RVD: A Handheld Device-Based Fundus Video Dataset
for Retinal Vessel Segmentation
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Abstract

Retinal vessel segmentation is generally grounded in image-based datasets collected
with bench-top devices. The static images naturally lose the dynamic characteristics
of retina fluctuation, resulting in diminished dataset richness, and the usage of
bench-top devices further restricts dataset scalability due to its limited accessibility.
Considering these limitations, we introduce the first video-based retinal dataset
by employing handheld devices for data acquisition. The dataset comprises 635
smartphone-based fundus videos collected from four different clinics, involving
415 patients from 50 to 75 years old. It delivers comprehensive and precise
annotations of retinal structures in both spatial and temporal dimensions, aiming
to advance the landscape of vasculature segmentation. Specifically, the dataset
provides three levels of spatial annotations: binary vessel masks for overall retinal
structure delineation, general vein-artery masks for distinguishing the vein and
artery, and fine-grained vein-artery masks for further characterizing the granularities
of each artery and vein. In addition, the dataset offers temporal annotations that
capture the vessel pulsation characteristics, assisting in detecting ocular diseases
that require fine-grained recognition of hemodynamic fluctuation. In application,
our dataset exhibits a significant domain shift with respect to data captured by
bench-top devices, thus posing great challenges to existing methods. Thanks to
rich annotations and data scales, our dataset potentially paves the path for more
advanced retinal analysis and accurate disease diagnosis. In the experiments, we
provide evaluation metrics and benchmark results on our dataset, reflecting both
the potential and challenges it offers for vessel segmentation tasks. We hope this
challenging dataset would significantly contribute to the development of eye disease
diagnosis and early prevention. The dataset is available at €) RVD.

1 Introduction

The observation of the retinal vasculature patterns serves as a reliable approach to tracking the
morphological changes of eyes over time. These morphological changes have been found to be
closely associated with a spectrum of ocular diseases, e.g., diabetic retinopathy, age-related macular
degeneration, and glaucoma [83, 14]. Retinal vessel segmentation aims to provide pixel-level
extraction of the visible vasculature from a fundus image [56]. It is the initial yet fundamental
step in objectively assessing vasculature in fundus images and quantitatively interpreting associated
morphometrics. Thus, this task plays a pivotal role in understanding and diagnosing ocular diseases.
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Figure 1: (a) Samples from existing image based retinal vessel datasets: DRIVE [72], STARE [69],
HRF [38], and CHASE_DBI1 [25]. (b) Video samples from our retinal vessel dataset. Different
from existing image-based datasets, our dataset captures continuous changes in retinal vessels and
facilitates the analysis of vessel dynamics in the retina. (c¢) The intensity distributions of our dataset
and existing ones. The differences imply the domain gaps between our dataset and existing ones.

Existing methods for retinal vessel segmentation are designed on image-based datasets [38, 72, 69, 25],
as shown in Fig. 1 (a). Although these datasets have contributed valuable vessel annotations for
studying retinal segmentation, the static nature of images inherently limits their ability to portray
dynamic retinal characteristics, e.g., vessel pulsations. These dynamic phenomena play a vital role in
facilitating comprehensive and in-depth understanding of retinal functionality and vasculature struc-
ture. Moreover, image-based datasets are captured by expensive bench-top ophthalmic equipment,
which is operated by professionally trained clinicians [31, 34]. Such requirements potentially limit
the scale of the datasets and data diversity, thereby adversely affecting the generalization ability of
the models trained on these datasets.

In recent years, advances in imaging technology have enabled the usage of smartphone-based devices
for retinal observation [79, 32]. They offer better flexibility and portability, allowing for scalable
data collection. In this paper, we introduce the first video-based retinal vessel dataset (RVD), a
collection of 635 smartphone-based videos with detailed vessel annotation. These videos are recorded
from four clinics, including patients from 50 to 75 years old. Some examples of our dataset are
shown in Fig. 1 (b). The sequential frames capture the continuous changes in retinal vessels and thus
significantly facilitate the analysis of subtle fluctuations in the retinal structure. Therefore, the use of
portable devices for data acquisition and the provision of the video modality remarkably overcome
the limitations of existing datasets.

The annotations provided in our dataset span two dimensions: spatial and temporal. In the spatial
dimension, we offer three distinct levels of annotations: binary vessel masks, general vein-artery
masks, and fine-grained vein-artery masks. Each kind of annotation is tailored to specific clinical
purposes. Specifically, for the binary vessel masks, we identify the sharpest and most representative
frame from the video clip and generate binary masks representing the skeletal structure of the vessels.
This mask primarily targets the holistic vessel structure but neglects the difference between arteries
and veins. For general vein-artery masks, we differentiate veins and arteries based on their respective
vessel calibres and generate separate masks for them respectively. Lastly, in contrast to the general
differentiation between arteries and veins, the fine-grained vein-artery masks further divide each
retinal artery and vein into sections based on a set of pre-defined vessel widths. We thus generate
eight different vein-artery masks for each sample and these masks precisely reflect the granularities of
retinal vessels. These sophisticated masks are highly demanded when detecting ocular diseases [3, 9].

In the temporal dimension, we enrich our dataset with annotations of the complex dynamics of retinal
vasculature. For each video, we focus on the optic disk regions where the retinal vessel fluctuation
normally occurs. We then select and annotate frames with the maximal and minimal pulse widths as
well as label the existence of spontaneous retinal venous pulsations (SVP). The existence and extent
of vessel changes signify vascular pulsations and cranial pressure-related alterations. Clinically,
the signals of pulsation facilitate the detection of abnormalities in retinal vessels, while precise
identification of pressure-related alterations aids in detecting temporally-dependent ocular diseases.
Our integration of temporal annotations thus increases its potential for ocular disease diagnosis.

