
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOLORA–COMBINING ORTHOGONAL FINE-TUNING
AND LORA WITH HOUSEHOLDER REFLECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

The need for parameter-efficient fine-tuning (PEFT) has emerged as large pre-
trained models are increasingly employed in specialized downstream tasks.
Among PEFT methods, Low-Rank Adaptation (LoRA) is widely adopted due
to its ability to fine-tune models with minimal additional parameters. How-
ever, LoRA’s down-projection mechanism can lead to significant feature loss,
particularly for tasks involving complex features and reasoning. This limitation
poses a challenge in maintaining model performance in scenarios requiring high-
dimensional representations. To address this issue, we introduce Householder
Orthogonal LoRA (HoLoRA), which reparametrizes the down-projection matrix
as a semi-orthogonal matrix, thereby mitigating feature loss. Our approach en-
sures strict orthogonality without increasing computational costs or modifying
LoRA’s core components. Experimental results on the GLUE benchmark show
that HoLoRA consistently outperforms standard LoRA across various tasks, par-
ticularly in low-rank settings. By preserving essential features and improving
fine-tuning efficiency, HoLoRA provides a robust solution to the limitations of
existing PEFT methods. This advancement enhances LoRA’s applicability in com-
plex learning environments, promoting better performance in both low-budget and
high-complexity scenarios.

1 INTRODUCTION

Recent research shows that models pre-trained on large datasets effectively capture general features
and patterns within a data domain, exhibiting strong generalization and adaptation capabilities. This
makes them highly suitable foundations for adaptation to specific downstream tasks. Fine-tuning
large pre-trained models, such as Llama 2 (Touvron et al., 2023), with task-specific training data has
become a mainstream approach for solving these downstream tasks (Shen et al., 2021). Compared
to training models from scratch, fine-tuning leverages the knowledge learned by pre-trained models,
reducing both time and computational costs while achieving improved performance.

However, driven by the scaling laws (Kaplan et al., 2020; Zhang et al., 2024a), the size of pre-trained
models has increased rapidly. As a result, the cost for full-tuning (Raffel et al., 2020), which involves
updating all the model parameters, has become extremely high for large-scale models. Full-tuning
requires substantial computational and memory resources, as the tuning process requires the storage
of all model parameters and their gradients.

To reduce the cost of fine-tuning, parameter-efficient fine-tuning (PEFT) methods have been intro-
duced, which significantly decrease training costs while maintaining performance comparable to
full-tuning. There are two main strategies in PEFT. The first is selective methods (Guo et al., 2020;
Mahabadi et al., 2021), which involve choosing a subset of the original model parameters for tun-
ing. However, these methods require the new task to be closely related to the one for which the
model was pre-trained, making them less effective for tasks that are drastically different or involve
cross-domain scenarios. The second strategy is additive methods, such as Adapters (Houlsby et al.,
2019; Pfeiffer et al., 2020; Rücklé et al., 2020), Low-Rank Adaptation (LoRA) (Hu et al., 2022),
and prefix-tuning (Li & Liang, 2021). These approaches add additional trainable components to
the model’s architecture and keep the original model frozen during training, allowing for efficient
adaptation to new tasks while preserving the performance of the original model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Most additive methods tend to modify the model architecture, which can result in an increased in-
ference cost. However, LoRA is one of the most widely adopted methods because, after merging
the additive component with the original model, it does not alter the model architecture. Typically,
LoRA only tunes less than 1% of the model parameters, while achieving performance that is com-
parable to or even better than full-tuning.

In LoRA, given a pre-trained weight matrix W0, the incremental update ∆ is parameterized as the
product of two low-rank matrices:

W = W0 +∆ = W0 +BAT , (1)

where W,W0 ∈ Rm×n, with m and n being the output and input dimensions of the layer, respec-
tively. The matrices B ∈ Rm×r and A ∈ Rn×r have a rank r such that r ≪ min{m,n}. During
training, the pre-trained weight W0 is frozen and only the incremental matrices A and B are updated.

However, LoRA tends to perform poorly on complex tasks, particularly in multi-task learning and
high-dimensional tasks such as mathematical reasoning and coding, which demand high representa-
tional power or reasoning capabilities (Biderman et al., 2024; Xin et al., 2024). If we regard matrices
A and B as two consecutive layers without an activation function, the input layer A acts as a highly
down-projection matrix (as r ≪ min{m,n}) which performs a feature compression of the input
data. Such compression extracts important features for task-specific learning, but also poses the risk
of feature loss. Furthermore, Zhang et al. (2024b; 2023b) also suggest that LoRA adaptation tends
to be dominated by top singular vectors of the weight matrix, implying that the effective hidden
dimensionality may be even smaller than the preset rank r. This limitation restricts LoRA’s ability
to capture the diverse and complex features required for more challenging tasks.

Orthogonality restriction can be used to alleviate the problem of feature loss for general neural
network training (Ranasinghe et al., 2021). Considering both efficiency and budget constraints,
research on LoRA variations (Zhang et al., 2023b;a) has introduced the use of a regularization term:

Reg(A) = λ∥ATA− I∥2F , (2)

to restrict the matrix A to be near (semi-)orthogonal1. This method poses two potential challenges.
Firstly, the calculation of the regularization term introduces additional computational steps, reducing
training efficiency (Mao et al., 2024). Secondly, the introduction of a new hyperparameter λ com-
plicates tuning: a large λ can slow convergence, while a small λ may lead to ineffective orthogonal
restriction. This raises the question that we address in this paper:

Can we preserve the strict orthogonality of the down-projection matrix A in LoRA during
parameter updates without adding significant computational burden or introducing new

hyperparameters?

In response, we propose HoLoRA(Householder orthogonal Low-Rank Adaptation), which constructs
an easy-to-compute function h : Ln×r → Vn,r, where Ln×r is the space of n× r (non-strict) lower
triangular matrices, and Vn,r is the Stiefel manifold (the set of n× r semi-orthogonal matrices). We
reparametrize the matrix A as:

A = h(MA) (3)

and only learn the parameters in MA, so that A can be kept orthogonal during the whole training
process. Compared to other LoRA variation methods, our main contributions are:

1. Strict orthogonality: We impose a strict orthogonal restriction on the given matrices,
which better alleviates the problem of feature loss.

2. Computation efficiency: The function h is easy to compute, so the training time is similar
as vanilla LoRA.

3. Compatibility with LoRA variants: Our method preserves the fundamental structure of
vanilla LoRA, ensuring compatibility with many other LoRA variation techniques.

1For simplicity, we refer to both orthogonal and semi-orthogonal matrices as orthogonal, where a semi-
orthogonal matrix is a non-square matrix with orthonormal columns that preserves most properties of orthogo-
nal matrices

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES AND RELATED WORKS

2.1 LORA

LoRA (Hu et al., 2022) is inspired by the finding that the incremental update weight matrix of fine-
tuning has intrinsic dimensions that can be approximated by low-rank matrices. LoRA parameterizes
the update matrix ∆W with two learnable matrices, significantly reducing the number of trainable
parameters. The formula of the LoRA weight update for a weight matrix in one single layer is:

W = W0 +∆W = W0 +
α

r
BAT , (4)

where W0,W ∈ Rm×n are the weight matrices before and after the update. ∆W ∈ Rm×n is the
incremental update matrix, referred to as the “delta adaptation block”. The matrices B ∈ Rm×r

and A ∈ Rn×r contain the learnable parameters, and m,n are the output and input dimensions,
respectively. The scalar α is a hyperparameter controlling the scaling factor of the delta block2. r is
the rank of delta block, which is the preset budget parameter, as the total learnable parameter of a
weight matrix will be (m+ n) · r. Given the following property:

rank(BAT) ≤ min{rank(A), rank(B)}, (5)
the delta block is low rank and upper-bounded by r. Extensions to LoRA, such as AdaLoRA (Zhang
et al., 2023b), explore adaptive budget allocation for PEFT, improving performance by dynamically
reallocating rank budgets among layers according to their importance.

