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Abstract

We introduce LAMPO, a novel paradigm that leverages Large Language
Models (LLMs) for solving few-shot multi-class ordinal classification tasks.
Unlike conventional methods, which concatenate all demonstration ex-
amples with the test instance and prompt LLMs to produce the pointwise
prediction, our framework uses the LLM as a preference machine that makes a
relative comparative decision between the test instance and each demonstra-
tion. A self-supervised method is then introduced to aggregate these binary
comparisons into the final ordinal decision. LAMPO addresses several lim-
itations inherent in previous methods, including context length constraints,
ordering biases, and challenges associated with absolute point-wise es-
timation. Extensive experiments on seven public datasets demonstrate
LAMPO’s remarkably competitive performance across a diverse spectrum
of applications (e.g., movie review analysis and hate speech detection).
Notably, in certain applications, the improvement can be substantial, ex-
ceeding 20% in an absolute term. Moreover, we believe LAMPO represents
an interesting addition to the non-parametric application layered on top of
LLMs, as it supports black-box LLMs without necessitating the outputting
of LLM’s internal states (e.g., embeddings), as seen in previous approaches.

1 Introduction

In-Context Learning (ICL) with few-shot demonstrations, also known as few-shot prompt-
ing, is a prominent approach for multi-class classification using Large Language Models
(LLMs) (Brown et al., 2020). ICL’s remarkable performance and training-free nature, com-
bined with off-the-shelf LLMs (e.g., GPT-4 (OpenAI, 2023) and PaLM2 (Google et al., 2023)),
has significantly reduced the model adaption costs for new tasks and facilitated the concept
of language-model-as-a-service (Sun et al., 2022). Despite these benefits, recent studies
indicate that few-shot prompting can sometimes produce unreliable predictions and maybe
not always outperform zero-shot prompting (Zhang et al., 2023). To understand these
phenomena, extensive research has been conducted, leading to the following insightful
observations:

Restrictive Context Length Limit. Despite extensive research efforts (Ratner et al., 2023;
Press et al., 2021), the input context length limitation remains a major challenge in applying
LLMs in many practical scenarios, especially given limited access to advanced commercial
systems such as Reid et al. (2024). This constraint limits the number of demonstrations that
can be included in a prompt, adversely affecting LLM performance, especially in challenging
tasks with a large label space or long example texts. Also note that supporting long contexts
does not mean the models necessarily perform well (Li et al., 2024) due to issues such as
ordering bias, discussed next.

Destructive Ordering Bias. Recent studies (Liu et al., 2023; Lu et al., 2022) have identified
a pronounced ordering bias in input prompts for LLMs. For standard few-shot multi-class
classification tasks, the arrangement of demonstrations within the prompt can drastically
affect the LLM performance, ranging from near chance to state-of-the-art levels. Address-
ing this issue is inherently complex due to the exponentially increasing combinations of
demonstration orders as the number of examples grows.
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Challenges of Pointwise Estimation. In many applications, pointwise estimation is no-
tably more complex compared to comparative estimation. For instance, resolving pointwise
relevance estimation addresses relevance ranking, but not conversely, a fundamental ob-
servation underpinning the learning-to-rank domain (Liu, 2009). Similarly, in fine-grained
sentiment classification, LLMs may struggle to differentiate subtle sentiment nuances, such
as between “very positive” and “positive”, especially when given limited demonstrations
in unfamiliar domains, or facing instructions not covered in their pre-training or instruction
fine-tuning phases.

This study focuses on ordinal classification (Gutiérrez et al., 2016), an important subset
of multi-class classification problem where the labels possess a natural order. Ordinal
classification has extensive applications such as customer reviews analysis (Zhang et al.,
2022), relevance rating in web search (Thomas et al., 2023), and opinion monitoring in social
media (Barbieri et al., 2020). We propose to use instruction-following LLMs as preference
machines to make pairwise comparisons between the test instance and each demonstration.
In this paradigm, LLMs make comparative, rather than absolute, judgments in the ordinal label
space, and we propose an unsupervised aggregation method to convert these comparison
outcomes into the final ordinal prediction.

