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Abstract
We provide an improved analysis of standard dif-
ferentially private gradient descent for linear re-
gression under the squared error loss. Under
modest assumptions on the input, we character-
ize the distribution of the iterate at each time step.

Our analysis leads to new results on the algo-
rithm’s accuracy: for a proper fixed choice of hy-
perparameters, the sample complexity depends
only linearly on the dimension of the data. This
matches the dimension-dependence of the (non-
private) ordinary least squares estimator as well
as that of recent private algorithms that rely on
sophisticated adaptive gradient-clipping schemes
(Varshney et al., 2022; Liu et al., 2023).

Our analysis of the iterates’ distribution also al-
lows us to construct confidence intervals for the
empirical optimizer which adapt automatically to
the variance of the algorithm on a particular data
set. We validate our theorems through experi-
ments on synthetic data.

1. Introduction
Machine learning models trained on personal data are now
ubiquitous—keyboard prediction models (Xu et al., 2023),
sentence completion in email (Li et al., 2022), and photo
labeling (Kurakin et al., 2022), for example. Training with
differential privacy (Dwork et al., 2006) gives a strong
guarantee that the model parameters reveal little about any
single individual. However, differentially private algo-
rithms necessarily introduce some distortion into the train-
ing process. Understanding the most accurate and efficient
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training procedures remains an important open question,
with an extensive line of research dating back 15 years (Ka-
siviswanathan et al., 2008; Chaudhuri et al., 2011).

The distortion introduced for privacy is complex to charac-
terize; recent work has thus also investigated how to pro-
vide confidence intervals and other inferential tools that al-
low the model’s user to correctly interpret its parameters.
Confidence intervals on parameters are critical for applica-
tions of regression in the social and natural sciences, where
they serve to evaluate effects’ significance.

In this paper, we address these problems for a fundamen-
tal statistical learning problem: least-squares linear regres-
sion. Specifically, we give a new analysis of a widely stud-
ied differentially private algorithm, noisy gradient descent
(DP-GD). This algorithm repeatedly computes the (full)
gradient at a point, adds Gaussian noise, and updates the
iterate using the noisy gradient.

Our central technical tool is a new characterization of the
distribution of the iterates of private gradient descent. Un-
der the assumption that the algorithm does not clip any gra-
dients, we show that the distribution at any time step can be
written as a Gaussian distribution about the empirical min-
imizer (plus a small bias term). All together, the iterates
are drawn from a Gaussian process. We apply this charac-
terization in two ways: we derive tighter error bounds and
prove finite-sample coverage guarantees for natural confi-
dence intervals constructions.

Our main result shows that the algorithm converges to a
nontrivial solution—that is, an estimate whose distance
from the true parameters is a o(1) fraction of the parameter
space’s diameter—using only n = Θ̃(p) samples (omitting
dependency on the privacy parameters) when the features
and errors are distributed according to a Gaussian. Un-
til recently, all private algorithms for linear regression re-
quired Ω(p3/2) samples to achieve nontrivial bounds. This
includes previous analyses of gradient descent (Cai et al.,
2021). Three recent papers have broken this barrier: the
exponential-time approach of Liu et al. (2022) and the effi-
cient algorithms of Varshney et al. (2022) and subsequently
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Liu et al. (2023).1 The latter two algorithms are based on
variants of private gradient descent that use adaptive clip-
ping frameworks that complicate both the privacy analysis
and implementation. We discuss these approaches in more
detail in Related Work.

Our characterization of the iterates’ distribution suggests
that confidence interval constructions for Gaussian pro-
cesses should apply to our setting. We confirm this, in both
theory and practice: we formally analyze and empirically
test methods for computing instance-specific confidence in-
tervals (that is, tailored to the variability of the algorithm on
this particular data set). These intervals convey useful in-
formation about the noise for privacy: in our experiments,
their width is roughly comparable to that of the textbook
nonprivate confidence intervals for the population param-
eter. Even beyond the settings of our formal analysis, we
give general heuristics that achieve good coverage experi-
mentally. These confidence interval constructions come at
no cost to privacy—they use the variability among iterates
(and their correlation structure) to estimate the variability
of their mean. While prior works (Shejwalkar et al., 2022;
Rabanser et al., 2023) discuss methods for generating con-
fidence intervals based on intermediate iterates from DP
gradient descent, they fail to provide any meaningful cov-
erage guarantees.

We perform extensive experiments on synthetic data, iso-
lating the effects of dimension and gradient clipping. To
the best of our knowledge, these are the first experiments
which show privacy “for free” in high-dimensional (that is,
with p ≈ n and p large) private linear regression. We also
demonstrate the practicality of our confidence interval con-
structions.

1.1. Our Results

Formal Guarantees for Accuracy Our theoretical re-
sults are simplest to state in the following distributional
setting.

Definition 1.1 (Generative Setting). Let θ∗ ∈ Rp be the
true regression parameter satisfying ‖θ∗‖ ≤ 1. For each
i ∈ [n], let the covariate xi be drawn i.i.d. from N (0, Ip)
and the response yi ← x†iθ

∗ + ξi, for ξi ∼ N (0, σ2).

We emphasize that the assumption of random-design Gaus-
sian data allows for clean theorem statements but is not
strictly necessary. Formally, we establish a set of determin-
istic conditions on the input dataset (Condition 2.4) under
which our algorithm provably performs well. These condi-
tions are satisfied with high probability by data arising from
the generative setting above. In Appendix B we present ex-

1Appearing after the submission of this paper, the approach
of Brown et al. (2024) uses different techniques but also requires
only θ̃(p) samples for accurate estimation.

periments on other distributions.

Theorem 1.2 (Informal). Assume we are in the generative
setting (Definition 1.1). Assume n = Ω̃(p). Set clipping
threshold γ = Θ̃(σ

√
p), step size η = O(1), and number

of steps T = Õ(1). With high probability the final iterate
θT of Algorithm 1 satisfies

‖θT − θ∗‖ ≤ Õ
(√

σ2p

n
+

σp√
ρn

)
.

Here the parameters are set so that Algorithm 1 satisfies
ρ-zCDP (see Section 2 and Appendix A.1).

Theorem 1.2 follows from combining Theorem 2.7, which
analyzes the accuracy of DP-GD relative to the ordinary
least squares (OLS) solution θ̂, with Claim A.12, which
comes from the work of Hsu et al. (2011) and says that θ̂ is
close to θ∗.