Other approaches, such as IncreLoRA (Zhang et al., 2023a), suggest incremental parameter allo-
cation during training to better utilize the model’s capacity and avoid underfitting of critical layers,
while DyLoRA (Valipour et al., 2022) dynamically adjusts the low-rank adaptation throughout train-
ing to improve generalization on various downstream tasks. These extensions address limitations
of static budget allocation in LoRA and provide pathways for more efficient fine-tuning of large
language models. However, none of these methods ensure strict orthogonality within the learned
parameters, which can lead to feature loss in some complex tasks.

2.2 ORTHOGONAL FINE-TUNING (OFT)

Orthogonal Fine-Tuning (OFT) (Qiu et al., 2023; Yuan et al., 2024) adapts the pre-trained model
weights by multiplying them with an orthogonal matrix:

W = UW0, (6)
where U is an orthogonal matrix. This orthogonality constraint is intended to mitigate feature loss
during adaptation by preserving important properties of the pre-trained weights. Regularization
methods, as seen in Equation (2), have been explored to maintain the orthogonality of U . However,
balancing computational efficiency with strict orthogonality remains a challenge.

The study by (Yuan et al., 2024) proposes an orthogonality restriction for OFT using Householder
reflectors, offering a way to impose strict orthogonality without significant computational overhead.
However, their approach is limited to square matrices and does not directly apply to LoRA’s down-
projection matrices, which are typically rectangular.

OLoRA (Orthonormal LoRA) (Büyükakyüz, 2024) aims to address feature preservation by encour-
aging orthogonality within the low-rank adaptation. However, this is achieved via regularization,
which introduces additional computational costs and requires tuning of hyperparameters, such as
the regularization strength λ. Thus, this approach struggles to achieve a balance between computa-
tional efficiency and strict orthogonality.

In contrast to these existing methods, our proposed HoLoRA directly addresses the issue of main-
taining strict orthogonality in the low-rank adaptation matrices without introducing significant
computational overhead or additional hyperparameters. By reparametrizing the matrix A using
Householder transformations, HoLoRA ensures that the down-projection matrix remains orthogonal
throughout training. This strict orthogonality better preserves feature representation, mitigating the
risk of feature loss without the need for regularization terms or tuning of hyperparameters like λ,
which are required in other approaches.

2For convenience, we omit the scaling factor α
r

in later discussion, as this factor is introduced primarily for
learning rate scheduling (Hu et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

3.1 PRELIMINARY ON HOUSEHOLDER REFLECTORS

We first introduce the definition of a Householder reflector (Householder, 1958; Mhammedi et al.,
2017):

Definition 1 For any n, k ∈ N with k ≤ n, and any vector u ∈ Rk, the n-dimensional Householder
reflector parametrized by u is defined as:

Hn
k (u) =


(

In−k 0

0 Ik − 2uuT

∥u∥2

)
if u ̸= 0,

In if u = 0.

(7)

We refer to the vector u as the Householder vector.

Remark 1 Specifically, when k = n, we denote the Householder reflector simply as H(u). A
Householder reflector performs a reflection in the n-dimensional space, with the reflection plane
determined by the vector u.

Each Householder reflector with k = n can be expressed as:

Hn
k (u) = H(p(u)) = H(ũ) = In − 2ũũT , (8)

where p(u) is an n-dimensional vector obtained by padding the first entries of u with zeros. The
vector ũ is the normalized form of p(u), with unit norm:

ũ =
p(u)

∥p(u)∥
. (9)

This normalization ensures that the reflection is properly defined, maintaining the orthogonal prop-
erties of the Householder reflector.

Remark 2 The Householder reflector is determined solely by the direction of the Householder vec-
tor u. Therefore, scaling u by any non-zero coefficient does not alter the Householder reflector
Hn

k (u).

For simplicity, and since the probability of the vector u becoming zero during training is negligible
when initialized with non-zero values, we assume u ̸= 0 throughout our discussion. This ensures
that the Householder reflector function Hn

k (u) is continuous with respect to u.

There are some important properties of the Householder reflector:

Theorem 1 The Householder reflector is an orthogonal matrix for any arbitrary vector u (House-
holder, 1958):

(Hn
k (u))

THn
k (u) = In. (10)

Moreover, any square orthogonal matrix can be represented as a product of Householder reflec-
tors (Mhammedi et al., 2017):

Lemma 1 (Householder decomposition) For any n×n orthogonal matrix U , there exist n House-
holder reflectors Hn

n (un), H
n
n−1(un−1), . . . ,H

n
1 (u1), where ui ∈ Ri for i = 1, 2, . . . , n, such that

U = Hn
n (un)H

n
n−1(un−1) · · ·Hn

1 (u1). (11)

Remark 3 As per the definition of the Householder reflector, the upper-left part of a Householder
reflector is an identity matrix. Therefore, the first r columns of U are uniquely determined by
the product Hn

n (un)H
n
n−1(un−1) · · ·Hn

n−r+1(un−r+1). Multiplying by the remaining reflectors
Hn

n−r(un−r), . . . ,H
n
1 (u1) on the right does not alter the first r columns.

Although a semi-orthogonal matrix of size n × r can be derived by slicing the first r columns of
U , computing the product of many consecutive n × n matrices can be computationally expensive.
To address this, we adopt the Truncated CWY (T-CWY) representation (Likhosherstov et al., 2021)
form of Householder reflectors in our method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 TRUNCATED CWY FORM OF HOUSEHOLDER REFLECTORS

The T-CWY parametrization combines the product of multiple Householder reflectors into a fixed-
length matrix multiplication formula, thereby reducing computational and memory costs. To intro-
duce T-CWY, we first present the CWY parametrization form (Likhosherstov et al., 2021):

Theorem 2 (CWY Parametrization) For any set of nonzero N -dimensional real-valued vectors
{u(i)}Li=1, we have

H(u(1))H(u(2)) · · ·H(u(L)) = IN −MK(M)−1MT , (12)

where

M =

[
u(1)

∥u(1)∥2
,

u(2)

∥u(2)∥2
, . . . ,

u(L)

∥u(L)∥2

]
∈ RN×L,

and

K(M) =
1

2
IL + striu(MTM) ∈ RL×L.

Here, striu(·) denotes the function that returns the argument matrix with all diagonal and lower-
triangular elements zeroed out.

T-CWY parametrization provides an efficient method to parametrize the first r columns of the ex-
pression in formula (12).

Theorem 3 (T-CWY Parametrization) Suppose an N × N orthogonal matrix U has a House-
holder decomposition given by

U = H(u(1))H(u(2)) · · ·H(u(L)). (13)

Then, the first r columns of U can be represented as

U[:,:r] = IN [:,:r] −MK(M)−1(M[:r,:])
T , (14)

where M and K are defined as in Theorem 2, and the subscripts [:, : r] and [: r, :] indicate sub-
matrices formed by slicing the first r columns and rows, respectively.

Note that in the context of LoRA, r is much smaller than the model dimension N , implying r ≪ N .
Consequently, the computational complexity of inverting the r × r matrix K(M) is relatively low,
making the T-CWY parametrization efficient.

3.3 HOLORA METHOD

Considering Lemma 1 and Theorem 3, we naturally arrive at an orthogonal parametrization of the
down-projection matrix A in the LoRA equation (1) as follows:

A = h(MA), MA ∈ Ln×r, (15)

h(MA) = IN [:,:r] − M̃AK(M̃A)
−1M̃T

A[:r,:], (16)

W = W0 +Bh(MA)
T , (17)

where the learnable parameters are B and MA. The total number of learnable parameters is (r−1)2

fewer than in vanilla LoRA, as MA is constrained to be lower triangular.

Here, M̃A is derived by normalizing the columns of MA, analogous to the normalization of M in
Theorem 2. The notation Ln×r represents the space of n× r (non-strict) lower triangular matrices.
We restrict the domain of MA to be lower triangular to enable an equivalent T-CWY parametrization,
as in Lemma 1, where each vector ui ∈ Ri.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Pretrained Weights

Output

B

r

m

n

h(𝑀𝐴)𝑇
𝑊 ∈ ℝ𝑚 × 𝑛

r

n

෩𝑀𝐴[:𝑟,:]

𝐼𝑁[:𝑟,:]

− ෪𝑀𝐴
𝑇

r

(𝐾(෪𝑀𝐴)−1)𝑇

Input

Output

𝑥Input 𝑥

Figure 1: HoLoRA structure and our reparametrization of down-projection matrix. Blue indicates
static (frozen) parameters, red indicates learnable parameters, and green indicates dependent param-
eters derived from other learnable/frozen parameters

3.3.1 INITIALIZATION OF HOLORA

For the matrix B, we use the same zero initialization as in LoRA, ensuring that the adaptation
block is initialized to zero. In contrast, vanilla LoRA initializes the matrix A using a uniform
distribution. However, empirical experiments have shown that initializing each entry of MA from
the same distribution results in h(MA) being extremely close to the (generalized non-square) identity
matrix.

To address this, we aim to initialize MA such that h(MA) is uniformly sampled from the Stiefel
manifold Vn,r. For this purpose, we utilize the following theorem from (Nirwan & Bertschinger,
2019):

Theorem 4 If the vectors {vi}ni=1 are uniformly distributed on the unit sphere in Ri, and we set

ui =
vi + sgn(vi1)∥vi∥e1
∥vi + sgn(vi1)∥vi∥e1∥

,

and define the Householder reflector as

H̃n
i (ui) = − sgn(vi1)H

n
i (ui),

then the matrix
U = H̃n

n (un)H̃
n
n−1(un−1) · · · H̃n

1 (u1) (18)

is uniformly distributed according to the Haar measure in On(D), where On(D) is the group of
n× n orthogonal matrices.

Considering Remark 3, to achieve a uniform distribution of h(MA) on the Stiefel manifold Vn,r, we
generate the vectors vn, vn−1, . . . , vn−r+1 uniformly on their respective unit spheres. If vi1 > 0,
we multiply vi by −1 to ensure the correct orientation. We then calculate the corresponding vectors
un, un−1, . . . , un−r+1 as per Theorem 4. The last (n− i+ 1) entries of the i-th column of MA are
set to be un−i+1 for i = 1, . . . , r. This procedure ensures that the generated h(MA) has a uniform
distribution on the Stiefel manifold Vn,r.

3.3.2 TIME COMPLEXITY OF HOLORA

In this section, we demonstrate that the time complexity added by computing h(MA) is negligible
compared to the vanilla LoRA method.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The computation of the function K has a time complexity of O(nr2). Since K is an r×r matrix, its
inversion requires a time complexity of O(r3). The matrix operations involved in equation (16) also
have a time complexity of O(nr2), while the normalization of MA takes time O(nr). Therefore,
the overall time complexity for calculating the function h is O(nr2).

In contrast, vanilla LoRA involves the multiplication of an m×r matrix with an r×n matrix, which
has a time complexity of O(mnr).

Given the assumption that r ≪ min{m,n}, the time complexity of computing h(MA) is negligible
when compared to the time complexity of vanilla LoRA.

Algorithm 1 HoLoRA - Householder Orthogonal Low-Rank Adaptation

1: Input: Pretrained weights W0 ∈ Rm×n), low-rank factor r, training data D, learning rate η,
number of epochs E

2: Output: Adapted matrices B ∈ Rm×r and MA ∈ Ln×r

3: Initialize B as zero matrix and MA as in Theorem 4.
4: Keep the original pretrained weights W0 frozen
5: for epoch e = 1 to E do
6: for each data batch (x, y) in D do
7: Compute adapted weights: W ′ = W0 +Bh(MA)

⊤

8: Forward pass: compute prediction ŷ using W ′

9: Compute loss L(ŷ, y)
10: Backpropagate and update B: B ← B − η∇BL
11: Backpropagate and update MA: MA ←MA − η∇MA

L
12: end for
13: end for
14: Return: Final adapted matrices B and MA

3.4 COMPATIBILITY OF HOLORA WITH OTHER LORA VARIATIONS

Since HoLoRA only changes the parametrization of the down-projection layer in LoRA, without
altering any structural or learning schedule aspects, it remains compatible with a wide range of
LoRA variations. We provide insights into possible combinations for future research.

3.4.1 HOLORA WITH SVD DYNAMIC RANK ALLOCATION

SVD (Singular Value Decomposition) dynamic rank allocation methods (Zhang et al., 2023b;a) for
LoRA parametrize the adaptation block in a truncated SVD-like form rather than using A and B
matrices:

∆W = USV T , (19)

where U ∈ Rm×r, V ∈ Rn×r, and S ∈ Rr×r.
The SVD form requires U and V to be orthogonal matrices and S to be diagonal. Current methods
such as AdaLoRA (Zhang et al., 2023b) and IncreLoRA (Zhang et al., 2023a) enforce these condi-
tions using regularization as described in equation (2). Alternatively, the orthogonal restriction can
be achieved by utilizing the function h in HoLoRA.

By Remark 3, adding or removing the last columns of MA does not affect the first columns of
h(MA). Therefore, during dynamic rank allocation, we can adjust the rank by adding or deleting
columns of MA, ensuring that the retained singular vectors remain unchanged.

3.4.2 HOLORA WITH LORA INITIALIZATION

OLoRA (Büyükakyüz, 2024) leverages orthonormal matrix initialization via QR decomposition to
accelerate LoRA convergence. Since Householder reflectors were originally designed for perform-
ing QR decomposition (Householder, 1958), we can use the Householder QR decomposition method
to easily obtain the Householder vectors. These vectors can then be used to initialize the columns of
matrix MA in HoLoRA, achieving an equivalent initialization to OLoRA.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

LoRA-XS (Bałazy et al., 2024) computes the SVD of the pre-trained weight matrix and initializes
the LoRA delta block using information derived from the SVD form. If we employ the Golub-
Reinsch SVD algorithm (Golub & Kahan, 1965)—a method that uses Householder reflectors and is
still widely used for its efficiency—the parameters for the Householder reflectors can be obtained
and subsequently used in HoLoRA during training.

4 EXPERIMENTS

We fine-tune DeBERTaV3-base (He et al., 2021) with our proposed HoLoRA method, on 8 natural
language understanding tasks from General Language Understanding Evaluation (GLUE) (Wang,
2018) benchmark. We compare scores for each task and the total average score.

4.1 EXPERIMENT SETTINGS

Dataset The GLUE benchmark (Wang, 2018) is widely used to evaluate the generalization ability of
models across various natural language understanding tasks. We choose eight tasks (MNLI, SST-2,
CoLA, QQP, QNLI, RTE, MRPC, STS-B) from GLUE for a general evaluation on single sentence
tasks, similarity and paraphrase tasks, and inference tasks. For the evaluation metrics, We use the
overall accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and
accuracy for all other tasks.

Baselines

We compare our method with full-tuning and vanilla LoRA (Hu et al., 2022). LoRA generally
performs better than other PEFT methods such as Adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020). We focus on the comparison to LoRA as our method is a general approach to mitigate
LoRA’s limitation of feature loss. HoLoRA remains compatible with newer LoRA variants.

Implementation details To conduct a fair comparison, we build on the codebase of LoRA (Hu et al.,
2022). We use the pre-trained DeBERTaV3-base (He et al., 2021) model from HuggingFace, which
contains 12 Transformer encoder layers with 768 hidden units, and has a total parameter size of 86M.
Similar to the experimental settings used in the LoRA paper, we adapt only the query (Q) and value
(V) layers of the pre-trained model. For a comparison under different fine-tuning parameter budgets,
we perform two sets of experiments, with the rank r set to be 2 and 8 respectively. For MRPC, RTE,
and STS-B tasks, we start from the LoRA-adapted MNLI checkpoint for a same setting as LoRA
paper. We use the same hyperparameter settings in Table 3, referring to LoRA paper (Hu et al.,
2022) and AdaLoRA paper Zhang et al. (2023b)3, for both LoRA and HoLoRA. All experiments
are conducted on NVIDIA L4 Tensor Core GPUs through Google Cloud Platform.

4.2 EXPERIMENT RESULTS

The results of adapting DeBERTaV3-base model using Full-Tuning, LoRA and HoLoRA across
eight different tasks under budget level r = 2 and r = 8 are shown in table 1. HoLoRA achieves
better performance compared with baseline methods in most tasks, especially under low budget
level. It is well noted that in SST-2, CoLA, RTE tasks, HoLoRA with low budget level (r = 2)
outperforms LoRA with 4 times of budget level (r = 8). Overall, the average score for HoLoRA
under low budget level (88.07) is higher than the score of LoRA under high budget level (87.59). The
results show that HoLoRA can mitigate the feature loss problem in LoRA, which is more prominent
under low budget level settings.

4.3 ORTHOGONALITY CHECK OF VANILLA LORA

In the experiment of vanilla LoRA, we also check the orthogonality of matrix A to see if it is near
orthogonal. We use the evaluation metric

Ort(A) = ||ÃT Ã− I||F (20)

3AdaLoRA paper conducts LoRA experiments adapting all the Q,K,V, and FFN layers of DeBERTaV3-
base model, which is a good reference as we want to tune the Q and V layers of DeBERTaV3-base model.
Experiments in LoRA (Hu et al., 2022) do not use the DeBERTaV3-base model

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Experiment results of fine-tuning DeBERTaV3-base on GLUE benchmark. Evaluation
metrics: Overall (matched and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA,
Pearson correlation for STS-B, and accuracy for other tasks.

#Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B ALL
Acc. Acc. Mcc. Acc. Acc. Acc. Acc. Corr. Avg.

Full-Tuning 86M 90.55 89.53 68.50 91.35 93.30 75.81 87.99 89.53 85.82

LoRAr=2 0.1M 89.59 94.72 64.25 90.56 93.94 84.48 89.95 91.90 87.42
HoLoRAr=2 0.1M 89.90 94.84 69.57 90.20 93.90 85.56 88.97 91.59 88.07
LoRAr=8 0.3M 90.20 94.72 66.31 91.37 94.07 83.75 88.73 91.53 87.59
HoLoRAr=8 0.3M 89.85 95.64 68.10 90.48 93.79 83.75 90.44 91.68 87.97

to measure the degree of mutual orthogonality between the columns of matrix A, where Ã is obtained
by normalizing each column of A.

We plot Figure 2 for the average value of Ort(A) in all adaptation layers versus number of iterations.
It can be seen that the value of Ort(A) increase rapidly during early stages, and then decrease slowly.
However, the minimum value is still much larger than the threshold 10−3, below which we regard a
matrix to be near-orthogonal (Zhang et al., 2023b), so the matrix A in LoRA is far from orthogonal
during training.

The orthogonality check indicates that the LoRA block A will not converge to be orthogonal without
Householder orthogonal restriction, and HoLoRA learns a different adaptation block compared with
LoRA.

(a) CoLA (r = 2) (b) QQP (r = 2) (c) SST-2 (r = 2)

(d) CoLA (r = 8) (e) QQP (r = 8) (f) SST-2 (r = 8)

Figure 2: Average orthogonality of layer A in LoRA during training. With x-axis iterations and
y-axis Ort(A). Lower values means more near-orthogonal.

4.4 EMPIRICAL TIME COMPARISON

We also present the actual time cost comparison of LoRA and HoLoRA in Table 2 to assess the
feasibility of using HoLoRA as a drop-in replacement for LoRA. It can be seen that, for all three
tasks, the additional time for HoLoRA is within 10% of LoRA. Meanwhile, for QQP task, which
is more complex and takes more time, the additional training time cost is less than 3%. A possible
reason is that the additional initialization time take a constant additional time for HoLoRA, so the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

proportion of overall additional training time will be lower for complex tasks in which initialization
time can be neglected.

Table 2: Comparison of Training Time cost (seconds) and the additional time (in proportion %) for
LoRA and HoLoRA fine-tuning on QQP, RTE, and MRPC tasks.

Task Budget LoRA (s) HoLoRA (s) Additional Time (%)

QQP r = 2 22645 23039 1.74%
r = 8 22631 23131 2.21%

RTE r = 2 328 320 -2.44%
r = 8 315 319 1.27%

MRPC r = 2 134 145 8.21%
r = 8 136 149 9.56%

5 CONCLUSION

We propose Householder Orthogonal Low-Rank Adaptation (HoLoRA) to address feature loss in
LoRA by adding strict orthogonality restriction on the down-projection matrix. HoLoRA pre-
serves important features while maintaining computational efficiency and compatibility with ex-
isting LoRA variations. We conduct experiments on the GLUE benchmark, showing that HoLoRA
outperforms vanilla LoRA, particularly in low-budget scenarios where the risk of feature loss is
highlighted. This work highlights the value of orthogonality in LoRA, providing insights for future
research on integrating HoLoRA with other LoRA methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2
(2):205–224, 1965.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463, 2020.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Alston S Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the ACM
(JACM), 5(4):339–342, 1958.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Valerii Likhosherstov, Jared Davis, Krzysztof Choromanski, and Adrian Weller. Cwy parametriza-
tion: a solution for parallelized optimization of orthogonal and stiefel matrices. In International
Conference on Artificial Intelligence and Statistics, pp. 55–63. PMLR, 2021.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489, 2021.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A survey
on lora of large language models. arXiv preprint arXiv:2407.11046, 2024.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In International Con-
ference on Machine Learning, pp. 2401–2409. PMLR, 2017.

Rajbir Nirwan and Nils Bertschinger. Rotation invariant householder parameterization for bayesian
pca. In International Conference on Machine Learning, pp. 4820–4828. PMLR, 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320–79362, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, and Fahad Shahbaz
Khan. Orthogonal projection loss. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 12333–12343, 2021.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng. Partial is better than
all: Revisiting fine-tuning strategy for few-shot learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 9594–9602, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Chunlei Xin, Yaojie Lu, Hongyu Lin, Shuheng Zhou, Huijia Zhu, Weiqiang Wang, Zhongyi Liu,
Xianpei Han, and Le Sun. Beyond full fine-tuning: Harnessing the power of LoRA for multi-task
instruction tuning. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci,
Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp.
2307–2317, Torino, Italia, May 2024. ELRA and ICCL. URL https://aclanthology.
org/2024.lrec-main.206.

Shen Yuan, Haotian Liu, and Hongteng Xu. Bridging the gap between low-rank and orthogonal
adaptation via householder reflection adaptation. arXiv preprint arXiv:2405.17484, 2024.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024a.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian. In-
crelora: Incremental parameter allocation method for parameter-efficient fine-tuning. arXiv
preprint arXiv:2308.12043, 2023a.

Jia-Chen Zhang, Yu-Jie Xiong, He-Xi Qiu, Dong-Hai Zhu, and Chun-Ming Xia. Lora2:
Multi-scale low-rank approximations for fine-tuning large language models. arXiv preprint
arXiv:2408.06854, 2024b.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations, 2023b. URL https://openreview.
net/forum?id=lq62uWRJjiY.

12

https://aclanthology.org/2024.lrec-main.206
https://aclanthology.org/2024.lrec-main.206
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 3: Hyperparameters for LoRA and HoLoRA on GLUE benchmark.

Dataset learning rate batch size epochs α (r = 2 / r = 8)

MNLI 5.0× 10−4 32 7 8 / 16

SST-2 8.0× 10−4 32 24 16 / 16

CoLA 8.0× 10−4 16 20 32 / 32

QQP 8.0× 10−4 32 5 8 / 16

QNLI 7.0× 10−4 32 4 32 / 32

RTE 1.2× 10−3 32 11 8 / 32

MRPC 1.0× 10−3 32 10 8 / 32

STS-B 2.0× 10−3 32 10 16 / 32

13

	Introduction
	Preliminaries and Related Works
	LoRA
	Orthogonal Fine-Tuning (OFT)

	Method
	Preliminary on Householder reflectors
	Truncated CWY form of Householder reflectors
	HoLoRA method
	Initialization of HoLoRA
	Time complexity of HoLoRA

	Compatibility of HoLoRA with other LoRA variations
	HoLoRA with SVD Dynamic Rank Allocation
	HoLoRA with LoRA Initialization

	Experiments
	Experiment settings
	Experiment results
	Orthogonality check of vanilla LoRA
	Empirical time comparison

	Conclusion
	Appendix

