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Abstract

Though deep reinforcement learning (DRL) has
obtained substantial success, it may encounter
catastrophic failures due to the intrinsic uncer-
tainty caused by stochastic policies and environ-
ment variability. To address this issue, we pro-
pose a novel reinforcement learning framework of
CVaR-Proximal-Policy-Optimization (CPPO) by
rating the conditional value-at-risk (CVaR) as an
assessment for risk. We show that performance
degradation under observation state disturbance
and transition probability disturbance theoreti-
cally depends on the range of disturbance as well
as the gap of value function between different
states. Therefore, constraining the value func-
tion among states with CVaR can improve the ro-
bustness of the policy. Experimental results show
that CPPO achieves higher cumulative reward and
exhibits stronger robustness against observation
state disturbance and transition probability distur-
bance in environment dynamics among a series
of continuous control tasks in MuJoCo.

1. Introduction
Recently, reinforcement learning (RL) coupled with deep
neural networks has achieved enormous success among a
variety of tasks, ranging from playing Atari games (Mnih
et al., 2016; 2013; 2015) and Go (Silver et al., 2016) to ma-
nipulating complex robotics in the real world (Kendall et al.,
2019). However, those methods tend to exhibit considerable
uncertainty and may result in catastrophic failures due to the
great variability in both models and the environment (Heger,
1994; Coraluppi & Marcus, 1999). Several factors can be as-
sociated with this phenomenon, one is that traditional DRL
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only aims to maximize the cumulative reward without taking
account of the variance of trajectories (Garcıa & Fernández,
2015), which may lead to serious consequences. This can be
illustrated briefly in the case of self-driving, where the agent
might try to achieve the highest reward by acting danger-
ously, e.g. driving along the edge of a curve. Also, the use
of deep neural network to construct complicated mappings
from high-dimension state space S to action space A in
DRL algorithms can make them vulnerable to adversarial
attacks, which has been reported by Huang (Huang et al.,
2017).

To address the pessimistic policy problem and the inappro-
priate usage of variance in previous objective-modification
methods (Garcıa & Fernández, 2015; Geibel & Wysotzki,
2005; Heger, 1994), we propose a new method combin-
ing RL algorithms with CVaR. While using the variance
as penalty will eliminate both particularly good and bad
trajectories, CVaR will only capture bad ones. Based on
the integration of Proximal Policy Optimization (PPO) with
CVaR, we construct our algorithm called CVaR-Proximal-
Policy-Optimization(CPPO). We compare CPPO to multiple
baselines among continuous control tasks in MuJoCo and
provide theoretical analysis of its robustness under perturba-
tions of observation and transition probability.

2. Background
In this section, we will briefly introduce Safe RL, CVaR
and describe our motivation for adopting CVaR as a better
metric of risk in Safe RL.

2.1. Safe RL

Given MDPM = (S,A,R, P, γ), the goal of RL is to find
the optimal policy πθ∗ with highest cumulative reward:

max
θ
J(πθ) , E

[
D(πθ) ,

∞∑
t=1

γtRt|πθ

]
. (1)

However, eq. (1) only focuses on cumulative reward with-
out taking account of the risk of the policy, which may
cause catastrophic results. To address this problem, safe RL
methods tend to make modifications to eq. (1) function in
order to eliminate the uncertainty, which can be categorized
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into the inherent uncertainty and the parameter uncertainty
(Garcıa & Fernández, 2015).

The inherent uncertainty of RL refers to the transition dy-
namics in MDP, for example the agent might end up in
completely different situations when repeating its action
at the same state. Previous works such as (Heger, 1994;
Gaskett, 2003) chose the worst-case criterion to deal with
the inherent uncertainty:

max
θ
Jinh(πθ) , max

θ
min
τ∼πθ

[
D(τ) ,

∞∑
t=1

γtRt

]
. (2)

The parameter uncertainty of RL denotes scenarios where
the parameters of the MDP are unknown or there is a gap
between the training and testing environments. Studies
conducted by Nilim & El Ghaoui; Tamar et al. assume
that the actual transition probability belongs to a set P̂ and
consider the following equation:

max
θ

min
P∈P̂

Jpar(πθ,P) , E

[
D(πθ) ,

∞∑
t=1

γtRt|πθ

]
.

(3)
However, previous Safe RL methods suffer from serious
drawbacks. On the one hand, focusing on the worst trajec-
tories may cause over pessimistic behaviors. On the other
hand, the direct usage of variance to penalize risk is an-
other potential concern because it will not only eliminate
the possibility of particularly bad trajectories, but also par-
ticularly good ones, and thus causes a drop in the agent’s
performance. Moreover, eq. (2) and eq. (3) are all max-
min problems, which don’t have general solutions and tradi-
tional methods usually require high computation complexity.
With the incorporation of CVaR, we focus on increasing the
agent’s performance on relatively worse trajectories, which
loosens the max-min problem to an constrained optimization
problem.