Formal Guarantees for Confidence Intervals From our
theoretical results, we expect any two iterates sufficiently
separated in time to be well-approximated by indepen-
dent draws from the stationary distribution, which (we
show) is a Gaussian centered at the empirical minimizer:
N (θ̂, c·A), where c ∈ R depends on the algorithm’s hyper-
parameters (e.g., privacy budget) and fixed matrix A is ap-
proximately spherical; it depends only on the step size and
the covariance of the data. We can control the quality of
this approximation and provide provable, non-asymptotic
guarantees for natural confidence interval constructions.

As with our accuracy guarantees, these results do not
rely directly on the assumption of Gaussian covariates and
noise. Instead, they hold for any dataset satisfying Condi-
tion 2.4.

Experiments Our empirical results provide a strong
complement to our formal results. They validate our the-
orems by showing that the predicted behavior occurs at
practical sample sizes and privacy budgets. For example,
Figure 1 demonstrates how our algorithm’s error depends
only linearly on the dimension, which mirrors the behav-
ior of OLS and stands in contrast to algorithms requiring
Ω(p3/2) examples.

Our empirical results also investigate settings not consid-
ered by our theorems. We demonstrate the accuracy of DP-
GD and the validity of our confidence intervals construc-
tions on distributions beyond those in Definition 1.1. One
phenomenon that affects our methods is gradient clipping,
which introduces bias in settings with irregular data (such
as outliers). In such settings, DP-GD can be viewed as opti-
mizing a different objective function (roughly, a Huberized
loss) and that the confidence intervals we generate capture
the minimum of this smoothed objective.
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Figure 1: Iso-accuracy lines for three algorithms. Run on
data from a well-specified linear model, both DP-GD and
OLS require n to grow linearly with the dimension. We
compare with AdaSSP (Wang, 2018), a popular algorithm
that requires n = Ω(p3/2) examples (Kamath et al., 2022;
Narayanan, 2023). Points represent the number of samples
needed to achieve error 1/2 in expectation. In our setting,
an error of 1 is trivial. Selected points for OLS receive
labels.

1.2. Techniques

The privacy analysis of DP-GD is standard and we thus
focus our technical efforts on utility: that the algorithm
has low error and the confidence interval constructions are
valid. At a high level, our analysis follows a standard for-
mula from the privacy literature: we identify a determinis-
tic set of conditions on input datasets and show that, when
these conditions are met, “good things happen.”

In slightly more detail, we consider Condition 2.4, which
asks that the dataset satisfies a number of deterministic
concentration properties. When this condition holds, we
show that DP-GD is unlikely to clip any gradients. This
“no-clipping” event sets up our accuracy and confidence-
interval analyses.

The final conceptual step in our theoretical analysis is to
show that the deterministic conditions are meaningful. We
show that the conditions are satisfied with high probability
by data drawn from the Gaussian linear model in Defini-
tion 1.1.

Convergence Without Clipping Our first technical tool,
presented in Section 2.2, characterizes the distribution of
the iterates of DP-GD. We observe that, on any step where
there is no clipping, the iterates satisfy the linear recurrence
relation

θt ← η · Σθ̂ + (I− ηΣ)θt−1 + η · zt−1,

where zt is the noise added at time t and Σ = 1
nX
†X is the

covariance. We solve this recurrence and collect the noise

terms, expressing θt as a Gaussian centered at θ̂ plus an
exponentially decaying bias term:

θt = θ̂ + (I− ηΣ)t(θ0 − θ̂) + η · z′t,

where z′t is a Gaussian random variable that depends on
z0, . . . , zt−1.

Clipping Is Unlikely With this tool, we now aim to show
that clipping is unlikely under the assumption that the data
satisfies Condition 2.4. One subitem, Condition 2.4.ii, re-
quires the covariates to have `2 norm bounded by roughly√
p. When this is true, a standard application of Cauchy–

Schwarz implies that gradients are bounded by Õ(p), so
setting this as our clipping threshold γ allows us ensure no
clipping happens with high probability.

Our main theoretical result improves upon this step. We
show that the gradients are bounded by roughly

√
p, ig-

noring logarithmic factors and dependence on σ. Using
γ ≈ √p as the clipping threshold allows us to add, at
each iteration, privacy noise N (0, c2I) for c2 ≈ p

n2 (ig-
noring privacy parameters). We show such a bound holds
with high probability over the randomness of the algorithm.
Since we have assumed the norm of xi is roughly

√
p, to

control the norm of the gradient xi(yi−x†iθt) it suffices to
bound the absolute residual byO(1). We can show that this
holds at initialization, using the fact that our initial iterate
θ0 has no dependence on the data.

We also expect the bound to hold after convergence. For an
informal argument, consider a single update away from θ∗,
where the gradient should nearly vanish. We would move
to θ1 ← θ∗ + z, where z ∼ N (0, c2I). Since c2 ≈ p

n2 , we
expect ‖z‖ ≈ c√p = O(1). Plugging this in, we see

|yi − x†iθ1| = |(x†iθ∗ + ξi)− x†i (θ
∗ + z)|

= |ξi − x†iz|.

Since ξi is drawn from a known distribution and xi is inde-
pendent of z, we can bound this residual.

The proof of Lemma 2.5 formalizes these heuristics and
shows that the same bound applies over every gradient step.

Confidence Intervals The distributional form we show
for the iterates suggests several natural methods for con-
structing confidence intervals for the parameter being esti-
mated. In this work, we focus on confidence intervals for
the empirical minimizer—that is, the regression vector that
minimizes the loss on the data set. Thus, our confidence
intervals capture the uncertainty introduced by our privacy
mechanism. (It also makes sense to give confidence in-
tervals for a population-level minimizer in settings where
the data represent a random sample—we focus on the em-
pirical parameter for simplicity.) We consider confidence
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intervals for a single coordinate of the parameter, since this
is the most common use case.

We consider two approaches: one based on running the en-
tire algorithm repeatedly and the other based on estimating
the in-sequence variance of the stream of iterates. For this
latter approach, we consider both a simple checkpointing
strategy as well as a more data-efficient averaging strategy
from the empirical process literature. These are discussed
in Section 4.2.

Gaussian Data with Gaussian Errors Satisfy Condi-
tion 2.4 The analysis described above operates under the
assumption that the input satisfies Condition 2.4, a deter-
ministic set of conditions. To better interpret the results
and compare with prior work, we show that this condition
is satisfied with high probability by data drawn from a well-
specified Gaussian linear model. This proof requires a col-
lection of standard concentration inequalities.