We present LAMPO, a novel framework that leverages LArge language Models as Preference
machines for Ordinal classification. LAMPO implicitly addresses the above discussed ICL
methods’ limitations from three perspectives. First, it avoids packing all demonstrations in
a single prompt and thus enables LLMs to leverage an arbitrary number of demonstrations.
Second, it includes only two examples (one demonstration and one test instance) in each
prompt and treats all prompts independently during the aggregation stage, which substan-
tially mitigates the demonstration ordering bias in LLMs. Third, LAMPO employs the LLM
as a preference machine and thus transforms the difficult pointwise estimation problem into
a more manageable pairwise comparison problem.

The advantages of LAMPO are demonstrated by its competitive performance across seven
diverse datasets, compatibility with both open-sourced (i.e., Flan-T5) and black-box LLMs
(i.e., PaLM2), and reliance solely on binary generative decisions. This broad versatility
makes it adaptable to various black-box LLMs, including those API-based LLMs with
restricted access to internal states (e.g., embeddings) (Zhao et al., 2021). However, it is
essential to acknowledge that our paradigm entails an increased number of LLM API calls
(though with shorter sequences) and is only applicable to instruction-following LLMs,
which we elaborate upon in Section 6.

Our contributions are summarized as follows:

• We introduce the LAMPO framework for the important ordinal classification problem.
This framework effectively addresses several issues in the existing ICL paradigms.

• We present a pipeline that operates without the need for internal logits or embeddings
from LLMs, and does not rely on an additional development dataset.

• We conduct extensive experiments on seven challenging datasets, covering the analysis of
positivity, aspect-based sentiment, hatefulness, irony, and offensiveness of texts. LAMPO
consistently demonstrates competitive performance when employed with various LLMs,
where the improvements over state-of-the-art ICL approaches can be substantial.

2 Preliminary

In this section, we first introduce the original ICL method for few-shot ordinal classification
with basic notations. Then, we discuss two representative ICL methods, which will shed
lights on the difference between our work and the existing literature.

2.1 In-Context Learning (ICL) for Few-shot Ordinal Classification

ICL is a paradigm that allows LLMs to learn tasks given only a few demonstration examples.
The standard m-way multi-class classification aims to assign the test input text x to one
candidate answer y in the label space Y = {Y0, ..., Ym−1}. This paper focuses on ordinal
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classification where there exists a natural order of the labels. Take the sentiment analysis
task as an example, Y0 denotes “very negative” and Ym−1 denotes “very positive”.

A large language model M takes the candidate answer with the maximum score as the
prediction conditioning a task instruction I and a demonstration set C which includes k
demonstration examples for each class1. Namely, we have C = {(xi, yi)|mk

i=1}, where (xi, yi)
denotes one demonstration and there are a total of mk ones. The likelihood of a candidate
answer Yj could be represented by a scoring function f of the whole input sequence with
the LLM M:

P(Yj|x) , fM(Yj, I, C, x). (1)

The final predicted label ŷ is the candidate answer with the highest probability:

ŷ = arg max
Yj∈Y

P(Yj|x). (2)

The scoring function f estimates how possible the current answer is given the demonstration
and the query text. For black-box generation-only LLMs, the most probable label string is
expected to be generated directly.

2.2 Contextual Calibration (CC)

Existing work (Zhao et al., 2021; Fei et al., 2023) found that ICL is sensitive to the quality and
ordering of demonstrations, leading to the calibration issue where the model biases towards
a certain answer regardless of the input x. To mitigate this issue, contextual calibration
(CC) (Zhao et al., 2021) first estimates the bias towards each answer by asking for the
prediction probabilities p̂c f of a content-free (cf) input such as “N/A”, and then uses them
to correct the prediction probabilities p̂x ([P(Y1|x), ..., P(Ym|x)]T) as

p̂new
x = diag( p̂c f )

−1 p̂x. (3)

There are two major limitations of CC. First, CC requires LLM’s internal states (i.e., proba-
bility logits) thus is not applicable to many black-box LLMs. Second, CC implicitly assumes
the context-free input “N/A” can catch the deviation from a uniform prediction of the labels.
This assumption might be less problematic in simpler classification scenarios, like binary
sentiment analysis (positive vs negative). However, it does not hold for many real-world
applications. For instance, in fine-grained classification tasks that include a “neutral” label,
the “N/A” input likely has a non-trivial probability mass, leading to questionable calibra-
tion. Similarly, “N/A” assigns a probability mass to labels such as “non-hate” in hatefulness
detection, ”non-offensive” in offensiveness detection, etc. Thus, the practical utility of CC in
such complex scenarios is limited.

