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Abstract

Black-box forward model simulators are widely used in scientific and engineer-
ing domains for their exceptional capability to mimic complex physical systems.
However, applying current state-of-the-art gradient-based Bayesian inference tech-
niques like Hamiltonian Monte Carlo or Variational Inference with them becomes
infeasible due to the opaque nature of these simulators. We address this challenge
by introducing a modular approach that combines black-box variational inference
(BBVI) with deep generative priors, making it possible to efficiently and accurately
perform high-dimensional Bayesian inversion in these settings. Our method intro-
duces a novel gradient correction term and a sampling strategy for BBVI, which
collectively diminish gradient errors by several orders of magnitude across different
dimensions, even with minimal batch sizes. Furthermore, integrating our method
with Generative Adversarial Network (GAN)-based priors enables the solution of
high-dimensional inverse problems. We validate our algorithm’s effectiveness on a
range of physics-based inverse problems using both simulated and experimental
data. In comparison to Markov Chain Monte Carlo (MCMC) methods, our ap-
proach consistently delivers superior accuracy and substantial improvements in
both statistical and computational efficiency, often by an order of magnitude.

1 Introduction

The ever-increasing computational power of modern hardware, coupled with the expressiveness of
advanced programming languages, has facilitated the development of complex, high-fidelity forward
model simulators. These simulators excel in accurately modeling multi-scale, multi-physics, and
multi-phase phenomena of interest, finding applications across a spectrum of scientific domains, from
computational fluid dynamics [1] to geophysics [2 3] and beyond [4]]. These versatile simulators
empower us to describe and predict system behavior under diverse circumstances.
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While these sophisticated “black-box simulators” deliver high-fidelity solutions, unfortunately, they
are ill-suited for performing statistical inference with state-of-the-art gradient-based inference algo-
rithms such as Hamiltonian Monte Carlo (HMC), Langevin Dynamics, or variational inference (VI)
due to their black-box nature. The term “black-box simulator” in this context refers to the forward
model simulator/computer program (denoted as f), capable of taking various problem parameters, x,
as input (including geometric descriptions of the domain, boundary conditions, initial conditions, and
material property distributions within the domain) and producing corresponding solutions, y = f(x).
However, their limitations become evident in their inability to provide gradients of the simulator’s
output with respect to its inputs, i.e., 0y /Ox remains unavailable. This constraint primarily arises
from the inherent characteristics of computer programs representing such simulators—typically devel-
oped over several years by multiple researchers, often in legacy programming languages, and highly
optimized for forward computations (with potential parallel implementations), making it extremely
difficult to integrate with modern automatic differentiation libraries or necessitating substantial
manual intervention to incorporate gradient functionality.

The inability to perform efficient Bayesian inference with such high-fidelity black-box simulators
is a significant barrier to scientific progress. Bayesian inference, especially with high-fidelity
models, plays a pivotal role in facilitating precise parameter estimation, conducting uncertainty
quantification, informing downstream decision-making, hypothesis testing, model validation, and
optimal experimental design across diverse fields in computational science and engineering. Hence,
inference algorithms amenable to such black-box simulators can unlock many possibilities in these
fields. Furthermore, the parameter to be inferred, x, in these problems can often be very high-
dimensional (103-10?) due to fine spatio-temporal discretizations needed to capture multiscale
processes. Current state-of-the-art inference techniques (both MCMC and VI-based) struggle and
often fail to converge in such high-dimensional parameter space—further hampering scientific
progress.

The goal of accurate and efficient high-dimensional Bayesian inversion involving black-box forward
model simulators, therefore, requires designing a novel inference algorithm that can integrate and
leverage the black-box nature of such simulators in the inference process while being computationally
efficient. To that end, we propose a modular and efficient method that leverages modified black-box
variational inference (BBVI) and deep generative priors. BBVI [3] enables extracting valuable
information from black-box forward models without requiring its gradient, while GAN-based priors
[6} [7] enable performing inference in the low-dimensional latent space. Concretely, we make the
following contributions:

* We propose a modular method harnessing modified BBVI and GAN-priors to solve high-
dimensional Bayesian inverse problems involving black-box forward model simulators in a
highly efficient manner.

* The traditional BBVI gradient (first proposed in [5]]) is sample inefficient. We propose a
novel gradient correction term and sampling strategy that reduces gradient error by four to
five orders of magnitude across problems of varying dimensionalities, even with very small
batch sizes, resulting in significant computational savings.

* We demonstrate the effectiveness of the proposed method on both in-silico and experimental
data, where it outperforms traditional MCMC algorithms on both accuracy as well as
computational and statistical efficiency for the same compute budget.

2 Method
2.1 Background

Bayesian inference Consider the parameter vector  and solution vector y related by the forward
model f such that y = f(x). The goal of the Bayesian inference is to infer the posterior probability
distribution of parameters x given a noisy version of measurement, y = y + 7, i.e., p(qz|g]). It
is obtained by invoking the Bayes’ rule, p" (z|g) o< p,(§ — f(z))p%" (x), where, p%” (z) is
the prior, and the likelihood term, pg,ke(g\:v) = pn(y — f(x)), injects physics into the framework
via the direct operator f. Statistical inference involves characterizing the posterior distribution by
computing the expectation of a statistical quantity of interest (Qol) (defined by I(x)) with respect to

this posterior, B, (55 [(x)].



Variational inference (VI) The posterior distribution is intractable in general for typical physics-
based inverse problems due to the high dimensionality of . Variational inference is an elegant method
to approximate this intractable posterior distribution with other tractable variational distributions.
Concretely, in VI, we posit a variational family of distributions ¢, (x) and find the value of variational
parameters A such that the variational distribution is close (in Kullback-Leibler (KL) divergence
sense) to the posterior distribution, i.e., \* = arg min, KL(gx(z)|p%" (z|§)). Thus, VI turns an
inference problem into an optimization problem. Computing the KL divergence, however, is not
possible since it requires the value of the target distribution we are interested in. Hence, instead,
an evidence lower bound (ELBO) of the above divergence is computed and maximized to find the
optimal variational parameters A* = arg maxy £, where £ = ELBO = (IIE [log p(x,g) — log gx(x)].
A

Inversion examples are illustrated in the result section [3]

Black-box Variational Inference (BBVI) Performing Bayesian inference with VI entails finding
the gradient of ELBO and performing gradient-based optimization of A. To tackle the challenge of
performing VI with non-differentiable simulators, we leverage the black-box variational inference
method originally proposed in [5]] for latent variable models and adapt it to physics-based inverse
problems to allow inference without differentiating through the forward model. Using the BBVI
derivation, we can prove that

VRML= | E - |Valosas(@){ logp (@) +lop (5~ f(@) ~losaa(@)}] (D)
which does not require computing the gradient of f. The expectation is approximated by Monte Carlo
(MC) sampling. We refer to this gradient as the BBVI gradient. We note that the “log-derivative trick”
used in the above gradient derivation appears in different places in ML under various names, such as
REINFORCE in reinforcement learning, the likelihood ratio method, or the score function estimator
[8H10] with the central idea being approximating the gradient of an expectation as an expectation of
a gradient.

2.2 Improved BBVI for High-Dimensional Physics-based Bayesian Inversion

It is well-established that the BBVI gradient estimator of ELBO (shown in[(T)) suffers from high
variance [10H12]. This necessitates a large number of samples to attain gradients with reasonable
accuracy. In the context of high-dimensional physics-based inverse problems, this is problematic
since it mandates the solution of a large number of computationally demanding PDEs (forward
model) at each optimization iteration, resulting in substantial computational expense. This is one of
the reasons for the limited adoption of BBVI for practical PDE-based Bayesian inversion. Here we
propose strategies to tackle this issue.

Gradient correction The variance in the BBVI gradient is due to the randomness introduced
by the MC sampling. By exploiting the structure of the assumed variational distribution, we can
estimate this gradient more accurately by reducing the variance. We do this by first assuming the
variational distribution to be multivariate Gaussian, i.e., ¢\ (z) = N (z; p, Io?) with X = [p, 02|
and introduce finite difference gradient correction term (and special sampling strategy complementing

this). Specifically, let [(x) = logpg?m(cc) + log pi¥¢(g — f(x)) — log gx(x). We can rewriteas
viie =k [Valoggx(@){i(@) —lpp(N)T (2~ A)}] +E [Valogax(@){lrp(N)" (z —A)}]

@)
where % ,(A) is a finite difference approximation of the derivative of [(\). It is important to note
that I’z , () does not require differentiating through the forward model and can be easily computed
using any standard finite difference scheme (such as a central difference). To understand the effect of
this correction term, let us focus on A = p. With this|(2)[ simplifies to

V‘ZBVIL = qug:m) [Vilogax(@){l(x) = lpp ()" (@ — p)}] + lep (1) (€)

Here, since the second term is independent of x it has effectively zero variance, and it approximates
the gradient of the ELBO quite accurately, whereas the first term acts as an error correction term.
To reduce the variance of the total gradient in @l, we can further use the control variate method [5].
We demonstrate in the results section that this overall scheme leads to a reduction in error in
approximating the gradient by several orders of magnitude over traditional BBVI gradient evaluation,
even with very small batch sizes for a prototypical problem with varying dimensionalities.



Deep generative prior While the finite difference correction improves gradient accuracy, its
computational cost scales with the dimensionality of the problem. In high-dimensional physics-based
inverse problems, where x can be of significant dimension, this can offset the computational gains
achieved through the correction term. To mitigate this, we leverage recently proposed GAN-priors
[6! [13], which is a sample-based prior method that re-frames the posterior distribution p%’“(mkg)
in a lower-dimensional latent space, z, of a pre-trained GAN generator. While traditionally GAN-
priors have been used with MCMC, one can use them with VI as well by choosing an appropriate
variational distribution in the latent space ¢y (z) of the generator and finding the optimal value of
A by maximizing the corresponding ELBO. We note a recent study [14]] where GAN-priors is used
in conjunction with VI in a “white-box” setting. In contrast, our proposed method addresses the
challenge with “black-box” setting.

Sampling Strategy Moreover, as the variational distribution is Gaussian, we can re-parameterize
its samples using a random normal distribution as z = £ ® o + p with & ~ N/(0, I). The set {¢} Y,
can be obtained through various methods to approximate the expectation in the gradient. Here, we
explore three strategies: (i) Normal: drawing /N points from a normal distribution, (ii) Symmetric
Normal: sampling N/2 points from a normal distribution and selecting the remaining N/2 points by
changing the sign of the first N/2 points, (iii) Non-uniform Deterministic: an importance sampling
strategy with uniform weights but a non-uniform distribution of points. These points are distributed
such that their spacing is inversely proportional to the normal or Gaussian distribution.

3 Results

Bayesian inversion with conjugate priors To understand the effect of additional gradient cor-
rection term and sampling scheme on the accuracy of the gradient, we first consider a Bayesian
inverse problem involving conjugate priors as used in earlier studies [[7]]. A detailed description of the
problem and the result is provided in[Section 5.1.3]

Physics-based inversion with synthetic data (inverse heat conduction) In our study, we direct
our attention towards practical physics-based Bayesian inverse problems. Specifically, we tackle the
challenging task of inferring the initial condition in the time-dependent heat conduction equation,
omitting a source term, and employing a constant conductivity field with a diffusivity of k = 0.064
units. Here, the initial condition is prescribed as zero everywhere inside the domain except in a
rectangle region, where it varies linearly from left (with the value of 2 units) to right (with the value
of 4 units), as can be seen from [Figure 1[a) in[Section 5.1.1| Given a noisy temperature field at t = 1,
characterized by a noise variance of 1, our goal is to recover the initial condition. This problem
presents a severe ill-posed nature due to information loss during the diffusion process and the presence
of substantial measurement noise. We represent the discretized initial and final temperature fields
as x and y, respectively, on a 32 x 32 Cartesian grid. Our approach leverages a GAN-prior, trained
on a parametric rectangular dataset utilized in prior studies [[7, [15], within the 5-dimensional latent
space of the GAN. For optimization, we employ the Adam optimizer [16] in conjunction with the
Normal Symmetric sampling scheme for BBVI. As a baseline, we compare our method against the
random walk Markov Chain Monte Carlo (MCMC) approach, often used with black-box simulators
in physics-based inverse problems. We optimally tune the proposal variance for MCMC. Qualitative
results, shown in [Figure T|(a), indicate slightly superior reconstruction by BBVI. [Figure T|b) presents
a quantitative analysis. We solve the inverse problem with a fixed number of forward solves for both
methods and assess the error in posterior statistics. Notably, BBVI consistently demonstrates smaller
errors and significantly faster convergence rates compared to MCMC, underscoring its superiority in
addressing this challenging problem.

Physics-based inversion with real-world experimental data (hydraulic tomography) In this
study, we validate our method using experimental data. Specifically, we solve the hydraulic tomogra-
phy problem of inferring the permeability field from sparse measurements of a pressure field. This
is an important problem in the geophysics and petroleum engineering communities. The forward
model is defined by Darcy flow. The details of the experimental setup, data, and forward model are
provided in [17]. We use a GAN-prior trained using a parametric dataset of different rectangular
fields randomly located inside the domain, mimicking the sandbox structure with sands with different
permeabilities.

We perform inference using the proposed BBVI method and compare it against random walk MCMC,
and the reconstruction results are provided in[Figure 2|in[Section 5.1.2] As can be observed qualita-




tively from the figure, BBVI performs significantly better than MCMC. A quantitative comparison of

both methods is provided in[Table 1]in[Section 5.1.2}

4 Conclusion

In this study, we have developed a modular framework that integrates black-box variational inference
(BBVI) with deep generative priors to effectively address high-dimensional Bayesian inversion in the
context of black-box forward model simulators. Our method, validated across practical use-cases,
consistently outperforms traditional Markov Chain Monte Carlo (MCMC) techniques in both accuracy
and convergence speed. By overcoming the inherent challenges of high-dimensional spaces and
black-box models, our approach paves the way for advancements in Bayesian inference across diverse
scientific fields.



S Supplementary Material

5.1 Figures and Additional Results

5.1.1 Physics-based inversion with synthetic data (inverse heat conduction)
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Figure 1: (a) Initial condition inversion. Top row: true inferred field x, final temperature y = f(x),
measured temperature field y = y + 7. Second and third row: posterior mean and standard deviation
obtained using BBVI and MCMC, respectively. (b) Normalized error in posterior statistics as a
function of the number of forward solves for BBVI and MCMC.



5.1.2 Physics-based inversion with experimental data (hydraulic tomography)
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Figure 2: Hydraulic tomography using experimental data. First column: (top) true permeability field,
(bottom) photograph of the sandbox used during the experiment. Second column: posterior mean
obtained using BBVI and MCMC method. Third column: posterior standard deviation obtained using
BBVI and MCMC method.

Table 1: Quantitative comparison of MCMC and BBVI

For a fixed number of forward solves For fixed CPU wall-clock time
Qol MCMC BBVI Qol MCMC BBVI
Error | 31.58% 26.06% Error | 39.81% 26.09%

Coverage (95% CI) 1 0.760 0.903 Coverage (95% CI) 1 0.274 0.900
Time (in seconds) | 108.25 11.07 No. of forward solves T 3000 72000

5.1.3 Bayesian inversion with conjugate priors

In this study, we consider a Bayesian inverse problem with Gaussian prior and Gaussian likelihood
resulting in analytically tractable Gaussian posterior. We approximate this Gaussian posterior with a
variational distribution whose mean and variance vectors are optimized. We consider problems of
varying dimensionalities. The detailed results are presented in [Figure 3]

5.1.4 1D Pedagogical toy problem

We examine an additional pedagogical example that illustrates the application of BBVI in a 1D
setting for visualization purposes. In this example, the prior and likelihood distributions are both
Gaussian, while the forward model f(z) = 0.22°sin(x) is non-linear, leading to a non-convex
posterior distribution. Specifically, we choose the prior and the likelihood distribution as N (0, 1),
and set the observation as § = 2. To compute the true posterior statistics, we utilize a Monte Carlo
estimate with 1 million samples. For comparison, we consider a baseline method that utilizes a
quadratic approximation approach. This method iteratively approximates the target density with a
local quadratic function, aiming to capture the posterior characteristics.

shows the comparison of BBVI with quadratic approximation and MCMC for the non-linear
forward model. Here, the term quadratic approximation means fitting the log of the posterior with
three points (with the central point approximating the mean and two side points are one standard
deviation away from the central point). The figure showcases both qualitative (first column) and
quantitative (next three columns) comparisons of the performance of these methods. From the
results, it is evident that BBVI outperforms the quadratic approximation and MCMC methods in
this simple 1D toy problem with multi-modal posterior, exhibiting superior performance. Further,
quadratic approximation exhibits mode-seeking behavior, whereas BB VI tries to approximate the
whole distribution (as also indicated by their KL divergence). It is worth noting that while we have
employed a Gaussian distribution as our variational family in this example (and hence have selected
quadratic approximation as the corresponding baseline), it is possible to select more expressive
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Figure 3: Relative error in gradient as a function of batch size. Each row represents a different
sampling scheme, and each column represents the problem dimension. Different colors in each
subplot indicate different points at which the gradient is evaluated, and different markers represent
different gradients used.
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and KL divergence between target posterior distribution and approximated distribution, respectively.



distributions that can closely capture the characteristics of the target density resulting in even more
improvement in quantitative metrics.
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