
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOLORA–COMBINING ORTHOGONAL FINE-TUNING
AND LORA WITH HOUSEHOLDER REFLECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

The need for parameter-efficient fine-tuning (PEFT) has emerged as large pre-
trained models are increasingly employed in specialized downstream tasks.
Among PEFT methods, Low-Rank Adaptation (LoRA) is widely adopted due
to its ability to fine-tune models with minimal additional parameters. How-
ever, LoRA’s down-projection mechanism can lead to significant feature loss,
particularly for tasks involving complex features and reasoning. This limitation
poses a challenge in maintaining model performance in scenarios requiring high-
dimensional representations. To address this issue, we introduce Householder
Orthogonal LoRA (HoLoRA), which reparametrizes the down-projection matrix
as a semi-orthogonal matrix, thereby mitigating feature loss. Our approach en-
sures strict orthogonality without increasing computational costs or modifying
LoRA’s core components. Experimental results on the GLUE benchmark show
that HoLoRA consistently outperforms standard LoRA across various tasks, par-
ticularly in low-rank settings. By preserving essential features and improving
fine-tuning efficiency, HoLoRA provides a robust solution to the limitations of
existing PEFT methods. This advancement enhances LoRA’s applicability in com-
plex learning environments, promoting better performance in both low-budget and
high-complexity scenarios.

1 INTRODUCTION

Recent research shows that models pre-trained on large datasets effectively capture general features
and patterns within a data domain, exhibiting strong generalization and adaptation capabilities. This
makes them highly suitable foundations for adaptation to specific downstream tasks. Fine-tuning
large pre-trained models, such as Llama 2 (Touvron et al., 2023), with task-specific training data has
become a mainstream approach for solving these downstream tasks (Shen et al., 2021). Compared
to training models from scratch, fine-tuning leverages the knowledge learned by pre-trained models,
reducing both time and computational costs while achieving improved performance.

However, driven by the scaling laws (Kaplan et al., 2020; Zhang et al., 2024a), the size of pre-trained
models has increased rapidly. As a result, the cost for full-tuning (Raffel et al., 2020), which involves
updating all the model parameters, has become extremely high for large-scale models. Full-tuning
requires substantial computational and memory resources, as the tuning process requires the storage
of all model parameters and their gradients.

To reduce the cost of fine-tuning, parameter-efficient fine-tuning (PEFT) methods have been intro-
duced, which significantly decrease training costs while maintaining performance comparable to
full-tuning. There are two main strategies in PEFT. The first is selective methods (Guo et al., 2020;
Mahabadi et al., 2021), which involve choosing a subset of the original model parameters for tun-
ing. However, these methods require the new task to be closely related to the one for which the
model was pre-trained, making them less effective for tasks that are drastically different or involve
cross-domain scenarios. The second strategy is additive methods, such as Adapters (Houlsby et al.,
2019; Pfeiffer et al., 2020; Rücklé et al., 2020), Low-Rank Adaptation (LoRA) (Hu et al., 2022),
and prefix-tuning (Li & Liang, 2021). These approaches add additional trainable components to
the model’s architecture and keep the original model frozen during training, allowing for efficient
adaptation to new tasks while preserving the performance of the original model.
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Most additive methods tend to modify the model architecture, which can result in an increased in-
ference cost. However, LoRA is one of the most widely adopted methods because, after merging
the additive component with the original model, it does not alter the model architecture. Typically,
LoRA only tunes less than 1% of the model parameters, while achieving performance that is com-
parable to or even better than full-tuning.

In LoRA, given a pre-trained weight matrix W0, the incremental update ∆ is parameterized as the
product of two low-rank matrices:

W = W0 +∆ = W0 +BAT , (1)

where W,W0 ∈ Rm×n, with m and n being the output and input dimensions of the layer, respec-
tively. The matrices B ∈ Rm×r and A ∈ Rn×r have a rank r such that r ≪ min{m,n}. During
training, the pre-trained weight W0 is frozen and only the incremental matrices A and B are updated.