2.3 Global Entropy (GlobalE)

Lu et al. (2022) studied the impact of demonstration ordering given a fixed demonstration
set and presented a GlobalE method to identify prompts of specific demonstration orderings
that prevent the extremely unbalanced prediction issue2. Specifically, GlobalE first generates
multiple sets of candidate contexts by sampling different orderings of the demonstrations.
Then, for each candidate contexts set Cm, it constructs a probing set by sampling from the
LLM: (x′i , y′i) ∼ PM(·|Cm). See more details of probing set construction in Appendix B. After
that, GlobalE computes the predicted label ŷi for sampled data point under each Cm as
follows:

ŷi = arg max
Yj∈Y

fM(Yj, I, Cm, x′i). (4)

Finally, it ranks all candidate contexts based on the category label entropy of the predictions
of the probing set, and uses the top-ranked context for actual inference. This method is

1There’s ambiguity for “k-shot” in the literature. In this paper “k-shot” refers to k demonstrations
per class, as in Lu et al. (2022); Zhang et al. (2023).

2Lu et al. (2022) also proposed a LocalE method that depends on internal states of LLMs and
under-performs GlobalE in most cases. Thus, we omit this method in the paper.
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Figure 1: An illustration of our LAMPO on a m-way sentiment classification task. The
scoring step compares test instance with every demonstration using LLM. The decision
making step converts the score to an ordinal label by using thresholds learned offline.

effective under the mild assumption that the probing set should have a uniform distribution
over the label space, since they were sampled using sampled Cms, which should not have
strong biases towards any labels globally.

GlobalE does not depend on LLM internal states and generally outperforms basic ICL in our
experiments. However, it can still be limited by restrictive context length and difficulties of
pointwise estimation. Also, given the combinatorial nature of possible orderings, candidate
contexts Cm can only be sampled and are unlikely optimal.

3 Scope

To address the ambiguity surrounding the term ”ICL” (Dong et al., 2022), it is necessary to
delineate the scope of this research. We focus on the practical “true” k-shot learning (Perez
et al., 2021) for multi-class classification with off-the-shelf LLMs, where at most k demon-
strations are available for each class. This is distinct from previous studies that can retrieve
a fixed number of demonstrations from a potentially large labeled dataset (Liu et al., 2021).

Furthermore, this work does not assume the presence of a labeled development set for
tuning hyperparameters, as such an assumption would violate the aforementioned setting.
This better aligns with the standard setting from the original ICL work (Brown et al., 2020)
and several key subsequent ICL research (Zhao et al., 2021; Lu et al., 2022) discussed above.
The comparison with methods involving test example dependent demonstration retrieval
and LLM fine-tuning is beyond the scope of this paper.

4 LAMPO

We now describe our new paradigm LAMPO for few-shot ordinal classification, with the
overall diagram shown in Figure 1. LAMPO consists of two steps: (1) a scoring step that
uses the LLM to compute the comparative score between each test instance with each
demonstration, and (2) a decision making step that converts those scores into ordinal labels
by using offline learned thresholds without an additional labeled development set.

4.1 Scoring

We score each test instance x as follows:

S(x) , ∑
(xi ,yi)∈C

s(F(x, xi), l(yi)). (5)

The fundamental computation unit of LAMPO is denoted as F(x, xi), which involves LLM
calls to compare input x with each demonstration xi within the ordinal label space. For
example, in hatefulness detection, the prompt can be “Given Passage A: {x} and Passage B:
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{xi}, which one is more hateful?”. For the exact prompts used in each dataset, please refer
to Appendix C.

When computing F(x, xi), we can significantly mitigate the position bias by making two
LLM calls with swapped orderings of x and xi in the prompts, which is not feasible for
existing ICL methods with combinatorial orderings. The resulting value of F(x, xi) can
assume one of three outcomes: F(x, xi) = 1 indicates x is preferred (both LLM calls prefer
x), F(x, xi) = −1 signifies a preference for xi (both LLM calls prefer xi), and F(x, xi) = 0
denotes a tie (the two LLM calls yield conflicting or inconclusive results).