2.2. CVaR

CVaR is a well-established metric for measuring risk in
economy. It estimates the probability of the random variable
to be an outlier with given threshold. First, we will clarify
the definition of VaR and CVaR (Chow & Ghavamzadeh,
2014b):

Definition 1 (VaR and CVaR) For a bounded-mean ran-
dom variable Z, we can define its cumulative distribution
function as F(z) = P(Z ≤ z). Then its Value at Risk (VaR) of
confidence level α is:

VaRα(Z) = min{z|F (z) ≥ α}, (4)

and its Condition Value at Risk(CVaR) of confidence level α
is defined as the expectation of the α-tail distribution of Z:

CVaRα(Z) = E{z|z ≥ VaRα(z)}. (5)

Previous works have attempted to analyze the risk-MDP
with CVaR. Chow and et al. propose gradient-based meth-
ods like policy gradient and actor critic to optimize loss
of MDP as well as keeping the CVaR under certain value
(Chow & Ghavamzadeh, 2014a; Chow et al., 2015a). They
also propose methods based on value iteration and Bellman
equation to deal with the optimization of risk-MDP with
CVaR (Chow et al., 2015b). However, their work ignores
the reward in MDP and thus can not be directly used in RL
settings.

Compared with variance, CVaR is a better metric for esti-
mating risk, because CVaR, by definition, can capture only
the bad trajectories. Based on CVaR and PPO, we propose
CPPO and achieve models with higher overall performance
and stronger robustness.

3. Methodology
In this section, we’ll formalize our objective as a constrained
optimization problem and provide a gradient-based algo-
rithm. Moreover, we’ll provide theoretical analysis of our
algorithm against adversarial noises.

3.1. Problem Formulation

In this paper, we define risk as the probability to generate
low-reward trajectories.As RL focuses on maximizing ex-
pected cumulative reward while ignoring risk of the policy,
we’d like to model our objective as maximizing the expected
reward within a constrained region defined by CVaR.

However, the standard definition of CVaR portrays the ex-
pectation of the part with higher value in random variable
Z, which is better to be low when Z directly represents risk,
such as risk MDP (Chow & Ghavamzadeh, 2014a; Chow
et al., 2015a). But in general RL, the bad trajectories repre-
sent those with low cumulative reward. Thus the objective
of our method is to maximize the total reward J(πθ) as
well as letting the expected reward of low-reward part of
D(πθ) be higher than a given lower bound. By the property
of CVaR, we can use −CVaRα(−D(πθ)) to represent the
expected reward of the trajectories generated by πθ with
lower reward (see Appendix(A.1)).

As mentioned in Section 2.1, eq. (2) and (3) are intractable
max-min problems. However, with the property of CVaR, we
can equally transform eq. (2) as follow (see Appendix(A.1)):

max
θ
Jinh(πθ) = max

θ
lim
α→1−

[−CVaRα(−D(πθ))] . (6)

We can further loosen equation (6) by assigning α a fixed
value, which reforms the original max-min problem into a
solvable optimization problem. Furthermore, to address the
pessimism in Safe RL, we balance between standard RL
objective (eq. (1)) and Safe RL objective (eq. (6)) after
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relaxation, which is the constrained optimization problem
as below:

max
θ
J(πθ)

s.t.− CVaRα(−D(πθ)) ≥ β,
(7)

where α, β are hyper-parameters and we denote the best
policy of this optimization problem (7) as πc(α, β). We also
reveal some properties of πc(α, β) in Appendix(A.2).

3.2. Optimization

In this part, we’ll use properties of CVaR to simplify our
problem (7), which is a constrained optimization problem,
to an unconstrained optimization problem.

First, we’ll use properties of CVaR to simplify the raw
problem (7) as the below theorem:

Theorem 1 We can deform the problem (7) above equiva-
lently as:

min
θ,ν
−J(πθ)

s.t.− ν + 1

1− α
E[(−D(πθ) + ν)+] ≤ −β.

(8)

We provide the proof of Theorem 1 in Appendix(A.3). How-
ever, the problem (1) we now consider is still a constrained
optimization problem. By using Lagrangian relaxation
method (Bertsekas, 1999), we need to solve the saddle point
of the function L(θ, ν, λ):

max
λ≥0

min
θ,ν

L(θ, ν, λ) , −J(πθ)+

λ(−ν + 1

1− α
E[(−D(πθ) + ν)+] + β).

(9)

3.3. CVaR Proximal Policy Optimization

In this part, we will extend PPO (Schulman et al., 2017)
from standard RL to our method with CVaR, named CVaR
Proximal Policy Optimization(CPPO).

The key point of Policy Gradient method is to evaluate the
gradient (Sutton et al., 1999), we use the methods in (Chow
& Ghavamzadeh, 2014a) to compute the gradient of our
objective function (9) and give the Theorem 2, of which the
proof is in Appendix(A.4):

Theorem 2 The gradient of the objective function (9) with
respected to ν, θ, λ are as below:

∂νL(θ, ν, λ) = −λ+
λ

1− α
Eξ∼πθ1{ν ≥ D(ξ)}) (10)

∇θL(θ, ν, λ)

=− Eξ∼πθ (∇θ logPθ(ξ))
(
D(ξ)− λ

1− α
(−D(ξ) + ν)+

)
(11)

∇λL(θ, ν, λ) = −ν +
1

1− α
Eξ∼πθ (−D(ξ) + ν)+ + β.