However, LoRA tends to perform poorly on complex tasks, particularly in multi-task learning and
high-dimensional tasks such as mathematical reasoning and coding, which demand high representa-
tional power or reasoning capabilities (Biderman et al., 2024; Xin et al., 2024). If we regard matrices
A and B as two consecutive layers without an activation function, the input layer A acts as a highly
down-projection matrix (as r ≪ min{m,n}) which performs a feature compression of the input
data. Such compression extracts important features for task-specific learning, but also poses the risk
of feature loss. Furthermore, Zhang et al. (2024b; 2023b) also suggest that LoRA adaptation tends
to be dominated by top singular vectors of the weight matrix, implying that the effective hidden
dimensionality may be even smaller than the preset rank r. This limitation restricts LoRA’s ability
to capture the diverse and complex features required for more challenging tasks.

Orthogonality restriction can be used to alleviate the problem of feature loss for general neural
network training (Ranasinghe et al., 2021). Considering both efficiency and budget constraints,
research on LoRA variations (Zhang et al., 2023b;a) has introduced the use of a regularization term:

Reg(A) = λ∥ATA− I∥2F , (2)

to restrict the matrix A to be near (semi-)orthogonal1. This method poses two potential challenges.
Firstly, the calculation of the regularization term introduces additional computational steps, reducing
training efficiency (Mao et al., 2024). Secondly, the introduction of a new hyperparameter λ com-
plicates tuning: a large λ can slow convergence, while a small λ may lead to ineffective orthogonal
restriction. This raises the question that we address in this paper:

Can we preserve the strict orthogonality of the down-projection matrix A in LoRA during
parameter updates without adding significant computational burden or introducing new

hyperparameters?

In response, we propose HoLoRA(Householder orthogonal Low-Rank Adaptation), which constructs
an easy-to-compute function h : Ln×r → Vn,r, where Ln×r is the space of n× r (non-strict) lower
triangular matrices, and Vn,r is the Stiefel manifold (the set of n× r semi-orthogonal matrices). We
reparametrize the matrix A as:

A = h(MA) (3)

and only learn the parameters in MA, so that A can be kept orthogonal during the whole training
process. Compared to other LoRA variation methods, our main contributions are:

1. Strict orthogonality: We impose a strict orthogonal restriction on the given matrices,
which better alleviates the problem of feature loss.

2. Computation efficiency: The function h is easy to compute, so the training time is similar
as vanilla LoRA.

3. Compatibility with LoRA variants: Our method preserves the fundamental structure of
vanilla LoRA, ensuring compatibility with many other LoRA variation techniques.

1For simplicity, we refer to both orthogonal and semi-orthogonal matrices as orthogonal, where a semi-
orthogonal matrix is a non-square matrix with orthonormal columns that preserves most properties of orthogo-
nal matrices
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2 PRELIMINARIES AND RELATED WORKS

2.1 LORA

LoRA (Hu et al., 2022) is inspired by the finding that the incremental update weight matrix of fine-
tuning has intrinsic dimensions that can be approximated by low-rank matrices. LoRA parameterizes
the update matrix ∆W with two learnable matrices, significantly reducing the number of trainable
parameters. The formula of the LoRA weight update for a weight matrix in one single layer is:

W = W0 +∆W = W0 +
α

r
BAT , (4)

where W0,W ∈ Rm×n are the weight matrices before and after the update. ∆W ∈ Rm×n is the
incremental update matrix, referred to as the “delta adaptation block”. The matrices B ∈ Rm×r

and A ∈ Rn×r contain the learnable parameters, and m,n are the output and input dimensions,
respectively. The scalar α is a hyperparameter controlling the scaling factor of the delta block2. r is
the rank of delta block, which is the preset budget parameter, as the total learnable parameter of a
weight matrix will be (m+ n) · r. Given the following property:

rank(BAT ) ≤ min{rank(A), rank(B)}, (5)
the delta block is low rank and upper-bounded by r. Extensions to LoRA, such as AdaLoRA (Zhang
et al., 2023b), explore adaptive budget allocation for PEFT, improving performance by dynamically
reallocating rank budgets among layers according to their importance.

Other approaches, such as IncreLoRA (Zhang et al., 2023a), suggest incremental parameter allo-
cation during training to better utilize the model’s capacity and avoid underfitting of critical layers,
while DyLoRA (Valipour et al., 2022) dynamically adjusts the low-rank adaptation throughout train-
ing to improve generalization on various downstream tasks. These extensions address limitations
of static budget allocation in LoRA and provide pathways for more efficient fine-tuning of large
language models. However, none of these methods ensure strict orthogonality within the learned
parameters, which can lead to feature loss in some complex tasks.

