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Abstract

In this paper, we propose a data based transformation for infinite-dimensional Gaussian
processes and derive its limit theorem. For a clustering problem using mixture models, an
appropriate modification of this transformation asymptotically leads to perfect separation
of the populations under rather general conditions, except the scenario in which differ-
ences between clusters depend only on the locations; in which case our procedure is useless.
Theoretical properties related to label consistency are studied for the k-means clustering al-
gorithm when used on this transformed data. Good empirical performance of the proposed
methodology is demonstrated using simulated as well as benchmark data sets, when com-
pared with some popular parametric and nonparametric methods for such functional data.

1 Introduction

Suppose that we are given two Gaussian distributions (say, GDs) P1 and P2. The Hajek and Feldman
property (established independently by Hajek (1958) and Feldman (1958)) states that P1 and P2 are either
equivalent, or else mutually singular. In other words, for every measurable set A, P1(A) = 0 if and only if
P2(A) = 0, or else there exist two disjoint measurable sets S1 and S2 such that

P1(S1) = 1,P2(S1) = 0 and P1(S2) = 0,P2(S2) = 1.

Mutual singularity is not very interesting in finite dimensions because it happens only when at least one of
the covariance matrices is singular. However, in the functional setting, this singularity appears in non-trivial
situations. To mention an example, it was shown by Rao and Varadarajan (1963) that if the covariance
operators of P1 and P2, namely, ΣP1 and ΣP2 satisfy ΣP2 = aΣP1 for some a ̸= 1, then P1 and P2 are
mutually singular.

It is clear that the mutually singular case of the Hajek and Feldman property (say, HFp) looks very promising
for classification as well as clustering (in the mixture setting) of data points. Recently, some results have
appeared taking advantage of this property to propose perfect classifiers (see the references given below).
However, the clustering problem seems to be harder and as far as we know, Delaigle et al (2019) is the only
available paper with results in this area. The main drawback of the paper by Delaigle et al (2019) is that
it primarily deals with location problems (see Section M of Appendix II for a detailed discussion). In this
paper, we present a family of transformations on functional data which allows one to identify some mutually
singular situations. The transformed data are then used to obtain perfect clustering in the mixture setting.

To give an overview of our main contributions, let us consider a Gaussian process (say, Z) defined on a
bounded real interval, which without loss of generality, we identify with the unit interval [0, 1]. Further,
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assume that its trajectories belong to the Hilbert space of square integrable functions H, which is defined
as follows:

H : set of real functions f(t) with t ∈ [0, 1] such that
∫ 1

0
f2(t)dt < ∞.

The inner product in H is ⟨f, g⟩ =
∫ 1

0
f(t)g(t)dt. The keystone of this paper is Theorem 2.1 in Section 2.

It states that under appropriate assumptions, if b ∈ H, then the limit of a sequence of scaled Mahalanobis
distances between some finite-dimensional projections of Z and b converges in probability to a non-random
limit. Scaling is done using the dimension of the projection, and this convergence holds as the dimension
goes to infinity. Practical interest of this result lies in the fact that the limit depends only on the distribution
of Z (say, PZ). Therefore, Theorem 2.1 allows one to identify some cases in which GDs are mutually singular.
In such scenarios, this result allows one to obtain perfect classification (also see Cuesta-Albertos and Dutta
(2022)) as well as perfect clustering. We now explain this point a bit more precisely.

Consider a probability distribution P such that P =
∑J

h=1 πhPh, where 0 < πh < 1 with
∑J

h=1 πh = 1 and
Ph are GDs on H for 1 ≤ h ≤ J . Additionally, assume P to be known, but the precise values of J , πh and
Ph for 1 ≤ h ≤ J are unknown. Thus, PZ can be understood as a two-step procedure. In the first step, we
randomly select one among the J possibilities with probabilities πh for 1 ≤ h ≤ J . Now, if Ph0 is selected in
this step, then one chooses a random function using the probability Ph0 for h0 ∈ {1, . . . , J}. We will stick
to this interpretation throughout the paper.

According to this mixture model, every function Z ∼ P is in fact generated from one of the Ph’s. Using
Theorem 2.1, if we project the available functions on certain subspaces of increasing dimensions, then the
proposed transformation leads to different limits (depending just on the Ph which generated each function).
Thus, if we have a set of observations (with at least one observation from each Ph), in the limit we can
identify the value of J as well as the subset of the observations produced by each Ph without any possibility
of mistake. We call this fact perfect clustering, which in practice means that we can estimate J and the
cluster assignment of all the observations correctly with a high probability when the dimension is large.

We believe that HFp should have attracted the attention of researchers in classification and clustering
for functional data, the ‘orthogonality case’ apparently being more attractive because it would allow one
to obtain perfect classification and perfect clustering. It took 50 years before the HFp was formally used in
classification. To the best of our knowledge, the first paper using HFp in classification was Baillo et al (2011),
where the authors derived a classification procedure using likelihood ratios. They focused on the ‘equivalence
case’ and hence, did not obtain perfect classification. Optimal classification of Gaussian processes (say, GPs)
was analyzed in Torrecilla et al (2020) from the HFp viewpoint. Further, the optimal (Bayes’) classifier
of equivalent GPs was derived and a procedure to obtain asymptotically perfect classification of mutually
singular GPs was described as well. The results covered both homoscedastic as well as heteroscedastic cases.
Additionally, Delaigle and Hall (2012) and Delaigle and Hall (2013) investigated conditions under which a
perfect classification procedure for GPs was possible and developed related classifiers. The paper by Dai
et al (2017) proposed a functional classifier based on ratio of density functions, which also leads to perfect
classification. These papers contain no reference of the HFp. In fact, the relationship between Delaigle and
Hall (2012) and the HFp was analyzed in Berrendero et al (2018), where the authors presented an expression
of the optimal Bayes’ rule in some classification problems for functional data. As mentioned earlier, perfect
clustering has been studied only by Delaigle et al (2019).

In Rao and Varadarajan (1963) and Shepp (1966b), the authors obtained characterizations of the singularity
or equivalence of Gaussian measures in functional spaces. Their results involve increasing sequences of
subspaces. For equivalent GDs, the limit obtained in Rao and Varadarajan (1963) includes a term which is
the exponential of an expression involving the difference of the means of P1 and P2. Curiously, the logarithm
of this term is related with the expressions of our limits. Similarities between our proposal and those in
Rao and Varadarajan (1963) and Shepp (1966b) end here because the other involved terms are different.
Moreover, we handle Mahalanobis distances between data points, while these papers use Hellinger and Jeffreys
functionals to measure discrepancy between distributions. As a consequence, the characterizations they obtain
are not applicable in practice to cluster data points because they depend on the underlying distribution.
Moreover, it is not straight forward to compute such functionals using data points.
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1.1 Contributions

In this paper, we first analyze the limit of the above mentioned scaled Mahalanobis’ distances by assuming the
underlying parameters of the GPs to be known (see Section 2). We begin with a general concentration result
in Theorem 2.1. Then, we propose a transformation for clustering that asymptotically yield perfect separation
among the clusters (see Theorem 2.5). Further, this transformation can be used to find the unknown number
of clusters (see Proposition 2.3). In Section 3, we estimate the covariance operator of the mixture distribution
from data and state related asymptotic results for the proposed transformation. In Theorem 3.2, we prove
uniform (on the sample points) consistency of the empirical version for the transformation associated with
GP clustering. It is surprising that our GP clustering method fails to discriminate ‘location only’ scenarios,
but yields perfect clustering for ‘differences in scales’ (see Remark 2.2.2). We have also compared our work
both theoretically (see Section M of Appendix II) as well as numerically (see Sections 4, 5 and Section N in
Appendix II) with the existing literature on perfect clustering for functional data. All proofs are deferred
to Appendix I. Some additional material is presented in Appendix II, which includes a possible extension to
non-Gaussian distributions (see Section K), discussion on a clustering procedure in the ‘location only’ case
(see Section L) and theoretical comparisons of our results with those obtained in the paper by Delaigle et al
(2019) (see Section M).

In summary, the main contributions of our paper are as follows:

1. Given a sample from a mixture GD, we develop a method which allows us to identify the number
of members in the mixture as well as the cluster membership of the functions.

2. On the theoretical side, if we know the probability P (but neither J nor the Phs) and we have a finite
sample taken from P, then the procedure allows to identify J as well as the functions produced by
each Ph for 1 ≤ h ≤ J .

3. From the practical point of view, we can estimate the covariance operator of the full mixture if the
sample size increases. Under appropriate conditions, our procedure allows to identify J as well as
the functions produced by each Ph with a high probability for 1 ≤ h ≤ J .

4. The proposed procedure only works in those cases in which the distributions in the sample have
different covariance operators and we have enough difference in the values between Lh

S and Lhk
S for

1 ≤ h, k ≤ J (see Theorem 2.2 and Remark 2.5.2).

5. Our simulations as well as analysis of real data sets show promising behaviour of the procedure when
compared with several existing methods.

1.2 Notation

We will use the following notation. The distribution of the random process Z will be denoted as PZ, its mean
function by µZ and its covariance operator (referred to simply as covariance) by ΣZ. We use ΣZ(s, t) to
denote the covariance between Z(s) and Z(t) for s, t ∈ [0, 1]. Given a square matrix A, trace(A) denotes its
trace. The usual Euclidean norm on Rd is denoted by ∥ · ∥. To simplify notation, we do not always explicitly
state the dependence of the norm on the dimension d. Further, we will assume that all the involved random
quantities are defined on a common probability space (Ω,A,P). The notions of convergence in probability
and equality in distribution are denoted by P→ and ∼, respectively.

2 Transformation with Known Gaussian Distributions

Let {Vd}d∈N be an increasing sequence of subspaces of H. Here, the dimension of Vd is d. This restriction is
not necessary for the development which follows as long as the dimension of Vd goes to infinity with increasing
d, but it simplifies the notation. Given the subspace Vd, let µZ

d and ΣZ
d represent the d-dimensional mean

and the d× d covariance matrix of the projection of Z on Vd. If u ∈ H, we denote ud = (u1, . . . , ud)T to be
its projection on Vd.
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Fix b ∈ H. Theorem 2.1 analyses the behaviour of the limit of squared Mahalanobis norm of the d-dimensional
random vector (Z − b)d for d ∈ N. For every positive definite (p.d.) d× d matrix Ad, we define the map

DAd

d (u,v) = 1
d

∥∥∥A−1/2
d (u − v)d

∥∥∥2
for u,v ∈ H. (1)

Later, we will use this function alongwith the sequence of covariance matrices {ΣZ
d }d∈N.

In this section, the underlying distributions are assumed to be known. After stating Theorem 2.1 and some
remarks related to it, we will look into an application to cluster analysis inspired from this result. We will
take advantage of the fact that the limit in this theorem is not random, but it may depend on the underlying
probability distribution PZ.

Theorem 2.1 Let {Ad}d∈N be a sequence of d × d symmetric, p.d. matrices and αd
1, . . . , α

d
d be the

eigenvalues of the matrix Sd = (Ad)−1/2ΣZ
d (Ad)−1/2 for d ∈ N. We define αd = (αd

1, . . . , α
d
d)T and

∥αd∥∞ = max(αd
1, . . . , α

d
d) is the supremum norm. Let us assume that

0 = lim
d→∞

∥αd∥∞

d
. (2)

Let b ∈ H such that there exist constants Lµ and LS (finite, or not) with

Lµ = lim
d→∞

DAd

d (µZ, b) and (3)

LS = lim
d→∞

1
d

trace(Sd). (4)

Then, DAd

d (Z, b) P→ L := Lµ + LS as d → ∞.

Remark 2.1.1 A condition in Theorem 2.1 is required to ensure that no single component is extremely
influential. For instance, it may happen that we take a sequence such that αd

1 = d and αd
i = o(d−1) for every

2 ≤ i ≤ d. Under this condition, a limiting value is not feasible in Theorem 2.1. However, this possibility is
excluded by assumption (2).

Remark 2.1.2 We allow both the constants in Theorem 2.1 to be infinite. When LS is finite, Lemma B.1
(see Appendix I) shows that assumption (2) follows from assumption (4).