The local score s for comparing x and xi is derived from the comparison result F(x, xi) and
label yi. In line with established practices in ordinal classification literature, we use an
integer number to represent each label Y, namely, l(Yj) = j. This approach simplifies our
scoring process as follows:

s(F(x, xi), l(yi)) = l(yi) + F(x, xi). (6)

For example, if x wins over xi, it gets a local score of l(yi) plus 1 point. These local scores
are added together as the final score S(x) following Eq. 5.

4.2 Decision Making

Given the score S(x), we need to convert it back into the ordinal label space, which can be
reduced to the problem of identifying m− 1 thresholds T = {T1, ..., Tm−1}, so that:

ŷ =


Ym−1 if S(x) > Tm−1
Ym−2 if Tm−2 6 S(x) < Tm−1
...
Y0 if S(x) < T1

(7)

Note that if there exists a labeled development set, the search of thresholds would be easy.
However, it will violate the “true” few-shot setting. We thus propose the following strategies
to find T:

Expected Thresholds. Intuitively, imagine we have a test example with label value Yj,
we know the scores of comparing it with each demonstration from Eq. 6 if everything is
noise-free. We can easily derive the expected score of an example of any label value Yj:

Sj = ∑(xi ,yi)|yi<Yj
(l(yi) + 1) + ∑(xi ,yi)|yi=Yj

l(yi) + ∑(xi ,yi)|yi>Yj
(l(yi)− 1) (8)

This computation does not require any LLM calls since we just derive the expected score
given the demonstration labels. Then the expected threshold Tj is simply (Sj + Sj−1)/2, and
the other thresholds can be derived similarly. However, this is under the assumptions that
the demonstration labels are noise free and pairwise comparisons are unbiased globally,
which is hardly true in practice. Still, we can view this as a global prior of the thresholds.

Self-supervised Thresholds. Systematic bias can arise from both the demonstrations and
LLM itself and the expected thresholds may not be optimal. We are thus interested in
decision thresholds that are adaptive to the current demonstrations and LLM. Inspired
by Lu et al. (2022), we leverage the probing set to rank candidate thresholds based on the
global entropy of predicted labels. While we believe applying the probing set to our problem
is a contribution, the probing set construction method itself is not our contribution, which
is deferred to Appendix B. Different from Lu et al. (2022) where their candidate space is
combinatorial in terms of the number of demonstrations, our search space is combinatorial
in terms of the number of integer thresholds, which is usually small. Note that the LLM
calls that compare each example in the probing set and demonstrations are only required
once before the threshold search. The major caveat of this self-supervised approach is
potentially large variance due to the limited number of demonstrations. We can treat these
”self-supervised thresholds” as the empirical observation.
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The Mixture. Given the pros and cons of the above two methods, we propose to use a
mixture of above two strategies, which can be treated as a simple combination of prior and
empirical thresholds. Since we do not assume a development set, we simply use the average
of their corresponding thresholds without tuning the weights for all experiments.

4.3 A Running Example

Let’s consider a 5-shot 3-way ordinal classification with labels {negative (0), neutral (1),
positive (2)}. The expected thresholds would be {10, 20}, which can be derived as follows:
a negative example is expected to have a score 5 in a noise-free setting (it will tie with the 5
negative demonstrations, and lose to the other 5 neutral and 5 positive demonstrations, thus
0 + 0 + 5), a neutral example with score 15(5 + 5 + 5), and a positive example with score
25(5 + 10 + 10), thus the expected thresholds are 10 = (5 + 15)/2 and 20 = (15 + 25)/2.

Furthermore, let’s assume the self-supervised thresholds are {12, 21}, then our final thresh-
olds would be {11, 20.5}. Now given a test instance x, we do comparisons using LLM with
each of the 15 demonstrations and get a score S(x) = 16 according to Eq. 5, then the final
predicted label of x will be “neutral”.

5 Experiments

5.1 Datasets

We use 7 challenging ordinal classification datasets, i.e., Twitter, SST-5, Hate, Yelp-5, Lap14,
Offensive, and Irony. We follow the publicly hosted setting3 where each dataset provides 3
seeds of demonstrations in each configuration, i.e., 5-shot and 10-shot, which are used to
compute mean and standard deviation of the concerned metrics on the test set. The same
publicly hosted setting is used for all compared methods for a fair and reproducible comparison. The
datasets are summarized in Table 3 in Appendix A, including their tasks, metrics, and label
spaces.