1.3. Limitations and Future Work

Our work has several limitations, each of which presents
natural directions for further exploration. First, some parts
of our theoretical analysis require that the data be well-
conditioned and have Gaussian-like concentration proper-
ties. Aside the exponential-time approach of Liu et al.
(2022), all private algorithms achieving O(p) sample com-
plexity incur a polynomial dependence on the condition
number of the covariates (Varshney et al., 2022; Liu et al.,
2023). Removing this dependence remains a notable open
problem.2

We construct confidence intervals for the empirical mini-
mizer of the loss function after clipping, which in general
differs from the least-squares estimator (see Section 2.5)
and the population parameter. The former limitation is in-
herent (since the exact OLS solution has unbounded sensi-
tivity) but an extension of our methods to population quan-
tities would likely be useful.

Our experiments use synthetic data sets. A wider study of
how these methods adapt to practical regression tasks is an
important project but beyond the scope of this paper.

1.4. Related Work

Private Linear Regression Under the assumption that
the covariates are drawn from a subgaussian distribu-
tion and the responses arise from a linear model, the
exponential-time approach of Liu et al. (2022) achieves
nearly optimal error, matching a lower bound of Cai et al.
(2021). In the remainder of this subsection, we sur-

2Appearing after the submission of this paper, the approach of
Brown et al. (2024) removes this dependence through completely
different techniques.

vey a number of efficient approaches. Table 1 in ap-
pendix A summarizes the approaches and their dimension-
dependence in our setting.

Sufficient Statistics A standard approach for private re-
gression is sufficient statistics perturbation (see, e.g., Vu
& Slavkovic, 2009; Foulds et al., 2016; Sheffet, 2017;
2019). One algorithm which stands out for its practical ac-
curacy and theoretical guarantees is the AdaSSP algorithm
of Wang (2018), which relies on prior bounds for the co-
variates and labels.

To overcome the reliance on this prior knowledge, Milio-
nis et al. (2022) build on algorithms of Kamath et al. (2019)
to give theoretical guarantees for linear regression with un-
bounded covariates. More recent variations on SSP include
Tang et al. (2023), who use AdaSSP inside a boosting rou-
tine, and Ferrando & Sheldon (2024), who post-process ta-
bles of two-way marginals produced by a private query-
answering mechanism.

As the dimension of the problem grows, these approaches
suffer high error: accurate private estimation of X†X,
which is necessary for SSP to succeed, requires n =
Ω̃(p3/2) examples (Dwork et al., 2014; Kamath et al., 2022;
Narayanan, 2023).

Optimization An alternative approach is to view regres-
sion as an optimization problem, seeking a parameter vec-
tor that minimizes the empirical error. Such algorithms
form a cornerstone of the differential privacy literature.

Under assumptions similar to ours, the approach of Cai
et al. (2021) achieves a near-optimal statistical rate via
full-batch private gradient descent, where sensitivity of
the gradients is controlled via projecting parameters to a
bounded set. Their analysis, however, only applies when
n = Ω(p3/2). Avella-Medina et al. (2021) gave a general
convergence analysis for private M -estimators (including
Huber regression) but did not explicitly track the dimension
dependence. Their approach bears similarities to gradient
clipping, as we discuss in Section 2.5. The work of Varsh-
ney et al. (2022) gave the first efficient algorithm for private
linear regression requiring only n = Õ(p) examples. Their
approach uses differentially private stochastic gradient de-
scent and an adaptive gradient-clipping scheme based on
private quantiles. Later, Liu et al. (2023) gave a robust and
private algorithm using adaptive clipping and full-batch
gradient descent, improving upon the sample complexity
of Varshney et al. (2022) (by improving the dependence on
the condition number of the design matrix). Our approach
is most similar to that of Liu et al. (2023); while they rely
on adaptive clipping and strong resilience properties of the
input data, our algorithm and analysis are simpler.

A natural alternative strategy for private linear regression
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is to first clip the covariates and the responses and then
run noisy projected gradient descent, projecting each iter-
ate into a constraint set. While this results in `2-bounded
gradient, the sample complexity of such an algorithm be-
comes n = Ω(p3/2) (Cai et al., 2021).

Sample-and-Aggregate In connection with robust statis-
tics, a line of work gives private regression algorithms
based on finding approximate medians (Dwork & Lei,
2009; Alabi et al., 2022; Sarathy & Vadhan, 2022; Knop
& Steinke, 2022; Amin et al., 2022). Informally, the algo-
rithms solve the linear regression problem (or a robust vari-
ant) on multiple splits of the data and apply a consensus-
based DP method (e.g., propose-test-release (Dwork & Lei,
2009), or the exponential mechanism (McSherry & Talwar,
2007)) to choose the regression coefficients. To the best
of our knowledge, this class of approaches cannot achieve
sample complexity n = o(p2), as it requires Ω(p) samples
per split and Ω(p) splits for nontrivial private aggregation.

Private Confidence Intervals Some approaches gener-
ate confidence intervals using bootstrapping and related ap-
proaches (Brawner & Honaker, 2018; Wang et al., 2022;
Covington et al., 2021).

Several approaches arise naturally from sufficient statistics
perturbation. Sheffet (2017) gave valid confidence intervals
for linear regression. The parametric bootstrap (Ferrando
et al., 2022) is also a natural choice in this setting where
we already work under strong distribution assumptions.

Other approaches stem from the geometry of optimization
landscape (Wang et al., 2019; Avella-Medina et al., 2021);
see also the non-private work of (Chen et al., 2020).

In a recent line of work, (Shejwalkar et al., 2022; Rabanser
et al., 2023) use multiple checkpoints from a single run of
DP-GD (Bassily et al., 2014; Abadi et al., 2016) to pro-
vide confidence intervals for predictions. While there is
some algorithmic similarity to our procedures, these works
do not provide rigorous parameter confidence interval esti-
mates.

2. Private Gradient Descent for Regression
Notation We use lowercase bold for vectors and upper-
case bold for matrices, so (X,y) is a data set and (xi, yi)
a single observation. Special quantities receive Greek let-
ters: θ ∈ Rp denotes a regression vector and Σ = 1

nX
†X,

the empirical covariance. We “clip” vectors in the standard
way: CLIPγ(x) = x ·min{1, γ/‖x‖}.

