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Abstract

Fine-tuning large-scale pre-trained models presents inherent challenges related to
computational complexity and resource inefficiency. In this paper, we introduce
Geodesic Low-Rank Adaptation (GLRA), a novel conceptual framework designed
to rethink how fine-tuning occurs in deep neural networks. Rather than relying on
traditional methods of parameter updates that may fall prey to sharp minima and
unstable convergence, GLRA utilizes geodesic paths to smooth transitions within
the weight space. Combined with low-rank adaptation, GLRA seeks to minimize
computational overhead while promoting flatter minima, potentially improving
generalization and stability in fine-tuning. This paper focuses on exploring the
theoretical implications of geodesic interpolation, hypothesizing that this method
can provide new insights into efficient model adaptation. We demonstrate through
mathematical reasoning how GLRA can enhance model stability by avoiding sharp
transitions in the optimization landscape. While experimental validation is left as
future work, the conceptual framework we introduce opens a pathway for research
into the intersection of geometry and parameter-efficient learning, inviting further
investigation into its potential.

1 Introduction

Fine-tuning large-scale pre-trained models, such as BERT and GPT, has become a critical process
in modern machine learning. These models, often containing billions of parameters, are designed
to generalize across various tasks with minimal adjustments. However, this adaptability comes
with significant computational overhead and memory costs, particularly when deployed in resource-
constrained environments like mobile devices or edge computing platforms. Fine-tuning typically
involves updating a large portion of the model’s parameters, resulting in high memory usage and
prolonged training times.

To address this, parameter-efficient fine-tuning techniques such as Low-Rank Adaptation (LoRA)
have been introduced, significantly reducing the number of trainable parameters while preserving
task-specific performance. LoRA achieves this by decomposing weight updates into low-rank
matrices, lowering the computational complexity from full model updates to more manageable ranks.
While LoRA reduces memory and computational requirements, it still relies on linear interpolation
between pre-trained and fine-tuned weights, which may lead to convergence to sharp minima in the
optimization landscape.
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In this paper, we introduce Geodesic Low-Rank Adaptation (GLRA), a novel approach that leverages
geodesic paths to smooth the transition between pre-trained and fine-tuned model states. Geodesic
interpolation, in contrast to linear interpolation, provides a continuous and smooth trajectory in the
weight space, avoiding the sharp transitions that could lead to unstable optimization. By combining
geodesic interpolation with the parameter-efficient nature of LoRA, GLRA aims to improve model
stability and generalization while maintaining low computational costs.

In the absence of large-scale experimental results, we present GLRA as a conceptual framework
with strong theoretical motivations. Our approach bridges the gap between geometry and fine-tuning,
positing that geodesic paths encourage flatter minima in the optimization landscape, which may yield
better generalization and more robust performance in practical applications. This work invites the
community to explore the intersection of differential geometry and parameter-efficient fine-tuning,
opening new avenues for future research in scalable model adaptation.

2 Related Work

Fine-tuning large-scale pre-trained models has played a pivotal role in transferring knowledge across
domains. Traditional fine-tuning, which involves updating all model parameters, has proven effective
but at the cost of significant computational overhead and memory usage, especially as model sizes
continue to grow [Khetan and Karnin, 2020]. These challenges have prompted the development of
parameter-efficient fine-tuning methods.

One prominent approach is Low-Rank Adaptation (LoRA) [Hu et al., 2021], which reduces the
number of trainable parameters by restricting updates to low-rank matrices. LoRA allows for
significant memory and computation savings while retaining much of the task-specific performance.
However, LoRA, like many fine-tuning methods, operates within the framework of traditional
gradient-based optimization, which does not explicitly control the trajectory that parameters follow
during optimization. This lack of control can lead to suboptimal convergence paths that may result in
sharp minima, negatively impacting generalization [Zhou et al., 2020].

AdapterFusion [Pfeiffer et al., 2020] and BitFit [Zaken et al., 2021] are further refinements that focus
on minimizing trainable parameters through the use of additional modular layers or bias-term updates.
While these techniques are highly efficient and offer strong task-specific performance, they similarly
depend on linear or stepwise parameter updates. These methods do not inherently account for the
geometry of optimization trajectories, which could play a critical role in avoiding sharp minima and
enhancing stability.

The geometry of optimization has recently emerged as a promising area of research. Studies on
stochastic weight averaging [Izmailov et al., 2018] and the exploration of non-linear weight space
paths highlight the importance of guiding optimization toward flatter minima, which are known to
promote better generalization [Hochreiter and Schmidhuber, 1997]. While these methods have been
incorporated into specific phases of training, they have not yet been fully explored as a framework for
fine-tuning large-scale pre-trained models.

