loss in Fu et al. (2020) and Zhong et al. (2017b)
can not be extended to the Gaussian mixture model. To solve this problem, we develop new tools
using some good properties of symmetric distribution and even function. Our approach can also
be applied to other activations like tanh or erf. Moreover, if we directly apply the existing matrix
concentration inequalities in these works in bounding the error between the empirical loss and the
population loss, the resulting sample complexity bound is loose and cannot reflect the influence of
each component of the Gaussian mixture distribution. We develop a new version of Bernstein’s
inequality (see (208)) so that the final bound is O(d log2 d).

Mei et al. (2016) showed that the landscape of the empirical risk is close to that of the population
risk when the number of samples is sufficiently large for the special case that K = 1. Focusing on
Gaussian mixture models, our result explicitly shows how the parameters of the input distribution,
including the proportion, mean and, variance of each component will affect the error bound between
the empirical loss and the population loss in Lemma 8.

E.1 USEFUL LEMMAS IN THE PROOF OF LEMMA 1

Lemma 4.

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[
(

k∑
i=1

r⊤i x · ϕ′(σ · xi))2
]
≥ ρ(µ, σ)||R||2F , (137)

where ρ(µ, σ) is defined in Definition 3 and R = (r1, · · · , rk) ∈ Rd×k is an arbitrary matrix.

Lemma 5. With the FCN model (1) and the Gaussian Mixture Model, for any permutation matrix P ,
for some constant C12 > 0, we have we have

Ex∼
∑L

l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)
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]
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3
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5
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√√√√ L∑
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λl(∥µl∥∞ + ∥Σl∥)2
L∑
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λl(∥µl∥∞ + ∥Σl∥)4
(138)

Lemma 6. (Hessian smoothness of population loss) In the FCN model (1), for some constant C5 > 0,
for any permutation matrix P , we have

||∇2f̄(W )−∇2f̄(W ∗P )||

≤C5 ·K
3
2 ·
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8
) 1

4 · ||W −W ∗P ||F
(139)

Lemma 7. (Local strong convexity of population loss) In the FCN model (1), for any permutation
matrix P , if ||W −W ∗P ||F ≤ r for an ϵ0 ∈ (0, 1

4 ), then for some constant C4 > 0,

4(1− ϵ0)
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(140)
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Lemma 8. In the FCN model (1), for any permutation matrix P , as long as n ≥ C ′ · dK log dK for
some constant C ′ > 0, we have

sup
W∈B(W ∗P ,r)

||∇2fn(W )−∇2f̄(W )|| ≤ C6 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
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l ∥)
2

√
dK log n

n
) (141)

with probability at least 1− d−10 for some constant C6 > 0.

E.2 PROOF OF LEMMA 1

From Lemma 7 and 8, with probability at least 1− d−10,
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(142)
As long as the sample complexity is set to satisfy
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i.e.,

n ≥C1ϵ
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(144)

for some constant C1 > 0, then we have the lower bound of the Hessian with probability at least
1− d−10.
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By (140) and (141), we can also derive the upper bound as follows,
||∇2fn(W )|| ≤ ||∇2f̄(W )||+ ||∇2fn(W )−∇2f̄(W )||
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(146)

for some constant C2 > 0. Combining (145) and (146), we have
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with probability at least 1− d−10.

E.3 PROOF OF LEMMA 4

Following the proof idea in Lemma D.4 of Zhong et al. (2017b), we have

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[
(

k∑
i=1

r⊤i x · ϕ′(σ · xi))2
]
= A0 +B0 (148)
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In A0, we know that Ex∼ 1
2N (µ,Id)+

1
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xj = 0. Therefore, by some basic mathematical
computation,
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In B0, α1(i,µ, σ) = Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

(xiϕ
′(xi)) = 0. By the equation in Page 30 of Zhong

et al. (2017b), we have
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∑
j ̸=i,l

∑
j′ ̸=i,l

xjxj′eje
⊤
j′

))
rl

]
=
∑
i ̸=l

riirliα2(i,µ, σ)α0(l,µ, σ) +
∑
i ̸=l

rijrljα0(i,µ, σ)α0(l,µ, σ)(1 + µ2
j )

(152)
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Therefore,

A0 +B0 =

k∑
i=1

(
rii

α2(i,µ, σ)√
1 + µ2

i

+
∑
l ̸=i

rliα0(l,µ, σ)
√
1 + µ2

i

)2

−
k∑
i=1

r2ii
α2
2(i,µ, σ)

1 + µ2
i

−
k∑
i=1

∑
l ̸=i

r2liα0(l,µ, σ)
2(1 + µ2

i ) +

k∑
i=1

r2iiβ2(i,µ, σ) +

k∑
i=1

∑
j ̸=i

r2ijβ0(i,µ, σ)(1 + µ2
j )

≥
k∑
i=1

r2ii

(
β2(i,µ, σ)−

α2
2(i,µ, σ)

1 + µ2
i

)
+

k∑
i=1

∑
j ̸=i

r2ij

(
β0(i,µ, σ)− α2

0(i,µ, σ)
)
(1 + µ2

j )

≥ ρ(µ, σ)||R||2F
(153)

E.4 PROOF OF LEMMA 5

Following the equation (92) in Lemma 8 of Fu et al. (2020) and by (85)

||∇2ℓ(W )−∇2ℓ(W ′)|| ≤
K∑
j=1

K∑
l=1

|ξj,l(W )− ξj,l(W
′)| · ||xx⊤|| (154)

By Lagrange’s inequality, we have

|ξj,l(W )− ξj,l(W
′)| ≤ (max

k
|Tj,k,l|) · ||x|| ·

√
K||W −W ′||F (155)

From Lemma 6, we know
max
k
|Tj,k,l| ≤ C7 (156)

By Property 7, we have

Ex∼
∑L

l=1 λlN (µl,Σl)
[||x||2t||] ≤ dt(2t− 1)!!

L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)2t (157)

Therefore, for some constant C12 > 0

Ex∼
∑L

l=1 λlN (µl,Σl)
[ sup
W ̸=W ′

||∇2ℓ(W )−∇2ℓ(W ′)||
||W −W ′||F

] ≤ K
5
2E[||x||32]

≤K 5
2

√√√√d

L∑
l=1

λl(∥µ∥∞ + ∥Σl∥)2

√√√√3d2
L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)4

=C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)2
L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)4

(158)

E.5 PROOF OF LEMMA 6

Let a = (a⊤
1 , · · · ,a⊤

K)⊤ ∈ RdK . Let ∆j,l ∈ Rd×d be the (j, l)-th block of ∇2f̄(W ) −
∇2f̄(W ∗P ) ∈ RdK×dK . By definition,

||∇2f̄(W )−∇2f̄(W ∗P )|| = max
||a||=1

K∑
j=1

K∑
l=1

a⊤
j ∆j,lal (159)
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Denote P = (p1, · · · ,pK) ∈ RK×K . By the mean value theorem and (85),

∆j,l =
∂2f̄(W )

∂wj∂wl
− ∂2f̄(W ∗P )

∂w∗
j∂w

∗
l

= Ex∼
∑L

l=1 λlN (µl,σ2
l Id)

[(ξj,l(W )− ξj,l(W
∗P )) · xx⊤]

= Ex∼
∑L

l=1 λlN (µl,Σl)
[

K∑
k=1

〈
∂ξj,l(W

′)

∂w′
k

,wk −W ∗pk

〉
· xx⊤]

= Ex∼
∑L

l=1 λlN (µl,Σl)
[

K∑
k=1

⟨Tj,l,k · x,wk −W ∗pk⟩ · xx⊤]

(160)
where W ′ = γW + (1− γ)W ∗P for some γ ∈ (0, 1) and Tj,l,k is defined such that ∂ξj,l(W

′)
∂w′

k
=

Tj,l,k · x ∈ Rd. Then we provide an upper bound for ξj,l. Since that y = 1 or 0, we first compute the
case in which y = 1. From (85) we can obtain

ξj,l(W ) =

{
1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x) · 1

H2(W ) , j ̸= l
1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x) · 1

H2(W ) −
1
Kϕ′′(w⊤

j x) · 1
H(W ) , j = l

(161)