2.1. Algorithm

Algorithm 1 is differentially private gradient descent. Sim-
ilar to the more complex linear regression algorithm of Liu

et al. (2023), it controls the sensitivity by clipping individ-
ual gradients: a full-batch version of the widely used pri-
vate stochastic gradient descent (Abadi et al., 2016). This
is in contrast to approaches which rely on projecting the
parameters to a convex set (see, e.g., Bassily et al., 2014).

We present our privacy guarantee with (zero-)concentrated
differential privacy (zCDP) (Dwork & Rothblum, 2016;
Bun & Steinke, 2016). For the definition of zCDP and ba-
sic properties, including conversion to (ε, δ)-DP, see Ap-
pendix A.1. The guarantee comes directly from composing
the Gaussian mechanism.

Lemma 2.1. For any noise variance λ2 ≥ 2Tγ2

ρn2 , Algo-
rithm 1 satisfies ρ-zCDP.

Algorithm 1 DP-GD, A(X,y; γ, λ, η, T, θ0)

1: Input: data (X,y) ∈ Rn×p × Rn; clipping threshold
γ > 0; noise scale λ > 0; step size η > 0; number of
iterations T ∈ N; initial vector θ0 ∈ Rp

2: for t = 1, . . . , T do
3: ḡt ← 1

n

∑n
i=1 CLIPγ(−xi(yi − x†iθt−1))

4: Draw zt ∼ N (0, λ2I)
5: θt ← θt−1 − η · ḡt + η · zt
6: end for
7: Output: θ1, . . . , θT .

2.2. Convergence, With and Without Clipping

Throughout the paper, we deal with the exact distribution
over the iterates of DP-GD. As we show, if we remove the
clipping step (i.e., set γ = +∞), this distribution is ex-
actly Gaussian. This algorithm appears in many contexts
under different names, including Noisy GD and the (Un-
adjusted) Langevin Algorithm. Clipping ensures privacy,
even if a particular execution of the algorithm does not clip
any gradients. We might hope to condition on the event
that Algorithm 1 clips no gradients. However, conditioning
changes the output distribution. We require a more careful
approach.

We consider a coupling between two executions of Algo-
rithm 1: one with clipping enforced and the other with
γ = +∞. Of course, if Algorithm 1 receives an input
where clipping occurs with high probability, then the out-
put distributions of the two executions may differ greatly.
When clipping in the first case is unlikely, we can connect
the output distributions between the two executions.

Lemma 2.2 (Coupling DP-GD without Clipping). Fix data
set X,y and hyperparameters γ, λ, η, T , and θ0. Define
random variables Oγ and O∞ as

Oγ = A(X,y; γ, λ, η, T, θ0)

O∞ = A(X,y;∞, λ, η, T, θ0).
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If Algorithm 1 on input (X,y; γ, λ, η, T, θ0) clips nothing
with probability 1− β, then TV (Oγ ,O∞) ≤ β.

Appendix C contains details on couplings and the simple
proof of this lemma, which uses the coupling induced by
sharing randomness across runs of the algorithm.

The following claim characterizes the output of Algo-
rithm 1 with γ = +∞. We see the distribution is Gaussian
and centered at the empirical minimizer plus a bias term
that goes to zero quickly as t grows. We define a matrix
D = (I − ηΣ)2, where Σ is the empirical covariance ma-
trix and η the step size.

The proof, which appears in Appendix C only relies on the
fact that the loss function is quadratic.

Lemma 2.3. Fix a data set (X,y) and step size η, noise
scale λ, number of iterations T , and initial vector θ0. De-
fine matrices Σ = 1

nX
†X and D = (I − ηΣ)2; assume

both are invertible. Let θ̂ = (X†X)−1X†y be the least
squares solution. Consider A(X,y;∞, λ, η, T, θ0), i.e.,
Algorithm 1 without clipping. For any t ∈ [T ], we have

θt = θ̂ + (I− ηΣ)t(θ0 − θ̂) + η · z′t

for z′t ∼ N (0, λ2A(t)) with A(t) = (I−D)−1(I−Dt).

Note that z′t depends on all the noise vectors up to time t.
We must take care when applying this lemma across the
same run, as z′t1 and z′t2 are dependent random variables.

2.3. Conditions that Ensure No Clipping

To apply Lemma 2.3, we need to reason about when no gra-
dients are clipped. To that end, we now define a determinis-
tic “No-Clipping Condition” under which DP-GD clips no
gradients with high probability. This is a condition on data
sets (X,y) that is defined in terms of a few hyperparam-
eters. We will often leave these hyperparameters implicit,
saying “data set (X,y) satisfies the No-Clipping Condi-
tion” instead of “data set (X,y) satisfies the No-Clipping
Condition with values σ, η, T , and c0.”

Later, we will show that the No-Clipping Condition is sat-
isfied with high probability under distributional assump-
tions. Conditions (i)-(iii) follow from standard concen-
tration statements. Conditions (iv) and (v) are less trans-
parent; they capture notions of independence between
θ∗, {xi}, and {yi − x†iθ

∗}.

Condition 2.4 (No-Clipping Condition). Let σ, η and c0 be
nonnegative real values and let T be a natural number. Let
(X,y) ∈ Rn×p × Rp be a data set. Define Σ = 1

nX
†X.

There exists a θ ∈ Rp such that, for all i ∈ [n] and t ∈ [T ],

(i) 1
2 I � Σ � 2I, ‖I− ηΣ‖ ≤ 7

8 ,

(ii) ‖xi‖ ≤ c0√p,

(iii) |yi − x†iθ| ≤ c0σ,

(iv) |x†i (I− ηΣ)tθ| ≤ c0 and

(v) |∑n
j=1(yj − x†jθ) · x†iAtxj | ≤ c0σ

√
np, where At =

(I− (I− ηΣ)t)Σ−1.

The definition requires the existence of some θ with certain
properties. Informally, the reader should think of this as
θ∗, the “true” parameter. Crucially, however, the definition
does not require the existence of an underlying distribution.
We prove Lemma 2.5 in Appendix C.
Lemma 2.5 (No Clipping Occurs). Fix nonnegative real
numbers σ, η, and c0. Fix natural number T . Assume data
set (X,y) ∈ Rn×p × Rn satisfies the No-Clipping Condi-
tion (Condition 2.4) with values (σ, η, c0, T ).