5.2 Baselines and Model Configurations

For few-shot LLM-based methods, we compare LAMPO with ICL, CC, and GlobalE, which
were discussed in Section 2. For few-shot LLM-based methods, we use the black-box PaLM2-
S model (text-Bison4) and the white-box Flan-T5-XXL (Chung et al., 2022). We use the more
general generation mode, that does not request any internal states of LLMs, for ICL, GlobalE,
and LAMPO. We use the scoring mode to get the required internal logit values of label texts
with Flan-T5-XXL for CC.

Note that due to potential data leakage issues of modern LLMs (Zhou et al., 2023) (see more
discussions in Section 6.4), we will focus on comparing different methods under the same
LLM, and only briefly compare trends of performance across different LLMs.

5.3 Experimental Results

This section describes our experimental results, which are shown in Table 1 and Table 2. We
discuss datasets in groups due to their diverse settings and behaviors.

Results on Twitter. LAMPO exhibits the best performance on PaLM2-S and Flan-T5-XXL.
Contrastingly, CC is ineffective due to the presence of a ”neutral” class that violates its
calibration assumptions. Furthermore, it’s worth noting that LAMPO is the sole method
capable of handling 10-shot scenarios on this dataset using the concerned popular LLMs. The
slightly lower performance in this 10-shot setting compared to the 5-shot setting across both
LLMs highlights the importance of the demonstrations’ quality, as other factors, including
ordering bias, have been largely mitigated.

3https://github.com/DAMO-NLP-SG/LLM-Sentiment/tree/master/data
4https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text
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Table 1: Experimental results on PaLM2-S models. ”NA” means ”Not Applicable” for ICL
and GlobalE denotes infeasible experiments due to limited sequence length. CC is marked
as ”NA” as it requires outputting logits of each label, which is not available for black-box
LLMs such as PaLM2-S. The best performing method is bolded for each row.

Dataset Metric Config Few-shot LLM-based Methods with PaLM2-S
ICL (Brown et al., 2020) CC (Zhao et al., 2021) GlobalE (Lu et al., 2022) LAMPO (Ours)

Twitter Acc 5-shot 65.130.25 NA 65.000.49 66.870.52
10-shot NA NA NA 65.870.52

SST-5 Acc 5-shot 54.80.85 NA 54.530.50 55.41.41
10-shot NA NA NA 56.001.50

Yelp-5 Acc 5-shot NA NA NA 50.671.64
10-shot NA NA NA 51.130.19

Lap14 Acc 5-shot 75.071.00 NA 76.531.23 78.130.66
10-shot NA NA NA 78.730.66

Hate macro f1 5-shot 48.812.41 NA 49.942.67 68.880.38
10-shot 43.185.32 NA 46.224.39 71.431.92

Offensive macro f1 5-shot 80.232.18 NA 82.380.48 80.820.39
10-shot 76.994.69 NA 76.906.53 81.100.47

Irony f1(irony) 5-shot 78.932.95 NA 79.602.47 89.611.13
10-shot 78.401.98 NA 80.651.60 89.530.58

Table 2: Experimental results on Flan-T5-XXL models. ”NA” means ”Not Applicable” for
ICL, CC, and GlobalE denotes infeasible experiments due to limited sequence length. The
best performing method is bolded for each row.

Dataset Metric Config Few-shot LLM-based Methods with Flan-T5-XXL
ICL (Brown et al., 2020) CC (Zhao et al., 2021) GlobalE (Lu et al., 2022) LAMPO (Ours)

Twitter Acc 5-shot 59.001.42 50.530.10 63.670.57 64.550.21
10-shot NA NA NA 63.880.61

SST-5 Acc 5-shot 33.133.21 53.41.14 37.072.47 38.732.86
10-shot NA NA NA 39.471.96

Yelp-5 Acc 5-shot NA NA NA 32.932.23
10-shot NA NA NA 33.071.64

Lap14 Acc 5-shot 76.270.62 71.930.25 77.230.25 77.470.52
10-shot NA NA NA 76.930.62

Hate macro f1 5-shot 54.531.55 30.680.61 58.840.76 61.570.81
10-shot 48.779.86 30.590.49 54.4313.05 61.732.37

Offensive macro f1 5-shot 80.631.38 59.804.06 80.710.68 78.260.08
10-shot 60.6127.41 60.6013.25 60.3327.19 78.420.20