Remark 2.1.3 Let Z1 and Z2 be independent observations generated from the GDs P1 and P2. Thus,
Z1 − Z2 is a GP with mean µZ1 −µZ2 and covariance ΣZ1 + ΣZ2 . Consider the matrix Sd = (Ad)−1/2(ΣZ1

d +
ΣZ2

d )(Ad)−1/2 with d ∈ N. Define Z = Z1 − Z2 and b = 0 in Theorem 2.1. Then, under the assumptions of
this result, the following convergence result holds:

DAd

d (Z1,Z2) = DAd

d (Z1 − Z2, 0) P→ L := Lµ + LS as d → ∞.

Here, Lµ = limd→∞ DAd

d (µZ1 , µZ2) and LS is as defined in (4) of Theorem 2.1.

Remark 2.1.4 In general, the fact that Vd ⊂ Vd+1 does not guarantee the existence of any relationship be-
tween the sets {αd

1, . . . , α
d
d} and {αd+1

1 , . . . , αd+1
d+1}. However, in some cases {αd

1, . . . , α
d
d} ⊂ {αd+1

1 , . . . , αd+1
d+1}

holds (for instance, when Vd is generated by the first d eigenfunctions of ΣZ in Section 2.1).

2.1 Application: Cluster Analysis

In this subsection, we deal with a random function Z whose distribution is a two component mixture
distribution of the form: PZ = π1P1 + π2P2, where 0 < π1 < 1 and π1 + π2 = 1. Here, Ph denotes the GD
on H with Zh ∼ Ph having mean function µZh and covariance ΣZh for h = 1, 2.

The mean function and the covariance of the mixture satisfy µZ(t) = π1µ
Z1(t) +π2µ

Z2(t) with t ∈ [0, 1] and

ΣZ(s, t) = π1ΣZ1(s, t) + π2ΣZ2(s, t) + π1π2[µZ1(s) − µZ2(s)][µZ1(t) − µZ2(t)] for s, t ∈ [0, 1]. (5)
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Given N independent and identically distributed (i.i.d.) r.v.’s Z1, . . . ,ZN ∼ PZ, consider the following set:

Ch = {j : Zj was generated from Ph for 1 ≤ j ≤ N} (6)

with h ∈ {1, 2}. Clearly, the set Ch depends on the sample size N . The components of the mixture
distribution PZ and the sets Ch for h = 1, 2 are unknown, and the problem we are addressing here is the
estimation of these sets. However, we assume PZ and the sets C1 and C2 to be known in this section to build
the fundamental idea behind using the proposed transformation for clustering of GPs.

Let Vd with d ∈ N denote the sequence of d-dimensional subspaces generated by the d eigenfunctions
associated with the d largest eigenvalues of ΣZ (recall the discussion in Remark 2.1.4). Consider a sub-
sample of size two from Z1, . . . ,ZN generated from P. To simplify our notation, we denote them to be Z1
and Z2, respectively. They are independent, with PZ1 = Ph and PZ2 = Pk for h, k ∈ {1, 2}. The clustering
procedure that we propose is based on the behavior of the transformation DΣZ

d (Z1,Z2), which is stated
below in Theorem 2.2.

Theorem 2.2 (a) Assume that h = k ∈ {1, 2}. Define Sh
d := (ΣZ

d )−1/2(2ΣZh

d )(ΣZ
d )−1/2 for d ∈ N, and

assume that Lh
S = limd

1
d trace(Sh

d ) exists. Then, Lh
S is finite and

D
ΣZ

d

d (Z1,Z2) P→ Lh
S as d → ∞. (7)

(b) Assume that h ̸= k ∈ {1, 2}. Then, Lhk
µ = limd D

ΣZ
d

d (µZh , µZk ) = 0.

Define Shk
d := (ΣZ

d )−1/2(ΣZh

d + ΣZk

d )(ΣZ
d )−1/2 for d ∈ N, and assume that Lhk

S = limd
1
d trace(Shk

d ) exists.
Then, Lhk

S is finite and
D

ΣZ
d

d (Z1,Z2) P→ Lhk
S as d → ∞. (8)

Remark 2.2.1 The structure of the covariance ΣZ stated in equation (5) imposes some restrictions on the
associated constants as stated in part (b) of Theorem 2.2. In particular, the fact that Lh

S and Lhk
S are finite

implies that assumption (2) in Theorem 2.1 always holds for the sequence of matrices {Sh
d }d∈N and {Shk

d }d∈N
with h, k ∈ {1, 2}.

Remark 2.2.2 It follows from part (b) of Theorem 2.2 that the statistic we propose is useless for cluster
analysis in the homoscedastic case (independently of the difference between µZ1 and µZ2) because if ΣZ1 =
ΣZ2 , then L12 = L1

S = L2
S . A possibility is to modify the statistic DΣZ

d

d (z1, z2) so that the value of the
transformation D

ΣZ
d

d (µZ1 , µZ2) increases with d. Our proposal is to use

D
ΣZ

d ,r
d (u,v) := 1

d

∥∥∥((ΣZ
d )−1/2)r(u − v)d

∥∥∥2
= 1
d

d∑
i=1

(ui − vi)2

λr
i

with r ∈ N.

Discussion of this transformation, and some numerical results are included in Section L of Appendix II.

To simplify notation and avoid technicalities with empty classes, we additionally assume that the observations
whose indices belong to the sets C1 = {1, . . . , N1} and C2 = {N1 + 1, . . . , N} with N = N1 + N2 and
N1, N2 > 0, were generated by P1 and P2, respectively. In practice, these sets are unknown and in fact our
aim is their estimation. We begin with this simplifying assumption for ease of notation, and to obtain a
clearer exposition of the proposed methodology.

Define the N ×N matrix Γd, whose (i, j)-th element is

Γd(Zi,Zj) = γd
ij = 1

N − 2

N∑
t=1, t ̸=i,j

[
D

ΣZ
d

d (Zt,Zi) −D
ΣZ

d

d (Zt,Zj)
]2

(9)

for 1 ≤ i, j ≤ N . Theorem 2.2 and the fact that t ̸= i, j in (9) give us the following:

γd
ij

P→

{
0, if i, j ∈ Ch for h = 1, 2,
γhk, if i ∈ Ch and j ∈ Ck,with h ̸= k ∈ {1, 2},

(10)
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as d → ∞. Here,
γhk = Nh − 1

N − 2 (Lh
S − Lhk

S )2 + Nk − 1
N − 2 (Lk

S − Lkh
S )2.

Note that N1 and N2 are fixed here. Combining the fact stated above in (10), as d → ∞, we obtain

Γd
P→ Γ :=

[
0N10T

N1
γ121N11T

N2

γ211N21T
N1

0N20T
N2

]
. (11)

Let βd
i and βi (for 1 ≤ i ≤ N) denote the eigenvalues corresponding to the matrices Γd and Γ, respectively.

Define the following quantities

Kd =
N∑

i=1
I(|βd

i | > ad) and K0 =
N∑

i=1
I(|βi| > 0), (12)

with {ad}d∈N decreasing to 0 as d → ∞ (at an appropriate rate), and I is the indicator function. The
constant K0 clearly equals 2 for the limiting N ×N matrix Γ stated in (11), and hence, correctly identifies
the true number of clusters.

Proposition 2.3 Assume N1, N2 ≥ 1 are fixed. Under the assumptions of Theorem 2.2, if L12
S ̸= L1

S and
L21

S ̸= L2
S, then there exists a sequence {ad}d∈N ⊂ R+ such that ad → 0 and Kd

P→ 2 as d → ∞.

This now implies that we can correctly identify the true number of clusters asymptotically as d → ∞.
The structure of the matrix Γ in (11) is straight forward because of the simplifying assumption on the sets
C1 and C2. However, this is not a requirement and we will drop it. Proposition 2.3 holds more generally
for any permutation of the data points Z1, . . . ,ZN . In fact, if the sets C1 and C2 are unknown, then the
rows/columns of the Γ matrix will be permuted accordingly. But, the underlying structure remains the
same and Proposition 2.3 continues to hold. As a followup of our previous result, we now prove that if
any standard clustering method is used on the Γd matrix, then we can perfectly cluster all the observations
asymptotically (as d → ∞) because of the structure of the Γ matrix stated in (11).

Definition 2.4 A clustering method can be defined as a map from H to the set {1, . . . , J}. Consider the
sequence of maps {ψd}d∈N and a second map ϕ. A measure of distance between two clusterings based on the
Rand index (see p. 847 of Rand (1971)) is defined as follows:

Rd,N = 1(
N
2
) ∑

1≤i<j≤N

I
[
I[ψd(zi) = ψd(zj)] + I[ϕ(zi) = ϕ(zj)] = 1

]
,

for a fixed N ≥ 2.

Let ϕ be the map which gives the true labels, i.e., ϕ(xj) = h for j ∈ Ch with h ∈ {1, 2}. We can construct a
data based ψd by directly applying any clustering technique on the rows or columns of the matrix Γd. Here,
we use the k-means algorithm on the rows of Γd.

Mathematically, the k-means algorithm finds J groups (say, G1, . . . ,GJ) with centers c1, . . . , cJ such that
ϕ(G1, . . . ,GJ) =

∑J
h=1

∑
{i:xi∈Gh} ∥xi − ch∥2 is minimized. The asymptotic properties of the matrix Γd as

d → ∞ (stated above in (11)) imply that differences in the limiting constants should yield perfect clustering.
Our next result proves label consistency for this k-means algorithm when J = 2.

Theorem 2.5 Assume J = 2 and γ12 > 0. Further, assume that the conditions in Theorem 2.2 and
Proposition 2.3 hold. Then, the clusters will be perfectly identifiable, i.e., Rd,N

P→ 0 as d → ∞.

Remark 2.5.1 The well-known Rand index (a measure of similarity) is usually defined as 1 − Rd,N . As a
consequence, Theorem 2.5 implies that the usual Rand index goes to one as d → ∞.
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Remark 2.5.2 The structure of the N ×N symmetric matrix Γ stated in (11) continues to hold, and will
lead us to perfect clustering for every value of J ≥ 2 if enough distinct γij ’s exist. In particular, this happens
if we have some h with 1 ≤ h ≤ J such that γhk ̸= γhk′ for every 1 ≤ k ̸= k′ ≤ J , but other possibilities
exist as well.

Moreover, the procedure described in Proposition 2.3 also works fine with the limit equal to K0 (which is the
rank of Γ). One may be tempted to think that it generally coincides with J . But, this is true only for J ≤ 3
and may be different for J ≥ 4 (as shown in Lemma F.1 of Appendix F). The proof of Lemma F.1 further
shows that the condition under which rank(Γ) < J is quite restrictive. Thus, for simplicity, our proposal is
to estimate the number of clusters J using Kd (defined in equation (12) above).

2.1.1 Example with GPs

If we assume that ΣZ2 = aΣZ1 (for some a > 0), then we have the following expressions for the scale
constants stated in Theorem 2.2:

L1
S = 2

π1 + π2a
, L2

S = 2a
π1 + π2a

and L12
S = 1 + a

π1 + aπ2
.

Thus, it is possible to identify perfectly the clusters as long as a ̸= 1, since this implies that γ12 and γ21 both
are positive quantities.

2.1.2 Uniform Convergence

In Theorem 2.2, we have proved consistency for finite sets of data points corresponding to the transformation
D

ΣZ
d

d (Z1,Z2) defined in (1). We now prove the uniform (on the random sample) convergence of this function
as N → ∞. This result will be useful in establishing a second result on uniform convergence, which we state
in the next section.

Theorem 2.6 Assume the conditions in Theorem 2.2, and let {dN } ⊂ N be such that dN → ∞ as N → ∞.
Then, we have the following.

a) For h ∈ {1, 2}, let αdN
= (αdN

1 , . . . , αdN

dN
)T be the eigenvalues of Sh

dN
with dN ∈ N. If

logN = o

(
dN

∥αdN
∥∞

)
, (13)

then it happens that

sup
Z1,Z2∈CN

h

∣∣∣∣DΣZ
dN

dN
(Z1,Z2) − Lh

S

∣∣∣∣ P→ 0 as N → ∞. (14)

b) For any h ̸= k ∈ {1, 2}, let αdN
= (αdN

1 , . . . , αdN

dN
)T be the eigenvalues of Shk

dN
with dN ∈ N. If

logN = o

(
dN

∥αdN
∥∞

)
, (15)

then it happens that

sup
Z1∈CN

h
,Z2∈CN

k

∣∣∣∣DΣZ
dN

dN
(Z1,Z2) − Lhk

∣∣∣∣ P→ 0 as N → ∞. (16)

Remark 2.6.1 Assumption (2) holds here, so ∥αdN
∥∞

dN
= 1

dN
max

1≤i≤dN

αdN
i → 0 as N → ∞. Thus, if we

take dN growing fast enough, then it is assured that assumptions (13) and (15) hold. The structure of the
matrices Sh

d and Shk
d for d ∈ N with h ̸= k ∈ {1, 2} implies that a sufficient condition is logN = o(dN ) (also

see Proposition H.1 in Appendix H).
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3 Transformations with Estimated Gaussian Distributions

In this section, we will discuss the steps to implement the procedure described in Section 2. In practice,
the involved distributions and all the associated quantities need to be estimated from the data. Here, Z will
denote a random element with distribution the GP mixture π1P1 + π2P2.

Let ϕZ
j (t) with t ∈ [0, 1] and λZ

j for j ∈ N denote the eigenfunctions and eigenvalues of ΣZ, respectively. We
will now make the following assumptions:

A.1 supt∈[0,1] E[Z4(t)] < ∞.

A.2 Assume that λZ
1 > λZ

2 > · · · > 0 satisfying
∑∞

j=1 λ
Z
j < ∞.

It is well-known that assumption A.2 implies {ϕZ
j }j∈N forms an orthonormal basis of H.

To estimate ΣZ and its eigenvalues and eigenfunctions, we will use the corresponding empirical quantities.
Suppose that we have a simple random sample Z1, . . . ,ZN taken from Pz. Given s, t ∈ [0, 1], we define

Σ̂Z(s, t) = 1
N

N∑
i=1

[Zi(s) − ZN (s)][Zi(t) − ZN (t)],

where Z̄N (t) = 1
N

∑N
i=1 Zi(t). Consider the corresponding families λ̂Z

1 ≥ λ̂Z
2 ≥ · · · and ϕ̂Z

1 , ϕ̂
Z
2 , . . . of its

eigenvalues and eigenvectors, respectively. Note that Σ̂Z as well as all the λ̂Z
j ’s and ϕ̂Z

j ’s depend on N .

With a finite sample, we cannot estimate the entire (infinite) collection of eigenvalues and eigenvectors. Thus,
we follow the work of Delaigle and Hall (2012) and Hall and Hosseini-Nasab (2006), and select a non-random
decreasing sequence ηN going to zero slowly enough as to satisfy limN N1/5ηN = ∞. We define

R̂Z
N = inf{j : λ̂Z

j − λ̂Z
j+1 < ηN } − 1. (17)

This definition implies that λ̂Z
j ≥ ηN for every j ≤ R̂Z

N . Moreover, we also need that the theoretical
eigenvalues are reasonably well separated. To obtain this, given δ > 0, we further define

RZ
N = inf{j : λZ

j − λZ
j+1 < (1 + δ)ηN } − 1. (18)

We now state empirical analogues of the results stated in Section 2.1.

3.1 Consistency of Clustering

Let Z1, . . . ,ZN be a simple random sample taken from the GP mixture distribution PZ. Now, PZ and
the sets C1 and C2 (containing information on the class labels defined in (6)) are unknown. Extensions of
Theorems 2.2 and 2.6 to Theorems 3.1 and 3.2 are presented below. The following results will be based
on the analysis of the map D̂R̂N

(u,v), which is the transformation D
ΣZ

d

d (u,v) defined in (1) with d = R̂N

(defined in (17)), and the pooled covariance matrix ΣZ
R̂N

which is estimated by Σ̂Z
R̂N

(sample covariance of

the full sample). Here, D̂R̂N
is an abridged notation of D

Σ̂Z
R̂N

R̂N
. The first result is related to the consistency

of the transformation on finite sets.

Theorem 3.1 Let assumptions A.1 and A.2 and those in Theorem 2.2 hold.

(a) If h = k ∈ {1, 2}, then
D̂R̂N

(Z1,Z2) P→ Lh
S as N → ∞. (19)

(b) If h ̸= k ∈ {1, 2}, then
D̂R̂N

(Z1,Z2) P→ Lhk
S as N → ∞. (20)
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We need an increasing sample size in order to estimate the parameters consistently. Thus, it is desirable
to be able to cluster the increasing number of data points, asymptotically without error. The only way to
achieve this is to get some kind of uniform convergence in (19) and (20) when the sample size increases.
This is the purpose of Theorem 3.2, which gives us clear evidence that using this transformation would lead
to asymptotic perfect separation in the empirical case as well.

Theorem 3.2 Let us assume all the conditions in Theorem 2.6 with logN = o(RZ
N ) in (18).

(a) For h ∈ {1, 2}, we have that

sup
Z1,Z2∈CN

h

∣∣∣D̂R̂N
(Z1,Z2) − Lh

S

∣∣∣ P→ 0 as N → ∞.

(b) For any h, k ∈ {1, 2} with h ̸= k, we have that

sup
Z1∈CN

h
,Z2∈CN

k

∣∣∣D̂R̂N
(Z1,Z2) − Lhk

S

∣∣∣ P→ 0 as N → ∞.

Remark 3.2.1 Clearly, Theorem 3.1 follows from Theorem 3.2. But, the conditions required for proving
the former are weaker and hence, we state it as a separate result.

Remark 3.2.2 (Asymptotic perfect identification of clusters) Recall the matrix Γd from (9) with d ∈ N.
Now, consider the matrix Γ̂R̂N

, which is obtained by replacing γd
ijs in the matrix ΓR̂N

with their estimated
values γ̂R̂N

ij , i.e., γ̂R̂N
ij = D̂R̂N

(Zi,Zj) with 1 ≤ i ̸= j ≤ N . Define v12 = π1
∣∣L1

S − L12
S

∣∣2 + π2
∣∣L2

S − L21
S

∣∣2.
Fix ϵ > 0. Theorem 3.2 implies that with probability converging to one as N → ∞, we have

- if Zi,Zj ∈ Ch for h ∈ {1, 2}, then
∣∣∣γ̂R̂N

ij

∣∣∣ ≤ 4ϵ2,

- if Zi ∈ Ch,Zj ∈ Ck for h ̸= k ∈ {1, 2}, then
∣∣∣γ̂R̂N

ij − v12

∣∣∣ ≤ Hϵ,

for some H > 0. Consequently, if v12 > 0, then the elements in Γ̂d will be clustered into two well-separated
clusters: one around 0 and another one around v12 with probability converging to one.

Similarly, let PZ be a mixture of J(> 2) components and denote

vhk := πh

∣∣Lh
S − Lhk

S

∣∣2 + πk

∣∣Lk
S − Lkh

S

∣∣2
with 1 ≤ h ̸= k ≤ J . For positive and distinct vhks, the elements in the matrix Γ̂d will be perfectly clustered
into 1 +

(
J
2
)

well separated clusters: one of them around the point 0 and the remaining around the values
vhk (for h < k) with probability converging to one as N → ∞. Therefore, asymptotically, the sequence of
matrices {Γ̂R̂N

}N∈N will contain enough information to perfectly cluster all the data points in a sample.

3.2 Implementation Issues

We are given a sample of data points without the labels. Here, we consider the N ×N estimated matrix Γ̂N

with the (i, j)-th element as D̂R̂N
(Zi,Zj) (which is just the empirical version of DΣZ

d

d (Zi,Zj) based on the
pooled sample covariance) for 1 ≤ i, j ≤ N and apply any clustering procedure on its rows (or, columns).
Note again that we do not need to estimate the unknown constants Lh

S and Lhk
S for h, k ∈ {1, 2} (stated

in Theorem 3.1) for the implementation of our clustering procedure. The expressions related with Kd and
R̂N are not used in our implementation (see Table 3.2 below for the main differences between theory and
practice). In Section 4.2, we give complete details of the implementation of our procedure.

9
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Table 3.1: Some key differences in our theoretical assumptions and implementations.

Quantity Theoretical Assumption Implementation

R̂N involves λ̂js and goes to
zero as N → ∞

estimated using cross-validation in clustering
(see Wang (2010) for more details)

Kd involves βis and goes to
zero as d → ∞

involves β̂is and estimated using the
optishrink function from the R pack-
age denoiseR

4 Analysis of Simulated Datasets

For our simulation study, we consider two class problems (J = 2). We generated data on a discrete grid of
100 equi-spaced points in the unit interval [0, 1] from four different simulation models, which are described
below. Fix s > 0.

I. Define Xh(t) =
∑40

j=1(λ1/2
hj Zhj+µhj)ϕj(t) with t ∈ [0, 1] and h = 1, 2. Here, the Zhjs are independent

standard normal (i.e., N(0, 1)) random variables, ϕj(t) =
√

2 sin(πjt) with t ∈ [0, 1] and 1 ≤ j ≤ 40.
Also, µhj = 0 for j > 6, and we set the other components equal to (0,−0.5, 1,−0.5, 1,−0.5)T and
(0,−0.75, 0.75,−0.15, 1.4, 0.1)T for k = 1, 2, and λ1j = 1/j2 and λ2j = s/j2 for 1 ≤ j ≤ 40.
This model is from the paper Delaigle and Hall (2012).

II. In this example, X1 ∼ B and X2 ∼ µ+sB with µ(t) = Gt for t ∈ [0, 1] and G ∼ N(0, 4) independent
of B. Here, B is the standard Brownian bridge, i.e., a centered GP with σij = min(ti, tj) − titj for
ti, tj ∈ [0, 1] and i, j ∈ N.
Since E[X2(t)] = E[Gt] = 0 for t ∈ [0, 1], the differences in mean never appear in this setting. In
fact, the inclusion of µ modifies the covariances because if 0 < ti < tj < 1, then the independence
between G and B yields the following:

E[X2(ti)X2(tj)] = 4titj + s2ti(1 − tj).

This model is from the paper Berrendero et al (2018).

III. Let Xh = µh +
∑50

j=1 ξhjλhj
1/2ϕj for h = 1, 2. Here, ξhjs are i.i.d. N(0, 1), µ1 = 0 and µ2(t) = t

with t ∈ [0, 1], λ1j = e−j/3 and λ2j =
√
se−j/3 for 1 ≤ j ≤ 50, and ϕ2i−1 =

√
2 sin(2iπt) and

ϕ2i =
√

2 cos(2iπt) for 1 ≤ i ≤ 25 with t ∈ [0, 1].
This model is from the paper Dai et al (2017).

IV. This problem consists of two Brownian motions defined in the closed interval [0, 1] with mean func-
tions µZ1(t) = 20t1.1(1 − t) and µZ2(t) = 20t(1 − t)1.1, respectively, for t ∈ [0, 1]. For the first class,
the eigenfunctions are ϕj(t) =

√
2 sin((j−0.5)πt) and associated eigenvalues are λ1j = 1/(π(j−0.5))2

for 1 ≤ j ≤ 15. The second class is similar to the first one, but the eigenvalues are multiplied by
√
s

(i.e., λ2j =
√
sλ1j =

√
s/(π(j − 0.5))2) for 1 ≤ j ≤ 15.

This model is from the paper Galeano et al (2015).

We set s = 1 for location only problems. In location and scale problems, we fixed s = 3, while for
scale only problems the mean functions µZ1 and µZ2 were set to be the constant function 0 and s = 3
was retained.

4.1 Choice of d

A critical issue here is selection of the optimal dimension of the projected space for a given a set of data points
(i.e., a fixed value of (N1, N2) or N). Let us recall Theorem 3.1. According to this result, we expect the rows
of the matrix Γ̂d to form two clearly separated clusters depending on the class label of the observation for

10
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large values of d. To demonstrate this, we construct a sequence of images which shows how this separation
varies with increasing values of d.

We generated samples of size 250 from each of the two classes for the ‘scale case’ of Example II. For
the purpose of demonstration, the first 250 observations correspond to the first GD, while the next 250
observations to the second. Figure 1 below shows the heatmap for increasing values of d, and we observe the
best concentration at d = 80. However, some noise in the off-diagonal submatrices for d = 80 (compared to
d = 60) makes us to consider that the optimum could be somewhere between the values 60 and 80.

(a) d = 20 (b) d = 40 (c) d = 60 (d) d = 80

Figure 1: Heatmap of Γ̂d for varying values of d.

Clearly, the choice of d is quite important as d is the dimension of the subspace where we project our
observations (for a fixed sample size). We observe from Figure 1 that its estimation is quite crucial. The
next subsection contains further details on the choice of d.

4.2 Clustering Procedure in Practice

To implement the clustering method, we use cross-validation (CV) to choose the dimension d suitably. We
use the idea developed by Wang (2010), which we state briefly here. Given B ∈ N, split the data into three
random subsets (say, S1b, S2b and S3b) each of equal size for 1 ≤ b ≤ B. For each value of b, treat the data
points in S1b and S2b as the training sets, and S3b as the validation set. For a fixed value of d and given a
clustering algorithm, the two training sets S1b and S2b are used to construct two cluster assignments. An
appropriate distance between these two cluster assigments (say, D) is computed based on the validation set
S3b (see Section 2 of Wang (2010) for more details). We repeat this partitioning B(= 50) times and average
it over these B samples to get D̂CV

d . Define d̂CV = arg min2≤d≤N D̂CV
d . A pseudo-code for this procedure is

given in Algorithm 2 (see Section O of the Appendix).

Recall the structure of the Γ matrix stated in (11), and also see Figure 1. As mentioned in Section 3.2, the
number of clusters were estimated using the quantityKd described in Section 2.1 (see (12)). To implement the
procedure in practice, one needs to estimate the sequence {ad}d∈N. We have used the function optishrink
available in the R package denoiseR. This function extracts a low-rank signal from Gaussian noisy data using
the optimal shrinker of singular values. The low rank structure of the Γ matrix motivates us to directly apply
this function on Γ̂d. A pseudo-code (alongwith stepwise computational complexity) of our methods is given
in Algorithm 1 (see Section O of the Appendix).

Our overall implementation yielded quite desirable results in our numerical study (see Tables 4.1 and 4.2
below). We can apply any clustering method on the transformed data Γ̂d. In addition to the k-means
algorithm (CD-k-means) discussed in Theorem 2.5, we considered spectral clustering (CD-spectral) and
Gaussian mixture models (CD-mclust). Here, the acronym CD corresponds to our proposed transformation.
One may refer to the book by Hastie et al (2009) for details on these three popular clustering methods. The
R codes for our methods are available here: GP clustering.

We considered several methods for comparison. The first three methods are those that we have used on
the matrix Γ̂d but applied directly to functional data, namely, the k-means algorithm (k-means), spectral
clustering (spectral) and Gaussian mixture models (mclust). Several competent methods for functional

11
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clustering using functional mixed mixture models are implemented in the function funcit from the R package
funcy. We report this method as funclust. The methodology developed by Chiou and Li (2007) is available
in the function FClust from the R package fdaspace using two clustering techniques ‘EMcluster’ (CL1) and
‘kCFC’ (CL2). We have reported the minimum value, and stated it as CL. In Delaigle et al (2019), the
authors developed functional clustering based on the k-means using basis functions. We implemented this
method for two choices of the basis functions, namely, Haar and PC, and reported the best result among
these two (we call it DHP). We have not used the DB2 basis for our comparisons because it requires the
grid points to be of a power of 2. The DHP method is available from the journal website, and we used those
Matlab codes for our comparisons.

We conducted simulations based on models I to IV, which were introduced in the beginning of Section 4. We
did not consider the location only scenario as our proposed method is useless in such cases (recall part
(c) of Theorem 2.2). However, we have some discussion and additional results in Section L in Appendix II
for this scenario. The sample size of each class was set to be 250. Our experiment was replicated 100 times,
and the results are reported in Tables 4.1 and 4.2 below. To measure the similarity between two cluster
assignments, we computed the adjusted Rand index using the function RRand in the R package phyclust.
One minus the adjusted Rand index (we call it adjusted Rand distance) is reported in tables below, where
the minimum is marked in bold and the second lowest is in italics.

It is worth noting that all the competing methods require the number of clusters as an input variable, and we
have run these methods with k = 2 (the true number of clusters). However, when applying the CD procedure
we have estimated the number of clusters following the procedure described above. We obtained the correct
value in more than 99% of the cases (across all four examples for both scenarios) in our simulation study.

Table 4.1: Adjusted Rand distances for different GPs with differences in locations and scales (with standard
error in brackets).

Ex. k-means spectral mclust funclust CL DHP CD
k-means spectral mclust

I 0.0632 0.0280 1.0000 0.1541 0.0239 0.0818 0.0654 0.0028 0.0001
(0.0007) (0.0016) (0.0000) (0.0017) (0.0007) (0.0025) (0.0010) (0.0002) (0.0001)

II 0.5377 0.4210 0.9700 0.8222 0.5767 0.5149 0.2104 0.3464 0.0738
(0.0046) (0.0042) (0.0017) (0.0027) (0.0045) (0.0049) (0.0030) (0.0045) (0.0014)

III 0.4250 0.4460 1.0000 0.3858 0.2891 0.4137 0.1367 0.2596 0.0250
(0.0017) (0.0048) (0.0000) (0.0003) (0.0000) (0.0054) (0.0024) (0.0042) (0.0016)

IV 0.4945 0.3788 1.0000 0.3975 0.1833 0.1379 0.0316 0.0000 0.0000
(0.0056) (0.0047) (0.0000) (0.0011) (0.0000) (0.0033) (0.0001) (0.0000) (0.0000)
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(d) Ex. 4

Figure 2: Representative curves for the four examples having differences in locations and scales. The mean
curves marked in bold, while the two classes marked in red and blue colors, respectively. Please zoom in for
a better resolution.

In the first setting, we considered clustering problems with differences in their location and scale param-
eters. Class specific representative plots are given in Figure 2. Usefulness of the proposed transformation
is clear from Table 4.1. Our method attains the first position across all examples, while in Example IV we
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obtain perfect clustering. Although there is no location difference in Example II, sub-optimal performance
of our method is probably due to low signal from the difference between the two covariance structures. CL
attains the second best performance in the first three examples among the competing methods, while DHP
performs better than CL in Example IV.

In the next setting, we dealt with differences only in scale parameters. Class specific representative plots
are given in Figure 3. It is clear from Table 4.2 that the separation in scatters is captured very well by
the proposed transformation Γ̂d. Moreover, our method again leads to perfect clustering (with a significant
improvement in Example II compared to Table 4.1). In Example II, all (except possibly, funclust) the
competing methods perform quite poorly across all examples. However, its performance is far below our
method CD even in this case. The performances of k-means and DHP are similar, and quite bad in this
scenario. Generally, the results in Table 4.2 suggest that all existing methods fail to judiciously capture
information if it is present only in the scale parameters.

Table 4.2: Adjusted Rand distances for different GPs with differences only in scales (with standard error
in brackets).

Ex. k-means spectral mclust funclust CL DHP CD
k-means spectral mclust

I 0.9900 0.9992 1.0000 0.9776 0.8269 0.9966 0.0063 0.0001 0.0000
(0.0014) (0.0007) (0.0000) (0.0006) (0.0000) (0.0005) (0.0002) (0.0001) (0.0000)

II 0.9985 0.9962 0.9986 0.5004 0.9065 0.9999 0.0091 0.0100 0.0084
(0.0005) (0.0007) (0.0005) (0.0049) (0.0007) (0.0003) (0.0036) (0.0047) (0.0019)

III 0.9944 0.9990 1.0000 0.9956 0.9994 0.9967 0.1789 0.2872 0.0352
(0.0009) (0.0004) (0.0000) (0.0000) (0.0000) (0.0007) (0.0026) (0.0032) (0.0007)

IV 0.9927 0.9984 1.0000 1.0006 0.8464 0.9980 0.0102 0.0014 0.0005
(0.0002) (0.0005) (0.0000) (0.0000) (0.0000) (0.0006) (0.0021) (0.0013) (0.0004)
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(d) Ex. 4

Figure 3: Representative curves for the four examples having differences only in scales. The mean curves
marked in bold, while the two classes marked in red and blue colors, respectively. Please zoom in for a better
resolution.

After applying the transformation Γ̂d, we had used three methods for clustering the transformed observations
(see Tables 4.1 and 4.2). Additionally, when these methods are applied directly to the functional data, we
observe that k-means and spectral perform fairly well, but their performances deteriorate sharply for the
case with differences only in the scales. The mclust algorithm performs worst (possibly due to the presence
of low signal in the locations) among the three clustering methods, while CD-mclust clearly achieves the
best results with a substantial improvement (see Table 4.1). It is worth mentioning that the Rand distances
improve substantially for all three methods when applied on the transformed matrix Γ̂d.

All the three usual clustering methods seem useless (possibly due to the presence of signal only in the scales)
from the results in Table 4.2, while their CD counterparts clearly lead to excellent performances with CD-
mclust yielding the overall best result. Overall, the best performance of this method may be attributed to
the fact that the signal gets amplified in the transformed matrix and the specific structure (recall equation
(11)) of this matrix.
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5 Analysis of Benchmark Datasets

We have applied our proposed methods to some benchmark data sets, Wheat (from the R pack-
age fds), Satellite (available at https://www.math.univ-toulouse.fr/∼ferraty/SOFTWARES/NPFDA
/index.html), Cars (kindly provided by the first author of Torrecilla et al (2020)) and Velib (from the
R package funFEM).

To evaluate the clustering algorithms, we ran a single execution (without splitting). Class assigments are
already available for the Wheat dataset. The Satellite data has been analyzed in detail in the paper Dabo-
Niang et al (2007), where the authors split the curves into two clusters ‘unimodal’ and ‘multimodal’. The
authors of this paper kindly shared the exact cluster assignments for this data set with us. The Cars data
contains asset log-returns of the car companies Tesla, General Motors and BMW (see Torrecilla et al (2020)
for more details). However, the rank of the estimated Γ̂d matrix was two for this data set, and our method
detected only two distinct clusters. This is coherent with Torrecilla et al (2020), where the authors had noted
that assets of General Motors and BMW were very similar and quite difficult to distinguish. So, we merged
General Motors with BMW while assigning the class labels for this data set. Consequently, the number of
clusters was set to be two for all the competing methods. The Velib data was analyzed by Bouveyron et al
(2015), where the authors identified the optimal number of clusters to be ten using the funFEM algorithm.
Setting J = 10 (this information was provided to the competing methods), we determined the class labels
of the observations using this algorithm. We report the adjusted Rand distance for these four data sets in
Table 5.1. Competitive performance of our proposed methodology w.r.t. the competing methods is clear
from the results given below.

Table 5.1: Adjusted Rand distances for different clustering methods.

Data J N d k-means spectral mclust funclust CL DHP CD
k-means spectral mclust

Wheat 2 100 701 0.6960 0.7860 0.6978 0.6960 0.8058 0.5730 0.7859 0.8057 0.3644
Satellite 2 472 70 0.6072 0.8947 0.3525 0.6072 0.6060 0.7253 0.8861 0.9954 0.4448

Cars 2 90 32 0.8856 0.9230 0.8834 0.8856 0.9650 0.9088 0.5385 0.9313 0.4680
Velib 10 1189 181 0.3755 0.5464 0.8561 ∗ 0.6738 ∗∗ 0.5672 0.5872 0.5408

∗ - R package is now archived; ∗∗ - Matlab code available only for two classes.

To get a better understanding of the performance of our proposed method, we further computed the well-
known average purity function correspoinding to the CD method having the minimum adjusted Rand dis-
tance. A value of average purity function close to one indicates good performance of a method. We obtained
the values as 0.9000, 0.8622, 0.8666 and 0.6038 for the Wheat data, the Satellite data, the Cars data and
the Velib data, respectively. Overall, our proposed method CD yields quite promising results in all four
benchmark data sets, with CD-mclust yielding the most stable performance.
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Appendix I: Proofs and Mathematical Details

A Proof of Theorem 2.1

Fix d ∈ N. The d-dimensional random vector (Z − b)d has a Gaussian distribution with mean equal to
(µ − b)d and covariance matrix equal to ΣZ

d . Now, ∥(Ad)−1/2(Z − b)d∥2 is equal to the square of the
norm of a d-dimensional normal variable with mean md = (Ad)−1/2(µ − b)d and covariance matrix Sd =
(Ad)−1/2ΣZ

d (Ad)−1/2. Therefore, if ud is a d-dimensional vector with centered normal distribution and
covariance matrix equal to Sd, then

DAd

d (Z, b) ∼ 1
d

⟨md + ud,md + ud⟩ = 1
d

(
∥md∥2 + ∥ud∥2 + 2⟨md,ud⟩

)
. (21)

By assumption (3), we have
lim

d→∞

1
d

∥md∥2 = Lµ.