Fix nonnegative real numbers γ and λ. Consider running
Algorithm 1, i.e., A(X,y; γ, λ, η, T, 0) with θ0 = 0 the
initial point. Assume γ ≥ 4c20σ

√
p. For any β ∈ (0, 1),

if γ
ηλ ≥ 64c20p

√
ln 2nT/β, then with probability 1 − β

Algorithm 1 clips no gradients.

2.4. Analyzing Algorithm 1

Recall the distributional setting we discussed in the intro-
duction: there is some true parameter θ∗ with ‖θ∗‖ ≤ 1
and observations are generated by drawing covariate xi ∼
N (0, I) and setting response yi ← x†iθ

∗ + ξi for ξi ∼
N (0, σ2). In this section, we first show that data sets gen-
erated in this way satisfy the No-Clipping Condition with
high probability. This implies that Algorithm 1, with high
probability, does not clip any gradients.
Lemma 2.6. Fix data set size n and data dimension p ≥ 2.
Fix θ∗ with ‖θ∗‖ ≤ 1, let covariates xi be drawn i.i.d. from
N (0, I), and responses yi = x†iθ

∗ + ξi for ξi ∼ N (0, σ2).
Fix the step size η = 1

4 and a natural number T . There
exists a constant c such that, for any β ∈ (0, 1), if n ≥
c(p + ln 1/β) then with probability at least 1 − β data set
(X, y) satisfies the No-Clipping Condition (Condition 2.4)
with c0 = 12 ln1.5(5nT/β).

We combine this statement with Lemma 2.5, which says
that clipping is unlikely under the No-Clipping Condition,
and Lemma 2.3, which characterizes the output distribu-
tion of DP-GD when there is no clipping. We prove this
theorem in Appendix C.
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Theorem 2.7 (Main Accuracy Claim). Fix θ∗ ∈ Rp with
p ≥ 2 and ‖θ∗‖ ≤ 1, let n covariates xi be drawn
i.i.d. from N (0, I) and responses yi = x†iθ

∗ + ξi for
ξi ∼ N (0, σ2) for some fixed σ.

Fix ρ ≥ 0 and β ∈ (0, 1). Consider running Algorithm 1,
i.e.,A(X,y; γ, λ, η, T, 0) with step size η = 1

4 , initial point
θ0 = 0, and, for some absolute constant c,

T = c log
nρ

p
, λ2 =

2Tγ2

ρn2
, and

γ = cσ
√
p log3

(
nT

β

)
.

Recall θ̂ the OLS solution. If n ≥ c
(
p+
√
p log4 ρ/β

)
,

then with probability at least 1 − β Algorithm 1 returns a
final iterate θT such that, for some constant c′,

‖θ̂ − θT ‖ ≤ c′ ln4(nρ/βp) · σp√
ρn
.

Recall from Lemma 2.1 that this setting of λ is exactly what
we need to achieve ρ-zCDP for Algorithm 1.

2.5. Characterizing the Effect of Clipping

In Sections 2 and 3.2, we analyze DP-GD when there is
no clipping. However, the optimization problem remains
well-specified, even under significant clipping

Song et al. (2020) showed that for generalized linear losses,
the post-clipping gradients correspond to a different convex
loss, which for linear regression relates to the well-studied
Huber loss. For parameter B > 0, define

`B(θ;x, y) =

{
1
2 (yi − 〈xi, θ〉)2, if |yi − 〈xi, θ〉| ≤ B
B
(
|yi − 〈xi, θ〉| − 1

2B
)
, otherwise.

In our setting, the individual loss 1
2 (yi−〈xi, θ〉)2 after clip-

ping corresponds to the Huber loss with per-datum parame-
ter Bi = γ

‖xi‖ . Compare with Avella-Medina et al. (2021),
who perform private gradient descent with a loss similar to
`B(θ;x, y) ·min

{
1, 2
‖x‖2

}
for fixed B.

3. Constructing Confidence Intervals
In this section we present three methods for per-coordinate
confidence intervals and provide coverage guarantees for
two.

3.1. Methods for Confidence Intervals

Each construction creates a list θ(1), . . . , θ(m) of parameter
estimates and computes the sample mean θ̄ = 1

m

∑m
`=1 θ

(`)

and, for every j ∈ [p], the sample variance σ̂2
j =

1
m−1

∑m
`=1(θ

(`)
j − θ̄j)

2. The confidence interval is con-
structed as if the iterates came from a Gaussian distribution
with unknown mean and variance:

θ̄j ± tα/2,m−1 ·
σ̂j√
m
,

where tα,m−1 denotes the α-th percentile of the Student’s
t distribution with m− 1 degrees of freedom.

The methods, then, differ in how they produce the esti-
mates.

Independent Runs We run Algorithm 1 m times inde-
pendently and take θ(`) to be the final iterate of the `-th
run.

This estimator is simple and, since the estimates are inde-
pendent, easy to analyze. However, this method requires
paying for m burn-in periods.

Checkpoints We run Algorithm 1 for mT time steps and
take θ(`) to be the `T -th iterate.

Our theorems show that if the checkpoints are sufficiently
separated then they are essentially independent. While this
approach pays the burn-in cost only once, it disregards in-
formation by using only a subset of the iterates.

All Iterates/Batched Means The empirical variance of
batched means from a single run of mT time steps. For-
mally, we separate the iterates of Algorithm 1 into m dis-
joint batches each of length T and set θ(`) to the empirical
mean of the `-th batch.

This approach may make better use of the privacy budget
but poses practical challenges. The batch size needs to be
large relative to the autocorrelation, but we also require sev-
eral batches (as a rule of thumb, at least 10).

In the next subsection, we provide formal guarantees for
the first two methods. We note that our experiments use
methods that are slightly more practical but less amenable
to analysis, for instance replacing “final iterate” with an
average of the final few iterates. For further discussion of
these details, see Section 4 and Appendix B.

3.2. Formal Guarantees

To highlight the relevant aspects, in this section we state
guarantees for DP-GD without clipping and under the as-
sumption that the input data satisfies the No-Clipping Con-
dition. We can replace these restrictions with a distribu-
tional assumption, as in Section 2.
Theorem 3.1 (Coverage). Fix a data set (X,y), step size
η, and noise scale λ. Fix α, β ∈ (0, 1) and integers m,
T . Assume the data satisfies Condition 2.4 with values
(σ, η, c0,mT ). Let θ̂ be the OLS solution.
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There exists a constant c such that, if T ≥ c log σmp
ηλβ , then

Equation (3.1) is a 1 − α − β confidence interval3 for θ̂j
when the parameter estimates {θ(`)}m`=1 are produced in
either of the following ways:

• Independent Runs: repeat DP-GD m times indepen-
dently, each with no clipping and T time steps. Let
θ(`) be the final iterate of each run.