We can bound ξj,l(W ) by bounding each component of (161). Note that we have

1

K2
ϕ′(w⊤

j x)ϕ
′(w⊤

l x) ·
1

H2(W )
≤ 1

K2

ϕ(w⊤
j x)ϕ(w

⊤
l x)(1− ϕ(w⊤

j x))(1− ϕ(w⊤
l x))

1
K2ϕ(w⊤

j x)ϕ(w
⊤
l x)

≤ 1

(162)

1

K
ϕ′′(w⊤

j x) ·
1

H(W )
≤ 1

K

ϕ(w⊤
j x)(1− ϕ(w⊤

j x))(1− 2ϕ(w⊤
j x))

1
Kϕ(w⊤

j x)
≤ 1 (163)

where (162) holds for any j, l ∈ [K]. The case y = 0 can be computed with the same upper bound by
substituting (1−H(W )) = 1

K

∑K
j=1(1−ϕ(w⊤

j x)) for H(W ) in (161), (162) and (163). Therefore,
there exists a constant C9 > 0, such that

|ξj,l(W )| ≤ C9 (164)

We then need to calculate Tj,l,k. Following the analysis of ξj,l(W ), we only consider the case of
y = 1 here for simplicity.

Tj,l,k =
−2

K3H3(W ′)
ϕ′(w′⊤

j x)ϕ
′(w′⊤

l x)ϕ
′(w′⊤

k x), where j, l, k are not equal to each other

(165)

Tj,j,k =

{ −2
K3H3(W ′)ϕ

′(w′⊤
j x)ϕ

′(w′⊤
j x)ϕ

′(w′⊤
k x) +

1
K2H2(W ′)ϕ

′′(w′⊤
j x)ϕ

′(w′⊤
k x), j ̸= k

−2
K3H3(W ′) (ϕ

′(w′⊤
j x))

3 + 3
K2H2(W ′)ϕ

′′(w′⊤
j x)ϕ

′(w′⊤
j x)−

ϕ′′′(w′⊤
j x)

KH(W ′) , j = k

(166)
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a⊤
j ∆j,lal = Ex∼

∑L
l=1 N (µl,Σl)

[(

K∑
k=1

Tj,l,k ⟨x,wk −W ∗pk⟩) · (a⊤
j x)(a

⊤
l x)]

≤

√√√√Ex∼
∑L

l=1 N (µl,Σl)
[

K∑
k=1

T 2
j,k,l] · E[

K∑
k=1

(⟨x,wk −W ∗pk⟩ (a⊤
j x)(a

⊤
l x))

2]

≤

√√√√Ex∼
∑L

l=1 N (µl,Σl)
[

K∑
k=1

T 2
j,k,l]

√√√√ K∑
k=1

√
E((wk −W ∗pk)⊤x)4 ·

√
E[(a⊤

j x)
4(a⊤

l x)
4]

≤ C8

√√√√Ex∼
∑L

l=1 N (µl,Σl)
[

K∑
k=1

T 2
j,k,l]

√√√√ K∑
k=1

||wk −W ∗pk||22 · ||aj ||22 · ||al||22

·
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4

(167)
for some constant C8 > 0. All the three inequalities of (167) are derived from Cauchy-Schwarz
inequality. Note that we have∣∣∣ −2

K3H3(W )
(ϕ′(w⊤

j x))
2ϕ′(w⊤

k x)
∣∣∣ ≤ 2ϕ2(w⊤

j x)(1− ϕ(w⊤
j x))

2ϕ(w⊤
k x)(1− ϕ(w⊤

k x))

K3 1
K3ϕ2(w⊤

j x)ϕ(w
⊤
k x)

= 2(1− ϕ(w⊤
j x))

2(1− ϕ(w⊤
k x)) ≤ 2

(168)∣∣∣ −2
K3H3(W )

ϕ′(w⊤
j x)ϕ

′(w⊤
l x)ϕ

′(w⊤
k x)

∣∣∣ ≤ 2 (169)∣∣∣ 3

K2H2(W )
ϕ′′(w⊤

j x)ϕ
′(w⊤

k x)
∣∣∣

≤
∣∣∣3ϕ(w⊤

j x)(1− ϕ(w⊤
j x))(1− 2ϕ(w⊤

j x))ϕ(w
⊤
k x)(1− ϕ(w⊤

k x))

K2 1
K2ϕ(w⊤

j x)ϕ(w
⊤
k x)

∣∣∣
=
∣∣∣3(1− ϕ(w⊤

j x))(1− 2ϕ(w⊤
j x))(1− ϕ(w⊤

k x))
∣∣∣ ≤ 3

(170)

∣∣∣ϕ′′′(w⊤
j x)

KH(W )

∣∣∣ ≤ ∣∣∣ϕ(w⊤
j x)(1− ϕ(w⊤

j x))(1− 6ϕ(w⊤
j x) + 6ϕ2(w⊤

j x))

K 1
Kϕ(w⊤

j x)

∣∣∣ ≤ 1 (171)

Therefore, by combining (165), (166) and (168) to (171), we have
|Tj,l,k| ≤ C7 ⇒ T 2

j,l,k ≤ C2
7 ,∀j, l, k ∈ [K], (172)

for some constants C7 > 0. By (159), (160), (167), (172) and the Cauchy-Schwarz’s Inequality, we
have
∥∇2f̄(W )−∇2f̄(W ∗P )∥

≤C8

√
C2

7K||W −W ∗P ||F
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4

· max
||a||=1

K∑
j=1

K∑
l=1

||aj ||2||al||2

≤C8

√
C2

7K · ||W −W ∗P ||F ·
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4 ·
( K∑
j=1

||aj ||
)2

≤C8

√
C2

7K
3 · ||W −W ∗P ||F ·

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4

(173)
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Hence, we have

||∇2f̄(W )−∇2f̄(W ∗P )||

≤C5K
3
2

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4 ||W −W ∗P ||F
(174)

for some constant C5 > 0.

E.6 PROOF OF LEMMA 7

From Fu et al. (2020), we know

∇2f̄(W ∗P ) ⪰ min
||a||=1

4

K2
Ex∼

∑L
l=1 λlN (µl,Σl)

[( K∑
j=1

ϕ′(w∗
π∗(j)

⊤x)(a⊤
π∗(j)x)

)2]
· IdK

= min
||a||=1

4

K2
Ex∼

∑L
l=1 λlN (µl,Σl)

[( K∑
j=1

ϕ′(w∗
j
⊤x)(a⊤

j x)
)2]
· IdK

(175)

with a = (a⊤
1 , · · · ,a⊤

K)⊤ ∈ RdK , where P is a specific permutation matrix and {π∗(j)}Kj=1 is the
indices permuted by P . Similarly,

∇2f̄(W ∗P ) ⪯
(

max
||a||=1

a⊤∇2f̄(W ∗)a
)
· IdK ⪯ C4 · max

||a||=1
Ex∼

∑L
l=1 λlN (µl,Σl)

[ K∑
j=1

(a⊤
π∗(j)x)

2
]
· IdK

= C4 · max
||a||=1

Ex∼
∑L

l=1 λlN (µl,Σl)

[ K∑
j=1

(a⊤
j x)

2
]
· IdK

(176)

for some constant C4 > 0. By applying Property 8, we can derive the upper bound in (176) as

C4 · Ex∼
∑L

l=1 λlN (µl,Σl)

[ K∑
j=1

(a⊤
j x)

2
]
· IdK ⪯ C4 ·

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · IdK (177)

To find a lower bound for (175), we can first transfer the expectation of the Gaussian Mixture Model
to the weight sum of the expectations over general Gaussian distributions.

min
||a||=1

Ex∼
∑L

l=1 λlN (µl,Σl)

[( K∑
j=1

ϕ′(w∗
j
⊤x)(a⊤

j x)
)2]

= min
||a||=1

L∑
l=1

λlEx∼N (µl,Σl)

[( K∑
j=1

ϕ′(w∗
j
⊤x)(a⊤

j x)
)2] (178)

Denote U ∈ Rd×k as the orthogonal basis of W ∗. For any vector ai ∈ Rd, there exists two vectors
bi ∈ RK and ci ∈ Rd−K such that

ai = Ubi +U⊥ci (179)
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where U⊥ ∈ Rd×(d−K) denotes the complement of U . We also have U⊤
⊥µl = 0 by Property 1.