2.2 ORTHOGONAL FINE-TUNING (OFT)

Orthogonal Fine-Tuning (OFT) (Qiu et al., 2023; Yuan et al., 2024) adapts the pre-trained model
weights by multiplying them with an orthogonal matrix:

W = UW0, (6)
where U is an orthogonal matrix. This orthogonality constraint is intended to mitigate feature loss
during adaptation by preserving important properties of the pre-trained weights. Regularization
methods, as seen in Equation (2), have been explored to maintain the orthogonality of U . However,
balancing computational efficiency with strict orthogonality remains a challenge.

The study by (Yuan et al., 2024) proposes an orthogonality restriction for OFT using Householder
reflectors, offering a way to impose strict orthogonality without significant computational overhead.
However, their approach is limited to square matrices and does not directly apply to LoRA’s down-
projection matrices, which are typically rectangular.

OLoRA (Orthonormal LoRA) (Büyükakyüz, 2024) aims to address feature preservation by encour-
aging orthogonality within the low-rank adaptation. However, this is achieved via regularization,
which introduces additional computational costs and requires tuning of hyperparameters, such as
the regularization strength λ. Thus, this approach struggles to achieve a balance between computa-
tional efficiency and strict orthogonality.

In contrast to these existing methods, our proposed HoLoRA directly addresses the issue of main-
taining strict orthogonality in the low-rank adaptation matrices without introducing significant
computational overhead or additional hyperparameters. By reparametrizing the matrix A using
Householder transformations, HoLoRA ensures that the down-projection matrix remains orthogonal
throughout training. This strict orthogonality better preserves feature representation, mitigating the
risk of feature loss without the need for regularization terms or tuning of hyperparameters like λ,
which are required in other approaches.

2For convenience, we omit the scaling factor α
r

in later discussion, as this factor is introduced primarily for
learning rate scheduling (Hu et al., 2022).
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3 METHOD

3.1 PRELIMINARY ON HOUSEHOLDER REFLECTORS

We first introduce the definition of a Householder reflector (Householder, 1958; Mhammedi et al.,
2017):

Definition 1 For any n, k ∈ N with k ≤ n, and any vector u ∈ Rk, the n-dimensional Householder
reflector parametrized by u is defined as:

Hn
k (u) =


(

In−k 0

0 Ik − 2uuT

∥u∥2

)
if u ̸= 0,

In if u = 0.

(7)

We refer to the vector u as the Householder vector.

Remark 1 Specifically, when k = n, we denote the Householder reflector simply as H(u). A
Householder reflector performs a reflection in the n-dimensional space, with the reflection plane
determined by the vector u.

Each Householder reflector with k = n can be expressed as:

Hn
k (u) = H(p(u)) = H(ũ) = In − 2ũũT , (8)

where p(u) is an n-dimensional vector obtained by padding the first entries of u with zeros. The
vector ũ is the normalized form of p(u), with unit norm:

ũ =
p(u)

∥p(u)∥
. (9)

This normalization ensures that the reflection is properly defined, maintaining the orthogonal prop-
erties of the Householder reflector.

Remark 2 The Householder reflector is determined solely by the direction of the Householder vec-
tor u. Therefore, scaling u by any non-zero coefficient does not alter the Householder reflector
Hn

k (u).

For simplicity, and since the probability of the vector u becoming zero during training is negligible
when initialized with non-zero values, we assume u ̸= 0 throughout our discussion. This ensures
that the Householder reflector function Hn

k (u) is continuous with respect to u.

There are some important properties of the Householder reflector:

Theorem 1 The Householder reflector is an orthogonal matrix for any arbitrary vector u (House-
holder, 1958):

(Hn
k (u))

THn
k (u) = In. (10)

Moreover, any square orthogonal matrix can be represented as a product of Householder reflec-
tors (Mhammedi et al., 2017):

Lemma 1 (Householder decomposition) For any n×n orthogonal matrix U , there exist n House-
holder reflectors Hn

n (un), H
n
n−1(un−1), . . . ,H

n
1 (u1), where ui ∈ Ri for i = 1, 2, . . . , n, such that

U = Hn
n (un)H

n
n−1(un−1) · · ·Hn

1 (u1). (11)

Remark 3 As per the definition of the Householder reflector, the upper-left part of a Householder
reflector is an identity matrix. Therefore, the first r columns of U are uniquely determined by
the product Hn

n (un)H
n
n−1(un−1) · · ·Hn

n−r+1(un−r+1). Multiplying by the remaining reflectors
Hn

n−r(un−r), . . . ,H
n
1 (u1) on the right does not alter the first r columns.

Although a semi-orthogonal matrix of size n × r can be derived by slicing the first r columns of
U , computing the product of many consecutive n × n matrices can be computationally expensive.
To address this, we adopt the Truncated CWY (T-CWY) representation (Likhosherstov et al., 2021)
form of Householder reflectors in our method.
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3.2 TRUNCATED CWY FORM OF HOUSEHOLDER REFLECTORS

The T-CWY parametrization combines the product of multiple Householder reflectors into a fixed-
length matrix multiplication formula, thereby reducing computational and memory costs. To intro-
duce T-CWY, we first present the CWY parametrization form (Likhosherstov et al., 2021):

Theorem 2 (CWY Parametrization) For any set of nonzero N -dimensional real-valued vectors
{u(i)}Li=1, we have

H(u(1))H(u(2)) · · ·H(u(L)) = IN −MK(M)−1MT , (12)

where

M =

[
u(1)

∥u(1)∥2
,

u(2)

∥u(2)∥2
, . . . ,

u(L)

∥u(L)∥2

]
∈ RN×L,

and

K(M) =
1

2
IL + striu(MTM) ∈ RL×L.

Here, striu(·) denotes the function that returns the argument matrix with all diagonal and lower-
triangular elements zeroed out.

T-CWY parametrization provides an efficient method to parametrize the first r columns of the ex-
pression in formula (12).

Theorem 3 (T-CWY Parametrization) Suppose an N × N orthogonal matrix U has a House-
holder decomposition given by

U = H(u(1))H(u(2)) · · ·H(u(L)). (13)

Then, the first r columns of U can be represented as

U[:,:r] = IN [:,:r] −MK(M)−1(M[:r,:])
T , (14)

where M and K are defined as in Theorem 2, and the subscripts [:, : r] and [: r, :] indicate sub-
matrices formed by slicing the first r columns and rows, respectively.

Note that in the context of LoRA, r is much smaller than the model dimension N , implying r ≪ N .
Consequently, the computational complexity of inverting the r × r matrix K(M) is relatively low,
making the T-CWY parametrization efficient.

3.3 HOLORA METHOD

Considering Lemma 1 and Theorem 3, we naturally arrive at an orthogonal parametrization of the
down-projection matrix A in the LoRA equation (1) as follows:

A = h(MA), MA ∈ Ln×r, (15)

h(MA) = IN [:,:r] − M̃AK(M̃A)
−1M̃T

A[:r,:], (16)

W = W0 +Bh(MA)
T , (17)

where the learnable parameters are B and MA. The total number of learnable parameters is (r−1)2

fewer than in vanilla LoRA, as MA is constrained to be lower triangular.

Here, M̃A is derived by normalizing the columns of MA, analogous to the normalization of M in
Theorem 2. The notation Ln×r represents the space of n× r (non-strict) lower triangular matrices.
We restrict the domain of MA to be lower triangular to enable an equivalent T-CWY parametrization,
as in Lemma 1, where each vector ui ∈ Ri.

5
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Output
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𝑊 ∈ ℝ𝑚 × 𝑛 

r

n

෩𝑀𝐴[:𝑟,:]

𝐼𝑁[:𝑟,:]

− ෪𝑀𝐴
𝑇

r

(𝐾( ෪𝑀𝐴)−1 )𝑇

Input

Output

𝑥Input 𝑥

Figure 1: HoLoRA structure and our reparametrization of down-projection matrix. Blue indicates
static (frozen) parameters, red indicates learnable parameters, and green indicates dependent param-
eters derived from other learnable/frozen parameters

3.3.1 INITIALIZATION OF HOLORA

For the matrix B, we use the same zero initialization as in LoRA, ensuring that the adaptation
block is initialized to zero. In contrast, vanilla LoRA initializes the matrix A using a uniform
distribution. However, empirical experiments have shown that initializing each entry of MA from
the same distribution results in h(MA) being extremely close to the (generalized non-square) identity
matrix.

To address this, we aim to initialize MA such that h(MA) is uniformly sampled from the Stiefel
manifold Vn,r. For this purpose, we utilize the following theorem from (Nirwan & Bertschinger,
2019):

Theorem 4 If the vectors {vi}ni=1 are uniformly distributed on the unit sphere in Ri, and we set

ui =
vi + sgn(vi1)∥vi∥e1
∥vi + sgn(vi1)∥vi∥e1∥

,

and define the Householder reflector as

H̃n
i (ui) = − sgn(vi1)H

n
i (ui),

then the matrix
U = H̃n

n (un)H̃
n
n−1(un−1) · · · H̃n

1 (u1) (18)

is uniformly distributed according to the Haar measure in On(D), where On(D) is the group of
n× n orthogonal matrices.

Considering Remark 3, to achieve a uniform distribution of h(MA) on the Stiefel manifold Vn,r, we
generate the vectors vn, vn−1, . . . , vn−r+1 uniformly on their respective unit spheres. If vi1 > 0,
we multiply vi by −1 to ensure the correct orientation. We then calculate the corresponding vectors
un, un−1, . . . , un−r+1 as per Theorem 4. The last (n− i+ 1) entries of the i-th column of MA are
set to be un−i+1 for i = 1, . . . , r. This procedure ensures that the generated h(MA) has a uniform
distribution on the Stiefel manifold Vn,r.

3.3.2 TIME COMPLEXITY OF HOLORA

In this section, we demonstrate that the time complexity added by computing h(MA) is negligible
compared to the vanilla LoRA method.

6
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The computation of the function K has a time complexity of O(nr2). Since K is an r×r matrix, its
inversion requires a time complexity of O(r3). The matrix operations involved in equation (16) also
have a time complexity of O(nr2), while the normalization of MA takes time O(nr). Therefore,
the overall time complexity for calculating the function h is O(nr2).

In contrast, vanilla LoRA involves the multiplication of an m×r matrix with an r×n matrix, which
has a time complexity of O(mnr).

Given the assumption that r ≪ min{m,n}, the time complexity of computing h(MA) is negligible
when compared to the time complexity of vanilla LoRA.

Algorithm 1 HoLoRA - Householder Orthogonal Low-Rank Adaptation

1: Input: Pretrained weights W0 ∈ Rm×n), low-rank factor r, training data D, learning rate η,
number of epochs E

2: Output: Adapted matrices B ∈ Rm×r and MA ∈ Ln×r

3: Initialize B as zero matrix and MA as in Theorem 4.
4: Keep the original pretrained weights W0 frozen
5: for epoch e = 1 to E do
6: for each data batch (x, y) in D do
7: Compute adapted weights: W ′ = W0 +Bh(MA)

⊤

8: Forward pass: compute prediction ŷ using W ′

9: Compute loss L(ŷ, y)
10: Backpropagate and update B: B ← B − η∇BL
11: Backpropagate and update MA: MA ←MA − η∇MA

L
12: end for
13: end for
14: Return: Final adapted matrices B and MA

3.4 COMPATIBILITY OF HOLORA WITH OTHER LORA VARIATIONS

Since HoLoRA only changes the parametrization of the down-projection layer in LoRA, without
altering any structural or learning schedule aspects, it remains compatible with a wide range of
LoRA variations. We provide insights into possible combinations for future research.

3.4.1 HOLORA WITH SVD DYNAMIC RANK ALLOCATION

SVD (Singular Value Decomposition) dynamic rank allocation methods (Zhang et al., 2023b;a) for
LoRA parametrize the adaptation block in a truncated SVD-like form rather than using A and B
matrices:

∆W = USV T , (19)

where U ∈ Rm×r, V ∈ Rn×r, and S ∈ Rr×r.
The SVD form requires U and V to be orthogonal matrices and S to be diagonal. Current methods
such as AdaLoRA (Zhang et al., 2023b) and IncreLoRA (Zhang et al., 2023a) enforce these condi-
tions using regularization as described in equation (2). Alternatively, the orthogonal restriction can
be achieved by utilizing the function h in HoLoRA.

By Remark 3, adding or removing the last columns of MA does not affect the first columns of
h(MA). Therefore, during dynamic rank allocation, we can adjust the rank by adding or deleting
columns of MA, ensuring that the retained singular vectors remain unchanged.

3.4.2 HOLORA WITH LORA INITIALIZATION

OLoRA (Büyükakyüz, 2024) leverages orthonormal matrix initialization via QR decomposition to
accelerate LoRA convergence. Since Householder reflectors were originally designed for perform-
ing QR decomposition (Householder, 1958), we can use the Householder QR decomposition method
to easily obtain the Householder vectors. These vectors can then be used to initialize the columns of
matrix MA in HoLoRA, achieving an equivalent initialization to OLoRA.

7
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LoRA-XS (Bałazy et al., 2024) computes the SVD of the pre-trained weight matrix and initializes
the LoRA delta block using information derived from the SVD form. If we employ the Golub-
Reinsch SVD algorithm (Golub & Kahan, 1965)—a method that uses Householder reflectors and is
still widely used for its efficiency—the parameters for the Householder reflectors can be obtained
and subsequently used in HoLoRA during training.

4 EXPERIMENTS

We fine-tune DeBERTaV3-base (He et al., 2021) with our proposed HoLoRA method, on 8 natural
language understanding tasks from General Language Understanding Evaluation (GLUE) (Wang,
2018) benchmark. We compare scores for each task and the total average score.

4.1 EXPERIMENT SETTINGS

Dataset The GLUE benchmark (Wang, 2018) is widely used to evaluate the generalization ability of
models across various natural language understanding tasks. We choose eight tasks (MNLI, SST-2,
CoLA, QQP, QNLI, RTE, MRPC, STS-B) from GLUE for a general evaluation on single sentence
tasks, similarity and paraphrase tasks, and inference tasks. For the evaluation metrics, We use the
overall accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and
accuracy for all other tasks.

Baselines

We compare our method with full-tuning and vanilla LoRA (Hu et al., 2022). LoRA generally
performs better than other PEFT methods such as Adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020). We focus on the comparison to LoRA as our method is a general approach to mitigate
LoRA’s limitation of feature loss. HoLoRA remains compatible with newer LoRA variants.

Implementation details To conduct a fair comparison, we build on the codebase of LoRA (Hu et al.,
2022). We use the pre-trained DeBERTaV3-base (He et al., 2021) model from HuggingFace, which
contains 12 Transformer encoder layers with 768 hidden units, and has a total parameter size of 86M.
Similar to the experimental settings used in the LoRA paper, we adapt only the query (Q) and value
(V) layers of the pre-trained model. For a comparison under different fine-tuning parameter budgets,
we perform two sets of experiments, with the rank r set to be 2 and 8 respectively. For MRPC, RTE,
and STS-B tasks, we start from the LoRA-adapted MNLI checkpoint for a same setting as LoRA
paper. We use the same hyperparameter settings in Table 3, referring to LoRA paper (Hu et al.,
2022) and AdaLoRA paper Zhang et al. (2023b)3, for both LoRA and HoLoRA. All experiments
are conducted on NVIDIA L4 Tensor Core GPUs through Google Cloud Platform.

4.2 EXPERIMENT RESULTS

The results of adapting DeBERTaV3-base model using Full-Tuning, LoRA and HoLoRA across
eight different tasks under budget level r = 2 and r = 8 are shown in table 1. HoLoRA achieves
better performance compared with baseline methods in most tasks, especially under low budget
level. It is well noted that in SST-2, CoLA, RTE tasks, HoLoRA with low budget level (r = 2)
outperforms LoRA with 4 times of budget level (r = 8). Overall, the average score for HoLoRA
under low budget level (88.07) is higher than the score of LoRA under high budget level (87.59). The
results show that HoLoRA can mitigate the feature loss problem in LoRA, which is more prominent
under low budget level settings.

4.3 ORTHOGONALITY CHECK OF VANILLA LORA

In the experiment of vanilla LoRA, we also check the orthogonality of matrix A to see if it is near
orthogonal. We use the evaluation metric

Ort(A) = ||ÃT Ã− I||F (20)

3AdaLoRA paper conducts LoRA experiments adapting all the Q,K,V, and FFN layers of DeBERTaV3-
base model, which is a good reference as we want to tune the Q and V layers of DeBERTaV3-base model.
Experiments in LoRA (Hu et al., 2022) do not use the DeBERTaV3-base model

8
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Table 1: Experiment results of fine-tuning DeBERTaV3-base on GLUE benchmark. Evaluation
metrics: Overall (matched and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA,
Pearson correlation for STS-B, and accuracy for other tasks.

#Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B ALL
Acc. Acc. Mcc. Acc. Acc. Acc. Acc. Corr. Avg.

Full-Tuning 86M 90.55 89.53 68.50 91.35 93.30 75.81 87.99 89.53 85.82

LoRAr=2 0.1M 89.59 94.72 64.25 90.56 93.94 84.48 89.95 91.90 87.42
HoLoRAr=2 0.1M 89.90 94.84 69.57 90.20 93.90 85.56 88.97 91.59 88.07
LoRAr=8 0.3M 90.20 94.72 66.31 91.37 94.07 83.75 88.73 91.53 87.59
HoLoRAr=8 0.3M 89.85 95.64 68.10 90.48 93.79 83.75 90.44 91.68 87.97

to measure the degree of mutual orthogonality between the columns of matrix A, where Ã is obtained
by normalizing each column of A.

We plot Figure 2 for the average value of Ort(A) in all adaptation layers versus number of iterations.
It can be seen that the value of Ort(A) increase rapidly during early stages, and then decrease slowly.
However, the minimum value is still much larger than the threshold 10−3, below which we regard a
matrix to be near-orthogonal (Zhang et al., 2023b), so the matrix A in LoRA is far from orthogonal
during training.

The orthogonality check indicates that the LoRA block A will not converge to be orthogonal without
Householder orthogonal restriction, and HoLoRA learns a different adaptation block compared with
LoRA.

(a) CoLA (r = 2) (b) QQP (r = 2) (c) SST-2 (r = 2)

(d) CoLA (r = 8) (e) QQP (r = 8) (f) SST-2 (r = 8)

Figure 2: Average orthogonality of layer A in LoRA during training. With x-axis iterations and
y-axis Ort(A). Lower values means more near-orthogonal.

4.4 EMPIRICAL TIME COMPARISON

We also present the actual time cost comparison of LoRA and HoLoRA in Table 2 to assess the
feasibility of using HoLoRA as a drop-in replacement for LoRA. It can be seen that, for all three
tasks, the additional time for HoLoRA is within 10% of LoRA. Meanwhile, for QQP task, which
is more complex and takes more time, the additional training time cost is less than 3%. A possible
reason is that the additional initialization time take a constant additional time for HoLoRA, so the
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proportion of overall additional training time will be lower for complex tasks in which initialization
time can be neglected.

Table 2: Comparison of Training Time cost (seconds) and the additional time (in proportion %) for
LoRA and HoLoRA fine-tuning on QQP, RTE, and MRPC tasks.

Task Budget LoRA (s) HoLoRA (s) Additional Time (%)

QQP r = 2 22645 23039 1.74%
r = 8 22631 23131 2.21%

RTE r = 2 328 320 -2.44%
r = 8 315 319 1.27%

MRPC r = 2 134 145 8.21%
r = 8 136 149 9.56%

5 CONCLUSION

We propose Householder Orthogonal Low-Rank Adaptation (HoLoRA) to address feature loss in
LoRA by adding strict orthogonality restriction on the down-projection matrix. HoLoRA pre-
serves important features while maintaining computational efficiency and compatibility with ex-
isting LoRA variations. We conduct experiments on the GLUE benchmark, showing that HoLoRA
outperforms vanilla LoRA, particularly in low-budget scenarios where the risk of feature loss is
highlighted. This work highlights the value of orthogonality in LoRA, providing insights for future
research on integrating HoLoRA with other LoRA methods.
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fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320–79362, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, and Fahad Shahbaz
Khan. Orthogonal projection loss. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 12333–12343, 2021.
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A APPENDIX

Table 3: Hyperparameters for LoRA and HoLoRA on GLUE benchmark.

Dataset learning rate batch size epochs α (r = 2 / r = 8)

MNLI 5.0× 10−4 32 7 8 / 16

SST-2 8.0× 10−4 32 24 16 / 16

CoLA 8.0× 10−4 16 20 32 / 32

QQP 8.0× 10−4 32 5 8 / 16

QNLI 7.0× 10−4 32 4 32 / 32

RTE 1.2× 10−3 32 11 8 / 32

MRPC 1.0× 10−3 32 10 8 / 32

STS-B 2.0× 10−3 32 10 16 / 32
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