Geodesic Low-Rank Adaptation (GLRA) is proposed as a solution to this gap. GLRA offers a depar-
ture from purely gradient-based optimization by explicitly controlling the path between pre-trained
and fine-tuned weights through geodesic interpolation. This enables smooth, non-linear transitions in
the parameter space, contrasting with the sharp transitions often encountered in linear fine-tuning
methods. By incorporating LoRA’s parameter-efficient updates, GLRA maintains computational
efficiency while using geodesic paths to traverse weight space in a way that favors flatter minima.
This not only improves convergence stability but also has the potential to enhance generalization
performance.

In summary, GLRA aims to build on the success of LoRA by adding an explicit focus on the geometric
properties of the optimization process. The introduction of geodesic interpolation provides smoother
transitions in the weight space, which we hypothesize leads to better generalization and more stable
fine-tuning outcomes compared to existing linear or stepwise approaches.
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3 Theoretical Motivation

The motivation for Geodesic Low-Rank Adaptation (GLRA) arises from two main insights in opti-
mization: the importance of smooth trajectories in the loss landscape and the benefits of parameter-
efficient methods for fine-tuning. This section explores the theoretical benefits of geodesic inter-
polation over linear interpolation, particularly with respect to generalization, convergence, and
computational efficiency, while acknowledging the inherent challenges.

3.1 Loss Landscape and Sharp Minima

It has been well-established that the shape of the loss landscape plays a crucial role in determining
a model’s generalization ability [Hochreiter and Schmidhuber, 1997, Keskar et al., 2016]. Sharp
minima, characterized by steep and narrow regions, can lead to poor generalization because small
perturbations in model parameters can cause significant increases in the loss function. Conversely,
flat minima are more stable and less sensitive to noise, thus improving the model’s generalization
performance.

Traditional fine-tuning methods, which rely on gradient-based optimization without explicit control
over parameter trajectories, often converge to sharp minima due to the abrupt nature of parameter
updates [Li et al., 2018]. By contrast, geodesic paths, which follow smooth and continuous curves, are
less likely to lead to sharp transitions in the optimization landscape. These smooth paths help guide
the model toward flatter minima, thereby improving generalization [Draxler et al., 2018, Garipov
et al., 2018].

3.2 Geometric Path Advantage

Geodesic paths in weight space offer several geometric advantages over linear interpolation. Linear
paths, while simple to compute, may cause discontinuities in the optimization process due to abrupt
transitions. Geodesic paths, on the other hand, minimize the distance traveled on a curved manifold,
such as the non-Euclidean parameter space of deep neural networks [Amari and Amari, 1985, Nielsen,
2018]. By following a spherical geodesic trajectory, GLRA ensures a smoother transition between
pre-trained and fine-tuned weights, avoiding sharp changes in gradient magnitude and potentially
improving stability [Zhang et al., 2019].

The geodesic distance between two points in parameter space, θ0 (pre-trained) and θLoRA (fine-tuned),
can be expressed as:

d(θ0, θLoRA) =

∫ 1

0

∥∥∥∥dθ(t)dt

∥∥∥∥ dt, (1)

where dθ(t)
dt represents the rate of change along the geodesic path. This formulation minimizes

abrupt changes, resulting in smoother parameter updates that align with the natural geometry of the
parameter space.

However, it is important to note that the notion of “distance” in parameter space is not absolute
due to inherent symmetries in neural networks, such as permutation invariance of neurons [Entezari
et al., 2022, Brea and Senn, 2019]. For example, rearranging neurons in a layer can yield a different
parameter configuration that produces the same network output. Thus, while geodesic paths provide
a practical way to achieve smoother transitions, they do not necessarily represent the true “distance”
between functionally equivalent configurations in parameter space.

3.3 Curvature and Optimization Stability

The curvature of the loss landscape, as described by the eigenvalues of the Hessian matrix, plays
a significant role in optimization stability [Sagun et al., 2016, Yao et al., 2020]. Large positive
eigenvalues indicate sharp curvature, leading to rapid changes in loss with small parameter shifts,
while smaller eigenvalues indicate flatter regions that tend to generalize better.

Geodesic interpolation inherently avoids the sharp curvature often encountered during linear interpo-
lation by following the smoothest possible trajectory between two points on the loss surface. This
effect can be understood through the second-order derivative of the loss function, i.e., the Hessian
∇2L(θ). By guiding the optimization process away from regions of sharp curvature, GLRA promotes
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convergence toward flatter minima, where∇2L(θ) ≈ 0, leading to improved generalization [Foret
et al., 2021, Cha et al., 2021].

Despite this, we acknowledge that geodesic paths are approximate representations due to parameter
symmetries and permutation invariance in neural networks [Brea and Senn, 2019, Entezari et al., 2022].
The practical benefit of geodesic interpolation lies in reducing abrupt changes, which empirically
aligns with the goal of reaching flatter minima, even though it may not fully address all symmetry
issues.

3.4 Optimal Transport in Weight Space

From a theoretical perspective, geodesic interpolation can be viewed as a form of optimal transport
in parameter space. Optimal transport theory seeks to find the most efficient way to move between
two distributions, minimizing the energy required for the transition [Villani, 2009, Peyré and Cuturi,
2019]. Similarly, geodesic paths minimize the distance traveled in weight space, leading to more
efficient and stable updates.

This approach aligns with the principles of optimal transport, as the path taken between θ0 and θLoRA
is the shortest possible curve on the parameter manifold. However, given the permutation invariance
of neurons in neural networks, this shortest path is an approximation rather than an absolute minimum.
This efficiency in parameter updates can still reduce the overall computational overhead of fine-tuning
large models, making GLRA both effective and resource-efficient [Folwarczný, 2022].

3.5 Flat Minima and Generalization

Theoretical works have shown that flatter minima tend to generalize better because they make the
model less sensitive to perturbations in the data or parameters [Hochreiter and Schmidhuber, 1997,
Neyshabur et al., 2017]. By using geodesic-inspired paths that avoid sharp changes in the optimization
landscape, GLRA helps models converge to these flatter minima, which are characterized by:

∇2L(θ) ≈ 0.

This theoretical insight suggests that by promoting flatter minima, GLRA not only enhances model
stability but also contributes to better generalization on unseen data [Keskar et al., 2016, Yao et al.,
2020]. Nonetheless, due to the permutation invariance of neural networks, GLRA’s ability to converge
to a true flat minimum is approximate. Future work may explore more sophisticated methods that
explicitly address functional equivalence to provide a more rigorous path to flat minima.

4 Methodology: Geodesic Low-Rank Adaptation (GLRA)

In this section, we introduce Geodesic Low-Rank Adaptation (GLRA), a fine-tuning approach that
combines geodesic-inspired interpolation with low-rank adaptation for efficient, generalizable training
of large-scale models. Unlike traditional fine-tuning that relies solely on gradient updates, GLRA
incorporates spherical geodesic interpolation to enable smooth transitions in parameter space, aimed
at avoiding sharp minima that can hinder generalization [Hochreiter and Schmidhuber, 1997, Keskar
et al., 2016].

4.1 Geodesic-inspired Interpolation

Standard fine-tuning typically updates parameters iteratively without explicit control over the tra-
jectory between pre-trained and fine-tuned weights, which can converge to sharp minima due to
abrupt parameter changes [Li et al., 2018]. In contrast, GLRA employs spherical linear interpolation
(SLERP), an efficient approximation of geodesic paths, to provide a continuous, smooth trajectory in
the high-dimensional weight space from pre-trained weights, θ0, to low-rank adapted weights, θLoRA
[Amari and Amari, 1985].

The SLERP path is defined as:

θ(t) =
sin((1− t) · ω)

sin(ω)
· θ0 +

sin(t · ω)
sin(ω)

· θLoRA (2)
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where t ∈ [0, 1] is the interpolation parameter, and ω = arccos
(

θ0·θLoRA
∥θ0∥∥θLoRA∥

)
is the angle between θ0

and θLoRA, calculated using the dot product [Draxler et al., 2018]. This interpolation smooths transi-
tions during fine-tuning, promoting flatter minima which have been linked to improved generalization
[Garipov et al., 2018].

Though SLERP is an efficient approximation of true geodesics, it provides a suitable balance between
computational efficiency and stability, avoiding sharp curvature in the weight space [Zhang et al.,
2019].

4.2 Low-Rank Adaptation (LoRA)

GLRA also leverages Low-Rank Adaptation (LoRA), which reduces memory and computational costs
by introducing low-rank updates to the weights. LoRA decomposes the update into two matrices,
A ∈ Rd×r and B ∈ Rr×d, where r ≪ d. The weight update is thus expressed as:

WLoRA = W0 + α ·AB (3)

where W0 is the original pre-trained weight matrix, and α is a scaling factor. This decomposition
reduces the parameter count from O(d2) to O(d·r), retaining performance while improving efficiency
[Hu et al., 2021].

4.3 Algorithm: Geodesic Low-Rank Adaptation (GLRA)

The Geodesic Low-Rank Adaptation (GLRA) algorithm integrates spherical geodesic interpolation
with low-rank adaptation for effective model fine-tuning. The procedure is outlined below:

Algorithm 1 Geodesic Low-Rank Adaptation (GLRA)

Require: Pre-trained weights θ0, LoRA weights θLoRA, homotopy parameter t ∈ [0, 1], learning rate
η

1: Compute the angle ω = arccos
(

θ0·θLoRA
∥θ0∥∥θLoRA∥

)
2: Perform geodesic interpolation using SLERP to obtain θ(t):

θ(t) =
sin((1− t) · ω)

sin(ω)
· θ0 +

sin(t · ω)
sin(ω)

· θLoRA

3: Initialize the model with θ(t)
4: for each training iteration do
5: Compute gradients ∇θ(t)L(θ(t)) via backpropagation
6: Update θ(t) with a gradient-based step:

θ(t)← θ(t)− η · ∇θ(t)L(θ(t))

7: end for
8: Gradually adjust t over epochs, increasing from 0 to 1
9: return Final fine-tuned model parameters θ(t)

By incrementally adjusting t from 0 to 1, GLRA allows a smooth transition from the pre-trained state
θ0 to the adapted state θLoRA, facilitating a stable and effective optimization pathway [Villani, 2009,
Peyré and Cuturi, 2019].

5 Limitations and Future Directions

While Geodesic Low-Rank Adaptation (GLRA) offers a promising approach to fine-tuning large-scale
models, there are several limitations to consider. In this section, we outline these challenges and
propose potential solutions, along with directions for future research.
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One primary concern with GLRA is the additional computational complexity introduced by geodesic
interpolation. Although the geodesic path promotes smoother transitions in parameter space, cal-
culating these paths in high-dimensional spaces can be computationally expensive, especially for
large models. This additional cost could potentially offset the savings gained through Low-Rank
Adaptation (LoRA), which is designed to reduce the number of trainable parameters. To mitigate this,
efficient approximations of geodesic paths, such as lower-order interpolations, could be explored.
Another option is to apply geodesic interpolation selectively during critical phases of training, while
using simpler methods during less critical epochs.

Another limitation is the reduced expressivity inherent in low-rank adaptations. While LoRA helps to
cut down the number of trainable parameters, it might restrict the model’s ability to capture complex
task-specific nuances, particularly in domains that require high flexibility. This limitation could
be addressed by allowing adaptive rank selection during training, where the rank of the low-rank
matrices A and B could vary based on task complexity. This approach would enable the model to
increase expressivity when necessary, balancing parameter efficiency with performance.

The homotopy parameter t, which governs the interpolation between the pre-trained weights θ0 and
the fine-tuned weights θLoRA, introduces another challenge. The optimal schedule for adjusting t
is highly task-dependent and requires careful tuning. Poor choices for this parameter could lead to
ineffective optimization paths. Adaptive techniques, such as reinforcement learning-based parameter
tuning, could dynamically adjust t based on the model’s validation performance, thus eliminating the
need for extensive manual tuning.

There are also theoretical concerns related to convergence. While geodesic paths offer smoother
transitions through parameter space, there are no guarantees that they lead to global minima, especially
given the non-convex nature of deep learning loss landscapes. Geodesic paths may not be universally
effective in avoiding saddle points or local minima. Future work could explore combining GLRA
with second-order optimization methods, such as quasi-Newton methods or trust-region algorithms,
which could enhance convergence properties while leveraging the smoothness of geodesic paths.

A key theoretical limitation of GLRA is its reliance on distance in parameter space, which does not
fully address functional equivalences due to the permutation invariance of parameters, particularly
in neural networks. In other words, different configurations of weights and neurons can lead to
functionally equivalent models, yet appear distant in parameter space. This presents a challenge
for GLRA, as it may misinterpret functionally similar models as being distant due to parameter
permutations. Future research could explore the use of more advanced, functionally aware distance
metrics, potentially grounded in optimal transport or functional similarity, to enhance GLRA’s
interpretability and effectiveness. Addressing this limitation could improve the robustness and utility
of GLRA, especially for models with high permutation invariance.

Finally, GLRA may face scalability issues when applied to extremely large models, such as GPT-3.
Although LoRA reduces the number of trainable parameters, computing geodesic paths in such high-
dimensional spaces can still be costly. Distributed training techniques, where geodesic interpolation
and gradient calculations are distributed across multiple GPUs, could alleviate some of this overhead.
Memory-efficient fine-tuning strategies, such as adapters or block-structured low-rank updates, could
further enhance scalability.

6 Preliminary Proof-of-Concept Experiments

To provide an initial validation of the proposed Geodesic Low-Rank Adaptation (GLRA) method, we
conduct preliminary toy experiments on the MNIST dataset using a simple Multi-Layer Perceptron
(MLP). These experiments serve as a proof of concept to highlight the potential benefits of GLRA in
comparison to standard Low-Rank Adaptation (LoRA) and do not constitute the full evaluation.

6.1 Experimental Setup

We use the MNIST dataset, consisting of grayscale images of handwritten digits (0-9) with a resolution
of 28x28 pixels. For these experiments, we preprocess the images by normalizing them to have zero
mean and unit variance.

The model used is a three-layer MLP with ReLU activations:
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Figure 1: Results of preliminary experiments on MNIST. (a) Loss over epochs, (b) Accuracy over
epochs, (c) Gradient norms, and (d) Parameter distances for LoRA and GLRA.

• Input Layer: 784 units (28x28 flattened image)

• Hidden Layer 1: 128 units

• Hidden Layer 2: 64 units

• Output Layer: 10 units (one per class)

6.2 Toy Adaptation Methods

LoRA Configuration. LoRA is applied to the first and second hidden layers with a low-rank
dimension of r = 8 and scaling factor α = 16. The goal is to reduce the number of trainable
parameters while preserving model capacity.

GLRA with SLERP Interpolation. In GLRA, we use spherical linear interpolation (SLERP) to
gradually interpolate between the pre-trained parameters θ0 and the LoRA-adapted parameters θLoRA.
This is intended to provide a smoother transition in parameter space and potentially achieve flatter
minima. The interpolation parameter t is adjusted from 0 to 1 over a fixed number of stages.

6.3 Evaluation Metrics

Given the exploratory nature of these experiments, we monitor the following key metrics to assess
the impact of GLRA:

• Training and Test Loss: To observe model convergence and generalization.

• Accuracy: Measured on both the training and test sets to evaluate performance.

• Gradient Norms and Parameter Distance: These metrics track the smoothness of parame-
ter updates and the deviation from the original parameters.

6.4 Results and Observations

The results from these toy experiments are summarized in Fig. 1. While limited in scope, these
preliminary findings demonstrate that GLRA achieves faster convergence and slightly improved test
accuracy compared to LoRA. Notably, GLRA exhibits more stable gradient norms and a smaller
overall parameter shift, suggesting a smoother adaptation path.
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These toy experiments provide early evidence that GLRA’s geodesic-inspired interpolation can offer
benefits in terms of stability and generalization, even in small-scale setups. However, comprehensive
evaluation on more complex tasks and larger models is necessary to fully establish its effectiveness,
as presented in the subsequent experimental sections.

7 Experimental Setup

While full experimental validation of Geodesic Low-Rank Adaptation (GLRA) is left as future work,
we outline the experimental setup we anticipate using to validate the efficiency and effectiveness of
this approach.

Datasets: We plan to evaluate GLRA on standard natural language processing (NLP) benchmarks,
such as the Stanford Sentiment Treebank (SST-2) and the Multi-Genre Natural Language Inference
(MNLI) dataset.

Baselines: Comparisons will be drawn against traditional fine-tuning methods and parameter-efficient
techniques, including Low-Rank Adaptation (LoRA), AdapterFusion, and BitFit.

Metrics: Performance will be measured based on model accuracy, convergence speed, memory usage,
and computational overhead. Generalization will be evaluated by assessing the model’s performance
on unseen data.

8 Future Work

This paper explores the theoretical underpinnings of Geodesic Low-Rank Adaptation (GLRA) and
there are several avenues for future research and experimentation. Key areas include:

• Empirical Validation: Rigorous experimental validation is needed to evaluate the practical
benefits of GLRA across different tasks and domains. This includes both language models
and computer vision applications.

• Hyperparameter Tuning: An exploration of the effect of the homotopy parameter t and
how to dynamically adjust it during training is critical for optimizing the performance of
GLRA.

• Extensions to Other Architectures: GLRA could be extended to other architectures beyond
transformers, such as convolutional neural networks (CNNs) or recurrent neural networks
(RNNs), to examine its generality.

• Optimization of Geodesic Paths: Further work can be done to explore alternative geodesic
paths or interpolation techniques that might be more efficient in different settings.

By addressing these open questions, we aim to provide a more comprehensive understanding of the
benefits and limitations of incorporating geometric principles in the fine-tuning process.
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