Plugging (179) into RHS of (178), and then we have

Ex∼N (µl,Σl)

[( K∑
i=1

a⊤
i x · ϕ′(w∗

i
⊤x)

)2]
=Ex∼N (µl,Σl)

[( K∑
i=1

(Ubi +U⊥ci)
⊤x · ϕ′(w∗

i
⊤x)

)2]
= A+B + C

(180)

A = Ex∼N (µl,Σl)

[( K∑
i=1

b⊤i U
⊤x · ϕ′(w∗

i
⊤x)

)2]
(181)

C = Ex∼N (µl,Σl)

[
2
( K∑
i=1

c⊤i U
⊤
⊥x · ϕ′(w∗

i
⊤x)

)
·
( K∑
i=1

b⊤i U
⊤x · ϕ′(w∗

i
⊤x)

)]
=

K∑
i=1

K∑
j=1

Ex∼N (µl,Σl)

[
2c⊤i U

⊤
⊥x

]
Ex∼N (µl,Σl)

[
b⊤i U

⊤x · ϕ′(w∗
i
⊤x)ϕ′(w∗

j
⊤x)

]

=

K∑
i=1

K∑
j=1

[
2c⊤i U

⊤
⊥µl

]
Ex∼N (µl,Σl)

[
b⊤i U

⊤x · ϕ′(w∗
i
⊤x)ϕ′(w∗

j
⊤x)

]
= 0

(182)

where the last step is by U⊤
⊥µl = 0 by Property 1.

B =Ex∼N (µl,Σl)

[
(

K∑
i=1

c⊤i U
⊤
⊥x · ϕ′(w∗

i
⊤x))2

]
=Ex∼N (µl,Σl)[(t

⊤s)2] by defining t =

k∑
i=1

ϕ′(w∗
i
⊤x)ci ∈ Rd−K and s = U⊤

⊥x

=

K∑
i=1

E[t2i s2i ] +
∑
i̸=j

E[titjsisj ]

=

K∑
i=1

E[t2i ]
d∑
k=1

(U⊥)
2
ikσ

2
lk +

( K∑
i=1

E[t2i ](U⊤
⊥µl)

2
i +

∑
i ̸=j

E[titj ](U⊤
⊥µl)i · (U⊤

⊥µl)j

)

=E[
d−K∑
i=1

t2i ·
d∑
k=1

(U⊥)
2
ikσ

2
lk] + E[(t⊤U⊤

⊥µl)
2] = E[

d−K∑
i=1

t2i ·
d∑
k=1

(U⊥)
2
ikσ

2
lk]

(183)
The last step is by U⊤

⊥µl = 0. The 4th step is because that si is independent of ti, thus E[titjsisj ] =
E[titj ]E[sisj ]

E[sisj ] =
{

(U⊤
⊥µl)i · (U⊤

⊥µl)j , if i ̸= j

(U⊤
⊥µl)

2
i +

∑d
k=1(U⊥)

2
ikσ

2
lk, if i = j

(184)

Since
(∑k

i=1 r
⊤
i x · ϕ′(σ · xi)

)2

is an even function for any ri ∈ Rd, i ∈ [k], so from Property 5
we have

Ex∼N (µl,Σl)

[
(

k∑
i=1

r⊤i x·ϕ′(σ·xi))2
]
= Ex∼ 1

2N (µl,Σl)+
1
2N (−µl,Σl)

[
(

k∑
i=1

r⊤i x·ϕ′(σ·xi))2
]

(185)

Combining Lemma 4 and Property 5, we next follow the derivation for the standard Gaussian
distribution in Page 36 of Zhong et al. (2017b) and generalize the result to a Gaussian distribution
with an arbitrary mean and variance as follows.
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A = Ex∼N (µl,Σl)

[( K∑
i=1

b⊤i U
⊤x · ϕ′(w∗

i
⊤x)

)2]
≥

∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( K∑
i=1

b⊤i z · ϕ′(vi
⊤z)

)2]
exp

(
− 1

2
∥Σ−1

l ∥∥z −U⊤µl∥2
)
dz

=

∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( K∑
i=1

b⊤i V
†⊤s · ϕ′(si)

)2]
exp

(
− 1

2
∥Σ−1

l ∥∥V
†⊤s−U⊤µl∥2

)∣∣∣det(V †)
∣∣∣ds

≥
∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( k∑
i=1

b⊤i V
†⊤s · ϕ′(si)

)2]
exp

(
−
∥Σ−1

l ∥∥s− V ⊤U⊤µl∥2

2δ2K(W ∗)

)∣∣∣det(V †)
∣∣∣ds

≥
∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( k∑
i=1

b⊤i V
†⊤(δK(W ∗)∥Σ−1

l ∥
− 1

2 )g · ϕ′(δK(W ∗)∥Σ−1
l ∥

− 1
2 · gi)

)2]

· exp
(
−
||g −

√
∥Σ−1

l ∥W ∗⊤
µl

δK(W ∗) ||2

2

)∣∣∣det(V †)
∣∣∣∥Σ−1

l ∥
−K

2 δKK (W ∗)dg

=
∥Σ−1

l ∥−1

τKη
Eg

[
(

K∑
i=1

(b⊤i V
†⊤δK(W ∗))g · ϕ′(∥Σ−1

l ∥
− 1

2 δK(W ∗) · gi))2
]

≥
∥Σ−1

l ∥−1

τKκ2η
ρ(

W ∗⊤µl

∥Σ−1
l ∥−

1
2 δK(W ∗)

, ∥Σ−1
l ∥

− 1
2 δK(W ∗))||b||2.

(186)
The second step is by letting z = U⊤x ∼ N (U⊤µl,U

⊤ΣU), y⊤U⊤Σ−1
l Uy ≤ ∥Σ−1

l ∥∥y∥2
for any y ∈ RK . The third step is by letting s = V ⊤z. The last to second step follows from
g = s

∥Σ−1
l ∥− 1

2 δK(W ∗)
, where g ∼ N ( W ∗⊤µl

∥Σ−1
l ∥− 1

2 δK(W ∗)
, IK) and the last inequality is by Lemma 4.

Similarly, we extend the derivation in Page 37 of Zhong et al. (2017b) for the standard Gaussian
distribution to a general Gaussian distribution as follows.

B =

d∑
k=1

(U⊥)
2
ikσ

2
lkEx∼N (µl,Σl)[||t||

2] ≥
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

∥Σ−1
l ∥−

1
2 |δK(W ∗)

, ∥Σ−1
l ∥

− 1
2 δK(W ∗))||c||2

(187)
Combining (180) - (183), (186) and (187), we have

min
||a||=1

Ex∼N (µl,Σl)

[
(

k∑
i=1

a⊤
i x·ϕ′(w∗

i
⊤x))2

]
≥
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ).

(188)

For the Gaussian Mixture Model x ∼
∑L
l=1N (µl,Σ), we have

min
||a||=1

Ex∼
∑L

l=1 λlN (µl,Σl)

[
(

k∑
i=1

a⊤
i x · ϕ′(w∗

i
⊤x))2

]
≥

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

(189)

Therefore,

4

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ) · IdK

⪯∇2f̄(W ∗P ) ⪯ C4 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · IdK

(190)
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From (139) in Lemma 6, since that we have the condition ∥W −W ∗P ∥F ≤ r and (93), we can
obtain

||∇2f̄(W )−∇2f̄(W ∗P )||

≤C5K
3
2

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4 ||W −W ∗P ||F

≤4ϵ0
K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ),

(191)

where ϵ0 ∈ (0, 1
4 ). Then we have

||∇2f̄(W )|| ≥ ||∇2f̄(W ∗P )|| − ||∇2f̄(W )−∇2f̄(W ∗P )||

≥ 4(1− ϵ0)

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

(192)

||∇2f̄(W )|| ≤ ||∇2f̄(W ∗)||+ ||∇2f̄(W )−∇2f̄(W ∗P )||

≤ C4 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2 ∥)2 + 4

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ− 1
2

l ∥
, δK(W ∗)∥Σ− 1

2

l ∥)

≲ C4 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

(193)
The last inequality of (193) holds since C4 ·

∑
l=1 λl(∥µl∥ + ∥Σ

1
2

l ∥)2 = Ω(maxl{∥Σl∥}),
4
K2

∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) = O(maxl{∥Σl∥}

K2 ) and

Ω(maxl{∥Σl∥}) ≥ O(maxl{∥Σl∥}
K2 ). Combining (192) and (193), we have

4(1− ϵ0)

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ) · I

⪯∇2f̄(W ) ⪯ C4 ·
L∑
l=1

λl(∥µl∥+ σl)
2 · I

(194)

E.7 PROOF OF LEMMA 8

Let Nϵ be the ϵ-covering number of the Euclidean ball B(W ∗P , r). It is known that logNϵ ≤
dK log( 3rϵ ) from Vershynin (2010). LetWϵ = {W1, ...,WNϵ

} be the ϵ-cover set with Nϵ elements.
For any W ∈ B(W ∗P , r), let j(W ) = argmin

j∈[Nϵ]

||W −Wj(W )||F ≤ ϵ for all W ∈ B(W ∗P , r).

Then for any W ∈ B(W ∗P , r), we have

∥∇2fn(W )−∇2f̄(W )∥

≤ 1

n
||

n∑
i=1

[∇2ℓ(W ;xi)−∇2ℓ(Wj(W );xi)]||

+ || 1
n

n∑
i=1

∇2ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]||

+ ||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ;xi)]||

(195)

Hence, we have

P
(

sup
W∈B(W ∗P ,r)

||∇2fn(W )−∇2f̄(W )|| ≥ t
)
≤ P(At) + P(Bt) + P(Ct) (196)
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where At, Bt and Ct are defined as

At = { sup
W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇2ℓ(W ;xi)−∇2ℓ(Wj(W );xi)]|| ≥
t

3
} (197)

Bt = { sup
W∈B(W ∗P ,r)

|| 1
n

n∑
i=1

∇2ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]|| ≥

t

3
}

(198)

Ct ={ sup
W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]

− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(W ;xi)]|| ≥

t

3
}

(199)

Then we bound P(At), P(Bt), and P(Ct) separately.

1) Upper bound on P(Bt). By Lemma 6 in Fu et al. (2020), we obtain

∣∣∣∣∣∣ 1
n

n∑
i=1

∇2ℓ(W ;xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(W ;xi)]

∣∣∣∣∣∣
≤2 sup

v∈V 1
4

∣∣∣〈v, (
1

n

n∑
i=1

∇2ℓ(W ;xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(W ;xi)])v

〉∣∣∣ (200)

where V 1
4

is a 1
4 -cover of the unit-Euclidean-norm ball B(0, 1) with log |V 1

4
| ≤ dK log 12. Taking

the union bound overWϵ and V 1
4

, we have

P(Bt) ≤P
(

sup
W∈Wϵ,v∈V 1

4

∣∣∣ 1
n

n∑
i=1

Gi

∣∣∣ ≥ t

6

)
≤ exp(dK(log

3r

ϵ
+ log 12)) sup

W∈Wϵ,v∈V 1
4

P(| 1
n

n∑
i=1

Gi| ≥
t

6
)

(201)

where Gi =
〈
v, (∇2ℓ(W ,xi)− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ,xi)]v)
〉

and E[Gi] = 0. Here

v = (u⊤
1 , · · · ,u⊤

K)⊤ ∈ RdK .

|Gi| =
∣∣∣ K∑
j=1

K∑
l=1

[
ξj,lu

⊤
j xx

⊤ul − Ex∼
∑L

l=1 λlN (µl,Σl)
(ξj,lu

⊤
j xx

⊤ul)
]∣∣∣

≤ C9 ·
[ K∑
j=1

(u⊤
j x)

2 +

K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
] (202)

for some C9 > 0. The first step of (202) is by (84). The last step is by (164) and the Cauchy-Schwarz’s
Inequality.
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E[|Gi|p] ≤
p∑
l=1

(
p

l

)
C9 · Ex∼

∑L
l=1 λlN (µl,Σl)

[
(

K∑
j=1

(u⊤
j x)

2)l
]

·
( K∑
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(u⊤
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2
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=

p∑
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(
p

l

)
C9 · Ex∼

∑L
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K∏
j=1

(u⊤
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2lj
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(u⊤
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2
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=
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(
p

l
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l!∏K
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K∏
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(u⊤
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2lj

]

·
( K∑
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Ex∼
∑L
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(u⊤

j x)
2
)p−l

= C9 ·
p∑
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(
p

l

)( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)l

·
( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)p−l

= C9 ·
( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)p

≤ C9 ·
( K∑
j=1

1!!||uj ||2
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)p

≤ C9 ·
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)p

(203)

where the first step is by the triangle inequality and the Binomial theorem, and the second step comes
from the Multinomial theorem. The second to last inequality in (203) results from Property 8. The
last inequality is because v ∈ V 1

4
,
∑K
j=1 ||uj ||2 = ||v||2 ≤ 1.

E[exp(θGi)] = 1 + θE[Gi] +

∞∑
p=2

θpE[|Gi|p]
p!

≤ 1 +

∞∑
p=2

|eθ|p

pp
C9 ·

(∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)p

≤ 1 + C9 · |eθ|2
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)2

(204)

where the first inequality holds from p! ≥ (pe )
p and (203), and the third line holds provided that

max
p≥2
{

|eθ|(p+1)

(p+1)(p+1) ·
(∑L

l=1 λl(∥µl∥+ ∥Σ
1
2

l ∥)2
)p+1

|eθ|p
pp ·

(∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
)p } ≤ 1

2
(205)
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Note that the quantity inside the maximization in (205) achieves its maximum when p = 2, because
it is monotonously decreasing. Therefore, (205) holds if θ ≤ 27

4e

∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2. Then

P
( 1

n

n∑
i=1

Gi ≥
t

6

)
= P

(
exp(θ

n∑
i=1

Gi) ≥ exp(
nθt

6
)
)
≤ e−

nθt
6

n∏
i=1

E[exp(θGi)]

≤ exp(C10θ
2n

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)2

− nθt

6
)

(206)

for some constant C10 > 0. The first inequality follows from Markov’s Inequality. When θ =

min{ t

12C10

(∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)2 ,
27
4e

∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2}, we have a modified Bernstein’s

Inequality for the Gaussian Mixture Model as follows

P(
1

n

n∑
i=1

Gi ≥
t

6
) ≤ exp

(
max{ − C10nt

2

144
(∑L

l=1 λl(∥µl∥+ ∥Σ
1
2

l ∥)2
)2 ,

− C11n

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · t}

) (207)

for some constant C11 > 0. We can obtain the same bound for P(− 1
n

∑n
i=1 Gi ≥ t

6 ) by replacing
Gi as −Gi. Therefore, we have

P(| 1
n

n∑
i=1

Gi| ≥
t

6
) ≤ 2 exp

(
max{ − C10nt

2

144
(∑L

l=1 λl(∥µl∥+ ∥Σ
1
2

l ∥)2
)2 ,

− C11n

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · t}

) (208)

Thus, as long as

t ≥ C6 ·max{
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

√
dK log 36r

ϵ + log 4
δ

n
,

dK log 36r
ϵ + log 4

δ∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2n
} (209)

for some large constant C6 > 0, we have P(Bt) ≤ δ
2 .

2) Upper bound on P(At) and P(Ct). From Lemma 5, we can obtain

sup
W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );x)]− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ;x)]||

≤ sup
W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );x)]− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ;x)]||
||W −Wj(W )||F

· sup
W∈B(W ∗P ,r)

||W −Wj(W )||F

≤ C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)2
L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)4 · ϵ

(210)
Therefore, Ct holds if

t ≥ C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)2
L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)4 · ϵ (211)
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We can bound the At as below.

P
(

sup
W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)]|| ≥
t

3

)
≤ 3

t
Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)]||
]

=
3

t
Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W∈B(W ∗P ,r)

||∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)||
]

≤ 3

t
E
[

sup
W∈B(W ∗P ,r)

||∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)||
||W −Wj(W )||F

]
· sup
W∈B(W ∗P ,r)

||W −Wj(W )||F

≤
C12 · d

3
2K

5
2

√∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)2
∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)4 · ϵ
t

,

(212)
where the first inequality is by Markov’s inequality, and the last inequality comes from Lemma 5.
Thus, taking

t ≥
C12 · d

3
2K

5
2

√∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)2
∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)4 · ϵ
δ

(213)

ensures that P(At) ≤ δ
2 .

3) Final step
Let ϵ = δ

C12·d
3
2K

5
2

√∑L
l=1 λl(∥µl∥∞+∥Σ

1
2
l ∥)2
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1
2
l ∥)4·ndK

and δ = d−10, then from

(209) and (213) we need

t >max{ 1
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7
2 ·
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1
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l ∥)4) + log 4
δ∑L
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1
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(214)

So by setting t =
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
√

dK logn
n , as long as n ≥ C ′ · dK log dK, we have

P( sup
W∈B(W ∗P ,r)

||∇2fn(W )−∇2f̄(W )|| ≥ C6 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

√
dK log n

n
) ≤ d−10

(215)

F PROOF OF LEMMA 2

We first present a lemma used in proving Lemma 2 in Section F.1 and then prove Lemma 2 in Section
F.2.
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F.1 A USEFUL LEMMA USED IN THE PROOF

Lemma 9. If r is defined in (93) for ϵ0 ∈ (0, 1
4 ), then with probability at least 1− d−10, we have12

sup
W∈B(W ∗P ,r)

||∇f̃n(W )−∇f̃(W )|| ≤ C13 ·

√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σl∥)2
√

d log n

n
(1+ ξ) (216)

for some constant C13 > 0, where P is a permutation matrix.

Proof:

Note that∇f̃n(W ) = ∇fn(W ) + 1
n

∑n
i=1 νi,∇f̃(W ) = ∇f̄(W ) +E[νi] = ∇f̄(W ). Therefore,

we have

sup
W∈B(W ∗P ,r)

||∇f̃n(W )−∇f̃(W )|| ≤ sup
W∈B(W ∗P ,r)

||∇fn(W )−∇f̄(W )||+∥ 1
n

n∑
i=1

νi∥ (217)

Then, similar to the idea of the proof of Lemma 8, we adopt an ϵ-covering net of the ball B(W ∗, r)
to build a relationship between any arbitrary point in the ball and the points in the covering set. We
can then divide the distance between∇fn(W ) and∇f̄(W ) into three parts, similar to (195). (218)
to (220) can be derived in a similar way as (197) to (199), with “∇2” replaced by “∇”. Then we need
to bound P(A′

t), P(B′
t) and P(C ′

t) respectively, where A′
t, B

′
t and C ′

t are defined below.

A′
t = { sup

W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇ℓ(W ;xi)−∇ℓ(Wj(W );xi)]|| ≥
t

3
} (218)

B′
t = { sup

W∈B(W ∗P ,r)

|| 1
n

n∑
i=1

∇ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)]|| ≥

t

3
}

(219)

C ′
t ={ sup

W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)]

− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(W ;xi)]|| ≥

t

3
}

(220)

(a) Upper bound of P(B′
t). Applying Lemma 3 in Mei et al. (2016), we have

|| 1
n

n∑
i=1

∇ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)]||

≤2 sup
v∈V 1

2

∣∣∣〈 1

n

n∑
i=1

∇ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)],v

〉∣∣∣ (221)

Define G′
i =

〈
v, (∇ℓ(W ,xi)− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇ℓ(W ,xi)])
〉

. Here v ∈ Rd. To compute
∇ℓ(W ,xi), we require the derivation in Property 9. Then we can have an upper bound of ζ(W ) in
(83).

ζ(W ) =


∣∣∣− 1

K
1

H(W )ϕ
′(w⊤

j x)
∣∣∣ ≤ ϕ(w⊤

j x)(1−ϕ(w⊤
j x))

K· 1
K ϕ(w⊤

j x)
≤ 1, y = 1∣∣∣ 1

K
1

1−H(W )ϕ
′(w⊤

j x)
∣∣∣ ≤ ϕ(w⊤

j x)(1−ϕ(w⊤
j x))

K· 1
K (1−ϕ(w⊤

j x))
≤ 1, y = 0

(222)

Then we have an upper bound of G′
i.

|G′
i| =

∣∣∣ζj,lv⊤x− Ex∼
∑L

l=1 λlN (µl,Σl)
[ζv⊤x]

∣∣∣
≤ |v⊤x|+ Ex∼

∑L
l=1 λlN (µl,Σl)

[|v⊤x|]
(223)

12∇f̃n(W ) is defined as 1
n

∑n
i=1(∇l(W ,xi, yi) + νi) in algorithm 1
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Following the idea of (203) and (204), and by v ∈ V 1
2

, we have

E[|G′
i|p] ≤ O

(( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
) p

2
)

(224)

E[exp(θG′
i)] ≤ 1 +O

(
|eθ2|

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)

(225)

where (225) holds if θ ≤ 27
4e

√∑L
l=1 λl(∥µl∥+ ∥Σl∥)2. Following the derivation of (201) and (206)

to (209), we have

P(| 1
n

n∑
i=1

G′
i| ≥

t

6
)

≤2 exp
(
max

{
− C14nt

2

144
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
,−C15n

√√√√ L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2 · t
}) (226)

for some constant C14 > 0 and C15 > 0. Moreover, we can obtain P(B′
t) ≤ δ

2 as long as

t ≥ C13 ·max{

√√√√ L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2

√
dK log 18r

ϵ + log 4
δ

n
,

dK log 18r
ϵ + log 4

δ√∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2 · n
}

(227)
(b) For the upper bound of P(A′

t) and P(C ′
t), we can first derive

Ex∼
∑L

l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

||∇ℓ(W ,x)−∇ℓ(W ′,x)||
||W −W ′||F

]
≤Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

|ζ(W )− ζ(W ′)| · ||x||
||W −W ′||F

]
≤Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

max1≤j,l≤K{|ξj,l(W ′′)|} · ||x||2
√
K||W −W ′||F

||W −W ′||F

]
≤Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

C9 · ||x||2
√
K||W −W ′||F

||W −W ′||F

]
≤C9 · 3

√
Kd ·

L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)
2

(228)
The first inequality is by (83). The second inequality is by the Mean Value Theorem. The third step is
by (164). The last inequality is by Property 7. Therefore, following the steps in part (2) of Lemma 8,
we can conclude that C ′

t holds if

t ≥ 3C9 ·
√
Kd ·

L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)
2 · ϵ (229)

Moreover, from (213) in Lemma 8 we have that

t ≥
18C9 ·

√
Kd ·

∑L
l=1 λl(∥µl∥∞ + ∥Σl∥)2 · ϵ

δ
(230)

ensures P(A′
t) ≤ δ

2 . Therefore, let ϵ = δ
18C9·

√
Kd·

∑L
l=1 λl(∥µl∥∞+∥Σl∥)2·ϵ·ndK

, δ = d−10 and

t = C13

√
K

∑L
l=1 λl(∥µl∥+ ∥Σl∥)2

√
d logn
n , if n ≥ C ′′ · dK log dK for some constant C ′′ > 0,

we have

P( sup
W∈B(W ∗P ,r)

||∇fn(W )−∇f̄(W )||) ≥ C13 ·

√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σl∥)2
√

d log n

n
≤ d−10

(231)
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By Hoeffding’s inequality in Vershynin (2010) and Property 2, we have

P
( 1

n

n∑
i=1

∥νi∥F ≥ C13 ·

√√√√ L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2
√

dK log n

n
ξ
)