(12)

Based on PPO and the algorithm in (Chow & Ghavamzadeh,
2014a), we can use the gradient proven in Theorem 2 to
propose the pseudo code of CPPO (see Appendix (B)):

3.4. Theoretical Analysis

In this part, we will analyze the robustness of policies
against state observation noises as well as transition proba-
bility noises.

For every state s ∈ M, we can define its discount future
state distribution as dπM(s) = (1 − γ)

∑∞
t=0 γ

tP (st =
s|π,M). First, we will consider the situation of state ob-
servation disturbance. Similar to the setting of SA-MDP
(Zhang et al., 2020), we introduce adversary ν : S → S to
describe the disturbance of state and denote the policy dis-
turbed by adversary ν as π̂ν . We show that the difference of
performance between π and π̂ν can be calculated as below:

Theorem 3 For any policy π and any adversary ν, we have:

JM(π)− JM(π̂ν)

=
γ

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

(
1− π(a|s)

π(a|ν(s))

)
Es′∼PVM,π(s

′)

+
1

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

(
1− π(a|s)

π(a|ν(s))

)
R(s, a).

(13)

Furthermore, we can give an upper bound of it:

|JM(π)− JM(π̂ν)|

≤ γ

1− γ
max
s
DTV (π(·|s), π(·|ν(s)))b

+
2

1− γ
max
s
DTV (π(·|s), π(·|ν(s))max

s,a
|R(s, a)|.

(14)

here b = maxs VM,π(s)−mins VM,π(s).

The complete proof of Theorem 3 resembles the proof by
(Kakade & Langford, 2002) in Appendix(A.5). We also
prove the bound (14) is better than the bound in (Zhang
et al., 2020) in Appendix(A.5).

Then we’ll consider the situation of transition probability
disturbance. Similar to Theorem 3, we can show that:

Theorem 4 For any policy π and any disturbed environ-
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Method
Game

Ant-v3 HalfCheetah-v3 Walker2d-v3 Swimmer-v3 Hopper-v3

VPG 12.8± 0.0 896.9± 531.1 628.6± 229.4 48.3± 11.3 888.4± 209.5
TRPO 1625.4± 356.4 2073.8± 741.3 2005.6± 398.7 101.2± 29.3 2391.4± 455.3
PPO 3372.2± 301.4 3245.4± 947.3 2946.3± 944.3 122.0± 7.9 2726.0± 886.0

CPPO(ours) 3445.3± 325.6 3680.5± 1121.3 3079.2± 729.6 180.7± 48.5 3048.4± 134.1

Table 1. The cumulative reward (mean ± one std) of best policy trained by VPG, TRPO, PPO and CPPO in different MuJoCo games.

ment M̂ = (S,A, P̂,R), we have:

JM(π)− JM̂(π)

=
γ

1− γ
Es∼dπ

M̂
Ea∼πEs′∼P̂

(
1− P (s′|s, a)

P̂ (s′|s, a)

)
VM,π(s

′).

(15)

Furthermore, we can give a upper bound of it:

JM(π)− JM̂(π)

≤ 2γ

1− γ
max
s,a

DTV (P (·|s, a), P̂ (·|s, a))b,
(16)

here b = (maxs VM,π(s)−mins VM,π(s)).

The complete proof of Theorem 4 in Appendix(A.5).

By theorem 3 and theorem 4, we can find out that the effects
of state observation disturbance and transition probability
disturbance on cumulative reward are both depend on the
scale of disturbance as well as the gap of the value function
between the best state and the worst state. Thus CVaR-based
methods can control the value function of the worst state to
improve the robustness of the policy.

4. Experiments
In this section, we will evaluate our method in a series of
continuous control tasks in MuJoCo (Todorov et al., 2012).
First, we introduce the environments we use and the bench-
marks in sec. 4.1, as well as the evaluation metric in sec.
4.2. Then we present our experimental results in sec. 4.3.

4.1. Experiment Setup

Tasks: We choose MuJoCo as our experiments environment.
As a robotic locomotion simulator, MuJoCo has an array of
different continuous control tasks such as Ant, Walker2d,
HalfCheetah, Hopper, Swimmer.

Baselines: We will compare our algorithm with the
common on-policy algorithms like Vanilla Policy Gradi-
ent(VPG)(Sutton et al., 1999), Trust Region Policy Opti-
mization(TRPO)(Schulman et al., 2015) and PPO(Schulman
et al., 2017). And we use Adam (Kingma & Ba, 2015) to
optimize all the parameters.

Code: We implement our algorithms and compare them
with baseline based on SpinningUp (Achiam, 2018).

4.2. Evaluation Metric

Evaluation: First, we compare the cumulative reward of
each algorithm in the training process, and their perfor-
mance after convergence. For the trained models, in order
to measure their robustness and safety, we compare their
performance under transition probability disturbance and
state disturbance respectively. For the transition probability
perturbation, we notice that MuJoCo is a physical simula-
tion engine, so we modify the mass of the agent to change
the transition dynamics, and study the relationship between
the the agent’s performance and the mass of the agent. For
state disturbance, we apply adversarial noise to the agent’s
observation to study the relationship between the agent’s
performance and the magnitude of the noise.