The distinction between smartphone-based and benchtop devices and data modality differences result
in domain gaps, as illustrated in Fig. 1. Furthermore, since our data are collected by handheld devices



in clinics, our dataset also involves more realistic factors, e.g., the operations of the clinicians, sur-
rounding illumination conditions, and eye movements of patients during video capture. Consequently,
our dataset presents more challenges for existing vessel segmentation methods. More importantly,
the large number of training samples and detailed annotations in our dataset will likely pave the
way toward more advanced yet portable retinal analysis and more accurate disease diagnosis. In
the experiments, we delve into an in-depth analysis of our dataset and provide benchmark results of
different tasks on our newly curated dataset.

The main contributions of our paper are summarized as follows:

¢ Dataset construction: We construct a new video-based retinal vessel dataset (RVD) with
rich spatial and temporal annotations for vessel segmentation tasks. To the best of our
knowledge, RVD is the first mobile-device based dataset for retinal vessel segmentation.

* Three-level spatial annotations: Our dataset introduces three levels of annotations in
spatial, comprising binary vessel masks, general vein-artery masks, and fine-grained vein-
artery masks. The hierarchical and diverse descriptions of spatial annotations enable us to
better analyze the vessel structure.

* Temporal annotations: Our dataset also provides temporal annotations of spontaneous
retinal venous pulsations (SVP) to reveal the dynamic changes in retinal vessels. This
enables the assessment of pulsatile variations in retinal vessels.

* Benchmarking: We investigate the gap between our dataset and previous retinal datasets by
assessing the performance of several state-of-the-art methods. The experimental results will
shed some light on mobile-device based retinal vessel segmentation.

2 Related Work

Existing Retinal Datasets: In the realm of retinal vessel segmentation, various retinal vessel datasets
have been proposed. Existing datasets can be roughly categorized into two streams: binary vessel
based ones and artery-vein based ones. Among the datasets with binary vessel masks, DRIVE [72],
STARE [69], HRF [38], and CHASE_DBI1 [25] have emerged as the most frequently used datasets.
In fact, each of these datasets only comprises dozens of images. For example, DRIVE consists of
40 images captured in the 45-degree field of view, with an image size of 584 x 565 pixels. Besides,
DRiDB [59], ARIA [23], IOSTAR [84], and RC-SLO [1] are another publicly available datasets for
retinal vessel segmentation. However, they are less used in recent years considering their data quality
and maintenance. Recently, the FIVES dataset has been introduced [34], with data distributed across
four categories: normal retinas, retinas affected by Diabetic Retinopathy, Glaucoma, and Age-related
Macular Degeneration. It comprises 800 retinal images.

Regarding the datasets with artery-vein masks, RITE [31], AV-DRIVE [60], INSPIRE-AVR [57],
and WIDE [21] are the available ones. The AV-DRIVE dataset, derived from DRIVE, consists of
40 images and offers separate ground truth masks for arteries and veins. The INSPIRE-AVR is an
independently constructed dataset with artery-vein ground truth masks. It consists of 40 color images
in total. The WIDE dataset provides 30 scanning laser ophthalmoscope (SLO) images.

In contrast to existing datasets which are collected with cumbersome bench-top devices and are
composed of static images, our dataset is constructed with portable handheld devices and is video-
based. Our dataset preserves the dynamic characteristics of vessels. Besides, existing datasets
typically provide only one type of annotation for a specific research purpose, whereas our dataset
offers annotations in both spatial and temporal dimensions. The spatial annotations include binary
vessel masks, general vein-artery masks, and fine-grained vein-artery masks, respectively. The
temporal annotations reveal the state of SVP, an important signal for diagnosing various diseases.

Methods for Retinal Vessel Segmentation: In the past years, a variety of methods have been
developed for retinal vessel segmentation. Traditional methods mainly depend on handcrafted
features [6, 16, 88, 76, 61, 28, 17, 36], which are less discriminative and effective [51]. With
the unprecedented breakthroughs of deep neural networks (DNNSs) in the image classification,
detection, and segmentation tasks, researchers have explored the potential of DNNSs in retinal vessel
segmentation [22, 43, 35, 81, 89]. Many works [5, 42, 71, 58, 33, 15] adopt fully convolutional
networks [46] to produce more accurate segmentation of retinal images by combining semantic
information from deep layers with appearance information from shallow layers. Several works



Table 1: Comparisons of different retinal vessel segmentation datasets. “Num” denotes the number of
annotated image frames.

Dataset | Resolution | Modality | Device | Num | Dimension | Annotation type
STARE [69] 605 %700 Image Benchtop 20 Spatial Binary
DRIVE [72] 768 x 584 Image Benchtop 40 Spatial Binary

ARIA [23] 576 X768 Image Benchtop 161 Spatial Binary

CHASEDBI [25] 990 %960 Image Benchtop 28 Spatial Binary
INSPIRE-AVR [57] | 2392x2048 Image Benchtop 40 Spatial Multi-class

HREF [38] 3304 %2336 Image Benchtop 45 Spatial Binary
RITE [31] 768 x 584 Image Benchtop 40 Spatial Multi-class

FIVES [34] 2048 x2048 Image Benchtop 800 Spatial Binary
RAVIR [29] 768 X768 Image IR Laser 42 Spatial Multi-class
RVD (ours) 1800x1800 | Video | Hand-held | 1270 | Spatial Multi-class

+ Temporal

have focused on modifying the U-Net structure [74, 64, 85] for vessel segmentation. [86] first
introduces the residual connection into U-net to detect vessels. This idea has been adopted in later
studies [4, 41, 26, 78]. [82] introduces the local-region and cross-dataset contrastive learning losses in
training to explore a more powerful feature embedding space. Besides, several other methods employ
various networks and strategies for retinal vessel segmentation, such as generative and adversarial
networks [40, 70], ensemble learning [49, 75, 44], and graph convolutional network [68].

The aforementioned methods are mainly conducted on datasets DRIVE, STARE, CHASE_DBI, and
HRF, with binary vessel masks as supervision. Thanks to INSPIRE-AVR, AV-DRIVE, and WIDE,
many works have been proposed to distinguish artery and vein [18, 21, 87, 50]. In [47], a multi-task
deep neural network with spatial activation is proposed. The constructed network is able to segment
full retinal vessels, arteries, and veins simultaneously. More recently, transformer based models, e.g.,
ViT [20], Swin transformer [45], and Mask2Former [13], have been proposed. These models have
demonstrated their superior performance in capturing visual concepts and become popular backbones
in visual understanding tasks [54]. We thus choose these models in the experiments to study the
characteristics of our proposed dataset.

3 Our Proposed RVD

In this section, we first describe our data collection process and data sources' Concerning privacy
and ethic, we perform this study in accordance with the guidelines of the Tenets of Helsinki. Written
consent was obtained from all participants prior to any data collection, and all examination protocols
adhered to the tenets of the Declaration of Helsinki. Once clinical data have been collected, we need
to clean and pre-process the data in order to facilitate clinicians’ annotations and neural network
training. In our work, the annotations are provided by professionally well-trained clinicians, and
they have been asked to not only annotate conventional spatial segmentation masks but also temporal
segmentation masks for dynamic biomarkers, such as Spontaneous retinal Venous Pulsations (SVPs).
Last, we will introduce the data split and relevant tasks that are supported by our dataset.

3.1 Data Collection

For data collection, the employed hand-held fundus imaging devices are constructed by connecting a
smartphone to the fundus camera lens. Then, clinicians are trained to operate the hand-held devices
to examine patients’ retinas while collecting fundus videos. These participants are fully aware of
data collection when they undergo their annual medical examinations. With the help of clinicians, a
total of 415 patients from four different clinics participate in the data collection process. As data are
collected in different clinics over the past five years, the employed smartphones are different, thus
increasing the diversity of data sources. More specifically, 264 males and 151 females are included
here. Their ages range from 50 to 75. People of these ages are commonly considered to be at high
risk for eye-related diseases, such as glaucoma and hypertension [37]. Our dataset involves both
videos recorded from healthy eyes and videos from eyes with ocular diseases.

During the collection, one eye of each patient is recorded at a time. In this manner, at least one fundus
video of each patient has been recorded and some participate multiple times in video recording. As a

'Our dataset follows the copyright Creative Commons BY-NC-ND 4.0 license ©.



result, a total of 635 RGB videos have been captured. All captured videos have a frame rate of 25
frames per second, with the duration varying between 2 to 30 seconds. The total number of frames
in our dataset is over 130,000. This collection process ensures the generality and diversity of our
dataset for retinal vessel analysis. The detailed information of our dataset is shown in Table 1 and
some examples could be found in Fig. 1 (b).

3.2 Data Cleaning and Preprocessing

Although we have tried our best to minimize environmental interference during collection, the original
videos still exhibit various noise, such as video jittering and motion blur. Such noise will severely
degrade the quality of collected videos and impose more difficulties in annotations. Hence, we
eliminate the noise in the footage to improve the quality of our dataset and facilitate annotations.

Data cleaning: Considering that blood vessel dynamics mostly appear in ODR, we remove the
video segments without ODR and ensure the existence of ODR in all videos. To this end, we employ
an ODR detection method to localize ODR. Specifically, we label ODR regions by bounding-boxes,
and for each video, we only annotate one frame per 25 frames (i.e., 1 second), similar to [67]. Then,
we leverage the labeled ODR as supervision to train the Faster-RCNN detection network [62]. After
that, the remaining frames are labeled by the trained Faster-RCNN. Manual check is also conducted
to modify erroneous detection results by annotators. We only select video segments in the dataset if
their ODRs are detectable in a minimum of 30 continuous frames. Such operations help maintain the
overall quality of our video data.

To further improve the data quality, we leverage the optical flow to pinpoint frames with a high level
of blur. Optical flow captures the spatial alterations between distinct frames, and thus it could serve
as an indicator of spatial sharpness. Frames with large optical flow are subsequently discarded, as
they likely correspond to instances of blurring. Similar to ODR detection, annotators (non-experts)
also manually remove frames that undergo severe blur but have not been spotted by optical flow.

Data Preprocessing: In retinal vessel segmentation, ODR and its surrounding area are the most
representative regions of the eye and provide extensive details about retinal vessels. However, the
inherent ocular movement results in varying ODR positions across different frames. Such variations
can impede the precise observation and annotation of SVP by clinicians. To tackle this issue, we
employ the template matching algorithm [7] to stabilize the ODRs across video segments, ensuring a
consistent ODR placement and a fixed field of view across frames. This facilitates human observation
and machine perception of dynamic changes surrounding the ODR, thus greatly enhancing annotations
and clinical diagnosis.

3.3 Data Annotation

To ensure the annotation quality, six clinicians are involved in this process. In the process of
annotation, we also incorporate inter-rater reliability using the IoU metric to ensure the consistency
of annotations across different annotators. Specifically, after every 100 annotations, we will randomly
select 5 frames from each clinician and then reassign the frames to another clinician for annotations.
If the IoU is lower than 0.95, the annotations will be manually reviewed by a third clinician. For the
temporal SVP annotations, each video has been annotated by three clinicians to reduce annotation
bias.

3.3.1 Spatial segmentation

To mitigate the redundancy of annotating similar video frames, we currently select and annotate
two frames for each video. Here, we adopt a three-fold strategy to identify the most representative
frame from a video. (1) A frame is in high image quality (high sharpness/contrast) and contains the
most vessels in a video; (2) A frame can cover ODR, fovea, and macula regions without obstructions.
These regions pathologically have a significant number of capillaries; (3) Based on the first frame, we
choose another frame that not only has visible ODR with high-density vessels but also has a maximum
spatial distance between its ODR and the previously selected ones. In this way, the annotated two
frames will cover most of the retinal vasculature and any pathological regions of the retina. We then
elaborate on creating three types of spatial annotations: binary vessel masks, general vein-artery
masks, and fine-grained vein-artery masks, as follows:
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Figure 2: Left: Illustration of our multi-grained segmentation annotations. For each given fundus
image (a), we provide three different kinds of segmentation masks including a conventional binary
mask (b), a general artery-vein mask (c) and a fine-grained artery-vein mask (d) (VL: vein width
level, AL: artery width level, the numbers (0 to 3) indicate four increasing width levels). Right:
Overview of the temporal annotations (e), including ODR locations, presence and absence of SVP,
temporal localization of SVP, and “peak” and “trough” of SVP.

Binary vessel masks: To generate the binary vessel masks, we adopt a similar method proposed
in [48]. For each frame, we first draft a centerline-level annotation using the ImagelJ software [65] and
generate the delineation of vessel boundaries to obtain the main structure of vessels. Then we employ
our experts to manually refine the structure by correcting the boundaries and improving the details of
small capillaries. We can obtain the binary vessel masks by assigning the label to the refined structure
(see Fig. 2 (b)).

General vein-artery masks: Many intracranial vascular diseases are found to be related to retinal
vessels and affect the arteries and veins differently [2]. Thus, distinguishing between the retinal artery
and vein plays a critical role in the clinical biomarker study of how various systemic and cardiovascular
diseases affect the retinal vessels. In practice, the arteries and veins can be distinguished based on
their difference in three aspects: color, light reflection, and calibres. The veins generally have a darker
color than arteries and show a smaller central light reflex. Meanwhile, the veins are also wider than
adjacent arteries. Then, clinicians only need to assign labels (i.e., vein and artery) to the vessels and
obtain the vein-artery masks, as shown in Fig. 2 (c).

Fine-grained vein-artery masks: Vascular morphology holds substantial clinical significance, as
alterations in vessel diameters frequently signify the presence of various diseases. For example,
damage of the small retinal vessels could result in diabetic retinopathy [39]. Similarly, glaucoma
pathogenesis is postulated to be linked to alterations in the retinal vasculature, such as retinal arteriolar
narrowing and decreased fractal dimension [10]. Despite the clinical importance of such information,
existing datasets scarcely provide this type of labels. Therefore, we consider the morphological
characteristics of each artery and vein in our dataset and thus provide fine-grained vein-artery masks
based on the vessel widths.

Specifically, we first measure the vessel diameters automatically via “Vessel Diameters” plugin in
ImageJ.? Then, we divide the arteries into multiple small vessel segments based on the diameters
of the vessels. Based on the largest diameter among these artery segments, we define four levels of
widths according to specific ratios. More specifically, a vessel segment within the range of 0-25%
of the largest diameter is categorized as level 0. Similarly, levels 1, 2, and 3 correspond to vessel
widths in the ranges of 25%-50%, 50%-75%, and 75%-100% of the largest diameter, respectively.
Afterward, we obtain four-class masks for arteries based on vessel widths. The same operation is also
applied to veins. After the automatic processing, clinicians will validate the quality of the fine-grained

’https://imagej.net/software/imagej/
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segmentation masks. This process ultimately yields eight-class masks for both arteries and veins (see
Fig. 2 (d)). Those masks significantly enrich the granularity of our dataset.

3.3.2 Temporal localization

Existence of SVP: Based on the results of data cleaning and preprocessing, we utilize the stabilized
videos and further annotate the dynamic state of vessel pulsations. Spontaneous retinal Venous
Pulsation (SVP) plays a crucial role as a biomarker in retina assessments. Specifically, SVP is
characterized by rhythmic pulsations evident in the central retinal vein and its branches, typically
observable within the optic disc region (ODR) of the retinas. The absence of SVP holds substantial
clinical significance, as it is correlated with certain pathologies. For example, the absence of SVP is
associated with progressive glaucoma [53], and it is indicative of increased intracranial pressure [52].
Considering the requirement of specialized knowledge, we have invited multiple clinicians and
finished the annotation of SVP presence or absence for each video in our dataset. Once the annotation
process completes, we obtain 335 “SVP-present” videos and 300 “SVP-absent” videos respectively.
This annotation establishes a fundamental task of SVP detection, facilitating further analysis and
investigation on the relationship between SVP and eye diseases.

Temporal duration of SVP: After annotating the existence of SVP in the stabilized videos, some
“SVP-present” videos may not contain SVP throughout the whole video. This means in some frames
SVP is not visible. Using these videos to train an SVP classification model would suffer ambiguity
especially when an entire video cannot be fed into a neural network. Therefore, we further provide
temporal emergence annotations of SVP by indicating the starting and ending frames of retinal vessel
fluctuation (see Fig. 2 (e)). The detailed duration of SVP serves two purposes: it acts as a valuable
signal to improve the performance of SVP detection tasks and concurrently sets a new task for SVP
temporal localization. We obtain videos in three distinct groups: 156 videos containing intermittent
SVPs, 179 videos demonstrating persistent SVPs, and the remaining 300 videos without SVPs. These
temporal annotations allow us to better understand retinal vessel dynamics.

“Peak” and “Trough’ annotations of SVP: As discussed above, SVP reflects the temporal dilation
and contraction in retinal vessels. The state with maximal dilation is characterized as “peak”, whereas
those with maximal contraction are termed “trough”. Here, we select frames corresponding to the
“peak” and “trough” states from each “SVP-present” video. Subsequently, we generate corresponding
masks for these selected frames, yielding a total of 670 annotated masks. This annotation allows us
to quantitatively measure the extent of pulsations and occurring positions of vessel pulsations.

3.4 Data Protocols

Data split: When partitioning our dataset for training and evaluation, we also take into account the
similarity of the recorded videos of the same person. Specifically, we ensure that videos captured
from the same patient are allocated to the same subset during the partitioning process. This strategy
aims to decrease the similarity between training data and testing data and thus minimizes performance
bias. In practice, we divide the data based on patient IDs. In this manner, the same patient’s videos
will not appear simultaneously in both the training and testing sets. Then, we select 517 videos from
the 635 videos for training and validation, and the rest 118 videos are used for testing. We also
cross-validate a method with three different data splits and will release the dataset and data splits.

Metrics: Based on our annotations, we can conduct tasks in two major categories. (1) Retinal vessel
segmentation metrics: Since the binary, general artery-vein and fine-grained vessel segmentation
tasks are essentially semantic segmentation, we adopt the mean Intersection over Union (mloU),
mean Accuracy (mAcc), and macro-averaged F1-score (mFscore) to evaluate the performance of
models on our dataset. Note that, mFscore is the average of F1-score by treating all classes equally
and the F1 score is also known as the DICE score in binary classification or segmentation tasks?, the
mFscore thus essentially equals the mean of DICE scores for segmentation tasks. (2) SVP recognition
and temporal localization metrics: SVP recognition is to classify whether SVP exists in a video.
SVP localization task is to identify the time period where SVP appears in a video. We adopt the
Accuracy (Acc), Area Under the Receiver Operating Characteristic Curve (AUROC), and Recall for
SVP recognition. The frame-mAP (F-mAP), video-mAP (V-mAP) [27] under IoU threshold 0.5 and
mean Intersection over Union (mIOU) are adopted for the task of SVP localization.

3https://en.wikipedia.org/wiki/F-score



Table 2: Segmentation results of different methods on our RVD dataset.

“DeepLabV3” and “M2F” denotes “Mask2Former”.

Method

Backbone

Binary

mloU mAcc mFscore

General Artery-Vein

mloU mAcc mFscore

Fine-grained Artery-Vein
mloU mAcc mFscore

DLV3 [11] ResNet50 [30]

UNet [63]

ResNet101

66.5940.6 72.9241.0 76.67+0.9
62.1510.¢ 65.8441.1 70.7240.7
62.894 0.7 714541 o 78.45411.3

36.5441 5 37.8041.9 55.8541 2
4792301 51.8540.2 57.2140.1
56.6010.7 51.9940.9 57.1011 .0

12.8140.4 14.0340.7 19.1640 5
17.3010.3 19.5910.7 24.67+0.5
18.1340.5 21.051 0.6 24.7240.6

M2F [12]

ResNet50
ResNet101
Swin-T [45]
Swin-S
Swin-B-1k
Swin-B-22k
Swin-L

70.2740.3 77.6540.2 79.5140.3
70.744+0.3 78.7840.3 79.9940.3
70.9440.7 78.874¢.7 80.141 0.7
70.274+0.3 77.5540.1 80.1449.7
71.2010.6 78.7440.9 80.3840.6
70.9910.1 78.8540.6 80.1940.1
74.094 5 0 78.70 0.0 180.63 10 4

57.6040.1 66.80+0.2 69.0610. 1
59.431 1 7 68.58 41 5 T0.7341 7
58.5811.2 69.1042.¢ 71.3940.1
57.6010.1 66.144 0.8 69.041 ¢ 1
58.6610.3 68.4310.4 71.2941 0.8
56.1211.3 68.314 0. 70.144 (.5
60.4941 7 70.3411.9 71.99%1 6

24.88 0.5 32.584 1 5 34.1141 1
31.6214.0 41.961 5.1 42.891 6.4
28.1443.2 36.93 44 3 38.3644 2
23.41 101 30.4410. 5 32.6010 ¢
25.3010.3 34.50 1 1.0 34.81 10 4
25.26 10 2 33.8840.3 34.8810 2
24.91 10 5 33.041 0.7 34.46 10 3

“DLV3” denotes

4 Experiments

In this section, we employ state-of-the-art (SOTA) segmentation methods to examine the contributions
and challenges of our newly curated RVD as well as establish a new benchmark for the dynamic
vessel segmentation and localization tasks. As our data are collected from hand-held fundus imaging
devices, we also investigate whether domain gaps between our dataset and existing ones which are
captured by benchtop based devices.

4.1 Overall Results

We first focus on spatial segmentation tasks on our dataset. We conduct experiments of binary vessel
segmentation, general artery-vein segmentation, and fine-grained artery-vein segmentation, respec-
tively. We employ several popular used segmentation methods, including FCN [66], DeepLabV3 [11],
Segmentor [73], and Mask2Former [12]. We also apply different backbones to these segmentation
methods. The adopted backbones involves convolutional UNet [63], ResNet [30], ViT [20], and Swin
Transformer [45]. We use the pre-trained parameters as initialization and train the networks on our
training set. Due to the space limit, we only present the results of DeepLabV3 and Mask2Former in
Table 2 and others are reported in the Appendix.

Even for the binary segmentation task, the highest mIoU results barely reach around 70%. For
the more complex fine-grained artery-vein segmentation, the mloU values further decline to ap-
proximately 25%. Some visual results are shown in Fig. 3. It is observed that current methods in
general struggle to localize thin vessels. However, these thin vessels always play an important role in
reflecting some diseases, e.g., atherosclerosis [80]. The performance of the SOTA methods implies
the challenges of our dataset, but this also emphasizes the potential of our dataset for future studies.

We also conduct experiments on
temporal SVP recognition and lo-

1por. ! ) Table 3: Performance of SVP recognition and localization.
calization with our provided an-

notations. In SVP recognition, Method Recognition Localization
. . Acc AUROC Recall F-mAP V-mAP mIOU
we train the models to predict
whether SVP exists in a video. LRCN [19] | 52.68 56.79 45.00 64.62 59.06 50.62
ot : 3D [8] 60.71 61.83 61.67 67.49 60.63 51.89
In SVP 1ocz.1hzat}on, we t.ram the X3D [24] 52.68 51.60 75.00 61.12 52.60 50.53
models to identify the time pe- TSN[77] | 5089 6439 3000 | 67.60 5685  50.89
riod where SVP appears in a VTN [55] 58.93 65.58 86.67 68.08 57.64 51.25

video. We employ the models of

LRCN [19], I3D [8], X3D [24],

TSN [77], and VTN [55]. We use the metrics in Section 3.4 and report the results in Table 3. To
the best of our knowledge, we are the first to provide data and annotations for SVP recognition and
localization. However, it is found that existing methods fail to recognize and localize SVP precisely
on our real-clinic video data. For example, in SVP localization task, VTN only achieves 51.25%
mloU, which might not meet the needs of real-world applications. Such results indicate that more
specific-designed methods are highly demanded.

4.2 Domain Gaps between RVD and Existing Datasets

We conduct a two-way evaluation process where models trained on our dataset are tested on previous
datasets and models trained on existing datasets are also evaluated on our dataset. First, to evaluate
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Figure 3: Visualization in the binary, general artery-vein, and fine-grained artery-vein segmentation.

Table 4: Evaluation of domain gaps between different datasets.

Binary General

Method Backbone

RVD

4
C-DB.

C-DB.

1
RVD

RVD

4
DRI

Segmentation

DRI

4
RVD

RVD

1
HRF

HRF

4
RVD

RVD

1
FIVES

FIVES

1
RVD

Artery-Vein

RVD

1
RITE

RITE

1
RVD

DLV3

UNet
ResNet50
ResNet101

70.2340.2
71.5640.3
71.8940.4

62.1740.4
63.4140.2
63.5940.2

65.2140.2
66.3440.1
66.7240.3

62.2140.3
63.0440.2
63.9810.1

70.8940.3
71.2740.2
71.98410.3

56.8140.5
57.7640.4
58.1740.9

69.5540.2
68.7340.3
64.814 0.2

68.9240.4
64.954 0.2
65.26 0.3

51.0540.2
51.8440.3
52.56 0.2

28.3140.4
29.8740.3
30.3040.4

M2F

ResNet50
ResNet101
Swin-T
Swin-S
Swin-B-1k
Swin-B-22k
Swin-L

72.2340.2
73.5740.3
74.9740.2
75.2140.9
74.9310 o
76.9540.3
76.8641.3

65.7140.3
67.2040.1
67.5940.3
67.981 0.2
68.1340.1
70.0440 2
70.47 40 2

67.0310.2
67.5710.2
69.9910 5
69.9310 1
712140 o
73.7910.3
73.0240.1

66.7440.1
67.2510.3
67.7410 5
67.5110.3
67.6410. 5
68.3610.5
67.7240.4

73.0540.2
73.7640.3
7471401
73.9740.2
76.0340.3
78.6740.2
76.1540.3

65.6510.2
65.6610 1
63.8910 3
67.0540 3
66.8810.4
64.0640.4
67.1140.3

71.0041 5
65.2710 2
67.4010 3
72.8710.6
71.3040 2
73.7440.3
73.5640.9

69.8940.4
69.391 0.3
69.641 0 1
69.531 0.8
69.5710.7
69.3440.4
69.6441 5

54.65.40.2
55.2340.3
55.6540.4
56.4740.2
57.041 0.4
57.0540.2
57.2840.4

49.844 0.3
50.121 0.4
50.881 0.2
51.421 0.5
52.99 104
52.8440.5
52.9840.3

binary vessel segmentation performance, we include the following datasets: CHASE DB1 (C-DB.),
DRIVE (DRI.), HRF, and STARE (STA.). Then, we also conduct general artery-vein segmentation
on the RITE dataset. The results are shown in Table 4. Note that existing datasets do not support
fine-grained eight-class segmentation, and thus we did not test our data in this setting. Due to the
domain gap, the models suffer performance drop. The results also indicate that our dataset provides
unique data samples. The visualization is illustrated in the Appendix. From our experimental results
above, we can tell that the retinal vessel segmentation is far from being solved. Our RVD dataset will
serve as a valuable resource, motivating future explorations in retinal vessel segmentation.

5 Conclusion

In this work, we propose the first video-based retinal vessel segmentation dataset by employing hand-
held devices for data acquisition. Our dataset significantly complements the current benchtop-based
datasets for retinal vessel segmentation and enables SVP detection and localization. More importantly,
it offers rich annotations for both spatial vessel segmentation and temporal SVP localization. In
comparison to existing datasets, our dataset is not only the largest scale one with the most diverse
annotations but also more challenging. The domain gaps between our dataset and existing ones
allows researchers to investigate how to minimize the domain gaps in vessel segmentation. Therefore,
our curated dataset RVD is valuable for retinal vessel segmentation and would facilitate the clinical
diagnosis of eye-related diseases.
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APPENDIX

A Broader Impacts Statement

The creation and introduction of our video-based retinal vessel dataset (RVD) have profound effects
on both the research community and the broader healthcare domain.

Research Impacts. By providing a comprehensive dataset with both spatial and temporal dimensions,
the RVD significantly facilitates the analysis of retinal vessel segmentation and leads to improved
understanding and modeling of ocular diseases. By incorporating dynamic video data, this dataset
offers a broader and richer scope of retinal information than the traditional static image-based datasets.
It fosters new research opportunities in retinal vessel segmentation that emphasize dynamic temporal
characteristics and more granular vessel details. The introduced domain gaps with handheld devices
may promote the development of robust and adaptable models, thereby advancing state-of-the-art
image analysis methods. By providing this dataset as a resource for the research community, we
hope to facilitate widespread collaboration and accelerate the exploration in retinal disease detection,
understanding, and diagnosis.

Societal Impacts. As adopted in our RVD dataset, smartphone-based devices have the potential to
democratize retinal vessel examination by making it more accessible and less reliant on expensive,
specialized ophthalmic equipment. Such an enhancement in accessibility consequently leads to earlier
detection and prevention of a spectrum of ocular diseases. Handheld devices potentially increase
equity in healthcare services.

Limitations. Although our RVD is the largest dataset for retinal vessel segmentation to date (635
videos with annotations), its scale is still limited compared to other datasets in computer vision and
thus our dataset can be further extended in the future. Compared to the data collected with bench-top
devices, the original videos captured with handheld devices involve more realistic factors such as
operator techniques, varying lighting conditions, and eye movement of the patient. These factors will
require more sophisticated data cleaning and preprocessing strategies to avoid the degraded quality
and reliability of the data.

B Building RVD

Equipment. We use self-designed handheld devices for data collection. Compared to bench-top
devices which are cumbersome and expensive, the devices we adopt here are lightweight and portable.
Our devices are much cheaper and easier to access. Our devices are built by connecting a smartphone
to the fundus camera lens via an optical tube (see Fig. 1).

Operation details. Clinicians use the handheld devices in Fig. 1 (b) to amass a collection of videos
during eye health examinations. To accommodate handheld operation, each video lasts at least
0.5 seconds and does not exceed 25 seconds. The process initiates with the random selection of
participants and their consent prior to recording. Then, either the left eye, the right eye, or both eyes
are randomly selected for video recording. This method ensures that our dataset comprises both
healthy and diseased eyes. Each participant joins in the recording process either once or multiple
times. In our dataset, we try to eliminate the potential bias towards specific eye conditions and ensure
a broad representation of various ocular health states from different people.

Statistics of our RVD. We show some statistical characteristics of the patients in Fig. 3. Age
distribution among patients exhibits a Gaussian-like one, and more videos are collected from males
rather than females in our dataset. From Fig. 3 (c), we conclude that most of the videos are collected
from clinic 0 and clinic 3. Finally, the videos collected from the left eye and right eye are nearly
balanced, as shown in Fig. 3 (d). More detailed statistical information on the videos can be accessed
on our website in the future.

Characteristics of our videos. We show more samples in Fig. 2 to illustrate the diversity of our
collected videos, e.g., samples with different sizes of optic disc regions (ODR), different illumination,
and different vessel density. The ODR contains most of the vessels in the retina and the size of ODR
is vital in retinal vessel segmentation. Different illumination and vessel density will also make our
dataset more challenging by increasing the variety of samples.
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Figure 1: (a): Bench-top device, which is cumbersome and expensive; (b): Our handheld device,
which is lightweight and portable. It is built by connecting a smartphone to the fundus camera lens
via a optical tube.
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Figure 2: Diversity of our collected videos. (a): Samples with different sizes of ODR; (b): Different
illumination; (c¢): Different vessel density.

Statistics of diseased and normal eyes. As Table 1: The statistics of diseased and normal eyes.
indicated in Table 1, there are 317 videos of dis-

eased eyes and 318 videos of normal eyes. Al- Clinics | P Q R S  Total
though the number of videos collected from dif- Diseased | 132 18 16 151 317
ferent clinics varies, e.g., only dozens of videos Normal 140 15 42 121 318

are collected from clinics Q and R, while more
than 200 videos are collected from clinics P and
S, the diseased and normal eye videos for each clinic are balanced.

C Experimental settings

C.1 Implementation Details.

We implement the benchmark in PyTorch using the open-sourced MMSegmentation [1]. For all
methods, we leverage the default settings of each method in MMSegmentation and implement them
on 4090 GPUs. We train each model for 40,000 iterations and select the checkpoints with the best
validation results. To ensure the accuracy and reliability of final results, cross-validation is employed
across our experiments.
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Figure 3: Statistics of our dataset. (a): The age distribution of the participants; (b): The ratio of
males and females; (¢): The number of videos and patients in each clinic; (d): The number of videos
collected from the left eye and right eye.
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Figure 4: Visualization in the binary, general artery-vein, and fine-grained artery-vein segmentation.

C.2 More Results of Models

In Table 2, we present the segmentation results produced by FCN, PSPNet, and Segmenter. Each
method leverages different backbones, e.g., UNet, ResNet, and ViT. The models are trained and tested
with binary vessel masks, general artery-vein masks, and fine-grained artery-vein masks. We observe
a consistent pattern that even though the methods have achieved the best results with binary masks,
the highest mloU is under 70. These results underscore the difficulties of existing methods in dealing
with our dataset. Such results show the challenges inherent to our dataset and imply the potential of
our dataset to inspire future studies. In Fig. 4, we show the complete segmentation results of FCN,
PSPNet, DeeplabV3, Segmenter, and Mask2Former in our dataset.

C.3 Better domain gap analysis

In this section, we investigate the potential domain gaps in our RVD dataset. Such variations in
distribution could arise from multiple factors: (i) Different clinical conditions; (ii) Variations of
vasculature due to the presence and absence of disease and (iii) Different devices used for video
capture. Furthermore, we consider the evaluation of baseline models on a third dataset.

C.3.1 Test across disease and normal videos

We evaluate our best-performing model Mask2Former with the Swin Transformer backbone on
diseased and normal retinal videos. The binary segmentation results are reported in Table 3. The
segmentation results on both diseased and normal eye videos are close, indicating the domain
discrepancy between the diseased and normal videos is marginal in the context of retinal vessel
segmentation.



Table 2: Segmentation results of “FCN”, “PSPNet”, and “Segmenter” on our RVD dataset.

Binary General Artery-Vein Fine-grained Artery-Vein

Method Backbone mloU mAcc mFscore mloU mAcc mFscore mloU mAcc mFscore
UNet [4] |67.8240.6 73.224+0.6 77.084+0.5(38.2941.0 39.8540.9 64.594+0.7|13.4740.5 14.884+0.9 19.95471 2
FCN [5] ResNet50 [3]|62.124.9.5 66.05+ 0.7 70.76+0.3[49.224 0.1 53.9340.2 58.9940.1(18.3840.6 21.4140.0.8 26.624+0.4
ResNetl01 [62.794¢.3 66.7740.4 71.5440.3|48.24 10,6 51.984+0.5 57.9040.5|18.53409.3 21.44409.17 24.0740.2
UNet 68.53 4 0.5 74.0410.6 77.804+0.1(40.0840 8 42.274 0.2 45.654+(0.1(12.71409.7 13.67+0.6 64.3440.4
PSPNet [7] ResNet50 [61.824.3 65.254.0.9 70.374+0.5(49.08 0.6 53.9440.9 58.7141.1(18.924+0.8 22.1047 2 24.4547 1
ResNet101 [63.06+0.¢ 67.1140.2 71.8740.1|47.764+0.3 51.344+0.8 57.12409.5|19.3741.3 22.39495 9 25.05+7 5
VIiT-T [2] |49.3941.3 51.2547 2 51.5140.9(33.8340.1 35.1540.3 36.044+0.5[11.98409.2 12.574+0.1 29.7340.4
Segmenter [6] ViT-S 51.364+0.4 53.3340.7 55.1440.1(32.544+0.5 33.7941 .0 33.6140.2|11.62409.5 12.11409.4 28.3740.9
8 ViT-B 50.984+0.3 52.90492 3 54.4540.7|34.034+0.4 35.364+1 .3 36.4040.9|11.78 47,1 12.3040.4 28.9941 2
ViT-L 48.1140.3 50.004+0.5 98.07+1 1(34.7041.3 36.0340.8 37.554+0.7(12.1940.1 12.754+0.3 24.3740.6

Table 3: Binary segmentation results of Mask2Former on diseased/normal videos.

Eye Condition Diseased Normal
mloU 74.25 73.96
mAcc 79.23 78.16

mFscore 81.18 80.08

C.3.2 Test across different devices

In our dataset, videos are acquired by using two
types of camera models. To study the domain gaps
between the data collected from different devices,
we focus on the binary segmentation task and adopt
the best-performing model Mask2Former with the
Swin transformer backbone. Specifically, we train
the model on data collected from one device and
test it on that of another device. The results are
shown in Table 4. The performance of the mod-
els varies slightly across different devices. This
suggests that the variations in the data collection
process introduce some domain gaps.

C.3.3 Test across different clinics

To study model performance across different clinics,
we focus on binary segmentation and SVP detection.
Here, we denote the four clinics as P, Q, R, and S.
We adopt the same model in Section C.3.1 and test
it on each clinic test data. The results are reported
in Table 5 and Table 6. In both vessel segmentation
and SVP detection, the model performances across
different clinics are different, indicating that domain
gaps exist in different clinics.

C.3.4 Test on the third dataset

We further conduct experiments to evaluate the do-
main gaps between our RVD dataset and existing
datasets. To be specific, we train segmentation mod-
els on RVD and DRIVE with the same amount
of samples and then test them on a third dataset
CHASEDB. As seen in Table 7, models trained on
RVD have lower performance compared to those
trained on DRIVE. This indicates our dataset ex-
hibits a larger domain gap with the existing datasets.

Table 4: Results of models trained on one de-
vice and tested on another device.

Device Metric Device 1 Device 2
mloU 69.37 71.07
Device 1 mAcc 77.07 80.45
mFscore 78.73 80.16
mloU 68.53 70.98
Device 2 mAcc 74.2 77.99
mFscore 77.85 80.04

Table 5: Binary segmentation results of

Mask2Former across different clinics.

Clinics P Q R S
mloU  73.85 72.00 70.89 75.33
mAcc  79.63 77.72 75.63 81.78

mFscore 81.35 80.54 78.38 8227

Table 6: Evaluation of the I3D model on SVP
detection across various clinics.

Clinics P Q R S
Acc 64.58 50.00 60.00 58.33
AUROC 70.28 66.67 58.83 54.32
Recall 6538 66.67 90.00 51.85
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Figure 5: Visualization of domain gaps between different datasets. (a): Examples of binary segmen-
tation datasets; (b): Visualization results of general Artery-Vein segmentation datasets.

C.4 Domain Gaps between RVD and Existing Datasets

In Section 4.2, we highlight the presence of domain gaps between existing datasets and our retinal
vessel dataset (RVD). To further demonstrate this phenomenon, we show a set of visualization results,
which can be found in Fig. 5. We consider two distinct scenarios:

(a) Initially, we present the visualization results of models trained on existing datasets and then
applied to our dataset. The results reveal a concerning trend of presence of overgeneralization in the
predictions, thereby overlooking finer details. This underscores the difficulty for models trained on
existing datasets to generalize to our dataset.



Table 7: Evaluation of domain gaps between RVD and existing datasets. The models are trained on
RVD and DRIVE and tested on CHASEDB.

RVD — CHASEDB DRIVE — CHASEDB
mloU mAcc mFscore | mloU mAcc mFscore

Model-Backbone

DeepLabV3-R50 | 60.22  63.3 68.25 | 65.56 76.00 75.69
Mask2Former-R50 | 68.35  76.00 77.62 | 78.48 89.43 86.84
Mask2Former-Swin-L | 63.47  67.60 73.04 | 79.88  90.97 87.87

(b) Conversely, we also show the visualization of models initially trained on our RVD, and then applied
to existing datasets. Similar to the first case, the performance drop is observed after transferring.
However, the transferred results reveal that more granular details, particularly of vessel structure,
are preserved. Such a phenomenon suggests that models trained on our dataset exhibit much better
generalizability and tend to adapt more efficiently to the existing datasets.

C.5 Computational Efficiency

We analyze the computational operations (i.e., GFLOPs) and inference time (i.e., ms) for trained
models. Specifically, for models trained with spatial annotations, we analyze Mask2Former and
DeepLabv3 with different backbones. The results are presented as follows in Table 8. The overall
speed of different models is faster for processing our data. Models with larger backbones require more
computational cost and more inference time, for example, from Swin-T to Swin-L, both GFLOPs and
the inference time are increased a lot. However, we notice that the inference time may not linearly
grow with GFLOPs across different models, since the inference time can be affected by many factors,
e.g., CUDA optimization for different network structures.

For models trained with temporal annotations, we consider SVP detection with different backbones.
We provide their GFLOPs and inference time in Table 9. The speed of models for SVP detection is still
faster, e.g., LRCN processes each video in 89 ms. However, when compared with models in binary
segmentation, their speed can be further improved. These results indicate that more sophisticated
model structures are needed for our datasets.

Table 8: Computational efficiency of Mask2Former and DeepLabv3 with different backbones.

Model | Mask2Former | DeepLabv3
Backbone ‘ ResNet50 ResNet101 Swin-T Swin-S Swin-B-1k Swin-B-22k Swin-L ‘ ResNet50 ResNet101
GFLOPs (G) | 40 59 28 36 86 86 160 | 270 347
Inference time (ms) \ 27.30 29.7 313 453 67.2 62.8 922 \ 245 33.7

Table 9: Computational efficiency of models trained with temporal annotations.
Model | LRCN 13D X3D TSN  VIN
GFLOPs | 16 263 180 252 1374
Inference time (ms) \ 89.0 226.7 182.8 3223 486.2
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