≲ exp(−C2
13 ·

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 ξ

2dK log n

dKξ2
)

≲d−10

(232)

Therefore,
sup

W∈B(W ∗P ,r)

||∇f̃n(W )−∇f̃(W )||

≤C13 ·

√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2
√

d log n

n
+

1

n

n∑
i=1

∥νi∥

≤C13 ·

√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2
√

d log n

n
+

1

n

n∑
i=1

∥νi∥F

≤C13 ·

√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2
√

d log n

n
(1 + ξ)

(233)

F.2 PROOF OF LEMMA 2

Following the proof of Theorem 2 in Fu et al. (2020), first, we have Taylor’s expansion of fn(Ŵn)

fn(Ŵn) =fn(W
∗P ) +

〈
∇f̃n(W ∗P ), vec(Ŵn −W ∗P )

〉
+

1

2
vec(Ŵn −W ∗P )∇2fn(W

′)vec(Ŵn −W ∗P )
(234)

Here W ′ is on the straight line connecting W ∗P and Ŵn. By the fact that fn(Ŵn) ≤ fn(W
∗P ),

we have
1

2
vec(Ŵn −W ∗P )∇2fn(W

′)vec(Ŵn −W ∗P ) ≤
∣∣∣∇fn(W ∗P )⊤vec(Ŵn −W ∗P )

∣∣∣ (235)

From Lemma 7 and Lemma 9, we have

4

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )||Ŵn −W ∗P ||2F

≤1

2
vec(Ŵn −W ∗P )∇2fn(W

′)vec(Ŵn −W ∗P )

(236)

and ∣∣∣∇f̃n(W ∗P )⊤vec(Ŵn −W ∗P )
∣∣∣

≤∥∇f̃n(W ∗P )∥ · ∥Ŵn −W ∗P ∥F
≤(∥∇f̃n(W ∗P )−∇f̃(W ∗P )∥+ ∥∇f̃(W ∗P )∥) · ∥Ŵn −W ∗P ∥F

≤O
(√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2
√

d log n

n
(1 + ξ)

)
||Ŵn −W ∗P ||F

(237)

The second to last step of (237) comes from the triangle inequality, and the last step follows from the
fact ∇f̄(W ∗P ) = 0. Combining (235), (236) and (237), we have
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||Ŵn −W ∗P ||F ≤ O
( K

5
2

√∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2(1 + ξ)∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

√
d log n

n

)
(238)

Therefore, we have concluded that there indeed exists a critical point Ŵ in B(W ∗P , r). Then we
show the linear convergence of Algorithm 1 as below. By the update rule, we have

Wt+1 − Ŵn = Wt − η0(∇fn(Wt) +
1

n

n∑
i=1

νi)− (Ŵn − η0∇fn(Ŵn))

=
(
I − η0

∫ 1

0

∇2fn(W (γ))
)
(Wt − Ŵn)−

η0
n

n∑
i=1

νi

(239)

where W (γ) = γŴn + (1− γ)Wt for γ ∈ (0, 1). Since W (γ) ∈ B(W ∗P , r), by Lemma 1, we
have

Hmin · I ⪯ ∇2fn(W (γ)) ≤ Hmax · I (240)

where Hmin = Ω
(

1
K2

∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )
)

, Hmax = C4 ·∑L
l=1 λl(∥µl∥+ ∥Σl∥)2. Therefore,

||Wt+1 − Ŵn||F = ||I − η0

∫ 1

0

∇2fn(W (γ))|| · ||Wt − Ŵn||F + ∥η0
n

n∑
i=1

νi∥F

≤ (1− η0Hmin)||Wt − Ŵn||F + ∥η0
n

n∑
i=1

νi∥F

(241)

By setting η0 = 1
Hmax

= O
(

1∑L
l=1 λl(∥µl∥+∥Σl∥)2

)
, we obtain

||Ŵt+1 − Ŵn||F ≤ (1− Hmin

Hmax
)||Wt − Ŵn||F +

η0
n

n∑
i=1

∥νi∥F (242)

Therefore, Algorithm 1 converges linearly to the local minimizer with an extra statistical error.
By Hoeffding’s inequality in Vershynin (2010) and Property 2, we have

P
( 1

n

n∑
i=1

∥νi∥F ≥
√

dK log n

n
ξ
)
≲ exp(−ξ2dK log n

dKξ2
) ≲ d−10 (243)

Therefore, with probability 1− d−10 we can derive

||Ŵt − Ŵn||F ≤ (1− Hmin

Hmax
)t||W0 − Ŵn||F +

Hmaxη0
Hmin

√
dK log n

n
ξ (244)

G PROOF OF LEMMA 3

We need Lemma 10 to Lemma 14, which are stated in Section G.1, for the proof of Lemma 3. Section
G.2 summarizes the proof of Lemma 3. The proofs of Lemma 10 to Lemma 12 are provided in
Section G.3 to Section G.5. Lemma 13 and Lemma 14 are cited from Zhong et al. (2017b). Although
Zhong et al. (2017b) considers the standard Gaussian distribution, the proofs of Lemma 13 and 14
hold for any data distribution. Therefore, these two lemmas can be applied here directly.

The tensor initialization in Zhong et al. (2017b) only holds for the standard Gaussian distribution. We
exploit a more general definition of tensors from Janzamin et al. (2014) for the tensor initialization in
our algorithm. We also develop new error bounds for the initialization.
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G.1 USEFUL LEMMAS IN THE PROOF

Lemma 10. Let Q2 and Q3 follow Definition 1. Let S be a set of i.i.d. samples generated from the
mixed Gaussian distribution

∑L
l=1 λlN (µl,Σl). Let Q̂2, Q̂3 be the empirical version of Q2, Q3

using data set S, respectively. Then with a probability at least 1− 2n−Ω(δ1(W
∗)4d), we have

||Q2 − Q̂2|| ≲
√

d log n

n
· δ1(W ∗)2 · τ6

√
D2(Ψ)D4(Ψ) (245)

if the mixed Gaussian distribution is not symmetric. We also have

||Q3(Id, Id,α)− Q̂3(Id, Id,α)|| ≲
√

d log n

n
· δ1(W ∗)2 · τ6

√
D2(Ψ)D4(Ψ) (246)

for any arbitrary vector α ∈ Rd, if the mixed Gaussian distribution is symmetric.
Lemma 11. Let U ∈ Ed×K be the orthogonal column span of W ∗. Let α be a fixed unit vec-
tor and Û ∈ Rd×K denote an orthogonal matrix satisfying ||UU⊤ − ÛÛ⊤|| ≤ 1

4 . Define
R3 = Q3(Û , Û , Û), where Q3 is defined in Definition 1. Let R̂3 be the empirical version of R3

using data set S, where each sample of S is i.i.d. sampled from the mixed Gaussian distribution∑L
l=1 λlN (µl,Σl). Then with a probability at least 1− n−Ω(δ4(W ∗)), we have

||R̂3 −R3|| ≲ δ1(W
∗)2 ·

(
τ6
√

D6(Ψ)
)
·
√

log n

n
(247)

Lemma 12. Let Q̂1 be the empirical version of Q1 using dataset S. Then with a probability at least
1− 2n−Ω(d), we have

||Q̂1 −Q1|| ≲
(
τ2
√

D2(Ψ)
)
·
√

d log n

n
(248)

Lemma 13. (Zhong et al. (2017b), Lemma E.6) Let Q2, Q3 be defined in Definition 1 and Q̂2,
Q̂3 be their empirical version, respectively. Let U ∈ Rd×K be the column span of W ∗. Assume
||Q2−Q̂2|| ≤ δK(Q2)

10 for non-symmetric distribution cases and ||Q3(Id, Id,α)−Q̂3(Id, Id,α)|| ≤
δK(Q3(Id,Id,α))

10 for symmetric distribution cases and any arbitrary vector α ∈ Rd. Then after
T = O(log( 1ϵ )) iterations, the output of the Tensor Initialization Method 1, Û will satisfy

||ÛÛ⊤ −UU⊤|| ≲ ||Q̂2 −Q2||
δK(Q2)