Let us consider the second term in (21). Fix a basis in Vd spanned by the eigenvectors of Sd. Note that
this term is not dependent on Lµ. Denote ud = (ud,1, . . . , ud,d)T and md = (md,1, . . . ,md,d)T in this basis.
Therefore, the random variables (ud,i)2 with 1 ≤ i ≤ d are independent with means equal to αd

i for 1 ≤ i ≤ d

and
∑d

i=1(ud,i)2 ∼
∑d

i=1 α
d
i (ui)2. Here, {ui}1≤i≤d is a sequence of independent and identically distributed

(i.i.d.) real variables with the standard normal distribution. We split the proof into two cases.

A.0.1 LS is finite

Fix ϵ > 0. Taking into account that the variance of a χ2 distribution with one degree of freedom is two and
using Chebychev’s inequality, we have that

P
[

1
d

∣∣∥ud∥2 − trace(Sd)
∣∣ ≥ ϵ

]
= P

[
1
d

∣∣∣∣∣
d∑

i=1

(
(ud,i)2 − αd

i

)∣∣∣∣∣ ≥ ϵ

]

≤ 2
ϵ2d2

d∑
i=1

(αd
i )2

≤ 2
ϵ2d2 ∥αd∥∞

d∑
i=1

αd
i ,

which converges to zero by assumptions (4) and (2). Consequently, we have shown that

1
d

∥ud∥2 − 1
d

trace(Sd) P→ 0 as d → ∞,

and assumption (4) gives
1
d

∥ud∥2 P→ LS as d → ∞.

A.0.2 LS is infinite

We have that

P

[
1∑d

i=1 α
d
i

∣∣∣∣∣
d∑

i=1

(
(ud,i)2 − αd

i

)∣∣∣∣∣ ≥ ϵ

]
= P

[∣∣∣∣∣
d∑

i=1

αd
i∑d

i=1 α
d
i

(
(ui)2 − 1

)∣∣∣∣∣ ≥ ϵ

]

≤ 2
ϵ2

d∑
i=1

(
αd

i∑d
i=1 α

d
i

)2

≤ 2
ϵ2

∥αd∥∞∑d
i=1 α

d
i

,

1
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which converges to zero because LS = ∞ and assumption (2). Thus, we have shown that

1
1
d

∑d
i=1 α

d
i

(
1
d

∥ud∥2 − 1
d

trace(Sd)
)

P→ 0 as d → ∞. (22)

Consequently, 1
d ∥ud∥2 converges to ∞ at the same rate as 1

d trace(Sd).

Concerning the last term in (21), we have ⟨md,ud⟩ =
∑d

i=1 md,iud,i. We split the proof into cases.

A.0.3 Lµ is finite

Fix ϵ > 0, and define αd = (αd
1, . . . , α

d
d)T . Using Chebychev’s inequality again, we get

P
[

1
d

|⟨md,ud⟩| > ϵ

]
≤ 1
ϵ2d2

d∑
i=1

(md,i)2αd
i ≤ 1

ϵ2d2 ∥αd∥∞∥md∥2,

which converges to zero by assumptions (3) and (2), and the proposition is proved in this case.

A.0.4 Lµ is infinite

The result follows from equation (21) and the previous results, if we are able to show that the sequence of
real-valued random variables

wd = ⟨md,ud⟩
max(∥md∥2, ∥ud∥2)

converges to zero in probability as d → ∞. In turn, this will be fixed if we show that every subsequence of
{wd} contains a new subsequence which satisfies this property. Thus, let {wdk

} be a subsequence of {wd}
and let us consider the associated subsequences {∥mdk

∥} and {∥udk
∥}. Obviously, there exists a further

subsequence {dk∗} such that one of the following holds:

(i) limdk∗
∥mdk∗ ∥2

trace(Sdk∗ ) = 0.

(ii) limdk∗
∥mdk

∥2

trace(Sdk∗ ) = ∞.

(iii) There exists a finite C > 0 such that limdk∗
∥mdk∗ ∥2

trace(Sdk∗ ) = C.

Note that in cases (i) and (iii), we have LS = ∞. To simplify notation, we denote the sequence {Sdk∗ } by
{Sh}, and similarly for the remaining ones. In case (i), since equation (22) shows that

∥uh∥2

trace(Sh)
P→ 1 as h → ∞, (23)

we have ∥mh∥
∥uh∥

P→ 0 as h → ∞. Consequently,

lim
h

|wh| = lim
h

|⟨mh,uh⟩|
∥uh∥2 ≤ lim

h

∥mh∥
∥uh∥

= 0 in probability.

If (ii) holds, we have that |wh| ≤ ∥uh∥
∥mh∥ . Since E

[
∥uh∥2] = trace(Sd), we have that ∥uh∥2

∥mh∥2
P→ 0 and also, in

this case wh
P→ 0 as h → ∞.

In case (iii), taking into account that equation (23) now holds, it is enough to show that

⟨mh,uh⟩
Ctrace(Sh)

P→ 0 as h → ∞,

2
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Fix ϵ > 0. We have that

P
[∣∣∣∣ ⟨mh,uh⟩
Ctrace(Sh)

∣∣∣∣ > ϵ

]
≤ 1

C2ϵ2

h∑
i=1

m2
h,iα

h
i(∑h

i=1 α
h
i

)2 ≤ 1
C2ϵ2

∥αh∥∞∑h
i=1 α

h
i

∥mh∥2

trace(Sh) ,

which converges to zero by assumptions (4) and (2). •

B On Assumptions (4) and (2)

The next lemma shows that if LS < ∞, then assumption (4) implies assumption (2).

Lemma B.1 Let {ad}d≥1 be a sequence of real positive numbers such that limd
1
d

∑d
i=1 ai exists, and it is

finite. Then, it happens that limd
1
d ∥ad∥∞ = 0.

Proof: Fix d ∈ N, and denote Ad =
∑d

i=1 ai. We have that

ad

d
= Ad

d
− Ad−1

d− 1
d− 1
d

and consequently, 0 = limd
ad

d . Given ϵ > 0, there exists d1 > 0 such that if d > d1, then ad

d ≤ ϵ and d2 ≥ d1
such that

sup
1≤i≤d1

ai

d2
≤ ϵ.

Let d > d2 and take 1 ≤ i ≤ d. So, we have that if i ≤ d1, then ai

d < ai

d2
≤ ϵ and if i > d1, then ai

d ≤ ai

i ≤ ϵ.
This completes the proof. •

C Proof of Theorem 2.2

First, note that (Z1 − Z2)d is a d-dimensional normal vector, with mean (µZh − µZk )d and covariance
ΣZh

d + ΣZk

d for h, k ∈ {1, 2}. Now, the proof will based in the following lemma.

Lemma C.1 Assume that h ̸= k ∈ {1, 2}. Define Sh
d , S

k
d and Shk

d as in Theorem 2.2. Then,

i) Lhk
µ = limd D

ΣZ
d

d (µZh , µZk ) = 0, and

ii) lim supd
1
d trace(Sh

d ) < ∞, lim supd
1
d trace(Sk

d ) < ∞ and lim supd
1
d trace(Shk

d ) < ∞.

Proof: Let us denote Σ∗ = π1ΣZh + π2ΣZk , µ = (µZh − µZk ) and π12 = π1π2. From (5), we have that

ΣZ
d = Σ∗

d + π12µdµ
T
d .

From here, the Sherman-Morrison formula gives

(ΣZ
d )−1 = (Σ∗

d)−1 − π12(Σ∗
d)−1µdµ

T
d (Σ∗

d)−1

1 + π12µT
d (Σ∗

d)−1µd
.

Since (Σ∗
d)−1 is positive definite (p.d.) for all d ∈ N, this now implies that

0 ≤ µT
d (ΣZ

d )−1µd = µT
d (Σ∗

d)−1µd − π12(µT
d (Σ∗

d)−1µd)2

1 + π12(µT
d (Σ∗

d)−1µd)
= µT

d (Σ∗
d)−1µd

1 + π12µT
d (Σ∗

d)−1µd
≤ 1
π12

,

and the proof that Lhk
µ = 0 trivially ends from definition of Lhk

µ .
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To handle the terms Lh
S (Lk

S is identical) and Lhk
S , recall the Woodbury matrix identity:

(U + V )−1 = U−1 − (U + UV −1U)−1.

Using this identity, we have
(ΣZ

d )−1 = 1/π1(ΣZh

d )−1 −Bd,

where Bd = (π1ΣZh

d + π2
1ΣZh

d (π2ΣZk

d + π12µdµ
T
d )−1ΣZh

d )−1.

If U and V are p.d., then UTV U is p.d. In Bd, both the matrices ΣZh

d and (π2ΣZk

d +π12µdµ
T
d ) are symmetric

and p.d., and this implies that Bd is also p.d. Further, (ΣZh

d )1/2 and Bd are p.d. which now implies that
(ΣZh

d )1/2Bd(ΣZh

d )1/2 is p.d. Recall that trace is a linear map. Now,

trace(Sh
d ) = 2 trace(ΣZh

d (ΣZ
d )−1)

= 2 trace(1/π1Id) − trace(ΣZh

d Bd)
= 2 trace(1/π1Id) − trace((ΣZh

d )1/2Bd(ΣZh

d )1/2)
≤ trace(2/π1Id) = 2d/π1.

We have proved that lim supd
1
d trace(Sh

d ) < 2/π1. Similarly, it is proved that lim supd
1
d trace(Sk

d ) < 2/π2. Fi-
nally, we have

trace(Shk
d ) = trace((ΣZ

d )−1/2ΣZh

d (ΣZ
d )−1/2) + trace((ΣZ

d )−1/2ΣZk

d (ΣZ
d )−1/2)

≤ d

π1
+ d

π2
= d

π1π2

from where we conclude that lim supd
1
d trace(Shk

d ) < 1/(π1π2). •

To prove part (a) in Theorem 2.2, we have h = k. So, (µZh −µZk )d = 0d and ΣZh

d + ΣZk

d = 2ΣZh

d . If we take
Ad = Sh

d , according to Remark 2.1.2, Lemma C.1 gives that assumption (2) holds for this selection of Ad.
Therefore, (7) follows from Theorem 2.1 because in this case Lh

µ = 0 and once we assume that Lh
S exists,

Lemma C.1 gives that it is finite.

In case (b), we have h ̸= k. We take Ad = Shk
d and b = µZh − µZk . Similarly, as in (a), we have that

assumption (2) also holds in this case and Theorem 2.1 implies

D
ΣZ

d

d (Z1,Z2) P→ Lhk
µ + Lhk

S as d → ∞.

Now, (8) follows because Lemma C.1 gives that Lhk
µ = 0 and, also, that Lhk

S is finite. •

D Proof of Proposition 2.3

Under the conditions of Proposition 2.3, the number of significant (unique) eigenvalues of the matrix Γ is 2.
Recall that N is fixed here.

Consider the standardized distance matrix Dd with the (i, j)-th element as DΣZ
d

d (Zi,Zj) for 1 ≤ i, j ≤ N

and d ∈ N. We have a sequence of matrices Dd
P→ D0 as d → ∞ (componentwise). Since the map D to Γ is

clearly continuous w.r.t. this convergence, we have that Γd
P→ Γ as d → ∞. Let us denote the eigenvalues of

Γd (respectively, Γ) to be βd
1 , . . . , β

d
N (respectively, β1, . . . , βN ). Since eigenvalues are continuous functions

of the respective matrices, we have βd
j

P→ βj as d → ∞ for all 1 ≤ j ≤ N .

Let us now look into the following:
N∑

i=1
I(|βd

i | > ad) P→
N∑

i=1
I(|β0

i | > 0) as d → ∞

4
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with ad ↓ 0 as d → ∞ at an appropriate rate. Recall that the limiting quantity on the right should give
us the correct number of clusters. Consider the sequence {1/m}m∈N. Let us take i ∈ {1, . . . , N} such that
βd

i
P→ 0 as d → ∞. Thus, for every ϵ, δ > 0 there exists Di

δ,ϵ such that if d ≥ Di
δ,ϵ then

P[|βd
i | > δ] < ϵ.

In particular, if we take δ = ϵ = 1/m, there exists Di
m such that if d ≥ Di

m, then we have

P
[
|βd

i | > 1
m

]
<

1
m
.

Without loss of generality, we can assume that Di
1 < Di

2 < · · · , and consider the sequence

ai
d =

{
2 if 1 ≤ i < Di

1,
1
m if Di

m ≤ i < Di
m+1 for some m ≥ 1.

Then, obviously ai
d → 0 and

P
[
I(|βd

i | > ai
d) > 0

]
= P

[
|βd

i | > ai
d

]
< ai

d.

If we define ad = sup{ai
d : β0

i = 0}, and i satisfies that β0
i = 0, then I(|βd

i | > ad) P→ 0 as d → ∞. A similar
reasoning allows us also to conclude that if |β0

i | > 0, then I(|βd
i | > ad) P→ 1 as d → ∞. •

E Proof of Theorem 2.5

In this proof, we use the superindex d in Gd
i to emphasize that the groupings can change with the dimension

d ∈ N. Proposition 2.3 implies that Kd = 2 with probability converging to one.

Note that ϕ(G1, . . . ,GJ) has an alternative mathematical expression as

J∑
h=1

1
2|Gh|

∑
u,v∈Gh

∥u − v∥2, (24)

where |G| denotes the cardinality of the set G. Let us denote the rows/columns of Γd as γd
1, . . . ,γ

d
N . The

structure of Γd implies that ∥γd
i − γd

j ∥2 P→ 0 as d → ∞ iff i, j ∈ Ch for h ∈ {1, 2}. So, if each Gd
h for h = 1, 2

contains observations from the same population, then ϕd(Gd
1,G

d
2) P→ 0 as d → ∞.

Let us assume that on the contrary, there exists a subsequence of dimensions {dk} such that for every k
there exists at least a couple of points ik, jk with ik ∈ Gd

1 and jk ∈ Gd
2 (say). Since the number of points

is finite, there exists a further subsequence {dk∗} such that both sequences {ik∗} and {jk∗} are constant.
Therefore, for those subsequences, we will have

lim inf
d

ϕd(G1,G2) ≥ lim
d

∥γdk∗
ik∗ − γdk∗

jk∗ ∥2 P→ γ12 > 0.

So, for the minimization of ϕd(Gd
1,G

d
2), each Gd

h must contain all observations from a single population with
probability converging to one as the dimension increases. This proves the convergence in probability of the
Rand index Rd,N to zero as d → ∞. •

F Rank of the Matrix Γ

Identifying number of clusters from the matrix Γ is not equivalent to finding the rank of the matrix Γ.

5
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Lemma F.1 The rank of the matrix Γ is less then or equal to J . Moreover, equality is guaranteed only when
J ≤ 3.

Proof: Trivially, rank(Γ) ≤ J . Let us denote the reduced Echelon form of N ×N matrix Γ as Γ◦. Thus, the
matrix Γ◦ is a J × J symmetric matric with γij > 0 and distinct when i ̸= j, while γii = 0.

Moreover, for J = 3, we have

det(Γ◦) = det

 0 γ12 γ13
γ12 0 γ23
γ13 γ23 0

 = 2γ12γ13γ23 ̸= 0.

In the case J = 4, if γ12 =
γ13γ24 + γ14γ23 + 2 √

γ13γ14γ23γ24

γ34
, then a simple computation gives that

det(Γ◦) = 0. This happens, for instance, if we consider the following matrix (with all positive and dis-
tinct off-diagonal entries): 

0 t 1 2
t 0 3 4
1 3 0 5
2 4 5 0

 ,

where t = 2 + 4
√

6/5 > 0. •

G Proof of Theorem 2.6

In order to simplify the writing, we will write d instead of dN . We will use the notation ∥αd∥2 :=(∑d
i=1(αd

i )2
)1/2

. The real r.v.’s {ui} are assumed to be i.i.d. with standard normal distribution.

The following lemma is deduced from Lemma 1 in Laurent and Massart (2000) on p. 1325, after some simple
computations, taking into account that ∥αd∥2 ≥ ∥αd∥∞. We state it here for further reference.

Lemma G.1 If Zd =
∑d

i=1 α
d
i (u2

i − 1) and x ≥ 1, then

P [|Zd| ≥ 4x∥αd∥∞] ≤ 2 exp(−x).

We will also employ the following well known bound for the tail of the standard normal distribution:

P[|N(0, 1)| ≥ t] ≤
√

2
π

exp(−t2/2) for all t ≥ 1. (25)

Proof of Theorem 2.6 : Let us show part b). The proof of (14) is similar to that of (16). We use the notation
md = (ΣZ

d )−1/2(µZ1 − µZ2)d and ui
d = (ΣZ

d )−1/2(Zi − µi)d with d ∈ N, where Zi is a generic observation
with distribution Pi for i = 1, 2. Moreover, with an obvious abuse of notation, we will often write ui

d ∈ CN
i

with d ∈ N for i = 1, 2.

Recall that Lµ = 0 and LS < ∞ (see part (c) in Theorem 2.2). Repeating the first steps in the proof of
Theorem 2.1, we have that

sup
Z1∈CN

1 ,Z2∈CN
2

∣∣∣∣DΣZ
d

d (Z1,Z2) − 1
d

trace(S12
d )
∣∣∣∣

≤
∣∣∣∣1d∥md∥2

∣∣∣∣+ sup
u1∈CN

1 ,u2∈CN
2

∣∣∣∣1d∥u1
d − u2

d∥2 − 1
d

trace(S12
d )
∣∣∣∣ (26)

+ 2 sup
u1∈CN

1 ,u2∈CN
2

1
d

∣∣⟨md,u1
d − u2

d⟩
∣∣ , (27)

6
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and it is enough to prove that the terms in (26) and (27) converge to zero in probability.

The first term in (26) converges to zero by first part of (c) in Theorem 2.2. Concerning the second term,
let N1, N2 be the number of elements in CN

1 and CN
2 , respectively. Since N1 + N2 = N , it is clear that

N1N2 ≤ N2/4. Let ε > 0. We have that

PN := P

[
sup

u1∈CN
1 ,u2∈CN

2

∣∣∣∣1d∥u1
d − u2

d∥2 − 1
d

trace(S12
d )
∣∣∣∣ > ε

]

= P

 ⋃
u1∈CN

1 ,u2∈CN
2

{∣∣∣∣1d∥u1
d − u2

d∥2 − 1
d

trace(S12
d )
∣∣∣∣ > ε

}
≤ N2

4 P
[∣∣∣∣1d∥u1

d − u2
d∥2 − 1

d
trace(S12

d )
∣∣∣∣ > ε

]
, (28)

where u1 and u2 are associated with some Z1 ∈ CN
1 and Z2 ∈ CN

2 , respectively. However, it is clear that

1
d

∥u1
d − u2

d∥2 − 1
d

trace(S12
d ) ∼ 1

d

d∑
i=1

αd
i (u2

i − 1).

Take x = εd/(4∥αd∥∞). By assumption (15), we have d/∥αd∥∞ → ∞ and eventually x ≥ 1. So, from Lemma
G.1, we obtain

PN ≤ N2

4 P

∣∣∣∣∣∣
∑
i≤d

αd
i (u2

i − 1)

∣∣∣∣∣∣ > εd

 ≤ 1
2 exp

(
− εd

4∥αd∥∞
+ 2 logN

)
,

which converges to zero by assumption (15).

Fix ϵ > 0. For the third term, in equation (27) we have that

P ∗
N := P

[
sup

u1∈CN
1 ,u2∈CN

2

1
d

|⟨md,u1
d − u2

d⟩| > ε

]

≤ N2

4 P
[

1
d

|⟨md,u1
d − u2

d⟩| > ε

]

= N2

4 P

1
d

∣∣∣∣∣∣
∑
i≤d

mdi(αd
i )1/2ui

∣∣∣∣∣∣ > ε


= N2

4 P

|N(0, 1)| > ε
d√∑

i≤d(mdi)2αd
i


≤ 1

23/2π1/2 exp
(

−ε2

2
d2∑

i≤d(mdi)2αd
i

+ 2 logN
)

(29)

≤ 1
23/2π1/2 exp

(
−ε2

2
d2

∥αd∥∞
∑

i≤d(mdi)2 + 2 logN
)
,

which converges to 0 because of the fact that Lµ = 0 (see part (c) in Theorem 2.2) and (15). The same
assumption allows us to apply inequality (25) to equation (29). •

H Result Related to Remark 2.6.1

Proposition H.1 Under assumptions of Theorem 2.2, if we assume that logN
dN

→ 0, then conditions (13)
and (15) hold.

7
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Proof: Fix h ∈ {1, 2}, and note that

(ΣZ
d )−1 = (πhΣZh

d )−1 − Pd,

where Pd = (πhΣZh

d + πhΣZh

d (T k
d )−1πhΣZh

d )−1 is a p.d. matrix and T k
d is the matrix πkΣZk

d + π1π2[µZ1
d −

µZ2
d ][µZ1

d − µZ2
d ]T with k ̸= h ∈ {1, 2}. Further,

Id + ΣZ
dPd = 1

πh
ΣZ

d (ΣZh

d )−1.

From here, Weyl’s inequality gives

1 ≤ αmin( 1
πh

ΣZ
d (ΣZh

d )−1) = 1
πh
αmin(ΣZ

d (ΣZh

d )−1). (30)

Note the fact that the eigenvalues of the matrices AB and BA are same. So, the matrices Sh
d and ΣZh

d (ΣZ
d )−1

will have the same eigenvalues. Furthermore, the eigenvalues of Sh
d are the inverses of the eigenvalues of

ΣZ
d (ΣZh

d )−1. Thus, (30) gives that

αmax(Sh
d ) < 2

πh
(free of d). (31)

We now have

logN = o

(
dN

αdN
1

)
⇔ αdN

1 logN
dN

→ 0 as N → ∞.

Equation (31) now implies that condition (13) holds if we assume logN
dN

→ 0 as N → ∞.

Fix h ̸= k ∈ {1, 2}. Our second matrix of interest is

Shk
d = (ΣZ

d )−1/2(ΣZh

d + ΣZk

d )(ΣZ
d )−1/2.

Since the matrices are symmetric, we have

αmax(Shk
d ) ≤ αmax((ΣZ

d )−1/2ΣZh

d (ΣZ
d )−1/2) + αmax((ΣZ

d )−1/2ΣZk

d (ΣZ
d )−1/2).

Again, the eigenvalues of (ΣZ
d )−1/2ΣZi

d (ΣZ
d )−1/2 and of ΣZi

d (ΣZ
d )−1 will be equal for i = h, k. So,

αmax(Shk
d ) ≤ αmax(ΣZh

d (ΣZ
d )−1) + αmax(ΣZk

d (ΣZ
d )−1)

= 1
αmin(ΣZ

d (ΣZh

d )−1)
+ 1
αmin(ΣZ

d (ΣZk

d )−1)

≤ 1
πh

+ 1
πk

= 1
πhπk

(using equation (30)).

From here, similarly as before, we would obtain that logN
dN

→ 0 implies (15) holds. •

I Proof of Theorem 3.1

Recall that we use subspaces Vd generated by estimates of the first d eigenfunctions of the covariance of Z.

We begin with some notation and preliminary results which have been taken from Delaigle and Hall (2012)
and Hall and Hosseini-Nasab (2006), or follow directly from the results there. Then, we will give the proof
of Theorem 3.1. For every n ∈ N, let us consider

∆̂2
Z =

∫ 1

0

∫ 1

0
(Σ̂Z(s, t) − ΣZ(s, t))2dsdt,

δZ
j = min

k≤j
(λk − λk+1).

8
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In Delaigle and Hall (2012) and Hall and Hosseini-Nasab (2006), it is shown that if j ≥ 1, then

|λ̂j − λj | ≤ ∆̂Z, (32)

and that if j ≤ R̂Z
N (recall the definition of R̂Z

N in (17)), then

∥ϕ̂j − ϕj∥ ≤ 81/2∆̂Z(δZ
j )−1, (33)

∆̂Z = Op(N−1/2), (34)
RZ

N → ∞and R̂Z
N ≤ λ̂Z

1 η
−1
N . (35)

Moreover, if j ≤ R̂Z
N , there exists a k ≤ j such that

δZ
j = λk − λk+1 ≥ λ̂k − λ̂k+1 − 2∆̂Z ≥ ηN − 2∆̂Z = ηN + oP (ηN ), (36)

where we have applied (32) and (17). Using (34) and the assumption on ηN , we can conclude that ηN > 2∆̂Z
from an index onward. Thus, (36) and (33) yield

∥ϕ̂j − ϕj∥ ≤ 81/2 ∆̂Z

ηN − 2∆̂Z
. (37)

From (32), (17) and (34), we obtain that

λj ≥ λ̂j − ∆̂Z ≥ ηN − ∆̂Z = ηN + oP (ηN ). (38)
Now, we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1: The proof is based on Lemma I.1. The result follows trivially from this lemma, the
fact that R̂Z

N
P→ ∞ as n → ∞, and the result in Theorem 2.2.

Lemma I.1 Under the assumptions in Theorem 3.1, it happens that∣∣∣D̂R̂Z
N

(Z1,Z2) −DR̂Z
N

(Z1,Z2)
∣∣∣ P→ 0 as n → ∞.

Proof. For fixed Z1,Z2, let us denote u = Z1 −Z2. Obviously, ∥u∥ = O(1) a.s. Let us denote (u1, . . . , uR̂Z
n

)T

and (û1, . . . , ûR̂Z
n

)T to be the projections of u on the subspaces generated by the first R̂Z
N eigenvectors of the

matrices ΣZ
R̂Z

N

and Σ̂Z
R̂Z

N

, respectively, when written in the basis generated by those eigenvectors. Now, define

ûZ
j = ⟨u, ϕ̂Z

j ⟩ =
∫ 1

0
u(t)ϕ̂Z

j (t)dt

and similarly define uj for j ∈ N. Fix n ∈ N and take j ≤ R̂Z
N . We now have∣∣∣∣∣ (uj)2

λj
− (ûj)2

λ̂j

∣∣∣∣∣ =
∣∣∣∣∣ uj

(λj)1/2 − ûj

(λ̂j)1/2

∣∣∣∣∣
∣∣∣∣∣ uj

(λj)1/2 + ûj

(λ̂j)1/2

∣∣∣∣∣
≤

(∣∣∣∣uj − ûj

(λj)1/2

∣∣∣∣+
∣∣∣∣∣ûj

(λj)1/2 − (λ̂j)1/2

(λj λ̂j)1/2

∣∣∣∣∣
) ∣∣∣∣∣ uj

(λj)1/2 + ûj

(λ̂j)1/2

∣∣∣∣∣ .
We analyze each term in this expression separately as follows:∣∣∣∣uj − ûj

(λj)1/2

∣∣∣∣ ≤ 1
(λj)1/2

∫ 1

0
|u(t)||ϕj(t) − ϕ̂j(t)|dt

≤ ∥u∥ ∥ϕj − ϕ̂j∥
(λj)1/2

≤ 81/2∥u∥ ∆̂Z

(λj)1/2(ηn − 2∆̂Z)
≤ 81/2∥u∥∆̂Z(η−3/2

n + oP (η−3/2
n )), (39)

9
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where we have applied the Cauchy-Schwarz inequality, (37), (34) and (38). On the other hand, we have∣∣∣∣∣ûj
(λj)1/2 − (λ̂j)1/2

(λj λ̂j)1/2

∣∣∣∣∣ ≤
∫ 1

0
|u(t)||ϕ̂j(t)|dt |λj − λ̂j |(

(λj)1/2 + (λ̂j)1/2
)

(λj λ̂j)1/2

≤ ∥u∥ ∆̂Z(
(λj)1/2 + (λ̂j)1/2

)
(λj λ̂j)1/2

≤ 1
2∥u∥∆̂Z(η−3/2

n + oP (η−3/2
n )), (40)

where we have applied (17) and (38). Concerning the final term, using (38) and (17) again, we obtain that∣∣∣∣∣ uj

(λj)1/2 + ûj

(λ̂j)1/2

∣∣∣∣∣ ≤ ∥u∥

(
1

(λj)1/2 + 1
(λ̂j)1/2

)
≤ ∥u∥(η−1/2

n + oP (η−1/2
n )). (41)

Now, define C = 81/2 + 1. Combining (39), (40), (41), (35) and (34), we get the following:

∣∣∣D̂R̂Z
N

(Z,Z2) −DR̂Z
N

(Z,Z2)
∣∣∣ ≤ 1

R̂Z
N

R̂Z
N∑

j=1

∣∣∣∣∣ (uj)2

λj
− (ûj)2

λ̂j

∣∣∣∣∣
≤ C∥u∥2∆̂Z(η−2

n + oP (η−2
n )) = OP (n−1/2η−2

n ).

By construction, ηn is such that nη5
n → ∞. So, we have |D̂R̂Z

N
(Z1,Z2) −DR̂Z

N
(Z1,Z2)| P→ 0 as n → ∞, and

the lemma is proved. •

J Proof of Theorem 3.2

We now prove the following lemma.

Lemma J.1 Under the assumptions in Theorem 3.2, we have that P[R̂N ≥ RN ] → 1 as N → ∞.

Proof : Fix N ∈ N. From (32), we have that

inf
j≤RN

(λ̂j − λ̂j+1) ≥ inf
j≤RN

(λj − λj+1) − 2∆̂Z ≥ (1 + δ)ηN − 2∆̂Z,

and the proof ends because (34) and the fact that ηN ≥ N−1/5 imply that P[δηN − 2∆̂Z ≥ 0] → 1. •

In this setting, recall that Lµ = 0 and LS < ∞ (see part (b) of Theorem 2.2). We will only prove part b);
part a) being similar. W.l.o.g. we will assume that h = 1 and k = 2. Recall that for every Z1 and Z2,
we have

DR̂N
(Z1,Z2) = 1

R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕj⟩2

λj
and D̂R̂N

(Z1,Z2) = 1
R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕ̂j⟩2

λ̂j

.

We are going to consider the function

D̃R̂N
(Z1,Z2) = 1

R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕj⟩2

λ̂j

.

10
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Obviously,

sup
Z1∈CN

1 ,Z2∈CN
2

∣∣∣D̂R̂N
(Z1,Z2) − L12

S

∣∣∣ ≤ sup
Z1∈CN

1 ,Z2∈CN
2

∣∣∣D̂R̂N
(Z1,Z2) − D̃R̂N

(Z1,Z2)
∣∣∣

+ sup
Z1∈CN

1 ,Z2∈CN
2

∣∣D̃R̂N
(Z1,Z2) −DR̂N

(Z1,Z2)
∣∣

+ sup
Z1∈CN

1 ,Z2∈CN
2

∣∣DR̂N
(Z1,Z2) − L12

S

∣∣
=: T1 + T2 + T3.

Lemma J.1, and equations (35) and (32) imply that there exists C > 0 such that

P[RN ≤ R̂N ≤ CN1/5] → 1.

Consequently, with probability going to 1, it happens that

DRN
(Z1,Z2) ≤ DR̂N

(Z1,Z2) ≤ DCN1/5(Z1,Z2).

Since, by assumption (15), logN = o
(

RN

λ1

)
and trivially we have logN = o

(
CN1/5

λ1

)
, b) in Theorem 2.6

gives that T3 converges in probability to zero as N → ∞. Since L12
S < ∞, this fact implies that

sup
Z1∈CN

1 ,Z2∈CN
2

DR̂N
(Z1,Z2) = OP (1). (42)

With respect to T2, we have

T2 ≤ sup
Z1∈CN

1 ,Z2∈CN
2

1
R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕj⟩2

λj

|λj − λ̂j |
λ̂j

≤
R̂N∑
j=1

|λj − λ̂j |
λ̂j

sup
Z1∈CN

1 ,Z2∈CN
2

DR̂N
(Z1,Z2) = Op(N−1/10),

where last equality follows from (42), (32), (34), (35) and (17).

Finally, given Z1 ∈ CN
1 ,Z2 ∈ CN

2 , the Cauchy-Schwarz inequality and the fact that ∥ϕ̂j∥ = ∥ϕj∥ = 1 imply

∣∣∣D̂R̂n
(Z1,Z2) − D̃R̂n

(Z1,Z2)
∣∣∣ ≤ 1

R̂N

R̂N∑
j=1

∣∣∣⟨Z1 − Z2, ϕ̂j⟩2 − ⟨Z1 − Z2, ϕj⟩2
∣∣∣

λ̂j

= 1
R̂N

R̂N∑
j=1

∣∣∣⟨Z1 − Z2, ϕ̂j − ϕj⟩
∣∣∣ ∣∣∣⟨Z1 − Z2, ϕ̂j + ϕj⟩

∣∣∣
λ̂j

≤ ∥Z1 − Z2∥2 1
R̂N

R̂N∑
j=1

∥ϕ̂j − ϕj∥ ∥ϕ̂j + ϕj∥
λ̂j

≤ 2∥Z1 − Z2∥2 1
R̂N

R̂N∑
j=1

∥ϕ̂j − ϕj∥
λ̂j

= 2 ∥Z1 − Z2∥2
HN .

Moreover, the application of (33), (34), (36) and (17) gives that HN = OP (N−1/10), which in turn is
equivalent to saying that there exists C > 0 such that P[Hn < CN−1/10] → 1. This and the reasoning
leading to (28) imply that to prove T1

P→ 0, it is enough to show that for every C > 0

N2P
[
∥Z1 − Z2∥2

> CN1/10
]

→ 0 as N → ∞, (43)

11
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where Z1 and Z2 came from distributions P1 and P2, respectively.

To show (43), notice that Z1 − Z2 follows a Gaussian distribution whose mean function is µZ1 − µZ2 and its
covariance is Σ12 = ΣZ1 + ΣZ2 . Let γj with j ∈ N denote the ordered eigenvalues of Σ12. Consider a basis
composed by the eigenfunctions of Σ12, we denote by (µZ1 −µZ2)j the components of µZ1 −µZ2 in this basis
and {uj}j∈N is a sequence of i.i.d. real standard normal variables. Now, we have the following

∥Z1 − Z2∥2 ∼
∞∑

j=1

(
γ

1/2
j uj + (µZ1 − µZ2)j

)2

=
∞∑

j=1

(
γj(u2

j − 1) + γj + (µZ1 − µZ2)2
j + 2(µZ1 − µZ2)jγ

1/2
j uj

)
=

∞∑
j=1

(
γj(u2

j − 1) + 2(µZ1 − µZ2)jγ
1/2
j uj

)
+ trace(Σ12) + ∥µZ1 − µZ2∥2.

Note that K := trace(Σ12) + ∥µZ1 − µZ2∥2 < ∞. Thus,

P
[
∥Z1 − Z2∥2

> CN1/10
]

= P

 ∞∑
j=1

(
γj(u2

j − 1) + 2(µZ1 − µZ2)jγ
1/2
j uj

)
> CN1/10 −K


≤ P

 ∞∑
j=1

γj(u2
j − 1) > 1

2

(
CN1/10 −K

)
+P

 ∞∑
j=1

(µZ1 − µZ2)jγ
1/2
j uj >

1
4

(
CN1/10 −K

)
=: P1 + P2. (44)

Obviously, 1
4
(
CN1/10 −K

)
→ ∞. Thus, eventually 1

4
(
CN1/10 −K

)
> 1 and from Lemma G.1, we have that

P1 ≤ lim
d→∞

P

 d∑
j=1

γj(u2
j − 1) > 1

2

(
CN1/10 −K

) ≤ 2 exp
(

− 1
8γ1

(
CN1/10 −K

))
. (45)

For P2, first note that the real r.v.
∑d

j=1(µZ1 − µZ2)jγ
1/2
j uj is centered normal, with variance equal to

d∑
j=1

(µZ1 − µZ2)2
jγj ≤ γ1

d∑
j=1

(µZ1 − µZ2)2
j ≤ γ1∥µZ1 − µZ2∥2 for every d ∈ N. Therefore,

P2 ≤ lim
d→∞

P

∣∣∣∣∣∣
d∑

j=1
(µZ1 − µZ2)jγ

1/2
j uj

∣∣∣∣∣∣ > 1
4

(
CN1/10 −K

)
≤ P

[
|N(0, 1)| > 1

4γ1/2
1 ∥µZ1 − µZ2∥

(
CN1/10 −K

)]

≤
√

2
π

exp
(

− 1
2γ1(4∥µZ1 − µZ2∥)2

(
CN1/10 −K

)2
)
, (46)

where last inequality comes from (25) because, eventually 1 <
(
CN1/10 −K

)
/(4γ1/2

1 ∥µZ1 − µZ2∥). Finally,
(44), (45), and (46) give (43) and consequently, T1

P→ 0 as N → ∞. •
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Appendix II: Additional Material

K Extension to non-Gaussian Processes

Obviously, non-Gaussian processes can also be mutually singular. In fact, Theorem 4.3 in Rao and Varadara-
jan (1963) contains a sufficient condition for this property to be satisfied. This allows us to consider the
possibility to extend previous results to cover non-Gaussian distributions. It is obvious that the proofs that
we have developed can cover non-Gaussian distributions as long as they satisfy the due properties. In this
subsection, we state the properties a distribution should satisfy in order the proofs can be extended. Let P1
and P2 be two probabilities on the Hilbert space H. Here, Z will denote a L2[0, 1]-valued random element
with distribution π1P1 + π2P2 for some π1, π2 > 0 with π1 + π2 = 1.

The basic assumption is the existence of a covariance of Z. We will also consider assumptions A.1 and
A.2 (see Section 3 of the paper) and b ∈ L2[0, 1]. Given a p.d. d × d matrix Ad and a d-dimensional
subspace Vd ⊂ L2[0, 1], we need to consider the d-dimensional random vector Ud = (Ad)−1/2(Z − b)d and
the covariance matrix Sd = A

−1/2
d ΣZ

dA
−1/2
d , where ΣZ

d is the covariance matrix of Zd and (Z − b)d is the
projection on Vd of (Z − b) with d ∈ N.

Let us write Ud −E[Ud] = (u1, . . . , ud)T in the basis of the eigenvectors of Sd and let αd
1, . . . , α

d
d denote the

eigenvalues of Sd. Therefore, ui/α
d
i for 1 ≤ i ≤ d are real, standardised random variables which we need to

assume to be i.i.d. Similar properties must hold for the decomposition of Z in its eigenfunction basis (also
see Dai et al (2017)). We finally need two exponential inequalities as those stated in (25) of Lemma G.1.

L Discussion on GP Clustering for the ‘Location Only’ Case

We have some ideas to fix the problem with the ‘location only’ case. Recall the notation used in Subsection
2.1 of the paper. As stated there, the problem in this case is that

D
ΣZ

d

d (u,v) = 1
d

∥∥∥(ΣZ
d )−1/2(u − v)d

∥∥∥2
= 1
d

d∑
i=1

(ui − vi)2

λi

P→ 0as d → ∞.

Our idea is to replace the terms in the sum with some others going to 0 slowly enough (or, if possible, not
converging to zero at all). To use this idea, our proposal is as follows:

D
ΣZ

d ,r
d (u,v) := 1

d

∥∥∥((ΣZ
d )−1/2)r(u − v)d

∥∥∥2
= 1
d

d∑
i=1

(ui − vi)2

λr
i

, with r ∈ I. (47)

Here, I is the set of integers. In this article, we have studied the case when r = 1, i.e., DΣZ
d ,1

d . However, this
was not a strict requirement and we look into some possible scenarios below:

• If r ∈ {0,−1,−2, . . .}, then assumption A.2 in the main paper trivially gives that (ui−vi)2

λr
i

≤ (ui−vi)2

λi

eventually for large i. Consequently, we have DΣZ
d ,r

d (u,v) P→ 0 as d → ∞.

• When r ∈ {2, 3, . . .}, the transformation D
ΣZ

d ,r
d may be useful because 1/λr

i will start to take high
values (recall assumption A.2 ) and this may lead to separation between the observations of corre-
sponding to different clusters.

Keeping the viewpoint stated above in mind, we consider the transformation D
ΣZ

d ,4
d (using r = 4 in (47)).

Numerical results for the difference in location only setting stated in Section 4 are reported below. We
have excluded Example II from this comparison because, as stated earlier, the two GPs have no differences
in their means.

13
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Table L.1: Adjusted Rand distances for different GPs with differences only in locations (with standard error
in brackets).

Ex. k-means spectral mclust funclust CL DHP CD
k-means spectral mclust

I 0.0001 0.0001 1.0000 0.0002 0.0001 0.0001 0.0012 0.0814 0.0016
(0.0001) (0.0001) (0.0000) (0.0001) (0.0000) (0.0001) (0.0002) (0.0072) (0.0003)

III 0.0646 0.0960 1.0000 0.0795 0.0945 0.1480 0.1965 0.1948 0.1649
(0.0015) (0.0018) (0.0000) (0.0009) (0.0045) (0.0047) (0.0025) (0.0027) (0.0017)

IV 0.1606 0.2111 1.0000 0.0318 0.1015 0.0134 0.1257 0.3777 0.1784
(0.0007) (0.0008) (0.0000) (0.0003) (0.0000) (0.0004) (0.0019) (0.0085) (0.0021)

As expected, the performance of k-means is quite good in Examples I and III. Both DHP and CL also perform
quite well securing a first place in some cases. The proposed statistic DΣZ

d ,4
d shows significant improvement

(recall from part (b) of Theorem 2.2 that Lµ = 0 for the earlier transformation DΣZ
d ,1

d ), and this is reflected
in the numerical figures of Table L.1.

Clearly, there is scope of further work with the proposed transformation D
ΣZ

d ,r
d for r ∈ {2, 3, . . .}, both

theoretically as well as numerically.

M Review of the paper by Delaigle et al (2019)

As stated, Delaigle et al (2019) is related to perfect clustering and it is the only paper on perfect clustering
we are aware of. In this section, we analyze the relation between our proposal and this paper.

The proposal by Delaigle et al (2019) is based on finding a finite-dimensional subspace in which the data are
projected, and clustering is done by applying a modification of the k-means algorithm on those projections.
A theoretical result related to perfect clustering is stated in Theorem 1 of this paper. In the homoscedastic
case, Delaigle et al (2019) gives an explicit expression of the subspace in which the data should be projected
(see Theorem 2 of this paper).

The technique proposed in this paper has some advantages over our proposal in the sense that they can
handle the homoscedastic (differences only in location) case. However, it suffers from several
limitations, the main being its difficulty to deal with more than two populations. As stated in
Section 5.2 of Delaigle et al (2019), "...it is not clear how to extend... [their method] ...to more than two
populations.". The only exception being the case in which one needs to assume that the data follow a binary
hierarchical structure, where the groups can be sequentially split into two. As a consequence of this, Delaigle
et al (2019) do not propose a procedure to estimate the true number of clusters.

On the technical side, the theory of Delaigle et al (2019) has some limitations. It requires
to arbitrarily fix p ∈ N. Then, the data are projected on a p-dimensional subspace in which the clustering is
to be done. New issues appear in the way in which the subspace should be chosen as well as the clusters need
to be constructed. According to Theorem 1 of this paper, the generators of the subspace must be chosen in
a finite set with cardinality an → ∞ as the sample size n → ∞. Moreover, the partition of the data set must
be chosen between those in a finite set of Voronoi tessellations of Rp with cardinality bn → ∞ as n → ∞.
Additionally, the result needs technical conditions like the existence of some c ∈ (0, 1) such that for every
C > 0 it happens that ap

nbn exp(−Cnc) → ∞ as n → ∞.

14
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N Full Numerical Results

Full results for two scenarios are given below.

Table N.1: Adjusted Rand distances for different GPs with differences in locations and scales (with standard
error in brackets).

Ex. CL1 CL2 DHP1 DHP2
I 0.0239 0.0554 0.8386 0.0818

(0.0007) (0.0005) (0.0064) (0.0025)
II 0.5767 0.9967 0.5470 0.5149

(0.0045) (0.0018) (0.0047) (0.0049)
III 0.2891 0.9962 0.4137 0.5613

(0.0000) (0.0000) (0.0054) (0.0060)
IV 0.1833 0.6660 0.1379 0.5211

(0.0000) (0.0000) (0.0033) (0.0061)

Table N.2: Adjusted Rand distances for different GPs with differences only in scales (with standard error
in brackets).

Ex. CL1 CL2 DHP1 DHP2
I 0.8269 1.0017 0.9989 0.9966

(0.0000) (0.0000) (0.0005) (0.0008)
II 0.9065 1.0019 1.0001 0.9999

(0.0007) (0.0005) (0.0002) (0.0003)
III 0.9994 0.9998 0.9984 0.9967

(0.0000) (0.0000) (0.0004) (0.0007)
IV 0.8464 0.9928 0.9994 0.9980

(0.0000) (0.0000) (0.0003) (0.0006)

Full result for the location only case (using the transformation DΣZ
d ,4

d stated in Section L of Appendix II)
is given next.

Table N.3: Adjusted Rand distances for different GPs with differences in locations (with standard error
in brackets).

Ex. C1 C2 DHP1 DHP2
I 0.0001 0.0001 0.9896 0.0001

(0.0000) (0.0000) (0.0001) (0.0001)
III 0.0945 0.9975 0.1480 0.1623

(0.0010) (0.0043) (0.0047) (0.0075)
IV 0.1015 0.9001 0.0134 0.1473

(0.0000) (0.0000) (0.0004) (0.0039)

R codes for our clustering methods are available from this link: GP clustering.
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O Pseudo-codes of Our Methods

Algorithm 1 Clustering Algorithm
Data: Z1, . . . , ZN are observed at p time points (i.e., p-dimensional data);
Compute the sample variance-covariance matrix SN ; ▷ O(Np2)
Define dN = min{p,N};
Spectral decomposition of the dN × dN matrix SN yields e1, . . . , edN

(eigen functions) and λ1, . . . , λdN

(eigen values); ▷ O(p3)
Fix 1 ≤ d ≤ dN ;
for i = 1 : N do

for j = 1 : d do
Compute zij = ⟨Zi, ej⟩;

end for
end for ▷ O(N2p)
for i = 1 : N do

for i′ = 1 : N do

Compute Dd(Zi, Z
′
i) = 1

d

d∑
k=1

(zij − zi′j)2

λk
;

end for
end for ▷ O(N2d)
for i = 1 : N do

for i′ = 1 : N do
temp = 0;
for t ̸= i, i′ do

Compute temp = temp+ [Dd(Zi, Zt) −Dd(Z ′
i, Zt)]2;

end for
γd(Zi, Z

′
i) = temp;

end for
end for ▷ O(N2d)
Spectral decomposition of the N ×N matrix ΓN yields β1, . . . , βN (eigen values); ▷ O(N3)

Use optishrink to get Kd;
Implement any suitable clustering algorithm on ΓN with Kd as input for the number of clusters;
Obtain class labels for the N observations, or a given data set.

Algorithm 2 Cross Validation Algorithm to Choose the Value of d
Consider the data S = {Z1, . . . , ZN };
for d = 2 : dN do;

Fix B ∈ N;
for b = 1 : B do

Split the set S into three disjoint subsets S1b, S2b and S3b;
Use Algorithm 1 with data points corresponding to S1b to get a cluster assignment for data points

corresponding to S3b (say, C1);
Use Algorithm 1 with data points corresponding to S2b to get a cluster assignment for data points

corresponding to S3b (say, C2);
Compute a distance between C1 and C2 (say, Db)

end for ▷ O(BdN )
Average over D1, . . . ,DB to get DCV

d ; ▷ O(dN )
end for
Return dCV = arg min2≤d≤dN

DCV
d .
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