4.3. Experiments on MuJoCo

Since our policies are stochastic, we will train ten policies
with different random seeds for each algorithm. First, we
plot their mean and variance of the cumulative reward dur-
ing training time (see Appendix (C.1)). We also record the
best results of each algorithm in Table 1. For evaluating the
robustness of trained policies, we plot the performance of
agents under observation disturbance with varying noises
size (see Appendix(C.2)). Finally, we appraise the robust-
ness under transition probability disturbance (see Appendix
(C.3)).

5. Conclusions
In this paper, we define risk as trajectories with low cumula-
tive reward, which can be measured by CVaR. In order to
optimize the risk-sensitive optimization objective, we pro-
pose CPPO and provide theoretical analysis of its robustness.
Moreover, we evaluate our algorithms in various MuJoCo
tasks and show that CPPO obtains better performance as
well as stronger robustness.
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A. Proofs of Theorems
In this part, we will provide the proofs of theorems proposed
in paper.

A.1. Deforming CVaR for Low Value Part

In this part, we propose the theorem 5 as below to deform
VaR and CVaR for evaluating the low value part of the
variable:

Theorem 5 For a given policy πθ and its cumulative reward
D(πθ), we have:

−VaRα(−D(πθ)) = max{z|FD(πθ)(z) ≤ 1− α}

− CVaRα(−D(πθ))

=Ew∼D(πθ){w|w ≤ −VaRα(−D(πθ))}.

And we have:

lim
α→1−

−CVaRα(−D(πθ)) = min(D(πθ)), (17)

and if we assume that −CVaRα(−D(πθ)) ≥ β, then we
have:

P (D(πθ) ≤ β) ≤ 1− α.

Now, we will prove Theorem 5. By definition of VaR and
CVaR, we have:

−VaRα(−Z) = −min{z|F−Z(z) ≥ α}
= −min{z|1− FZ(−z) ≥ α}
= max{−z|1− FZ(−z) ≥ α}
= max{z|FZ(z) ≤ 1− α},

−CVaRα(−Z) = −Ew∼Z{−w| − w ≥ VaRα(−Z)}
= Ew∼Z{w| − w ≥ VaRα(−Z)}
= Ew∼Z{w|w ≤ −VaRα(−Z)}.

If we assume that −CVaRα(−Z) ≥ β, then we have:

P (Z ≤ β) ≤ P (Z ≤ −CVaRα(−Z))
= P (Z ≤ Ew∼Z{w|w ≤ −VaRα(−Z)})
= P (Z ≤ −VaRα(−Z))
= P (Z ≤ max{z|FZ(z) ≤ 1− α})
= 1− α.

So we have proven it. �

A.2. Some Properties of πc(α, β)

Since πc(α, β) is the optimal solution of (7) and satisfies
the constraint, by Theorem 5 we natural have:
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P (D(πc(α, β)) ≤ β) ≤ 1− α,

which means that we can guarantee the transition probability
to a catastrophic state is below a desired threshold by setting
the hyper-parameters α, β.

Compared with the best policy πs of the standard RL op-
timization problem (1), πc(α, β) is the policy that max-
imizes the expected total reward in a restricted region
related to hyper-parameters α, β. Obviously we have
J(πc(α, β)) ≤ J(πs). However, we can also give a lower
bound of J(πc(α, β)) as below:

Theorem 6 Assume there exists a constant M > 0 and
every trajectory τ = (S0, A0, R1, S1, A1, R2, ...) satisfies:

∞∑
t=1

γtRt ≤M.

We have:

J(πc(α, β)) ≥
J(πs)− αM

1− α
.

Here, we will prove this Theorem. Since we assume M is
the upper bound of the total reward of every trajectory, we
have J(πs) ≤M . We consider two scenarios.

In the first case, if πs satisfies that −CV aRα(−D(πs)) ≥
β. Obviously, we have πc(α, β) = πs, thus

J(πc(α, β)) = J(πs) ≥
J(πs)− αM

1− α
.

Otherwise, we assume that −CVaRα(−D(πs)) < β,
Since −CVaRα(−D(πc(α, β))) ≥ β, we set B =
−V aRα(−D(πc(α, β))) and have:

J(πc(α, β))

=

∫
τ∼πc(α,β)

p(τ)D(τ)dτ

=

∫
D(τ)≤B

p(τ)D(τ)dτ +

∫
D(τ)>B

p(τ)D(τ)dτ

≥− αCV aR(−D(πc(α, β))) +

∫
D(τ)>B

p(τ)Bdτ

≥Aα+A(1− α)
=β.

By the similar way, we set:

A =−VaRα(−D(πθ)) = max{z|FD(πθ)(z) ≤ 1− α},

thus

J(πs) =

∫
τ∼πs

p(τ)D(τ)dτ

=

∫
D(τ)≤A

p(τ)D(τ)dτ +

∫
D(τ)>A

p(τ)D(τ)dτ

=

∫
D(τ)≤A

p(τ)Adτ +

∫
D(τ)>A

p(τ)Mdτ

= A(1− α) +Mα

< β(1− α) +Mα

≤ J(πc(α, β))(1− α) +Mα.

So we have proven J(πc(α, β)) ≥ J(πs)−αM
1−α . �

A.3. The Proof of Theorem 1

In this part, we will prove Theorem 1. We have:

max
θ
J(πθ) s.t.− CVaRα(−D(πθ)) ≥ β

⇔min
θ
−J(πθ) s.t.CVaRα(−D(πθ)) ≤ −β

1⇔min
θ
−J(πθ) s.t.min

ν∈R
{ν + 1

1− α
E[(−D(πθ)− ν)+]} ≤ −β

⇔min
θ
−J(πθ) s.t.min

ν∈R
{−ν + 1

1− α
E[(−D(πθ) + ν)+]} ≤ −β

⇔min
θ,ν
−J(πθ) s.t.− ν + 1

1− α
E[(−D(πθ) + ν)+] ≤ −β.

Here we derive a formula 1 since CVaR owns the property
(Chow et al., 2015b):

CVaRα(Z) = min
η∈R

{
η +

1

1− α
E[(Z − η)+]

}
. (18)

So we have proven it. �

A.4. The Proof of Theorem 2

In this part, we will prove Theorem 2.

We will calculate the gradient ∂νL(θ, ν, λ),5θL(θ, ν, λ)
and 5λL(θ, ν, λ) of the function L(θ, ν, λ) by using the
methods in (Chow & Ghavamzadeh, 2014a):

L(θ, ν, λ) = −J(πθ) + λ(−ν + 1

1− α
E[(−D(πθ) + ν)+] + β).

First we can expand the expectation:
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L(θ, ν, λ)

=− J(πθ) + λ(−ν + 1

1− α
E[(−D(πθ) + ν)+] + β)

=−
∑
ξ

Pθ(ξ)D(ξ)− λν

+
λ

1− α
∑
ξ

Pθ(ξ)(−D(ξ) + ν)+ + λβ.

We can see that Pθ(ξ) will only depend on θ and ξ, so we
have easily calculate the gradient of λ:

∇λL(θ, ν, λ)

=− ν + 1

1− α
∑
ξ

Pθ(ξ)(−D(ξ) + ν)+ + β

=− ν + 1

1− α
Eξ∼πθ (−D(ξ) + ν)+ + β.

Then we calculate the gradient of ν. Since (D(ξ) − ν)+
isn’t differentiable to ν at the point of ν = D(ξ), so we
consider its semi gradient:

∂ν(−D(ξ) + ν)+ =


0 ν < D(ξ)

q(0 ≤ q ≤ 1) ν = D(ξ)

1 ν > D(ξ)

And we can calculate the gradient of ν as below:

∂νL(θ, ν, λ)

=− λ+
λ

1− α
∑
ξ

Pθ(ξ)∂ν(−D(ξ) + ν)+

=− λ+
λ

1− α
∑
ξ

Pθ(ξ)1{ν > D(ξ)}

+
λq

1− α
∑
ξ

Pθ(ξ)1{ν = D(ξ)}

=− λ+
λ

1− α
∑
ξ

Pθ(ξ)1{ν ≥ D(ξ)} (let q = 1)

=− λ+
λ

1− α
Eξ∼πθ1{ν ≥ D(ξ)}).

Finally, we will calculate the gradient of θ.

∇θL(θ, ν, λ)

=−
∑
ξ

∇θPθ(ξ)D(ξ) +
λ

1− α
∑
ξ

∇θPθ(ξ)(−D(ξ) + ν)+

=
∑
ξ

∇θPθ(ξ)(−D(ξ) +
λ

1− α
(−D(ξ) + ν)1{ν ≥ D(ξ)})

=
∑
ξ

(∇θ logPθ(ξ))Pθ(ξ)

(−D(ξ) +
λ

1− α
(−D(ξ) + ν)1{ν ≥ D(ξ)})

=−
∑
ξ

(∇θ logPθ(ξ))Pθ(ξ)D(ξ)

+
∑
ξ

(∇θ logPθ(ξ))Pθ(ξ)
λ(ν −D(ξ))

1− α
1{ν ≥ D(ξ)}

=− Eξ∼πθ (∇θ logPθ(ξ))
(
D(ξ)− λ

1− α
(−D(ξ) + ν)+

)
.

So we have calculated these three gradient and prove Theo-
rem 2. �

A.5. The Proof of Theorem 3 and Theorem 4

Before proving Theorem 3 and Theorem 4, we first examine
a property of dπM:

Lemma 1 For any state s ∈ S, we have:

dπM(s) = (1−γ)P (s0 = s)+γ
∑
s′

dπM(s′)
∑
a

π(a|s)P (s′|s, a).

(19)

Here we’ll prove this lemma. By the definition of dπM(s),
we have:

dπM(s)− (1− γ)P (s0 = s)

=(1− γ)
∞∑
t=1

∑
s′

γtP (st−1 = s′, st = s|π,M)

=(1− γ)
∞∑
t=0

∑
s′

γt+1P (st = s′|π,M)P (st+1 = s|st = s′, π,M)

=γ
∑
s′

[
(1− γ)

∞∑
t=0

γtP (st = s′|π,M)

]
P (s1 = s|s0 = s′, π,M)

=γ
∑
s′

dπM(s′)P (s1 = s|s0 = s′, π,M)

=γ
∑
s′

dπM(s′)
∑
a

π(a|s)P (s′|s, a).

(20)
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Thus we have proven it. �

Now we will prove Theorem 3. Considering the bellman
equation of value function of π, π̂ν inM, we have:

VM,π(s)

=
∑
a

π(a|s)[R(s, a) + γ
∑
s′

P (s′|s, a)VM,π(s
′)],

VM,π̂ν (s)

=
∑
a

π(a|ν(s))[R(s, a) + γ
∑
s′

P (s′|s, a)VM,π̂ν (s
′)].

By subtracting two value functions, we can deduce:

VM,π̂ν (s)− VM,π(s)

=γ
∑
a

(π(a|ν(s))− π(a|s))
∑
s′

P (s′|s, a)VM,π(s
′)

+γ
∑
a

π(a|ν(s))
∑
s′

P (s′|s, a)(VM,π̂ν (s
′)− VM,π(s

′))

+
∑
a

[π(a|ν(s))− π(a|s)]R(s, a).

(21)

Since equation (21) satisfies for every state s, thus we calcu-
late the expectation of equation (21) for s ∼ dπ̂νM:

∑
s

dπ̂νM(s)[VM,π̂ν (s)− VM,π(s)]

=γ
∑
s

dπ̂νM(s)
∑
a

(π(a|ν(s))− π(a|s))∑
s′

P (s′|s, a)VM,π(s
′)

+γ
∑
s

dπ̂νM(s)
∑
a

π(a|ν(s))∑
s′

P (s′|s, a)(VM,π̂ν (s
′)− VM,π(s

′))

+
∑
s

dπ̂νM(s)
∑
a

[π(a|ν(s))− π(a|s)]R(s, a)

=γ
∑
s

dπ̂νM(s)
∑
a

(π(a|ν(s))− π(a|s))∑
s′

P (s′|s, a)VM,π(s
′)

+
∑
s′

(VM,π̂ν (s
′)− VM,π(s

′))[
γ
∑
s

dπ̂νM(s)
∑
a

π(a|ν(s))P (s′|s, a)

]
+
∑
s

dπ̂νM(s)
∑
a

[π(a|ν(s))− π(a|s)]R(s, a).

(22)

By Lemma 1, we have:

∑
s

dπ̂νM(s)[VM,π̂ν (s)− VM,π(s)]

=γ
∑
s

dπ̂νM(s)
∑
a

(π(a|ν(s))− π(a|s))∑
s′

P (s′|s, a)VM,π(s
′)

+
∑
s′

(VM,π̂ν (s
′)− VM,π(s

′))[
dπ̂νM(s′)− (1− γ)P (s0 = s′)

]
+
∑
s

dπ̂νM(s)
∑
a

[π(a|ν(s))− π(a|s)]R(s, a).

(23)

By moving the second term of the right part in (23) to the
left part, we can deduce:

(1− γ)
∑
s′

(VM,π̂ν (s
′)− VM,π(s

′))P (s0 = s′)

=γ
∑
s

dπ̂νM(s)
∑
a

(π(a|ν(s))− π(a|s))∑
s′

P (s′|s, a)VM,π(s
′)

+
∑
s

dπ̂νM(s)
∑
a

[π(a|ν(s))− π(a|s)]R(s, a),

(24)

thus:

(1− γ)(JM(π̂ν)− JM(π))

=(1− γ)
∑
s′

(VM,π̂ν (s
′)− VM,π(s

′))P (s0 = s′)

=γ
∑
s

dπ̂νM(s)
∑
a

(π(a|ν(s))− π(a|s))
∑
s′

P (s′|s, a)VM,π(s
′)

+
∑
s

dπ̂νM(s)
∑
a

[π(a|ν(s))− π(a|s)]R(s, a)

=γEs∼dπ̂νM
Ea∼π(·|ν(s))

(
1− π(a|s)

π(a|ν(s))

)
Es′∼P (·|s,a)VM,π(s

′)

+Es∼dπ̂νM
Ea∼π(·|ν(s))

(
1− π(a|s)

π(a|ν(s))

)
R(s, a).

And we can prove:

JM(π)− JM(π̂ν)

=
γ

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

(
1− π(a|s)

π(a|ν(s))

)
Es′∼P (·|s,a)VM,π(s

′)

+
1

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

(
1− π(a|s)

π(a|ν(s))

)
R(s, a).

(25)
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Since Ea∼π(·|ν(s))
(
1− π(a|s)

π(a|ν(s))

)
= 0, we can subtract a

benchmark, which will not affect its value. Specially, we
set b = maxs′ VM,π(s

′) − mins′ VM,π(s
′) and we have

|VM,π(s)− b| ≤ b
2 for every state s, thus we can prove:

|JM(π)− JM(π̂ν)|

≤ γ

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

∣∣∣∣1− π(a|s)
π(a|ν(s))

∣∣∣∣∣∣Es′∼P (·|s,a)VM,π(s
′)− b

∣∣
+

1

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

∣∣∣∣1− π(a|s)
π(a|ν(s))

∣∣∣∣ |R(s, a)|
≤ γ

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

∣∣∣∣1− π(a|s)
π(a|ν(s))

∣∣∣∣ b2
+

1

1− γ
Es∼dπ̂νM

Ea∼π(·|ν(s))

∣∣∣∣1− π(a|s)
π(a|ν(s))

∣∣∣∣max
s,a
|R(s, a)|

≤ γ

1− γ
Es∼dπ̂νM

∑
a

|π(a|ν(s))− π(a|s)| b
2

+
1

1− γ
Es∼dπ̂νM

∑
a

|π(a|ν(s))− π(a|s)|max
s,a
|R(s, a)|

=
γ

1− γ
Es∼dπ̂νM

max
s
DTV (π(·|s), π(·|ν(s)))b

+
2

1− γ
Es∼dπ̂νM

max
s
DTV (π(·|s), π(·|ν(s))max

s,a
|R(s, a)|.

(26)

Finally, we will prove that our bound is tighter than the
bound in (Zhang et al., 2020):

|JM(π)− JM(π̂ν)|

≤ γ

1− γ
max
s
DTV (π(·|s), π(·|ν(s)))b

+
2

1− γ
max
s
DTV (π(·|s), π(·|ν(s))max

s,a
|R(s, a)|

≤ 2γ

1− γ
max
s
DTV (π(·|s), π(·|ν(s)))max

s
|VM,π(s)|

+
2

1− γ
max
s
DTV (π(·|s), π(·|ν(s))max

s,a
|R(s, a)|

≤
(

2γ

(1− γ)2
+

2

1− γ

)
max
s
DTV (π(·|s), π(·|ν(s)))

max
s,a
|R(s, a)|.

(27)

Thus we have proven it. �

Finally, we will prove Theorem 4 by using the similar
method of Theorem 3. Similarly, considering the bellman
equation of value function of π inM,M̂, we have:

VM,π(s) =
∑
a

π(a|s)[R(s, a) + γ
∑
s′

P (s′|s, a)VM,π(s
′)],

VM̂,π(s) =
∑
a

π(a|s)[R(s, a) + γ
∑
s′

P̂ (s′|s, a)VM̂,π(s
′)].

(28)

By subtracting them, we have:

VM̂,π(s)− VM,π(s)

=γ
∑
a

π(a|s)
∑
s′

(P̂ (s′|s, a)− P (s′|s, a))VM,π(s
′)

+γ
∑
a

π(a|s)
∑
s′

P̂ (s′|s, a)(VM̂,π(s
′)− VM,π(s

′)).

(29)

Since equation (21) satisfies for every state s, thus we cal-
culate the expectation of equation (21) for s ∼ dπ̂νM and use
Lemma 1:

∑
s

dπM̂(s)[VM̂,π(s)− VM,π(s)]

=γ
∑
s

dπM̂(s)
∑
a

π(a|s)
∑
s′

(P̂ (s′|s, a)− P (s′|s, a))VM,π(s
′)

+γ
∑
s

dπM̂(s)
∑
a

π(a|s)
∑
s′

P̂ (s′|s, a)(VM̂,π(s
′)− VM,π(s

′))

=γ
∑
s

dπM̂(s)
∑
a

π(a|s)
∑
s′

(P̂ (s′|s, a)− P (s′|s, a))VM,π(s
′)

+
∑
s′

(VM̂,π(s
′)− VM,π(s

′))

[
γ
∑
s

dπM̂(s)
∑
a

π(a|s)P̂ (s′|s, a)

]
=γ
∑
s

dπM̂(s)
∑
a

π(a|s)
∑
s′

(P̂ (s′|s, a)− P (s′|s, a))VM,π(s
′)

+
∑
s′

(VM̂,π(s
′)− VM,π(s

′))
[
dπM̂(s′)− (1− γ)P (s0 = s′)

]
.

(30)

Similarly, by moving the second term of the right part in
(30) to the left part, we can deduce:

(1− γ)
∑
s′

(VM̂,π(s
′)− VM,π(s

′))P (s0 = s′)

=γ
∑
s

dπM̂(s)
∑
a

π(a|s)
∑
s′

(P̂ (s′|s, a)− P (s′|s, a))VM,π(s
′),

(31)

thus:
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(1− γ)(JM̂(π)− JM(π))

=(1− γ)
∑
s′

(VM̂,π(s
′)− VM,π(s

′))P (s0 = s′)

=γ
∑
s

dπM̂(s)
∑
a

π(a|s)∑
s′

(P̂ (s′|s, a)− P (s′|s, a))VM,π(s
′)

=γEs∼dπ
M̂
Ea∼π(·|s)

Es′∼P̂ (·|s,a)

(
1− P (s′|s, a)

P̂ (s′|s, a)

)
VM,π(s

′).

(32)

Thus we have proven:

JM(π)− JM̂(π)

=
γ

1− γ
Es∼dπ

M̂
Ea∼π(·|s)

Es′∼P̂ (·|s,a)

(
1− P (s′|s, a)

P̂ (s′|s, a)

)
VM,π(s

′).