+ ϵ, (249)

which implies

||(I − ÛÛ⊤)w∗
i || ≲ (

||Q2 − Q̂2||
δK(Q2)

+ ϵ)||w∗
i || (250)

if the mixed Gaussian distribution is not symmetric. Similarly, we have

||ÛÛ⊤ −UU⊤|| ≲ ||Q̂3(Id, Id,α)−Q3(Id, Id,α)||
δK(Q3(Id, Id,α))

+ ϵ, (251)

which implies

||(I − ÛÛ⊤)w∗
i || ≲ (

||Q3(Id, Id,α)− Q̂3(Id, Id,α)||
δK(Q3(Id, Id,α))

+ ϵ)||w∗
i || (252)

if the mixed Gaussian distribution is symmetric.
Lemma 14. (Zhong et al. (2017b), Lemma E.13) Let U ∈ Rd×K be the orthogonal column span
of W ∗. Let Û ∈ Rd×K be an orthogonal matrix such that ||UU⊤ − ÛÛ⊤|| ≲ γ1 ≲ 1

κ2
√
K

. For

each i ∈ [K], let v̂i denote the vector satisfying ||v̂i − Û⊤w̄i
∗|| ≤ γ2 ≲ 1

κ2
√
K

. Let Q1 be defined

in Lemma 12 and Q̂1 be its empirical version. If ||Q1 − Q̂1|| ≤ γ3||Q1|| ≲ 1
4 ||Q1||, then we have∣∣∣||w∗

i || − α̂i

∣∣∣ ≤ (κ4K
3
2 (γ1 + γ2) + κ2K

1
2 γ3)||w∗

i || (253)
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G.2 PROOF OF LEMMA 3

By the triangle inequality, we have

||w∗
j − α̂jÛ v̂j || =

∣∣∣∣∣∣w∗
j − ||w∗

j ||Û v̂j + ||w∗
j ||Û v̂j − α̂jÛ v̂j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣w∗
j − ||w∗

j ||Û v̂j

∣∣∣∣∣∣+ ∣∣∣∣∣∣||w∗
j ||Û v̂j − α̂jÛ v̂j

∣∣∣∣∣∣
≤ ||w∗

j ||
∣∣∣∣∣∣w̄j

∗ − Û v̂j

∣∣∣∣∣∣+ ∣∣∣∣∣∣||w∗
j || − α̂j

∣∣∣∣∣∣||Û v̂j ||

≤ ||w∗
j ||

∣∣∣∣∣∣w̄j
∗ − ÛÛ⊤w̄∗

j + ÛÛ⊤w̄j
∗ − Û v̂j

∣∣∣∣∣∣+ ∣∣∣∣∣∣||w∗
j || − α̂j

∣∣∣∣∣∣||Û v̂j ||

≤ δ1(W
∗)
(∣∣∣∣∣∣w̄j

∗ − ÛÛ⊤w̄j
∗
∣∣∣∣∣∣+ ∣∣∣∣∣∣Û⊤w̄j

∗ − v̂j

∣∣∣∣∣∣)+
∣∣∣∣∣∣||w∗

j || − α̂j

∣∣∣∣∣∣
(254)

From Lemma 10, Lemma 13, δK(Q2) ≲ δ2K(W ∗) and δK(Q3(Id, Id,α)) ≲ δ2K(W ∗) for any
arbitrary vector α ∈ Rd, we have

∣∣∣∣∣∣w̄j
∗ − ÛÛ⊤w̄j

∗
∣∣∣∣∣∣ ≲ ||Q2 − Q̂2||

δK(Q2)
≲

√
d log n

n
· δ1(W

∗)2

δK(W ∗)2
· τ6

√
D2(Ψ)D4(Ψ)

=

√
d log n

n
· κ2 · τ6

√
D2(Ψ)D4(Ψ)

(255)

if the mixed Gaussian distribution is not symmetric, and

∣∣∣∣∣∣w̄j
∗ − ÛÛ⊤w̄j

∗
∣∣∣∣∣∣ ≲ ||Q3(Id, Id,α)− Q̂3(Id, Id,α)||

δK(Q3(Id, Id,α))
=

√
d log n

n
· κ2 · τ6

√
D2(Ψ)D4(Ψ)

(256)
if the mixed Gaussian distribution is symmetric. Moreover, we have

∣∣∣∣∣∣Û⊤w̄j
∗ − v̂j

∣∣∣∣∣∣ ≤ K
3
2

δ2K(W ∗)
||R3 − R̂3|| ≲ κ2 ·

(
τ6
√
D6(Ψ)

)
·
√

K3 log n

n
(257)

in which the first step is by Theorem 3 in Kuleshov et al. (2015), and the second step is by Lemma
11. By Lemma 14, we have∣∣∣∣∣∣||w∗

j || − α̂j

∣∣∣∣∣∣ ≤ (κ4K
3
2 (γ1 + γ2) + κ2K

1
2 γ3)||W ∗|| (258)

Therefore, taking the union bound of failure probabilities in Lemmas 10, 11, and 12 and by
D2(Ψ)D4(Ψ) ≤ D6(Ψ) from Property 10, we have that if the sample size n ≥ κ8K4τ12D6(Ψ) ·
d log2 d, then the output W0 ∈ Rd×K satisfies

||W0 −W ∗|| ≲ κ6K3 · τ6
√
D6(Ψ)

√
d log n

n
||W ∗|| (259)

with probability at least 1− n−Ω(δ41(W
∗))

G.3 PROOF OF LEMMA 10

From Assumption 1, if the Gaussian Mixture Model is a symmetric probability distribution defined in
(16), then by Definition 1, we have
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||Q̂3(I, I,α)−Q3(I, I,α)||

=
∣∣∣∣∣∣ 1
n

n∑
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[
yi · p(x)−1
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(
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(260)

Following Zhong et al. (2017b), ⊗̃ is defined such that for any v ∈ Rd1 and Z ∈ Rd1×d2 ,

v⊗̃Z =

d2∑
i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v), (261)

where zi is the i-th column of Z. By Definition 1, we have∣∣∣∣∣∣[y · p(x)−1
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d
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2
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·
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d
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⊤α)xx⊤||

(262)
The first step of (262) is because (x−µl)Σl)

⊗2(α⊤Σ−1
l (x−µl)) is the dominant term of the entire

expression, and y ≤ 1. The second step is because the expression can be considered as a normalized
weighted summation of ((x− µl)Σl)

⊗2(α⊤Σ−1
l (x− µl)) and (x⊤α)xx⊤ is its dominant term.

Define Sm(x) = (−1)m∇m
x p(x)
p(x) , where p(x) is the probability density function of the random

variable x. From Definition 1, we can verify that

Qj = E[y · Sm(x)] j ∈ {1, 2, 3} (263)

Then define Gpi =
〈
v, ([yi · S3(xi)](Id, Id,α)− E

[
[yi · S3(xi)](Id, Id,α)

]
v)
〉
, where ||v|| = 1,

then E[Gpi] = 0. Similar to the proof of (202), (203), and (204) in Lemma 8, we have

|Gpi|p ≲
∣∣σ−6

min(x
⊤
i α)(x⊤

i v)
2 + Ex∼

∑L
l=1 N (µl,Σl)

[σ−6
min(x

⊤
i α)(x⊤

i v)
2]
∣∣p (264)

E[|Gpi|p] ≲
(
Ex∼

∑L
l=1 N (µl,Σl)

[σ−6
min(x

⊤
i α)(x⊤

i v)
2]
)p

≤ σ−6p
minEx∼

∑L
l=1 N (µl,Σl)

[(x⊤α)2]
p
2Ex∼

∑L
l=1 N (µl,Σl)

[(x⊤v)4]
p
2

≤ τ6p
√
D2(Ψ)D4(Ψ)

p

(265)

E[exp(θGpi)] ≲ 1 +

∞∑
p=2

θpE[|Gpi|p]
p!