Irony f1(irony) 5-shot 87.850.17 63.630.68 87.660.83 86.370.66
10-shot 86.720.57 64.432.39 88.110.61 86.831.10

Results on SST-5. LAMPO works well on this highly challenging dataset with 5-level la-
bels, outperforming ICL and GlobalE with both LLMs. 10-shot also consistently outperforms
5-shot with LAMPO, while it is infeasible to perform 10-shot with other methods. CC with
5-shot performs well with Flan-T5-XXL, as it avoids generation errors on this challenging
(for Flan-T5-XXL) dataset. See more discussions in the summary of results below.

Results on Yelp-5. Results on Yelp-5 mainly shows the capability of LAMPO - no other
methods are feasible given the long example texts. Also, 10-shot works better than 5-shot
on both LLMs for LAMPO. LAMPO allows us to find that there still exists a gap between
LAMPO and supervised methods, so the community is suggested to focus on challenging
datasets like Yelp-5 for future work.

Results on Lap14. LAMPO works well on this dataset, with the best performance on
both PaLM2-S and Flan-T5-XXL, showing LAMPO is compatible with the challenging
aspect-based sentiment analysis task. CC works poorly since there is a “neutral” class.

Results on Hate. We get very strong results of LAMPO on PaLM2-S, where the absolute
performance gain can be larger than 20%. LAMPO also generates the best performance
with Flan-T5-XXL, though the gap is smaller. We hypothesize this is because PaLM2-S
was not exposed to similar datasets, especially with regard to their label space, during
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its pre-training and instruction fine-tuning. In contrast, LAMPO handles a more general
”hateful” concept that PaLM2-S is familiar with, regardless of whether it has encountered
the exact label space before or not. CC again works poorly because the probability mass
will be assigned to “non-hate” for the “N/A” input.

Results on Offensive and Irony. LAMPO is competitive and robust for these two datasets
on both LLMs. One noticeable benefit of LAMPO is its robustness across different shots -
the performance of other methods on Offensive actually drops with 10 shots, but LAMPO
is robust and generally improves performance with more shots. CC does not work as the
probability mass will be concentrated on “non-offensive” and “non irony”.

Summary of Results. On the seven tasks across a broad range of domains we find that:

(1) LAMPO is very competitive and works the best in most cases. Importantly, LAMPO
is the most robust method, while other methods have their respective failure patterns. In
general, LAMPO shows better comparative performance with respect to other methods on
PaLM2-S than Flan-T5-XXL, indicating that more advanced LLMs tend to do comparisons
better across various domains.

(2) LAMPO enables popular LLMs the capability to perform competitive ordinal classifica-
tion in various settings, including black-box or white-box LLMs, number of shots, and on
tasks where the LLM may not have strong prior knowledge of the label space.

(3) The calibration assumption of CC is too strong and this impairs its robustness. Despite
its strong performance on SST-5 with Flan-T5-XXL, it can not be used with black-box LLMs
and it hurts performance on most datasets due to violation of its calibration assumption.

(4) GlobalE outperforms the ICL baseline in most cases, but it is generally less effective than
LAMPO, possibly because the ordering bias is intrinsically difficult to address due to the
combinatorial nature of possible orderings.

6 Discussion and Limitation

6.1 When do we expect LAMPO to be most valuable?

LAMPO shows competitive performance across different domains. One most prominent
improvement LAMPO got is on the hatefulness detection dataset, where we hypothesize
that PaLM2-S does not have a strong prior understanding of the task, especially concerning
the “non-hate” label. However, LAMPO mainly leverages more general knowledge such
as ”which passage is more hateful?” and does not use the actual label text until the very last
decision making step. Thus, we believe LAMPO is particularly valuable when the LLM
lacks a strong prior understanding of the task’s label space.

6.2 Restriction to Instruction-following LLMs

Earlier research before the ubiquity of instruction-following LLMs on ICL mainly depends
on text continuation. On the other hand, as hinted by the prompts in Appendix C, the com-
parison prompts used in LAMPO are instruction-following and are likely only applicable on
instruction-following LLMs. This is one limitation of our framework. However, we argue
the limitation may not be significant as instruction-following LLMs are becoming the norm.

6.3 Cost

We acknowledge that LAMPO does involve an increased number of LLM API calls compared
to standard ICL methods. However, we note that: (1) The number of calls only linearly scales
with the number of demonstrations, which is usually not big in the concerned “few-shot”
setting. On the other hand, LAMPO’s new capability allows for the potential utilization of
an unlimited number of demonstrations, making the pursuit of more efficient methods a
promising future research direction. (2) Each prompt is shorter, so each API call is faster
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and less expensive than traditional ICL. (3) All comparison API calls can be paralleled, thus
the latency can be lower than traditional ICL, given sufficient parallelism.

6.4 Data Leakage

It is possible that certain LLMs saw some datasets during their pre-training or instruction
fine-tuning, which is a major concern of fair evaluation in the era of LLMs (Zhou et al.,
2023). We mainly focused on comparing different methods using the same LLMs so the
comparisons are fair. In fact, as most existing LLM pre-training and instruction tuning
methods adopt the pointwise strategy, a potential data leakage will benefit them more,
compared to our pairwise framework. Thus, the improvements achieved by LAMPO over
these baselines further demonstrate its effectiveness.

6.5 Reproducibility

As noted, all datasets used in this paper are publicly available, and we did not change any
of their demonstrations, labels, or any other content. The exact prompt templates we used
are shown in Appendix C.

7 Related Work

In-Context Learning. We have discussed several popular ICL-based methods in Section 2,
which is a prominent family of approaches that leverages LLM for few-shot multi-class
classification. Another emerging paradigm, which has gained popularity recently, involves
retrieving distinct demonstrations for each test instance (Rubin et al., 2021). These demon-
strations are sourced from a potentially vast annotated demonstration pool, which is very
different from the “true” few-shot setting studied in this work.

Comparisons using LLMs. We note that the ”pairwise” or ”comparative” paradigm is a
classic concept in various domains. LLMs can serve as evaluators to compare preferences
of generative model’s outputs (Kocmi & Federmann, 2023; Vu et al., 2024; Yan et al., 2023),
such as to determine which summary is better in text summarization, with many important
applications such as language model alignment (Liu et al., 2024). In contrast, our approach
compares inputs to derive an output. For web search ranking, given a query, pairs of
candidate documents can be compared using LLMs in terms of their relevance to the
query (Qin et al., 2024). This task significantly differs from ours, and it involves a quadratic
increase in API calls with the number of documents under each query. In summary, existing
work only share the very general idea of doing pairwise comparisons with very different
problem setups where natural pairs are readily available. In contrast, our work pioneers the
exploration of LLMs as preference machines for the important few-shot ordinal classification
task and demonstrates LLMs’ comparative capability in broader dimensions (i.e., traditional
sentiment, hatefulness, offensiveness, irony, and aspect-based sentiment).

“Non-parametric” application of LLMs. Very recently, Xu et al. (2023) have shown a “near-
est neigbor” style application of LLMs. We posit that our paradigm offers a compelling
addition to this non-parametric perspective of LLM utilization, where existing research (Xu
et al., 2023) hinges upon extracting embeddings that are not generally accessible, and
neglects to explore the preference machine perspective of LLMs.

8 Conclusion

This paper introduces a simple yet novel paradigm, LAMPO, for the important k-shot
multi-class ordinal classification problem with LLMs. LAMPO effectively addresses several
inherent limitations of traditional ICL methods, and demonstrates strong performance
on 7 publicly available datasets covering diverse topics. Moreover, LAMPO is versatile,
compatible with both black-box and white-box LLMs, and capable of accommodating an
arbitrary number of demonstrations.
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A Dataset Descriptions

We show the descriptions of each dataset used in our evaluation in Table 3.

Table 3: A description of the datasets used in evaluations. The labels are ordered in the
ordinal space

Dataset Label Space Metric Task

Twitter negative, neutral, positive Accuracy Sentiment analysis on social media posts.

SST-5 very negative, negative, neutral, positive, very positive Accuracy Sentiment analysis on movie reviews.

Yelp-5 very negative, negative, neutral, positive, very positive Accuracy Sentiment analysis on customer reviews on businesses.

Lap14 negative, neutral, positive Accuracy Aspect-based sentiment analysis.

Hate non-hate, hate Macro F1 Hate speech detection.

Offensive non-offensive, offensive Macro F1 Offensive language identification.

Irony non irony, irony F1 of irony Irony detection.

B The Probing Set

We provide more details on the construction and use of the “probing set”, with most contents
below adopted from Lu et al. (2022). The key idea is to build a collection of examples that
has a roughly uniform label distribution. Then given a candidate in the search space (a set of
thresholds in LAMPO and a specific ordering of demonstrations in GlobalE), the predictions
of the examples can be generated, and the best candidate should produce label predictions
closest to the uniform distribution, measured by entropy.

To construct such a “probing set” without access to any additional data, Lu et al. (2022)
proposes to directly sample from an LLM. Concretely, given a set of training / demonstration
examples S = (xi, yi), i = 1, ..., n, we define a transformation T, mapping each example into
natural language space. We use a simple transformation function T such that T(xi, yi) =
input : xitype : yi. This transforms each example into a standard format sentence, which
linearises each element in the set into the natural language space defined as S

′
= {ti}, i =

1, ..., n.

We then define a full permutation function group of n training examples, F = { fm}, m =

1, ..., n!, where each function fm takes S
′

as input and outputs Cm: the concatenation of
a unique permutation. For each prompt candidate Cm, we then sample from the large
language model M to obtain the probing sequence gm ∼ PM(·|Cm). We stop decoding
from the language model upon generating the special end-of-sentence token defined by
a template, or reach the generation length limit. The probing set construction method is
illustrated in Figure 2, where the objective is to generate a probing set that shares a similar
distribution to the training examples.

We run this sampling process for sampled prompt ordering permutations and extract
probing examples from them, then gather extracted examples together to form the probing
set D. Although the probing set contains predicted label for each sentence, there is no
guarantee on the validity of these labels. Therefore, we discard them from the probing set
as we are only interested in sampling probes from the language model corresponding to the
input distribution.
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Figure 2: An illustration of probing set construction from Lu et al. (2022). “PLM” is the same
as “LLM” in the context of this paper.

Once we have constructed a probing set for a given set of demonstrations, we can now use
that probing set to identify the best possible prompt order as in Lu et al. (2022) and thresholds
in LAMPO. In this work, we use PaLM2-S to generate 50 examples in each configuration,
and the same probing set is used for LAMPO and GlobalE for a fair comparison.

C Prompt Templates

We show the prompt template used by LAMPO on each dataset. In general, we tried to
avoid the usage of specific words such as “Tweet” or “Review”, but use a more generic
word “Passage”. Also, we did not heavily tune the prompts on each dataset, some datasets
even share the same prompt template. These demonstrate the generality and robustness
of the LAMPO paradigm, and better performance should be achieved with better prompt
engineering.

C.1 Twitter Dataset

Given two Passages, compare their sentiments with labels from [’negative’, ’neutral’,
’positive’].

Passage A: {item1}

Passage B: {item2}

Which Passage is more positive in terms of its sentiment?

Output Passage A or Passage B:

C.2 SST-5 and Yelp-5 Datasets

Given two Passages, compare their sentiments with labels from [’very negative’,
’negative’, ’neutral’, ’positive’, ’very positive’].

Passage A: {item1}

Passage B: {item2}

Which Passage is more positive in terms of its sentiment?

Output Passage A or Passage B:
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C.3 Lap14 Dataset

Given two Passages, compare their sentiments towards their respective aspects with
labels from [’negative’, ’neutral’, ’positive’].

Passage A: {item1} (sentiment towards {aspect1}),

Passage B: {item2} (sentiment towards {aspect2})

Which Passage is more positive in terms of its sentiment towards its aspect?

Output Passage A or Passage B:

C.4 Hate Dataset

Given two Passages, compare their sentiments with labels from [’non-hate’, ’hate’].

Passage A: {item1}

Passage B: {item2}

Which Passage is more hateful in terms of its sentiment?

Output Passage A or Passage B:

C.5 Offensive Dataset

Given two Passages, compare their sentiments with labels from [’non-offensive’,
’offensive’].

Passage A: {item1}

Passage B: {item2}

Which Passage is more offensive in terms of its sentiment?

Output Passage A or Passage B:

C.6 Irony Dataset

Given two Passages, compare their irony with labels from [’non irony’, ’irony’].

Passage A: {item1}

Passage B: {item2}

Which Passage is more ironic in terms of its sentiment?

Output Passage A or Passage B:
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