(33)

Similarly, we set b = maxs′ VM,π(s
′) − mins′ VM,π(s

′)
and we have |VM,π(s)− b| ≤ b

2 for every state s, thus we
can prove:

|JM(π)− JM(π̂ν)|

≤ γ

1− γ
Es∼dπ

M̂
Ea∼π(·|s)Es′∼P̂ (·|s,a)

∣∣∣∣∣1− P (s′|s, a)
P̂ (s′|s, a)

∣∣∣∣∣
|VM,π(s

′)− b|

≤ γ

1− γ
Es∼dπ

M̂
Ea∼π(·|s)Es′∼P̂ (·|s,a)

∣∣∣∣∣1− P (s′|s, a)
P̂ (s′|s, a)

∣∣∣∣∣ b2
=

γ

1− γ
Es∼dπ

M̂
Ea∼π(·|s)

∑
s′

∣∣∣P̂ (s′|s, a)− P (s′|s, a)∣∣∣ b
2

=
γ

1− γ
Es∼dπ

M̂
Ea∼π(·|s)DTV (P (·|s, a), P̂ (·|s, a))b.

(34)

Thus we have proven it. �

B. Pseudo code of CPPO
In this part, we will provide the pseudo code of our algo-
rithm CPPO.

Algorithm 1 CVaR Proximal Policy Optimization(CPPO)
Require: confidence level α and reward tolerance β
Ensure: θ of parameterized policy πθ(always be random

policy), φ of parameterized value function Vφ.
for k = 1, 2, ..., Niter do

Generate N trajectories Dk = {ξi}Ni=1 by following
the current policy πθ.
Compute reward R̂ti of each state si,t in each trajectory
ξi and the cumulative reward D(ξi).
Compute advantage estimates Âti of each state si,t in
each trajectory ξi.
Update parameters respectively:

η ← η−lrη

(
−λ+

λ

N(1− α)

N∑
i=1

1{η ≥ D(ξi)})

)

θ ← θ+lrθ
1

NT

N∑
i=1

T∑
t=0

∇θmin

(
πθ(a

t
i|sti)

πθk(a
t
i|sti)

Âti, g(ε, Â
t
i)

)

−lrθ
1

N

N∑
i=1

(∇θ logPθ(ξi))
λ

1− α
(−D(ξi) + η)

1{η ≥ D(ξi)}

λ← λ+lrλ

(
−η +

∑N
i=1(−D(ξi) + η)+

N(1− α)
+ β

)

φ← φ+lrφ

(
1

NT

N∑
i=1

T∑
t=0

2(Vφ(si,t)− R̂ti)∇φVφ(si,t)

)

end for
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C. Details of Experiments
In this part, we will provide the details of our experiments.

C.1. Performance in Training Stage

Figure 1. The abscissa is the number of steps interacting with the
environment, and the ordinate is the performance of the agent.

Firstly, in order to compare the performance of VPG, TRPO,
PPO and CPPO in the training stage, we train 10 policies
with different random seed for each algorithm, and plot the
mean and variance of the ten policies as a function of the
training step as shown in Figure 1. The four subgraphs in
Figure 1 represent the experimental results on halfcheetah,
walker2d, swimmer and hopper respectively. The abscissa
represents the number of timesteps for the agent to inter-
act with the environment, and the ordinate represents the
cumulative expected reward of the agent. The solid line rep-
resents the average reward of 10 strategies, and the dotted
line represents the variance of them. Among them, blue
represents VPG, green represents TRPO, orange represents
PPO, and pink represents our CPPO. As shown in Figure 1,
CPPO has achieved significant performance improvement
on HalfCheetah, Swimmer and Hopper. Table 1 shows the
results of mean plus and minus variance trained by each
algorithm.

C.2. Robustness under State Observation Disturbance
in Test Stage

Next, we consider the robustness and security of the trained
model against state observation disturbance. We test the
performance of the trained model under the disturbance of
observation state and draw the Figure 2, where the abscissa

Figure 2. The abscissa is the range of the disturbance, and the
ordinate is the average performance of the algorithm under the
state disturbance.

represents the size of the disturbance and the ordinate repre-
sents the average reward under the disturbance. As shown in
the figure, CPPO has made significant progress in Swimmer
and Hopper.

C.3. Robustness under Transition Probability
Disturbance in Test Stage

Finally, we compare the performance of different algorithms
under the disturbance of transition probability. It is noted
that MuJoCo is a simulator modeled on the physical world,
thus we can modify the transition probability of the environ-
ment by modifying the environment parameters. We mainly
choose to modify the mass of the robot to achieve the pur-
pose of modifying the transition probability. The default
mass of the environments HalfCheetah-v3, Walker2d-v3,
Swimmer-v3 and Hopper-v3 are 6.36, 3.53, 34.6 and 3.53,
We consider the case of larger mass and smaller mass re-
spectively. Therefore, we draw Figure 3, where the abscissa
represents the mass of the agent and the ordinate represents
the performance of the strategy under different mass condi-
tions. From Figure 3, we can see that the performance of
all algorithms decreases to a certain extent with the change
of agent quality (whether it becomes larger or smaller), and
the degree of decline is positively correlated with the quality
change, which is consistent with our theoretical analysis,
that is, the upper bound of the performance difference of the
algorithm is related to the size of the transition probability
disturbance. At the same time, we can see that CPPO has
achieved better robustness improvement in different tasks.
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Figure 3. The abscissa is the mass of the agent, and the ordinate is
the average performance of the algorithm when the mass changes.