≲ 1 +

∞∑
p=2

|eθ|pτ6p(D2(Ψ)D4(Ψ))
p
2

pp

≲ 1 + θ2τ12D2(Ψ)D4(Ψ)

(266)

Hence, similar to the derivation of (206), we have

P
( 1

n

n∑
i=1

Gpi ≥ t
)
≤ exp

(
− nθt+ C16nθ

2
(
τ6
√
D2(Ψ)D4(Ψ)

)2)
(267)
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for some constant C16 > 0. Let θ = t

2C16

(
τ6
√
D2(Ψ)D4(Ψ)

)2 and t = δ21(W
∗) ·(

τ6
√
D2(Ψ)D4(Ψ)

)
·
√

d logn
n , then we have

||Q̂3(Id, Id,α)−Q3(Id, Id,α)|| ≤ δ1(W
∗)2 ·

(
τ6
√

D2(Ψ)D4(Ψ)
)
·
√

d log n

n
(268)

with probability at least 1− 2n−Ω(δ41(W
∗)d).

If the Gaussian Mixture Model is not a symmetric distribution which is defined in (16), we would
have a similar result as follows.

||Q̂2 −Q2|| =
∣∣∣∣∣∣ 1
n

n∑
i=1

[yi · S2(x)]− E[y · S2(x)]
∣∣∣∣∣∣ (269)

||yi · S2(xi)|| ≲ ||σ−4
min

1

K

K∑
j=1

ϕ(w∗
j
⊤xi)xix

⊤
i || (270)

Then define Gp′i =
〈
v, ([yi · S2(xi)]− E

[
yi · S2(xi)

]
v)
〉
, where ||v|| = 1, then E[Gp′i] = 0.

Similar to the proof of (202), (203) and (204) in Lemma 8, we have

|Gp′i|p ≲
∣∣σ−4

min(x
⊤
i v)

2 + Ex∼
∑L

l=1 N (µl,Σl)
[σ−4

min(x
⊤
i v)

2]
∣∣p (271)

E[|Gp′i|p] ≲
(
Ex∼

∑L
l=1 N (µl,Σl)

[σ−4
min(x

⊤
i v)

2]
)p ≤ τ4pD2(Ψ)p (272)

E[exp(θGp′i)] ≲ 1 +

∞∑
p=2

θpE[|Gpi|p]
p!

≲ 1 +

∞∑
p=2

|eθ|pτ4pD2(Ψ)p

pp

≲ 1 + θ2τ8D2(Ψ)2

(273)

Hence, similar to the derivation of (206), we have

P
( 1

n

n∑
i=1

Gpi ≥ t
)
≤ exp

(
− nθt+ C17nθ

2
(
τ4D2(Ψ)

)2)
(274)

for some constant C17 > 0. Let θ = t

2C17

(
τ4D2(Ψ)

)2 and t = δ21(W
∗) ·

(
τ4D2(Ψ)

)
·
√

d logn
n , then

we have

||Q̂2 −Q2|| ≲ δ21(W
∗) · τ4D2(Ψ) ·

√
d log n

n

≲

√
d log n

n
· δ21(W ∗) · τ6

√
D2(Ψ)D4(Ψ)

(275)

with probability at least 1− 2n−Ω(δ41(W
∗)d).

G.4 PROOF OF LEMMA 11

We consider each component of y = 1
K

∑K
i=1 ϕ(w

∗
i
⊤x).

Define Ti(x) : Rd → RK×K×K such that

Ti(x) = [ϕ(w∗
i
⊤x) · S3(x)](Û , Û , Û) (276)

We flatten Ti(x) : Rd → RK×K×K along the first dimension to obtain the function Bi(x) : Rd →
RK×K2

. Similar to the derivation of the last step of Lemma E.8 in Zhong et al. (2017b), we can
obtain ∥Ti(x)∥ ≤ ∥Bi(x)∥. By (260), we have

||Bi(x)|| ≲ σ−6
min

1

K

K∑
j=1

ϕ(w∗
j
⊤xi)(Û

⊤x)3 (277)
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Define Gri = ⟨v,Bi(xi))− E[Bi(xi)]v)⟩, where ||v|| = 1, so E[Gri] = 0. Similar to the proof of
(202), (203) and (204) in Lemma 8, we have

|Gri|p ≲
∣∣σ−6

min(v
⊤Û⊤x)3 + Ex∼

∑L
l=1 N (µl,Σl)

[σ−6
min(v

⊤Û⊤x)3]
∣∣p (278)

E[|Gri|p] ≲
(
Ex∼

∑L
l=1 N (µl,Σl)

[σ−6
min(v

⊤Û⊤x)3]
)p

≲ τ6p
√
D6(Ψ)

p
(279)

E[exp(θGri)] ≲ 1 +

∞∑
p=2

θpE[|Gri|p]
p!

≲ 1 +

∞∑
p=2

|eθ|pτ6pD6(Ψ)
p
2

pp

≤ 1 + θ2(τ12
√

D6(Ψ))2

(280)

Hence, similar to the derivation of (206), we have

P
( 1

n

n∑
i=1

Gri ≥ t
)
≤ exp

(
− nθt+ C18θ

2
(
τ6
√
D6(Ψ)

)2)
(281)

for some constant C18 > 0. Let θ = t

C18

(
τ6
√
D6(Ψ)

)2 and t = δ21(W
∗) ·

(
τ6
√
D6(Ψ)

)
·
√

logn
n ,

then we have

||R̂3 −R3|| ≲ δ1(W
∗)2 ·

(
τ6
√

D6(Ψ)
)
·
√

log n

n
(282)

with probability at least 1− 2n−Ω(δ41(W
∗)).

G.5 PROOF OF LEMMA 12

From Definition 1, we have

||Q̂1 −Q1|| =
∣∣∣∣∣∣ 1
n

n∑
i=1

[yi · S1(x)]− E[y · S1(x)]
∣∣∣∣∣∣. (283)

Based on Definition 1,∣∣∣∣∣∣[yi · S1(xi)]
∣∣∣∣∣∣ ≲ ∣∣∣∣∣∣∑L

l=1 λlλl(2π
∏d
k=1 σ

2
lk)

− d
2 exp(− 1

2 (x− µl)Σ
−1
l (x− µl)) · (x− µl)Σ

−1
l∑L

l=1 λlλl(2π
∏d
k=1 σ

2
lk)

− d
2 exp(− 1

2 (x− µl)Σ
−1
l (x− µl))

∣∣∣∣∣∣
≲

∣∣∣∣∣∣σ−2
min

1

K

K∑
j=1

ϕ(w∗
j
⊤xi)xi

∣∣∣∣∣∣
(284)

Define Gqi =
〈
v, ([yi · S1(xi)]− E

[
[yi · S1(xi)]

]
v)
〉
, where ||v|| = 1, so E[Gqi] = 0. Similar to

the proof of (202), (203), and (204) in Lemma 8, we have

|Gqi|p ≲
∣∣σ−2

min(x
⊤
i v) + Ex∼

∑L
l=1 N (µl,Σl)

[σ−2
min(x

⊤
i v)]

∣∣p (285)

E[|Gqi|p] ≲
(
Ex∼

∑L
l=1 N (µl,Σl)

[σ−2
min(x

⊤
i v)]

)p ≤ τ2p
√
D2(Ψ)

p
(286)

E[exp(θGqi)] ≲ 1 +

∞∑
p=2

θpE[|Gqi|p]
p!

≲ 1 +

∞∑
p=2

|eθ|pτ2pD2(Ψ)
p
2

pp

≤ 1 + θ2(τ2
√
D2(Ψ))2

(287)

Hence, similar to the derivation of (206), we have

|P
( 1

n

n∑
i=1

Gqi ≥ t
)
≤ exp

(
− nθt+ C19θ

2
(
τ2
√
D2(Ψ)

)2)
(288)
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for some constant C19 > 0. Let θ = t

C19

(
τ2
√
D2(Ψ)

)2 and t =
(
τ2
√

D2(Ψ)
)
·
√

d logn
n , then we

have

||Q̂1 −Q1|| ≲
(
τ2
√
D2(Ψ))

)
·
√

d log n

n
(289)

with probability at least 1− 2n−Ω(d).
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