• Checkpoints: run DP-GD with no clipping for mT
steps. Let θ(`) be the `T -th iterate.

4. Experiments
We perform experiments to confirm and complement our
theoretical results. Unless otherwise mentioned, we gen-
erate data in p = 10 dimensions by drawing θ∗ randomly
from the unit sphere, xi fromN (0, I), and yi = x†iθ

∗ + ξi,
where ξi ∼ N (0, 1). The hyperparameters for gradient
descent are: clipping threshold γ = 5

√
p, number of steps

T = 10, step size η = 1
3 , and privacy parameters ρ = 0.015

unless otherwise stated.4 We include more details and re-
sults in Appendix B.

4.1. Error, Dimension, and a Bias-Variance Tradeoff

We highlight how our algorithm’s error depends linearly
on p, in contrast to standard approaches that require p3/2

examples. Prior algorithms with formal accuracy analysis
demonstrating this linear dependence limit experiments to
modest (p ≈ 10) dimensions (Varshney et al., 2022; Liu
et al., 2023). We show that our approach can achieve pri-
vacy “for free:” at reasonable sample sizes, the error from
sampling dominates the error due to privacy.

We first explore the accuracy of DP-GD and how it de-
pends on the dimension and sample size. Figure 1, pre-
sented in the introduction, shows the “iso-accuracy” lines
of DP-GD: as the dimension grows, how many samples are
needed to maintain a fixed level of error? These lines rep-
resent expected `2 error equal to 1

2 ; in our setting, an er-
ror of one is trivial. (See Appendix B for further details.)
These results demonstrate that the error of DP-GD is con-
stant when p/n is constant. We compare with OLS and
the well-known AdaSSP algorithm (Wang, 2018). In con-
trast to the other two approaches, the number of samples
AdaSSP needs grows with p3/2 in this plot.

Figure 2 fixes the dimension and allows the sample size
to grow. We see that the error due to privacy noise (i.e.,
‖θT − θ̂‖) falls off with 1/n, while the error due to sam-

3That is, with probability at least 1− α− β the interval con-
tains the parameter of interest.

4This corresponds to an (ε, δ)-DP guarantee with ε = 0.925
and δ = 10−6, see Claim A.6.

Figure 2: The “cost of privacy:” fixing the dimension and
allowing the sample size to grow, we see how the error due
to sampling dominates the error from privacy. Each point
is averaged over 100 independent trials.

Figure 3: We see the fraction of gradients clipped over a
grid on dimension and clipping threshold. As the theory
predicts, we see low clipping with γ = Ω(

√
p).

pling (i.e., ‖θ̂− θ∗‖) falls off with 1/
√
n. At larger sample

sizes, the non-private error dominates. This experiment has
a larger privacy budget to highlight the effect; see Figure 8
in Appendix B for additional results.

The clipping threshold in these experiments was fixed to
γ = 5

√
p, as guided by our theory that no clipping oc-

curs when γ &
√
p. Figure 3 validates this theoretical re-

sult across dimensions: as the dimension grows, clipping
thresholds much larger than

√
p induce negligible clipping.

We then move deliberately beyond this no-clipping regime
in Figure 4, revealing a bias-variance tradeoff and high-
lighting how the lowest error may occur under significant
clipping.
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Figure 4: We plot the error, (squared) bias, and variance
of DP-GD as we change the clipping threshold. The nu-
meric labels give the percentage of all gradients clipped.
Low thresholds cause high clipping and bias, while high
thresholds have little clipping but high variance.

4.2. Confidence Intervals

Finally, we evaluate the three confidence interval construc-
tions from Section 3, comparing their empirical coverage
and interval width. We vary the total number of gradient it-
erations to clarify the regimes where each method performs
well. Using the notation from Section 3, we use m = 10
runs/checkpoints/batches and vary T . We place the total
number of gradient updates (i.e., the product mT ) on the x
axis. For more details, see Appendix B.

Figure 5 shows the constructions’ coverage properties as a
function of the total number of gradients. Figure 6 shows
the average length of the confidence intervals. We see that
all produce valid confidence intervals but the relative ef-
ficiency differs. With fewer iterations the burn-in period
is proportionally longer, so running the algorithm multi-
ple times yields wider confidence intervals. In contrast,
running the algorithm longer induces more auto-correlation
between the iterates which means a larger batch-size is re-
quired to obtain valid intervals from the batched means ap-
proach. The checkpoints approach has a poor dependence
on the number of iterations since a large fraction are disre-
garded.
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Figure 5: Average empirical coverage across co-ordinates
over 100 algorithm runs. Error bars reflect the 95-
percentiles of coverage across coordinates.
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Figure 6: Average confidence interval length for each con-
struction, as the total number of gradient iterations in-
creases. Error bars reflect 95-th percentiles. For compari-
son, the dashed line shows the width of standard nonprivate
OLS confidence intervals for the population quantity.
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A. Preliminaries

Table 1: A high-level view of various approaches for private linear regression and their dimension-dependence in the
setting of Definition 1.1.

Approach Examples Samples Required

SSP Sheffet (2017); Wang (2018) Ω(p3/2)

HPTR (exp. time) Liu et al. (2022) Ω(p)

Sample-and-Aggregate Knop & Steinke (2022); Amin et al. (2022) Ω(p2)

Gradient Descent (DP-GD) Bassily et al. (2014); Cai et al. (2021) Ω(p3/2)

DP-GD w/Adaptive Clipping Varshney et al. (2022); Liu et al. (2023) Ω(p)

Gradient Descent (DP-GD) Our Work Ω(p)

A.1. Differential Privacy

We present definitions and basic facts about differential privacy.

Definition A.1 (Approximate Differential Privacy). For ε ≥ 1, and δ ∈ (0, 1), a mechanism A mechanism M : Xn → Y
satisfies (ε, δ)-differential privacy if, for all x, x′ ∈ Xn that differ in one entry and all measurable events E ⊆ Y ,

Pr[M(x) ∈ E] ≤ eεPr[M(x′) ∈ E] + δ.

The guarantees we present in this work are in terms of (zero) concentrated differential privacy (Dwork & Rothblum, 2016;
Bun & Steinke, 2016), a variant of differential privacy that allows us to cleanly express the privacy guarantees of DP-GD.

Definition A.2 (ρ-zCDP). A mechanism M : Xn → Y satisfies ρ-zero concentrated differential privacy (ρ-zCDP) if for
all x, x′ ∈ X that differ in one entry and all α ∈ (1,∞), we have Dα(M(x)‖M(x′)) ≤ ρα.

Definition A.3 (Rényi Divergence). For two distributions p, w and α ≥ 1, the α-Rényi divergence is Dα(p‖q) =
1

α−1 logEy∼q

[(
p(y)
q(y)

)α]
.

The privacy guarantees for DP-GD follow composition plus the privacy guarantee for the standard multivariate Gaussian
mechanism. zCDP allows us to cleanly express both.

Claim A.4 (Composition). Suppose mechanism M satisfies ρ-zCDP and mechanism M ′ satisfies ρ′-zCDP. Then (M,M ′)
satisfies (ρ+ ρ′)-zCDP.

Claim A.5 (Gaussian Mechanism). Let q : Xn → Y satisfy, for all x, x′ ∈ Xn that differ in one entry, ‖q(x)− q(x′)‖2 ≤
∆. Then, for any λ > 0, the mechanism M(x) = N (q(x), λ2I) is ∆2

2λ2 -zCDP.

We apply Claim A.5 to the average of gradients, where each gradient norm is clipped to γ. The straightforward sensitivity
analysis shows that we can set ∆ = 2γ

n .

A mechanism satisfying ρ-zCDP also satisfies (ε, δ)-differential privacy. In fact, it provides a continuum of such guaran-
tees: one for every δ ∈ (0, 1).

Claim A.6. If M satisfies ρ-zCDP, then M satisfies (ρ+ 2
√
ρ log 1/δ, δ)-differential privacy for any δ > 0.

A.2. Linear Algebra

Fact A.7 (Matrix Geometric Series). Let T be an invertible matrix. Then
∑n−1
j=0 Tn = (I−T)−1(I−Tn).

A.3. Concentration Inequalities

Claim A.8. If x ∼ N (0, σ2) for some σ2 > 0, then Pr
[
|x| ≥ σ

√
2 ln 2/β

]
≤ β.
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Claim A.9. Fix the number of dimensions p and a PSD matrix Σ. Let x ∼ N (0,Σ). For any β ∈ (0, 1), we have

Pr
[
‖x‖ ≥

√
tr(Σ) +

√
2‖Σ‖ log 1/β

]
≤ β.

Claim A.10 (Concentration of Covariance). Fix β ∈ (0, 1). Draw independent x1, . . . ,xn ∼ N (0, I) and let Z =
1
n

∑n
i=1 xix

†
i . There exists a constant c such that, if n ≥ c(p + log 1/β), then with probability at least 1 − β we have

1
2 I � Z � 2I.
Lemma A.11. Let X be a uniform distribution on the unit sphere Sp−1, and z be any fixed unit vector. Then we know the
inner product 〈X, z〉 is sub-exponential. Specifically, we have

Pr[|〈X, z〉| ≥ t] ≤ e−
√

p−1

4 t.

The classic analysis of least squares under fixed design establishes the convergence of the OLS estimator to the true
parameter. A nearly identical result holds under random design. We state the result for the family of distributions we
consider, but (Hsu et al., 2011) prove it for a much broader family of distributions.

Claim A.12 (Theorem 1 of (Hsu et al., 2011)). Let θ∗ satisfy ‖θ∗‖ ≤ 1. Draw covariates x1, . . . ,xn i.i.d. from N (0, Ip)
and let yi = x†iθ

∗ + ξi for ξi ∼ N (0, σ2). Let θ̂ be the OLS estimate. There exists constants c, c′ such that, if n ≥
c(p+ ln 1/β), then with probability at least 1− β we have

‖θ∗ − θ̂‖2 ≤ c′σ2 (p+ ln 1/β)

n
.

B. Experimental Details and Additional Results
Details on Iso-Accuracy Plots Figures 1 and 9 show the number of samples needed to achieve expected error 1

2 . For-
mally, a dot for one algorithm (e.g., DP-GD) at (p∗, n∗) means that we ran m = 50 independent trials in p∗ dimensions
with n∗ examples and observed that the average error was approximately one half:∣∣∣∣∣12 − 1

m

m∑
i=1

‖θ∗i − θ̃i‖2
∣∣∣∣∣ ≤ 1

100
.

Here θ∗i ∈ Rp represents the true parameter in the i-th trial, and θ̃i the respective estimate produced by DP-GD. In these
experiments θ∗ is chosen randomly from the unit ball, so an error of one is trivial. For each value of p and each algorithm,
we find the corresponding value of n via binary search.

Details on Confidence Interval Experiments Our experiments hold fixed the burn-in period to the first 20 iterates. We
set m, the number of algorithm runs/checkpoints/batches to 10 while varying the total number of gradient iterations. (This
is not always possible for multiple runs while holding fixed the total number of iterations, in which case we omit this
approach from the figures.) We vary the total number of iterations in this way to clarify the regimes where each method
performs well.

In Figure 7 we show how the rate of gradient clipping impacts `2-error, and how this interacts with the total number of
gradient iterations. One key insight is that error stays relatively low even when clipping 50% of all gradients. As the
number of gradient iterations grows, the tolerance to gradient clipping also seems to increase. Although our theoretical
accuracy analysis proceeds by showing that no gradients are clipped, these experiments demonstrate that this stringent
requirement is not necessary in practice.

Experiments with Anisotropic Data Our primary experiments are conducted on data sets where the covariates are drawn
from a standard multivariate Gaussian distribution. We now move beyond this isotropic setting. In these experiments, for
each dataset we first draw a random covariance matrix in the following way. We generate a random diagonal matrix Λ with
Λ1,1 = 2, Λ2,2 = 1, and, for all 3 ≤ i ≤ p, Λi,i ∼ Unif([1, 2]) independently. We then set the covariance Σ = UΛUT ,
where U is a uniformly random rotation matrix. The covariates are then sampled i.i.d. from N (0,Σ); the remainder of the
process is identical to the previous experiments.
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Figure 7: The estimation error plotted against the proportion of gradients clipped. The right-hand side corresponds to
bias from overly aggressive clipping. The left-hand side corresponds to variance from overly conservative clipping, which
causes higher levels of noise for privacy.

(a) Experiment with p = 10 (b) Experiment with p = 100

Figure 8: As in Figure 2, we fix the dimension and let the sample size grow, seeing that the sampling error dominates the
noise from privacy at reasonable sample sizes. These experiments are conducted with ρ = 0.015, our standard setting. (a)
uses p = 10 and repeats each trial 100 times. (b) uses p = 100 and repeats each trial 20 times, to reduce running time.

C. Deferred Proofs
C.1. Clipping, Coupling, and Accuracy

Before proving Lemma 2.2, we define coupling and show how it relates to total variation distance.

Definition C.1 (Coupling). Let p and q be distributions over a space X . A pair of random variables (X,Y ) is called a
coupling of (p, q) if, for all x ∈ X , Pr[X = x] = p(x) and Pr[Y = x] = q(x).

Note that X and Y will not, in general, be independent.

Claim C.2 (Coupling and TV Distance). Let (X,Y ) be a coupling of (p, q). Then TV (p, q) ≤ Pr[X 6= Y ].

Lemma C.3 (Restatement of Lemma 2.2). Fix data set X,y and hyperparameters γ, λ, η, T , and θ0. Define random
variables Oγ and O∞ as

Oγ = A(X,y; γ, λ, η, T, θ0)

O∞ = A(X,y;∞, λ, η, T, θ0).

If Algorithm 1 on input (X,y; γ, λ, η, T, θ0) clips nothing with probability 1− β, then TV (Oγ ,O∞) ≤ β.
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Figure 9: We reproduce Figure 1 with anisotropic data. We plot iso-accuracy lines as p grows. Run on data from a well-
specified linear model, both DP-GD and OLS require a number of samples that grow linearly with the dimension. We
compare with AdaSSP (Wang, 2018), a popular algorithm that requires n = Ω(p3/2) examples.
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Figure 10: We reproduce Figure 5 with anisotropic data. Average empirical coverage across co-ordinates over 100 algo-
rithm runs. Error bars reflect the 95-percentiles of coverage across coordinates.

Proof. We use the coupling induced by sharing randomness across the execution of the two algorithms. Let z1, . . . , zT be
drawn i.i.d. from N (0, λ2I). Note that this is the only randomness used by either algorithm.

When the zi draws cause A(X,y; γ, λ, η, T ) to not clip, the two algorithms return the same output. Thus the probability
two runs return different outputs is at most β, which yields our bound on the total variation distance.

We now prove our statement about the distribution of DP-GD without clipping. The statement we prove also establishes a
slightly more complicated expression for the noise.

Lemma C.4 (Expanded Statement of Lemma 2.3). Fix a data set (X,y) and step size η, noise scale λ, number of iterations
T , and initial vector θ0. Define matrices Σ = 1

nX
†X and D = (I − ηΣ)2; assume both are invertible. Let θ̂ =

(X†X)−1X†y be the least squares solution. Consider A(X,y;∞, λ, η, T, θ0), i.e., Algorithm 1 without clipping. For
any t ∈ [T ], we have

θt = θ̂ + (I− ηΣ)t(θ0 − θ̂) + η

t∑
i=1

(I− ηΣ)i−1zt−i.

This is equal in distribution to

θt = θ̂ + (I− ηΣ)t(θ0 − θ̂) + η · z′t

for z′t ∼ N (0, λ2A(t)) with A(t) = (I−D)−1(I−Dt).
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Figure 11: We reproduce Figure 6 with anisotropic data. Average confidence interval length across co-ordinates for each
confidence interval algorithm described in Section 3 as the total number of gradient iterations increases. Error bar reflect
the 95-percentiles of coordinates CI length.

Proof. Algorithm 1’s update step looks like

θt+1 ← θt − η · ḡt + η · zt,

where zt ∼ N (0, λ2I). Since there is no clipping, we have a closed form for ḡt:

ḡt =
1

n

n∑
i=1

−xi(yi − x†iθt)

=
1

n

n∑
i=1

xix
†
iθt −

1

n

n∑
i=1

xiyi

=
1

n
X†Xθt −

1

n
X†y.

We simplify further and apply the fact that θ̂ = (X†X)−1X†y. We also plug in Σ = 1
nX
†X:

ḡt =
1

n
X†Xθt −

1

n
X†Xθ̂ = Σθt − Σθ̂.

Plugging this into Equation (C.1), the update formula, we have

θt+1 ← η · Σθ̂ + (I− ηΣ)θt + η · zt.

Solving the recursion, we arrive at a formula for θt+1:

θt+1 = (I− ηΣ)tθ0 +

t∑
i=1

(I− ηΣ)i−1ηΣθ̂ +

t∑
i=1

(I− ηΣ)i−1η · zt−i.

To simplify the second term in Equation (C.1), apply the formula for matrix geometric series (Fact A.7):

t∑
i=1

(I− ηΣ)i−1 = (ηΣ)−1(I− (I− ηΣ)t).

Thus the second term in Equation (C.1) is (I − (I − ηΣ)t)θ̂ = θ̂ − (I − ηΣ)tθ̂. The first two terms together are θ̂ + (I −
ηΣ)t(θ0 − θ̂). This establishes the first part of the claim.
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The final term in Equation (C.1), corresponding to the noise for privacy, is slightly more involved. We use the independence
of the noise and the fact that Gaussianity is preserved under summation. Continuing from the third term of Equation (C.1)
and abusing notation to substitute distributions for random variables, we have

t∑
i=1

(I− ηΣ)i−1η · zt−i

=

t∑
i=1

(I− ηΣ)i−1η · N (0, λ2I)

= ηλ

t∑
i=1

N (0, (I− ηΣ)2(i−1))

= ηλ · N
(

0,

t∑
i=1

(I− ηΣ)2(i−1)

)
= ηλ · N

(
0, (I− (I− ηΣ)2)−1(I− (I− ηΣ)2t)

)
,

applying the formula for matrix geometric series (Fact A.7) in the last line. This concludes the proof.

Lemma C.5 (Restatement of Lemma 2.5). Fix nonnegative real numbers σ, η, and c0. Fix natural number T . Assume data
set (X,y) ∈ Rn×p × