Wavy Transformer

Satoshi Noguchi
Research Institute for Value-Added Information Generation, JAMSTEC
Center for Advanced Intelligence Project, RIKEN
satoshin@jamstec.go. jp

Yoshinobu Kawahara
Graduate School of Information Science and Technology, The University of Osaka
Center for Advanced Intelligence Project, RIKEN
kawahara@ist.osaka-u.ac. jp

Abstract

Transformers have achieved remarkable success across natural language process-
ing (NLP) and computer vision (CV). However, deep transformer models often
suffer from an over-smoothing issue, in which token representations converge
to similar values as they pass through successive transformer blocks. In this pa-
per, we establish an equivalence between the hidden-state dynamics induced by
stacked attention layers and graph neural diffusion on a complete graph. From
this perspective, over-smoothing can be interpreted as a consequence of the dis-
sipative nature of the underlying diffusion dynamics. Motivated by this physical
interpretation, we propose Wavy Transformer, which consists of a novel atten-
tion layer based on second-order wavy dynamics. We also introduce a feed-
forward network and a normalization layer designed to preserve the physical
state-velocity relationship under the chain rule, thereby extending the transformer
architecture. We further validate our proposed techniques on various transformer
models for NLP, CV, and sparse-graph tasks. The results consistently demonstrate
that Wavy Transformer improves performance with minimal additional parameters
and no extra hyperparameter tuning. Source code and models are available at
https://github.com/noguchisatoshi/Wavy-Transformer.

1 Introduction

Transformers [41]] have achieved outstanding success in a wide range of machine learning fields such
as natural language processing (NLP) [41} 11,7 3] and computer vision (CV) [39} 13| 26} |1} 4, [24]].
These successes clearly demonstrate the effectiveness and generality of the transformer. Despite
this remarkable progress, deep transformer models often suffer from an over-smoothing issue, in
which all token representations become identical as more layers are added [12} 29} 43| 37]. This
phenomenon is also known as the token uniformity problem [12] and is recognized as a crucial
obstacle preventing transformers from going deeper. Accordingly, several techniques to mitigate
the over-smoothing behavior of transformers have been proposed [37, 43} 29]]. However, compared
to graph neural networks (GNNs), where over-smoothing was first identified and widely studied
(34 131} 128 [141 351 138}, 1201 30, [2| 8 [17]], over-smoothing in transformers has not been adequately
discussed.

Based on the above discussion, in this paper, we examine over-smoothing in transformers from the
perspective of physical dynamical systems. In addition, we propose a new type of attention layer
inspired by physical dynamical systems. Our approach originates from interpreting the dynamics
of hidden states induced by stacked attention layers as graph neural diffusion [S] on a complete

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/noguchisatoshi/Wavy-Transformer

graph. From this viewpoint, over-smoothing can be seen as a consequence of the dissipative nature
of the underlying diffusive dynamics. Motivated by this physical interpretation, we introduce Wavy
Transformer, which consists of a novel attention layer based on second-order wavy dynamics. The
energy-preserving property and the oscillatory behavior of the wave equation are expected to help
mitigate the over-smoothing problems in transformers. We also introduce a physically inspired
feed-forward network and a normalization layer designed to preserve the state-velocity relationship
under the chain rule. By combining these components, we build Wavy Transformer to extend
the conventional transformer architecture. Wavy Transformer block is easy to use and can be
integrated into various transformer-like architecture. Furthermore, to demonstrate the effectiveness
and generality of Wavy Transformer, we conduct extensive experiments on NLP, CV, and sparse-graph
tasks.

The remainder of this paper is organized as follows. In Section[2] we provide background on this
work, including an introduction to the attention module and its over-smoothing issue, as well as
a brief review of the fundamental properties of dynamics on smooth manifolds. In Section 3| we
present Wavy Transformer, after discussing a rigorous physical interpretation of attention layers as
graph neural diffusion on a complete graph. In Sectiond] we review related works. In Section[5] we
report experimental results demonstrating the capabilities of Wavy Transformer. Finally, we conclude
with our main contributions and some closing remarks in Section [6]

2 Background

2.1 Attention and Over-smoothing

The key functional component of transformer architecture is the attention module [41}, 43]] which
aggregates information from other token representations with respect to the computed attention values.
Let X € R™*? be the input states to an attention layer, where n is the number of input tokens and d
is the embedding dimension. The attention calculation is formulated as follows:

XWo(XWg)T
Vd

where Wx € R¥*dk W, € R4 and Wy, € R4 are the key, query and value weight matrices,
respectively. Also, v/d denotes a scaling factor, and softmax(-) operation on X row-wisely. Here,

A := softmax (M\z"w> € R™*™ In the case of Multi-Head Attention (MHA) [41]],

multiple single-head attention modules operate in parallel, and their outputs are concatenated and
linearly projected: MHA(X) = [Attny (X), - -, Attng (X)W, where the subscripts denote the
head indices, H is the total number of heads, and W € R 2% projects the concatenated outputs
back to the hidden dimension. Since MHA is a parallelized form of single-head attention and is
mathematically equivalent, we do not distinguish between them in this paper. In addition to the
attention module, each transformer block is equipped with residual connections as:

Attn(X) = softmax < > XWy = AXWy,, e

XH—I — AXlWV +Xl, (2)

where X! denotes the I-th layer hidden states. The attention matrix can be regarded as learning
pair-wise self-interactions among all components of X. Thus, this attention computation encourages
transformers to capture globally direct interactions among all tokens, unlike convolutional operations,
which expand their receptive field hierarchically from local to global. As a consequence, properly
trained transformers can effectively model global context and achieve outstanding performance.

Despite their remarkable performance across a wide range of NLP and CV applications, deep
transformer models often suffer from an over-smoothing problem: as the network deepens, token
representations converge and become indistinguishable from one another [37, /43| 29]]. As a result,
deeper transformers do not always outperform their shallower counterparts [49]]. From a theoretical
viewpoint, the attention layer can be understood as a low-pass filter [43]], continuously erasing
high-frequency information and thus reducing feature expressiveness in deeper layers. Consequently,
this tendency toward over-smoothing of stacked the attention layers in deep transformer presents a
critical challenge that motivates our study.

2.2 Fundamental Dynamics on Manifolds

Here, we briefly review classical dynamics on a smooth manifold M, described by partial differential
equations (PDEs), to motivate alternative dynamics for the transformer block [15]]. For simplicity,
we omit any specification of initial or boundary conditions whenever it is not necessary. Let
x: M x [0,7] — R denote a scalar field on M, where T > 0 is the terminal time. Its prototypical
example is the diffusion equation:

0x(s,t)
ot

where s € M denotes a point (spatial coordinate) on the manifold, ¢ € [0, T] denotes time, D > 0 is
a diffusivity coefficient, V and div are respectively the gradient and divergence operators induced
by the Riemannian metric on M, and A = div o V is the Laplace—Beltrami operator. Here, D is
assumed to be constant for simplicity. In physics, Eq.(3) models processes such as heat conduction or
particle diffusion. In contrast, the hyperbolic (wave) equation on M takes the form

0%z (s, t

% = div(v? Va(s, 1)) = v* Az(s, 1), (€))
where v > 0 is a constant wave-propagation speed. Equation (@) governs wave-like phenomena in
continuous media. We highlight the key differences between the dynamics of these PDEs.

= diV(D Vm(s,t)) = D Ax(s,t), 3)

2.2.1 Kernel Perspective of Diffusion and Wave Equations

Fundamental solutions, which are often called "kernels", represent the response to an initial impulse
(e.g., a Dirac delta function). These kernels underscore some of the most striking differences between
diffusion and wave phenomena. Thus, we review the kernels of both the diffusion and wave equations
to clarify how they differ. For simplicity, we focus on the one-dimensional case in the reminder of
this section. We also provide fundamental theorems from an energetic perspective that characterize
each dynamic in Appendix [C]

Diffusion Equation We recall the fundamental solution (Green’s function) of the one-dimensional
diffusion equation [[T5] with the initial condition x(s,0) = x(s). Its kernel (Green’s function) on R
is given by

1 52

G(s,t) i eXp(4t>7 t>0, 5)
where we ignore the diffusive coefficient D. Accordingly, the solution with initial data xy can
be written in convolution form: z(s,t) = [*_G(s — v, t) zo(v) dv. Key properties of G in one
dimension are as follows: Firstly, G(s,t) > 0 for all s € R and decays exponentially as |s| — oo.
And secondly, the heat kernel smooths out irregularities in the initial data, which is referred to as the
smoothing effect. The first property shows that, while the diffusive influence extends over all space, it
becomes exponentially small far from the origin. The second property implies that diffusion rapidly
weakens high-frequency components, inherently suppressing local structural details.

Wave Equation Next, we consider the one-dimensional wave equation with initial conditions

3}
x(s,0) = f(s) and a—f(s, 0) = g(s). By d’Alembert’s formula [32], the general solution is

1 1 stut
z(s,t) = =[f(s—vt)+ f(s+v1)] +—/ g(r)dr, (6)

2 21} s—vt
which represents left- and right-traveling waves emanating from the initial data. Key properties
of this solution are as follows: Firstly, under wave propagation, strong singularities in the initial
data can persist. Thus, the signal profile propagates at finite speed, rather than being smoothed out
everywhere. And secondly, the general solution reflects conservation of energy: waves transport
energy through the domain without diffusive spreading. Hence, in contrast to the diffusion equation,
the wave equation exhibits a sharp, finite wavefront traveling at speed v. This difference in how
features propagate is closely related to the fact that the wave equation conserves energy, whereas the
diffusion equation dissipates it. The energy behaviors of each dynamics are shown in Appendix

()(H»l7 Yl+1)

_____________ Feed-Forward

~ N

i 1
1 Layer 1 I\ _ l T T
| | FFN(X)qu(X W1+1b1>W2+1b2
1 1 ’
: 1/ FEN,(Y!) = ¢ (xl W, +1 bI)Yl W, W,
| J
1 1
! 1 Layer Normalization
i i LN(l) zg,j - ,LL(XD + B \
X = — " . .
| : Vit A re
: N La){er ! . yé i
izati 4] .
- Lnomation] < v,), = ey
| | 1 /
| | Aftention + Add N
| Multi-Head ' 1 . .
! Attention | YT =r(A-DX' +Y",
: : X = 7yt 4 X)

(x,Y")

Figure 1: Schematic of Wavy Transformer block, combining wavy attention layers and velocity-
specific layer-normalization and feed-forward layers. Each layer is designed to preserve state-velocity
relationship. Post-LN is assumed here; the Pre-LN case is discussed in Appendix [IZZ] [471].

3 Wavy Transformer

The above discussion and the fundamental theorems[T]and 2]in Appendix [Clindicate that the dynamics
governed by the diffusion equation (3)) converge to a constant uniform state, whereas those governed
by the wave equation (@) oscillates while conserving its energy without net dissipation. However,
conventional transformers implicitly rely on the dissipative diffusion dynamics, causing their hidden
states to converge toward a uniformly constant state. Therefore, before presenting the architecture of
Wavy Transformer, we first show that the implicit dynamics of attention layers can be interpreted as
graph neural diffusion [5] on a complete graph.

3.1 Attention as Graph Neural Diffusion

We consider the graph neural diffusion [5]] on a complete graph whose each node feature is token

representations:

0X

5 — (A -DX, (7
where A is the attention matrix and I is the identity matrix. For simplicity, we temporarily ignore
the feature transformation by Wy . By definition, A is a right-stochastic matrix, i.e. > j A =1
Hence, I — A can be regarded as the normalized graph Laplacian of the complete graph in which the
edge connecting nodes 7 and j is weighted by the node-pair value A;;. Note that I — A, which is
often called the random-walk graph Laplacian [21]], is the negative of the discrete Laplacian used
here. We can also discretize this graph diffusion equation in time domain as

XH =7(A-DX' + X' = 7AX' + (1 - 7)X!, ®)

for! = 1,--- , N, where N is the number of layers and 7 > 0 is a fixed time interval parameter.
Also, X! denotes the hidden states at time I7. Interestingly, if we consider 7 = %, we can get

X1 = 2 (AX! 4+ X!). Usually, since each attention layer is followed by a layer normalization (LN),
the scale transformation can be ignored. Therefore, this discrete diffusion equation is essentially
identical to the attention layer update X'*1 = AX' 4+ X', Although we here assume Post-LN [47],
in the same way, the attention with Pre-LN can be understood as diffusion—reaction equation, which
is explained in Appendix |D} In this sense, the dynamics of attention layers can be understood as a
graph diffusion on a complete graph. Furthermore, because diffusion decreases the system’s energy
(as shown in Appendix [C), this interpretation aligns with the discussion in [44} 29].

As a result, the conventional transformer architecture can be viewed as executing a diffusion process
on a complete graph in which each node represents a token embedding. Moreover, the attention
matrix A defines anisotropic diffusivity interactions among tokens. This perspective suggests that
the over-smoothing observed in transformers results from the dissipative smoothing effect of a
diffusion equation, analogous to heat flow. An intuitive explanation of this phenomenon is provided
in Appendix [E| By viewing diffusion as a process that smooths small-scale fluctuation erasing
high-frequency components, it becomes clear why the attention layer acts as a low-pass filter [43]]. It
also agrees with the interpretation of GNNs as performing low-pass filtering, as noted in [28].

In the field of GNNS, there are some attempts to define networks based on the wave equation for
mitigation of their over-smoothing issues, focusing on its property of energy conservation [14,[35].
Considering the finding that transformer architecture can be regarded as the graph neural diffusion on
a complete graph, introducing a wavy dynamics into the transformer is also expected to enhance its
performance. Therefore, this paper introduces a novel type of transformer block based on the wavy
dynamics and validates its effectiveness and generality several experiments.

3.2 Wavy Dynamics Based Attention

We introduce a novel transformer block based on wavy rather than diffusive dynamics, motivated
by the implicit reliance of conventional transformers on diffusive dynamics and some discussion for
GNNs [14, 135]]. Figure|l|shows a schematic of Wavy Transformer block, which includes a wavy
attention layer, velocity-specific layer normalization, and a velocity-oriented feed-forward network.
We begin by considering the wave equation on a complete graph, analogous to the graph neural
diffusion [5]]:

0?X

ot?

By introducing the artificial velocity variable Y = %—X, we can rewrite the second-order wave
equation as a first-order systems:

=(A-D)X. ©9)

oY 0X

—=A-DX, — =Y. 10
Here, Y can be considered as a difference of hidden states across adjacent layers. The following
update rule can be obtained by time-discretization of the system Eq.(I0):

Y =7 (A-DX'+ Y, X =7y 4 X (11)

forl =1,---, N, where N is the number of layers and 7 > 0 is a fixed time interval parameter. Also,
X! and Y' denote the hidden states at time /7. Also, importantly this discrete dynamical system is
symplectic, meaning it conserves its system energy [48]]. Since this property might contribute to
avoid the over-smoothing behavior of the hidden states X, we consider the wave transformer block
based on Eq.(10) instead of Eq.(9)

To highlight the difference from the basic diffusive attention layer, if we directly discretize Eq.,(9) in
time, rather than bypassing it through Eq.,(10), we obtain X'+ = 72AX" + (1 — 72)X! + (X! —
X!=1). Ignoring the difference in the constant coefficient (72), compared to the purely diffusive
update rule, this wavy update rule includes an additional term, (X! — X'~1) which represents a
change in the hidden states similar to velocity. In other words, this can be understood as incorporating
momentum into the update process. By preserving past state changes, this mechanism prevents
excessive smoothing of node features across layers, allowing richer information to propagate and
mitigating over-smoothing.

Also, combinations of first-order diffusion and second-order wave dynamics can be employed. One
option is to blend the outputs of the conventional (diffusive) attention layer and the proposed wav
attention layer: X!*1 = AXUEL (1 — X) X4 where X441 and XL EL | are given by Egs. (11)
and (8), respectively. The mixing vector A € [0,1]% is defined as A = sigmoid(@), with € R?
a trainable parameter vector. Alternatively, the velocity update in Eq. (TI)) can be replaced by
Y = A[r(A-DX' +Y!] + (1 - A)(A —I)X'. Although Y is somewhat physically unnatural
due to mixing dimension-inconsistent two terms, we can regard it pragmatically as the layer-to-layer
state change by combining diffusive and wavy components controlled by A.

3.3 Physically Consistent Layer Normalization and Feed-forward Network

Beside attention module, each transformer block is equipped with a layer normalization and a feed-
forward network. We consider extension of each layer for preserving the physical state-velocity
relationship Y = %—’f.

3.3.1 Layer Normalization for Velocity

r

Layer normalization is formally defined for each d-dimensional feature vectors x;

[:vé’l, xé’z, Cey zé’d] included in I-th layer’s hidden state X' as
! !
;= m(xi) , .
IN(x)) =L "yt 8, (i=1,2,...,n, j=1,2,...,d), (12)
()J 02(Xli)—|—6% i (J)

2
where u(x!) = 52?21 xh i, 0% (xh) = 52?:1 (a:ﬁ] - u(xé)) . And ~; and f3; are learnable
parameters, and € is a small constant for numerical stability. Considering the state-velocity relationship

Y = %—)t(, we can define the corresponding layer romanization for d-dimensional velocity vector

yl= [yé}l, yf’z, ey y§7d] included in Y as follows:
l
LN, (y)) = —=2L_—~. (i=1,2,...,n,j=1,2,...,d). (13)
v(Z)J 02(x§)+e% ()

Based on the relationship, only the scaling parameters (e.g., o%(x!) and «y;) are applied, while the
shit parameters (e.g., p1(x}) and ;) are ignored. In addition, velocity vectors are normalized using
mean and variance of states X' as well.

3.3.2 Feed-forward Network for Velocity

A typical feed-forward network used in transformer architectures is a two-layer fully connected
network. Basically, we can define the FFN output as follows:

FFN(X!) :¢(Xl W, +1bI)W2+1b§, (14)

where W, € R¥? and W, € R?*¢ are the weight matrices, b; € R? and b, € R? are the bias
vectors, and 1 € R" is a vector of ones (used here to broadcast the biases across all rows). Also,
¢(+) is a nonlinear activation function (often ReLU or GELU). Applying this operation transforms
each row of X' (the hidden state of each token) through a two-layer MLP with a nonlinear activation,
resulting in an output matrix of the same size (n x d).

In the same way as the layer normalization, we can straightforwardly define a feed-forward network
for velocity according to the chain rule as follows:

FFN, (Y!) = ¢’ (Xl W, +1 bI)Yl W, W, (15)

where (b/ represents the derivative function of the activation function ¢. Importantly, the velocity is
scaled not only by the weight parameters (e.g., W1 and W) but also by the derivative function ¢ .

4 Related Works

4.1 Mitigating Over-Smoothing: Existing Approaches and This Study

To alleviate the over-smoothing problem, some techniques have been introduced in the fields of
GNNs [35) 1141451 134]] and transformer-based models [43} 29, 128]]. From the viewpoint of dynamical
systems, these approaches can be summarized as some attempts to inject high-frequency disturbance
into hidden states dynamics to prevent over-smoothing. They can be broadly classified into two main
categories: (i) direct injection of high-frequency signals as an external disturbance to prevent conver-
gence toward uniform hidden states (e.g. [43, 29]), and (ii) introduction of intrinsic modifications of
the governing dynamical system that propagate high-frequency modes within the hidden states (e.g.
[35.114]). Almost all existing attempts to alleviate the over-smoothing problem in transformer-based
models belong to category (i). Therefore, this paper offers the first comprehensive discussion of an
intrinsic mechanism to prevent over-smoothing in transformer-based networks.

4.2 Physics-Inspired GNN and Transformers

Our study is complementary to prior physics-inspired GNNs and transformers. Graph-CON [35]] and
PDE-GCN [14]] introduce oscillatory or PDE-motivated updates on sparse graphs; in contrast, we
target complete-graph attention in transformers. Relatedly, Gravina et al.[18] analyze over-squashing
in sparse-graph GNNs, whereas we focus on over-smoothing in all-to-all attention. Deng et al.[9]
introduce Hamiltonian structure into transformers through a loss, while we directly replace the
residual dynamics with a second-order wave update without auxiliary losses (see also HNNs [[19]).

4.3 Baselines for Comparative Study

In our comparative study, we include BERT, DeiT, and DIFFormer as representative baselines for
NLP, CV, and sparse-graph applications, respectively.

BERT: Bidirectional Encoder Representations from Transformers BERT, introduced by Devlin
et al. [[L1], is a deep bidirectional transformer encoder trained with masked language modeling and
next sentence prediction objectives. By conditioning on both left and right context in every layer,
BERT learns rich contextual embeddings that serve as a standard benchmark for a wide range of NLP
tasks. Thus, we chose BERT as the canonical NLP model for comparison.

DeiT: Data-efficient Image Transformers DeiT, proposed by Touvron et al. [39], adapts the trans-
former architecture to vision tasks without massive pre-training. DeiT exemplifies a state-of-the-art
CV transformer, which we use as our baseline model for CV task. Also, we review an ex-
isting over-smoothing mitigation technique [43]]: FeatScale, which re-weights features to boost
high-frequency signals. We then show Wavy Transformer can seamlessly integrate with it to enhance
their performance.

DIFFormer: Diffusion-based Graph Transformers As a representative graph transformer, we
adopt DIFFormer [44] as our diffusion baseline on sparse-graph benchmarks.

S Experiments

In this section, we present a comprehensive experimental evaluation of Wavy Transformer block
for NLP tasks under a BERT-like pretraining framework [11]], measuring (i) pretraining perplexity
(PPL) and MLM accuracy, (ii) fine-tuning performance on GLUE tasks [42], and (iii) over-smoothing
behavior. Moreover, to demonstrate the generality and effectiveness of our approach with other
types of transformer-based backbones DeiT [39], we validate Wavy Transformer on representative
computer vision tasks, specifically ImageNet classification [10]. Also, we evaluated the performance
of Wavy Transformer on sparse-graph benchmark based on DIFFormer [44]. Experiments used
servers with eight V100 GPUs, four L40 GPUs, or four H100 GPUs, selected according to task size.

Model Variants We evaluate two variants of the Wavy Transformer. Both share the same attention
backbone; they differ only in how the velocity residual is realized. Full Wave. A second-order
residual realized with an explicit velocity branch that includes a FFN and a LN on the velocity path
as shown in Figures [I] yielding stronger physical constraints at additional computational costs. Light
Wave. A momentum-only realization that keeps the second-order effect while removing FFN/LN for
velocity. The update is X! = 7AX! + (1 — 7)X' + A(X! — X!~1), where A € [0, 1]¢ controls
the mix between the diffusion part and the wave (momentum) part. Ignoring the coefficient mismatch
between the diffusion term (7) and the momentum term (72), setting A = 0 recovers diffusion-only,
whereas A = 1 corresponds to the wave-only residual. Formal derivations appear in Appendix.

5.1 Experiments: NLP Tasks

Here, we adopt a smaller-scale pretraining setup than standard BERT configurations to facilitate
faster experimentation. The implementation details are given in Appendix [A.1.1]

5.1.1 PPL and MLM Accuracy

First, we present the pretraining results to illustrate the fundamental capacity of each model with
its respective residual connection as a language model. Table|l|summarizes the validation PPL and

Table 1: Validation PPL and MLM accuracy (MLM Acc) after 10k steps. Arrow symbols denote that
lower PPL and higher MLM Acc are better.

Residual PPL () MLM Acc (1)

Diffusion 31.76 44.39 %
Full Wave 31.99 44.52 %
Mix (+Full) 29.00 45.56 %
Mix (+Light) 32.29 44.53 %

Table 2: GLUE results for various models. The highest score for each task is highlighted in bold.
Residual CoLA SST-2 MRPC QQP MNLI-m/-mm QNLI RTE WNLI STS-B Avg.

Diffusion 10.67 83.64 7636 83.96 73.51/74.03 81.63 5295 51.11 5211 64.13
Full Wave 10.64 83.10 76.11 8417 72.10/72.94 80.74 53.67 56.34 3291 62.27
Mix (+Full) 12.07 84.25 7632 83.81 73.04/73.53 81.19 5535 5540 2940 6244
Mix (+Light) 12.77 82.76 76.18 83.89 73.71/73.77 8198 5596 5540 64.76 66.12

MLM accuracy after 10k steps of batch size 64 for each model. Interestingly, while the wavy residual
connection alone just achieves nearly the same-level performance as the diffusive residual connection,
the mixed residual connections outperform both. This suggests that the wavy residual connection
capture fundamentally different or complementary dynamics compared to the usual diffusive residual
connection, and that gating both types of updates together with a trainable A enables the model to
leverage a broader range of interactions than a purely diffusive attention update.

5.1.2 GLUE Fine-tuning Performance

The GLUE [42] benchmark provides a comprehensive suite of natural language understanding
tasks that serve as critical tests for evaluating the performance of pretrained language models. In
our experiment, we fine-tuned each pretrained BERT-like model on each GLUE task dataset for
demonstrating advantages of Wavy Transformer over baseline methods. As summarized in Table 2}
the mixed residual with the momentum-only variant (Mix with Light Wave) attains the best macro
average over the 10 metrics (+1.99 over Diffusion). Gains are concentrated on CoLA, QNLI, RTE,
WNLI, and especially STS-B (+12.65 vs. Diffusion), while remaining competitive on MNLI-m;
minor regressions appear on SST-2, MRPC, QQP, and MNLI-mm. The Mix with Full Wave variant
reaches the top SST-2 but underperforms overall due to a large STS-B drop with the corrected
evaluator. Together with Table[T] these results strongly suggest (i) that Wavy Transformer can capture
different features unattainable by conventional diffusive connections, and (ii) that combining these
different types of features can enhance BERT’s performance on NLP tasks.

5.1.3 Analysis of Over-smoothing

We further conduct the analysis of the over-smoothing behavior for each residual connections.
Especially, we computed the cosine similarity as a measure to investigate the over-smoothing behavior
following [37]]: CosSim = m > £ H:cﬁﬁ For computation of the cosine similarity, we use
data randomly sampled from WIkipedia and BookCorpus as input to the BERT-based pretraining
models fine-tuned on the SQuAD dataset [33]]. Figures 2H3| compare layerwise cosine similarity:
Figure [2] contrasts the difference between diffusive and wavy, and Figure 3] shows the mixed residual
with Full Wave (with 1o shading). As seen in Figure[2] diffusive and wavy residuals exhibit similar
over-smoothing at the 24th layer (means and variances are comparable), but their trajectories markedly
differ: diffusion increases monotonically with depth, whereas wave oscillates and drops near the
final layer, consistent with wave-equation updates. This suggests that diffusive and wavy residual
connections extract fundamentally different types of features from the data, which may be related
to the frequency of hidden states across layers. Figure |3| shows the mixed residual; together with
Tables[I]and [2] this supports that wavy features complement diffusive ones, and that gating them
broadens the feature range and improves performance.

-
o
—-
=]

—e— wave —+— mix

208 diffusion 208
i 2
= =c
F 06 F06
7} %)
[} 3]
go4 %04
z 2
Oo2 i = Oo.2

0.0 0.0

=)

2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Layer index Layer index

Figure 2: Comparison of cosine similarity across Figure 3: Cosine similarity across layers for a mix
layers for diffuse and wave residual connections (+ Full Wave) with 1-sigma interval shading.
with 1-sigma interval shading.

5.2 Experiments: CV Tasks

In this section, we demonstrate the capacity of the proposed approach for CV tasks. All of our
experiments are conducted on the ImageNet dataset [[10] including around 1k classes 1.3M images in
the training dataset and 50k images in the validation set. Also, we choose 12-layer DeiT [39] as our
backbone. The implementation details is given in Appendix [A.2.T]

5.2.1 Results of ImageNet Classification

Table[3|summarizes our experimental results. The two rows labeled "Diffusion" in the residual column
are baseline scores taken from [29]]. The other rows with "+ Wave" are our proposed extensions. These
results demonstrate the effectiveness and generality of Wavy Transformer: with almost ignorable
minimal additional parameters, it also consistently improves baseline models in CV tasks.

Table 3: Experimental evaluation of Wavy Transformer block plugged into DeiT [39]. The number
inside the (1 -) represents the performance gain compared with the model without Wavy Transformer
block. The two rows labeled "Diffusion” are baseline results taken from [29]].

Method Residual Input Size #Layer #Param Top-1 Acc (%)
DeiT-Ti Diffusion 224 12 5.7M 72.17
DeiT-Ti Diffusion + Full Wave 224 12 5.7M 72.33 (10.16)
DeiT-Ti Diffusion + Light Wave 224 12 5. 7M 73.09 (10.92)
DeiT-Ti + FeatScale Diffusion 224 12 5.7M 72.35
DeiT-Ti + FeatScale Diffusion + Full Wave 224 12 5.7M 72.62 (10.26)

Quantifying Over-Smoothing. Beyond cosine similarity, we quantify the spectral gap of the attention
matrix and node-feature variance. Wave dynamics show a smaller gap and larger variance on CV
tasks (Tabled)); definitions and additional results on trends of cosine similarity are in Appendix [A.2.7]

Table 4: Over-smoothing diagnostics on CV tasks. Values are calculated over validation images.
Spectral gap is 1 — |\3(A)] for the attention matrix. Lower gap () and higher node (1) indicate
mitigated over-smoothing and Inter-class variance is reported only as an auxiliary separability
measure.

Dynamics Spectral gap (1 — |A2|) Node-feature var. Inter-class var.
Diffusion 0.836 £ 0.00345 2.480 + 0.0778 0.195
+ Full Wave 0.629 + 0.00887 2.609 + 0.0902 0.211
+ Light Wave 0.730 £ 0.00842 2.109 £ 0.0696 0.308

5.2.2 Scaling to Deeper Models

We additionally evaluate CaiT-XXS-24 on ImageNet- 1K under the same training recipe as the baseline
[40]]. The wave residual improves Top-1 accuracy by 1.0 point. The 0.9M parameter reduction arises
solely from omitting extra class-attention block; all other settings remain unchanged (Table|[3).

Table 5: ImageNet-1K (CaiT-XXS-24). Numbers in (1 -) indicate Top-1 gain over the diffusion-only
baseline. The training recipe and input resolution are identical to the baseline [40].

Method Residual Input Size #Layer #Param Top-1 Acc (%)
CaiT-XXS-24 Diffusion 224 24 12.0M 77.6
Wavy Transformer Diffuse + Full Wave 224 24 11.1IM 78.6 (1 1.0)

5.3 Experiments: Sparse-Graph Tasks

We further evaluate on OGBN-Arxiv and OGBN-Proteins [23] using DIFFormer [44] under the
authors’ training protocol and hyperparameters. Diffusion denotes vanilla DIFFormer; + Light Wave
denotes addition of our momentum-only wave residual. Table [6] highlights representative depths.
Complete results are provided in Appendix[A.3.2] + Light Wave substantially mitigates depth collapse
on OGBN-Arxiv and delivers a consistent ROC-AUC gain on OGBN-Proteins.

Table 6: OGB highlights (mean + standard deviation over 3 seeds). Arxiv reports accuracy and
Proteins reports ROC-AUC; all values are percentages. A denotes absolute improvement.

Dataset Metric T #Layer Diffusion + Light Wave A

OGBN-Arxiv Acc 7 2444 £451 66.73 +0.33 +42.29
OGBN-Proteins ROC-AUC 5 69.42 £2.31 80.14 +0.67 +10.72

5.4 Computational Cost

For cost-sensitive settings, we adopt the momentum-only variant (Light Wave), which preserves
the second-order residual with negligible overhead. On both BERT and DeiT-Tiny, throughput and
memory stay within a few percent of the diffusion baseline (Table[7); complete cost tables, including
the Full Wave variant, are provided in Appendix [A.4]

Table 7: Computational efficiency of each residual connections on 4 Nvidia V100.

Model Variant Inference Training Peak GPU Mem
BERT Diffusion 101.6 415.6 18.31
BERT Light Wave 101.3 436.2 18.69
DeiT-Tiny Diffusion 2631.1 618.6 8.25
DeiT-Tiny Light Wave 2644.2 617.6 9.14

6 Conclusions

In this paper, we investigated the dynamics embedded in attention layers from the viewpoint of graph
neural diffusion and introduced Wavy Transformer. We first established an equivalence between the
intrinsic dynamics driven by attention layers and a graph neural diffusion on a complete graph. From
this perspective, the over-smoothing behavior can be understood as the dissipative nature of diffusion.
Based on this insight, we proposed Wavy Transformer, which can be seamlessly integrated into
standard diffusive transformer architecture. Our extensive experiments on NLP, CV, and sparse-graph
tasks showed that it can capture feature dynamics that is qualitatively different from those driven by
conventional transformers, and that integrating it into existing models enhances performance without
increasing the number of training parameters or requiring additional hyperparameter tuning. We
believe this work represents a first step toward a physics-inspired design of transformer architecture.

10

Acknowledgement

A part of numerical simulations were conducted using Earth Simulator at JAMSTEC.

References

(1]

[2

—

(3]

[4

—_

(5

—

[6

—_

(7]

[8

—

[9

—

(10]

(11]

[12]

[13]

(14]

[15]

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Luci¢, and Cordelia Schmid. Vivit: A
video vision transformer. In IEEE/CVF International Conference on Computer Vision, pages 6836-6846,
2021.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Lio, and Michael M. Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in GNNs. In Advances
in Neural Information Processing Systems, pages 18527-18541, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, pages 1877-1901, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision,
pages 213-229, 2020.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and Emanuele
Rossi. Grand: Graph neural diffusion. In International Conference on Machine Learning, pages 1407-1418,
2021.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-
diffusion networks. In International Conference on Machine Learning, pages 5722-5747, 2023.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-x1: Attentive language models beyond a fixed-length context. In Annual Meeting of the
Association for Computational Linguistics, 2019.

Tingting Dan, Jiaqi Ding, Ziquan Wei, Shahar Z Kovalsky, Minjeong Kim, Won Hwa Kim, and Guorong
Wau. Re-think and re-design graph neural networks in spaces of continuous graph diffusion functionals. In
Thirty-seventh Conference on Neural Information Processing Systems, pages 59375-59387, 2023.

Congyue Deng, Brandon Y. Feng, Cecilia Garraffo, Alan Garbarz, Robin Walters, William T. Freeman,
Leonidas Guibas, and Kaiming He. Denoising hamiltonian network for physical reasoning, 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248-255,
20009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171-4186, 2019.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: pure attention
loses rank doubly exponentially with depth. In International Conference on Machine Learning, pages
2793-2803, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph neural networks
motivated by partial differential equations. In Advances in Neural Information Processing Systems, pages
3836-3849, 2021.

Lawrence C. Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.

11

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical perspective on
transformers. arXiv preprint arXiv:2312.10794, 2023.

Francesco D. Giovanni, James Rowbottom, Benjamin P. Chamberlain, Thomas Markovich, and Michael M.
Bronstein. Understanding convolution on graphs via energies. Transactions on Machine Learning Research,
2023.

Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane Schonlieb. On
Oversquashing in Graph Neural Networks Through The Lens of Dynamical Systems. In The 39th Annual
AAAI Conference on Artificial Intelligence, volume 39, pages 16906-16914, 2025.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32, 2019.

Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural networks:
Neural diffusion and beyond. Transactions on Machine Learning Research, 2024.

Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. Graph laplacians and their convergence on
random neighborhood graphs. Journal of Machine Learning Research, 2007.

Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng Chau,
Mohammed J. Zaki, and Dmitry Krotov. Energy transformer. In International Conference on Neural
Information Processing Systems, pages 27532-27559, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make one strong
gan, and that can scale up. In Advances in Neural Information Processing Systems, pages 14745-14758,
2021.

Andrej Karpathy. nanoGPT: The simplest, fastest repository for training/finetuning medium-sized GPTs.
https://github.com/karpathy/nanoGPT,

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE/CVF International
Conference on Computer Vision, pages 10012-10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

Tam Nguyen, Tan Nguyen, and Richard Baraniuk. Mitigating over-smoothing in transformers via regular-
ized nonlocal functionals. In Advances in Neural Information Processing Systems, pages 80233-80256,
2023.

Tam M. Nguyen, Tan M. Nguyen, and Richard Baraniuk. Mitigating over-smoothing in transformers
via regularized nonlocal functionals. In Conference on Neural Information Processing Systems, pages
80233-80256, 2023.

Tuan Nguyen, Hirotada Honda, Takashi Sano, Vinh Nguyen, Shugo Nakamura, and Tan Minh Nguyen.
From coupled oscillators to graph neural networks: Reducing over-smoothing via a Kuramoto model-based
approach. In International Conference on Artificial Intelligence and Statistics, pages 2710-2718, 2024.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Yehuda Pinchover and Jacob Rubinstein. An introduction to partial differential equations, volume 10.
Cambridge university press, 2005.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Conference on Empirical Methods in Natural Language Processing,
pages 2383-2392, 2016.

T. Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in graph
neural networks. arXiv preprint arXiv:2303.10993, 2023.

12

https://github.com/karpathy/nanoGPT

[35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

T. Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
Graph-coupled oscillator networks. In International Conference on Machine Learning, pages 18888-18909,
2022.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations. Journal
of Mathematical Imaging and Vision, pages 352-364, 2020.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen M. S. Lee, and James
Kwok. Revisiting over-smoothing in BERT from the perspective of graph. In International Conference on
Learning Representations, 2022.

Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered GNN: Ordering message pass-
ing to deal with heterophily and over-smoothing. In International Conference on Learning Representations,
2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve Jegou.
Training data-efficient image transformers & distillation through attention. In International Conference on
Machine Learning, pages 10347-10357, 2021.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper
with image transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 32-42, October 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, 2019.

Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-oversmoothing in deep vision
transformers via the fourier domain analysis: From theory to practice. In International Conference on
Learning Representations, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer: Scalable
(graph) transformers induced by energy constrained diffusion. In The Eleventh International Conference
on Learning Representations, 2023.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-based
graph neural networks. In Conference on Neural Information Processing Systems, pages 35084-35106,
2023.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pages 10524-10533, 2020.

Haruo Yoshida. Construction of higher order symplectic integrators. Physics letters A, 150(5-7):262-268,
1990.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and Jiashi
Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading
books. In IEEE International Conference on Computer Vision, pages 19-27, 2015.

13

A Experimental Details and Additional Results

A.1 NLP Tasks
A.1.1 Implementation Details

Following [[11]], we construct a English corpus from Wikipedia [11]] and BooksCorpus [50], splitting
it into 95 % training and 5 % validation data. We tokenize using a WordPiece-like tokenizer (30k
vocabulary). The WordPiece embedding [46] and the dictionary containing 30,000 tokens [[11] are
used in our paper. To pre-process text, we use the special token [CLS] as the first token of each
sequence and [SEP] to separate sentences in a sequence. Each sequence is up to 128 tokens, with
masked language modeling (MLM) applied to 15 % of tokens and next sentence prediction as a
binary classification of segment continuity.

We implement three types of models with different residual connections such as diffuse, wave,
and mix in a 24-layer BERT with hidden size 256 and 4 attention heads based on Post-LN Wavy
Transformer blocks. As for feed-forward layer, we set the intermediate size to 1024. For both wave
and mixed residual connections, we set the time interval to 7 = 0.5 unless stated otherwise. In
this experiment, the mixing coefficient was defined as A = sigmoid(6), with € being a single scalar
parameter initialized to 0; consequently, the same) is shared across all feature dimensions. For the
mixing strategy with Full Wave, we adopt the velocity-based variant: Y™ = A[7(A -)X'+Y']| +
(1= X)(A —I)X!. As a optimizer, we use AdamW [27] with learning rate 5.0 x 10~°, warm-up for
first 10 % of steps, then linear decay to step 10k. Also, we evaluate every Sk steps on the validation
set, reporting PPL and MLM accuracy.

The hyper-parameters of various downstream tasks are shown in Table|[§]

Table 8: Hyper-parameters for different downstream tasks.
GLUE SQuAD

Batch size 32 16
Weight decay [0.1,0.01] [0.1,0.01]
Warmup proportion 0.1 0.1
Learning rate decay linear linear
Training epochs 3 3
Learning rate 0.00005 0.00005

A.1.2 MLM Convergence

As shown in Table[9] adding wave terms yields a mild speedup—Mix (+Full) leads early (e.g., +2.6
at 40k and +1.7 at 60k vs. Diffusion)—while Full Wave largely tracks Diffusion thereafter. In short,
wave tends to accelerate convergence slightly, but the residual choice does not substantially alter the
overall convergence behavior.

Table 9: MLM accuracy vs. steps.
Model 0 20k 40k 60k 80k 100k
Diffusion 0.0 1738 3299 40.88 4351 4439

Full Wave 0.0 18.40 33.48 40.80 43.67 44.52
Mix (+Full) 0.0 19.40 35.56 42.60 44.77 45.56

A.2 CV Tasks

A.2.1 Implementation Details

To demonstrate that our proposed approach are beneficial to CV tasks, we choose 12-layer DeiT [39]
as our backbone. Also, for evaluating its consistency with the other remedy to avoid over-smoothing,
we combine our approach with existing technique such as FeatScale [43]. When we use 12-layer

14

1.0 1.0
%, 0.8 'E’ 0.8
~ 1=
= =
g 0.6 g 0.6
0 0
g o4 g o4
%] %]
]]
Co2 —— Wave Co.2 —— Wave
DeiT --+-- Wave+FeatScale
0-0 2 4 6 8 10 12 0-0 2 4 6 8 10 12
Layer index Layer index
(a) Comparison between cosine similarities with 1- (b) Comparison between cosine similarities with 1-
sigma interval shading of the conventional DeiT and sigma interval shading of the DeiT integrated with
the DeiT integrated with Wavy Transformer based Wavy Transformer based on Full Wave variant with
on Full Wave variant. and without FeatScale.

Figure 4: Comparisons of cosine similarities with 1-sigma interval shading for several DeiT-based
models.

DeiT, we follow the same training recipe, hyper-parameters, and data augmentation with [39,43]]. We
implemented DeiT based on Pre-LN Wavy Transformer blocks considering that original DeiT is based
on Pre-LN Transformer block. We set 7 = 0.5, and we select X!*1 = AX L + (1 — X) Xé?}fluse, as
the mixing strategy with Full Wave and initialize the gating parameter X as an all-zero vector whose
length equals the dimension of the hidden states in the mix variant.

A.2.2 Analysis of Over-smoothing for DeiT-based models

Figure [] plots similarity curves for the standard DeiT, DeiT integrated with Wavy Transformer based
on Full Wave variant, and Wavy Transformer + FeatScale variant with 1-sigma interval shading. The
results clearly show how Wavy Transformer reshapes feature dynamics relative to the conventional
DeiT. Integrating FeatScale slightly reduces over-smoothing overall, although its final-layer cosine
similarity remains marginally higher than that of Wavy Transformer alone.

A.2.3 Computation of spectral gap and variance metrics

We complement Figure [d] by detailing how we compute the three diagnostics used in the main text
(Table[d). Results for spectral gap, node-feature variance, and inter-class variance are reported in the
main paper; the definitions here are for reproducibility.

Spectral Gap For each image, we average multi-head attention over heads to obtain a row-/right-
stochastic matrix A € R™*™ of the final layer. Let {\;}!_, be the eigenvalues of A ordered by
magnitude. The per-sample spectral gap is

6 = 1—[X(A)],

computed by taking the second-largest eigenvalue magnitude of A (via an eigen decomposition of the
head-averaged A), then averaged over the validation set. Smaller indicates weaker mixing and thus
less over-smoothing.

Node-Feature Variance Let X € R"*9 be the token (patch) embeddings from a designated layer
at evaluation time. We compute the variance across tokens after the final LN for each channel and
then average across channels:

d
1
NodeVar = p Z Vari=1. . (Xw)
=1
We report the mean of this scalar over validation images.

15

Inter-Class Variance Let K be the set of classes. Tokens inherit their image labels; for each k € IC,
define the class centroid i, as the mean token embedding. We then compute the variance across class
centroids and average over channels:
14
InterClassVar = p Z Varyex (NM)-
j=1

This measures feature separability (often correlating with accuracy) and is not used as an over-
smoothing diagnostic.

A.2.4 Ablation of FFN for Velocity

Table [10] shows the result of ablation of FEN for velocity. In the Full Wave setting, the FFN for
velocity yields a modest but consistent gain (+0.53 Top-1), indicating its effectiveness. However,
considering the added computational cost, the momentum-only Light Wave is the more practical
choice for cost-sensitive use (see Appendix [A.4).

Table 10: Ablation: removing Velocity-FFN (DeiT-Tiny, 150 epochs).

Configuration Top-1 (%) A
Full Wave (diff+wave+FFN+LN) 68.92 -
Without FFN for velocity 68.39 -0.53

A.3 Sparse-Graph Tasks
A.3.1 Implimentation Details

We use the momentum-only Light Wave residual for all sparse-graph experiments; the mixing
coefficient) is set as a scalar parameter initialized to O at the start of training and optimized jointly
with the network. All other settings follow the DIFFormer protocol unless otherwise noted. Also,
we adopt the DIFFormer [44]] definition of diffusion mixing 7. This is corresponding to the time
interval 72 in Wavy Transformer. Thus, throughout we control both with a single knob and report 7;
see Appendix [B]for more details.

A.3.2 OGSB: full results and T-robustness

We report complete results across depths and the coefficient 7. At larger 7, diffusive stacks exhibit
collapse at depth, whereas the wave residual mitigates it (Table[TT).

Table 11: OGB results (3 seeds). Arxiv: accuracy (%); Proteins: ROC-AUC (%).

Dataset Depth Diffusion + Light Wave A

Arxiv 3 68.77 £ 0.28 66.68 £ 0.66 -2.09
Arxiv 5 6172+ 1.11 67.06 +0.03 +5.34
Arxiv 7 2444 £ 451 66.73 £0.33 +42.29
Proteins 3 79.26 £0.40 79.58 £ 0.27 +0.32
Proteins 5 69.42 +£231 80.14 +£0.67 +10.72

A.3.3 Citation Graphs Benchmark

In Tables[12]and[I3] we report full results under two mixing regimes, 7=0.2 (moderate) and 7=0.5
(strong neighbor mixing), using the same protocol and hyperparameters; numbers are mean and
standard deviation across 5 seeds. Across datasets, + Light Wave matches Diffusion at shallow depth
and markedly stabilizes deeper stacks: at 7=0.2 it reverses collapse on Cora/PubMed at 20 layers,
with a single significant drop at PubMed 16 layers; at 7=0.5 the diffusive baseline collapses broadly,
while + Light Wave mitigates collapse on Cora 12 layers and PubMed 12/20 layers (both variants
collapse on Cora 20 layers and Citeseer 10 layers). Significance symbols follow the captions (f: no
significant change; V: significant drop; {: both models collapse).

16

Table 12: Citation graphs at 7 = 0.2 (5 seeds). {: paired ¢-test p > 0.05; ¥: only significant drop.

Dataset Depth Diffusion + Light Wave A

Cora 4 80.02 +£0.29 7854+ 1.14 —1.48f
Cora 16 8328 £0.76 8422 +0.94 +0.94
Cora 20 3992 +£5.14 8518 +048 +45.26
Citeseer 4 72.04 £ 0.25 71.74+027 -0.30f
Citeseer 8 62.86 £ 17.73 69.32 £13.26 +6.46
Citeseer 10 3476 £ 144 3492+249 +0.16
PubMed 4 7574 £0.73 7476 +£1.15 -0.987
PubMed 16 80.46 £ 0.84 78.86 £0.62 -1.60V
PubMed 20 58.68 £2.73 7922+ 093 +20.54

Table 13: Citation graphs at 7 = 0.5.

1: both models collapse.

Dataset Depth Diffusive + Light Wave A

Cora 12 29.40+£0.00 60.38 +£24.7 +31.0
Cora 20 29.40 +0.00 29.00+0.00 +0.0
Citeseer 10 2294 +031 22844217 -0.10¢
PubMed 12 49.16 £9.70 69.74 +15.7 +20.6
PubMed 20 29.70 £0.00 40.10+£0.84 +104

A.3.4 Cosine similarity across depth

To quantify over-smoothing for sparse-graph benchmarks, we track the pairwise cosine similarity
between node embeddings after each layer in a 20-layer stack on Cora with 7 = 0.2. We report means
over 5 seeds. Higher values (approaching 1.0) indicate stronger representation collapse within a
layer. As shown in Table[I4] the diffusion-only residual rapidly saturates to ~1.00, whereas the wave
residual maintains substantially lower similarity across depth, preserving representation diversity.

Table 14: Layer-wise pairwise cosine similarity across node features on Cora (20 layers; 5 seeds).
Higher means more over-smoothing.

Model Layer 1 Layer4 Layer8 Layer12 Layer 16 Layer 20
Diffusion 0.99 1.00 1.00 1.00 1.00 1.00
Wave 0.31 0.058 0.087 0.13 0.23 0.38

A.4 Full Results of Computational Cost

In Tables[I5]and [I6 we report full runtime and memory measurements for three residual variants
under the same training scripts and hyperparameters as the accuracy experiments. Metrics include
inference throughput (k tokens/s for BERT; img/s for DeiT-Tiny), training iteration time (ms/iter),
and peak GPU memory (GB), all on 4xV100. Only the residual dynamics are changed, isolating
their compute impact.

A.4.1 Throughput-Accuracy Trade-off Comparison for Full Wave Branch

Table [I7]compares the inference throughput (images/s) of various transformer variants, measured on
the ImageNet validation set using V100 GPUs and a batch size of 256. Introducing wave dynamics
(Diffuse+Wave or Wave alone) reduces throughput by roughly 50% from about 2 600 to 1200-1 300
images per second which may pose a limitation in real-time applications. However, this slowdown
must be balanced against the gains in representational power and accuracy that wave-enhanced
models provide. A simple mitigation is to insert wavy blocks in only a subset of layers to recover part
of the lost throughput. Concretely, replacing only the last six blocks with wavy blocks (Wave (6))

17

Table 15: BERT: runtime and memory on 4 x V100.

Variant Inference (k tokens/s) Training (ms/iter) Peak GPU (GB)
Diffusion 101.6 415.6 18.31
+ Full Wave 63.3 1031 28.71
+ Light Wave 101.3 436.2 18.69

Table 16: DeiT-Tiny: runtime and memory on 4x V100.

Variant Inference (img/s) Training (ms/iter) Peak GPU (GB)
Diffusion 2631.1 618.6 8.25
+ Full Wave 1312.2 1023.4 20.31
+ Light Wave 2644.2 617.6 9.14

increases throughput by about 33 % relative to the full Diffuse+Wave with FeatScale variant (1 649
img/s vs. 1241 img/s) while sacrificing 0.18 pt in Top-1 accuracy (72.44 % vs. 72.62 %). In this
experiment, the velocity tensor was initialized to zero at the first wavy block.

Table 17: Inference throughput and accuracy on ImageNet. Wave (6) indicates that wavy blocks are
inserted only in the final six layers.

Model Residual Connections ~ Throughput Top-1 (%)
DeiT-Ti [39]] Diffusion 2632.1 72.17
DeiT-Ti + FeatScale [43]] Diffusion 2483.2 72.35
DeiT-Ti Diffusion+ Full Wave 1266.0 72.33
DeiT-Ti + FeatScale Diffusion+ Full Wave 12414 72.62
DeiT-Ti Full Wave 1312.2 -
DeiT-Ti + FeatScale Diffuse+ Full Wave (6) 1649.3 72.44

A.5 Wavy Transformer under causal attention

For supplemental information, we test the Light Wave residual under strictly causal attention using
nanoGPT [25]]. We use the OpenWebText dataset and initialize from an OpenAl GPT-2 checkpoint,
keeping the standard GPT causal mask and training loop unchanged. During fine-tuning, we use
a batch size of 1 with gradient accumulation over 32 steps; training runs for 50 iterations with a
learning rate of 3 x 10~ and learning-rate decay enabled. Under this setup, the best validation
loss, averaged over three seeds, was 3.0178 for the Light Wave mix (scalar)\ initialized to 0) versus
3.0196 for the diffusion baseline—an absolute gap of 0.0018 (= 0.06%); while the Light Wave mix
is slightly better, we do not observe a meaningful difference in validation loss. A more comprehensive
assessment under causal masking requires substantially longer training; we therefore view this as
worthwhile future work, related to potential over-smoothing in causal-attention Transformers. From
a diffusive-dynamics perspective, the attention matrix acts as a diffusion-coefficient matrix; under
causal masking it becomes strictly unidirectional along the sequence, so causal attention can be
viewed as diffusion on a directed complete graph with unidirectional edges.

B Implementation Details of Light Wave

As shown in Section[3.2] if we directly discretize Eq. (9) in time, rather than bypassing it through
Eq. (1I0), we obtain

X = 22AX (1 -)X 4 (X - X, (16)
This equation can be seen as adding the momentum term (X! — X!~1) into the usual diffusive
attention without considering the coefficient 72. Also, if we consider to blend the outputs of the
diffusive attention layer and the proposed wavy attention layer:

Xl+1 =)\th + (1 -)‘) Xé}?fise’

wave

18

where the mixing vector X € [0, 1]% is defined as A = sigmoid(8), with @ € R a trainable parameter
vector.

Decoupling ™ Across Diffusion and Wave. Let 74 and 7, be the (possibly different) time intervals
used in the diffusive and wavy paths, respectively. Substituting

X o= (1 — 1) X' + 74 AX', (17)
Xihe = (1= m0) X + 70 AX! (X = X7, (18)

into the blend gives the elementwise form
X = 1-p) X +pAX + AX =XITY, p= A2+ (1N (19)

Equation (19) shows that it is not necessary to strictly match 7 between the two paths: only the
effective diffusion mix p and the momentum weight A govern the update. Equivalently, by reparame-
terizing with a single knob 7 := p € [0, 1], the update reduces to the Light Wave form used in our
experiments.

C Energy Evolution in Diffusion and Wave Systems

We provide the fundamental theorems [[15} [14} 36] that characterize behavior of Eqs.@ and @]):
energy dissipation in the diffusion equation and energy conservation in the wave equation.
Theorem 1 Consider a solution to the diffusion equation. Then, the following holds:
d
dt

which implies that the norm of the solution is monotonically non-increasing in time.

(2(s,1))%ds = 72/ |V (s, t)|?ds <0,

Theorem 2 Define the energy functional for x = (s, t) which is a solution to the wave equation

B(t) = %/ [(ax;’t)>2+|V1’(s,t)|21 ds.

Then, under suitable smoothness and boundary conditions, we have:

d
ZE(t) =0.

so E(t) is constant in time.

D Appendices of Difference Between Pre-LN and Post-LN

In this section, we discuss the analytical and implemental difference between Pre-LN and Post-LN.
This section provides a concise review of the differences between Pre-LN and Post-LN, presents
a physical interpretation of Pre-LN attention as a diffusion—reaction process, and details of the
computational flow of Pre-LN and Post-LN Wavy Transformers.

D.1 Pre-LN vs. Post-LN

Figure [5] contrasts the computational flows of the Post-LN and Pre-LN Wavy Transformers. The
critical difference is whether LN is applied inside or outside the residual connection. For reference,
Table [T8] compares the core computational flows of standard Post-LN and Pre-LN transformer blocks;
the table was compiled with reference to [47]. In a Post-LN Transformer (the original Vaswani
et al. design [41]]), each attention or FFN is applied first, and then LN is performed on the sum
of the sub-layer output and the residual shortcut. This keeps the summed output “clean”, but it is
known to slow or destabilize training [47]. In a Pre-LN Transformer, each block first normalizes
its input with LN and then applies the sub-layer (self-attention or feed-forward) before adding the
residual connection, in contrast to the original “Post-LN”’ design that normalizes after the addition.
Placing LN at the block’s entrance ensures every sub-layer receives standardized inputs. In the case
of Pre-LN, it is reported that the gradient are well-behaved at initialization [47].

19

(Xl+1,Yl+1) (Xl+1,Yl+1)

Feed
Forward

Layer
Normalization

Feed Layer
Forward Normalization

A

Layer Add
Normalization
Multi-Head
Attention
Multi-Head Layer

Attention Normalization
—

(@) (b)
Figure 5: (a) Post-LN Wavy Transformer layer; (b) Pre-LN Wavy Transformer layer.

Table 18: Post-LN Transformer vs. Pre-LN Transformer

Post-LN Transformer Pre-LN Transformer
X! = Attn(X) Xb1 = LayerNorm(X')
X2 = X! 4 X! X2 = Attn (X!1)

Xh3 = LayerNorm(Xl’Q) X3 =X 4 Xh2

Xt = FEN(X!3) X4 = LayerNorm(X"3)
XU = XU3 4 X4 Xb5 = FEN(X!4)

X!*1 = LayerNorm(X"?)) GEED LN ¢

XFinal < LayerNorm (Xl'H)

D.2 Pre-LN vs. Post-LN Implementations in Wavy Transformer

For considering Wavy Transformer with Full Wave setting, the difference between Pre-LN and
Post-LN [47] is not trivial. Therefore, this section examines the implementation differences between
Pre-LN and Post-LN in the context of Wavy Transformer. Building on the Pre-LN and Post-LN
baseline implementations shown Table we construct Post-LN and Pre-LN versions of Wavy
Transformer, whose details are summarized in Table[I9] Conceptually, Wavy Transformer replaces
the conventional residual update based on diffusive dynamics with one governed by wavy dynamics.

When the wavy residual update is combined with the conventional (diffusive) attention, the choice
between Pre-LN and Post-LN becomes especially significant: a mismatch in normalization placement
can disrupt the balance between the wavy and diffusive paths and degrade accuracy. Consequently,
the LN configuration of wavy branch must be aligned with that of the diffusive branch to achieve
the intended performance improvements. In our NLP experiments, we adopted Post-LN Wavy
Transformer. Conversely, because DeiT [39] is built on a Pre-LN backbone, we used Pre-LN Wavy
Transformer for all DeiT-based CV experiments.

20

Table 19: Post-LN Wavy-Transformer vs. Pre-LN Wavy-Transformer

Post-LN Wavy-Transformer Pre-LN Wavy-Transformer

Xhl = Attn(Xl) XU7 Yl = LayerNorm(Xl7Yl)

Yil = 7'(Xl*1 — Xl) +Y! xXh? = Attn(Xl’l)

Xl’l — TYl’l + Xl Yl’2 — T(xl,Q _ Xl) —|—Yl

XH2 yh? = LayerNorm(Xl’l, Yl’l) X3 = rYyh? 4 X!

X3 yh? = FFN(XZ’27YZ’2) XA yls = LayerNorm(Xl’S, Yl’2)
Xl’4 _ Xl,2 + Xl,S Yl,4 _ Yl,2 + Yl,3 Xl,5 Yl,4 _ FFN(xlA Yl,B)

X1, Y = LayerNorm (X'?, Y!?) X = X5 4 X3, Y = yhd 4yl

XFinal; Y Final < LayerNorm (Xl+l s YH_1)

D.3 Attention with Pre-LN as graph neural diffusion with reaction term

In Section[3] it is shown that the attention with Post-LN can be straightforwardly considered as a
graph neural diffusion. In addition to that, we show that attention with Pre-LN also can be regarded
as a graph neural diffusion. First of all, attention with Pre-LN can be formalized as follow:

X = Attn(LN(XY)) + X (20)
We compactly write LN transformation in matrix-form as

LN(X) =X =X7'XS + M, (21)
where 3 := diag(m) € RS = diag(vj) € RIX4 Also, M 1= — (£)4T + 1,81 €

RnXda where B = (/’le s 7Mn)T’ g = (017 cee 7071)T’ Y= (717 s 7’7(1)T’ andﬁ = (/817 s 76d)—r‘
Using this representation, we can obtain

. X X TN .
Attn(X) = softmax XW,(XWi) XWy (22)
Vd
= AX'XSWy + MWy, (23)
= (AZ7'XS+ M)Wy (24)

where A = softmax (%\/EWK)T) and M = AM. Therefore, attention with Pre-LN described
in Eq.(20) can be written as

Xt = (AZ'XS + M)Wy + XL (25)

On the other hand, consider the graph neural equation with an external source term and a reaction
term as follows
oxX

ot
For simplicity, we temporarily ignore the feature transformation by Wy, . Straightforwardly, consider-
ing discretization of this equation with 7 = 1.0 recover the update rule of the attention with Pre-LN
written as Eq.(23). The continuous counterpart can be considered as the following the diffusion
equation with an external source term and reaction term:

(A-1)=7'XS + M+ E7'XS. (26)

0 t
M = div (D Va(s, t)) +b(u,t) — k(u,t) . (27)
ot —_—) S
diffusion source reaction

In some cases, Pre-LN Transformers have been shown to outperform their Post-LN counterparts
[47]. Furthermore, in GNNSs, incorporating diffusion-reaction dynamics has led to performance
gains [6]. Together with the interpretation of Pre-LN attention as a diffusion—reaction process, these
findings suggest that the superiority of Pre-LN arises from the implicit dynamics it introduces, which
help mitigate over-smoothing and enhance model performance. In this sense, a physical-dynamics
perspective offers a promising basis for clarifying transformer behavior.

21

E Intuitive Explanation of Over-smoothing

The graph diffusion equation [5] can be rewritten as

%—)::AXfX:XfX. (28)
Here, we define the attention-weighted average of the hidden states as X = AX, where A is right-
stochastic matrix. This relation clearly explain why transformers suffer from over-smoothing: if
some a hidden state X exceeds its attention-weighted average X, it is driven downward, whereas
if it falls below X, it is pulled upward. Consequently, as the hidden states propagate through many
layers, an effect analogous to integrating the diffusion process over a long time, every component
X converges toward the common value characterized by X. The farther a token is from that local
mean, the stronger the restoring force, so high-variance patterns disappear first. What remains is
the slowly changing, globally coherent structure, which is exactly the smoothing effect in the neural
graph diffusion. We can summarize as follows. Discretization of Eq. (28) gives:

XM X =r(Xl-X}), 0o<7r<1. (29)
By simple case analysis:
<0, X}>X}
Xz'lH X! = T(Xil _ Xil) =0, X!=X/ (30)
>0, X! <Xl
Hence each step strictly reduces the deviation from the mean:
|Xil+1*xil|:(1*7')|xil*xil| < |X1:I*Xil|- €1y

F Energy Evaluation in Diffusion and Wave Dynamics on Graphs

In this section, to indicate an intuitive discussion of diffusion and wave dynamics on graphs from an
energetic viewpoint, we assume here time-independent attention matrix A (e.g. A;; = A(X?, X?)
using the initial features) and impose the symmetry condition A;; = Aj;. These simplifying
assumptions do not hold exactly in real transformers; they are introduced here solely for analytical
simplicity and an intuitive understanding of their hidden-state dynamics. Note that this section
presents the discrete-graph analogue of Appendix [C|and should be compared with it.

Graph Neural Diffusion as Gradient Flow Consider the following potential energy:

1 T
v =5 Z Xi (I-A);X;. (32)
i.j
Here, the gradient of U(X) with respect to X is
oU (X) 1
[X L - Q(ijlk (I-A)i; X, +;XZT (I—A),; Ijk) (33)

J
where 1 is identity matrix and we used the symmetry condition A;; = A ;. Therefore, the graph
neural diffusion can be written as ox oU(X)
ot oxX (35)
This shows that the hidden-state dynamics in transformers, which implicitly rely on graph neural
diffusion, can be interpreted as the gradient flow of the potential energy in Eq. (32). A similar
discussion appears in [29] 22]], and a more general mathematical discussion is given in [[16].

Let the node features X evolve according to the graph neural diffusion in Eq. (7). Using the symmetry
of A and the row-stochastic condition) | j A;; = 1, we can rewrite the potential as

1
UX) =1 D Ay lIX; - X, (36)

0]

22

where || X; — X;||2 = (X; — X;) T (X; — X;). Taking the time derivative along the gradient flow
yields
? 2

= —[[a-A)X[" <o (37)

o _(mon o oo

where (-, -) denotes the Frobenius inner product, i.e., (Y, Z) = tr(Y " Z). If we define the attention-
weighted average X = AX (cf. Appendix , then

AU (X)
dt

= - IX-X|? = - Y% - X" (38)

This demonstrates that the graph neural diffusion decreases the potential energy monotonically,
and that U (X) can be interpreted as the sum of squared differences between each feature and its
attention-weighted average, implying convergence toward a uniform state. This provides a clear
explanation for the over-smoothing observed in transformers from the energetic viewpoint.

Energy Conservation of Wave Dynamics on Graphs In contrast to the graph neural diffusion,
wavy dynamics introduced into Wavy Transformer conserve their energy in the same way as continu-
ous dynamics on smooth manifold. To show that, consider the following energy for (X,Y') governed

by Eq.

1 1 .
E(X,)Y) = 5Xij||Yi||2+§_ijXz- (I-A), X, (39)
Taking the time derivative and using X;,=Y;and Y = —(I— A)X, we obtain
dE(X) v N
- ZY Y+ ZX 1-A);X, (40)
= =YY I-A)X;+> Y I-A);X;=0. (41)
i i i

Hence, the total energy £(X,Y) remains constant over time, i.e., throughout the entire forward pass,
demonstrating that the wavy dynamics on the graph exactly conserve energy.

23

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction faithfully represent the paper’s contributions
and scope, with every major claim clearly substantiated by the methods, experiments, and
analyses presented.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper adequately discusses the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

24

Answer: [Yes]

Justification: The paper lists every assumption and supplies full and correct proofs for each
theoretical result.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper gives necessary detail to reproduce the main experiments and verify
its claims.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code were supplied to reviewers as an anonymous zip archive, and full
public links will be added in the camera-ready version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper writes out every training and test detail including data splits, hyper-
parameters, optimizer choice, and how they were chosen. So, the results are clrer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the paper reports appropriate information about statistical significance of
the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper even enumerates the exact GPU models, so the needed resources
are fully clear.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics in every respect.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: As the study is purely theoretical and currently has no direct social impacts,
the authors did not include an explicit discussion of potential societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets are correctly cited and their terms of use is properly
respected.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

28

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the new assets are well documented and the documentation is provided
alongside them.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The study involves no crowdsourcing or human-subject experiments, so
participant instructions, screenshots, and compensation details are not applicable and were
not provided.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study involves no crowdsourcing or human-subject experiments, SO
participant instructions, screenshots, and compensation details are not applicable and were
not provided.

Guidelines:

29

paperswithcode.com/datasets

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Large language models are not part of the paper’s core methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Attention and Over-smoothing
	Fundamental Dynamics on Manifolds
	Kernel Perspective of Diffusion and Wave Equations

	Wavy Transformer
	Attention as Graph Neural Diffusion
	Wavy Dynamics Based Attention
	Physically Consistent Layer Normalization and Feed-forward Network
	Layer Normalization for Velocity
	Feed-forward Network for Velocity

	Related Works
	Mitigating Over‑Smoothing: Existing Approaches and This Study
	Physics-Inspired GNN and Transformers
	Baselines for Comparative Study

	Experiments
	Experiments: NLP Tasks
	PPL and MLM Accuracy
	GLUE Fine-tuning Performance
	Analysis of Over-smoothing

	Experiments: CV Tasks
	Results of ImageNet Classification
	Scaling to Deeper Models

	Experiments: Sparse-Graph Tasks
	Computational Cost

	Conclusions
	Experimental Details and Additional Results
	NLP Tasks
	Implementation Details
	MLM Convergence

	CV Tasks
	Implementation Details
	Analysis of Over-smoothing for DeiT-based models
	Computation of spectral gap and variance metrics
	Ablation of FFN for Velocity

	Sparse-Graph Tasks
	Implimentation Details
	OGB: full results and tau-robustness
	Citation Graphs Benchmark
	Cosine similarity across depth

	Full Results of Computational Cost
	Throughput–Accuracy Trade-off Comparison for Full Wave Branch

	Wavy Transformer under causal attention

	Implementation Details of Light Wave
	Energy Evolution in Diffusion and Wave Systems
	Appendices of Difference Between Pre-LN and Post-LN
	Pre-LN vs. Post-LN
	Pre-LN vs. Post-LN Implementations in Wavy Transformer
	Attention with Pre-LN as graph neural diffusion with reaction term

	Intuitive Explanation of Over-smoothing
	Energy Evaluation in Diffusion and Wave Dynamics on Graphs

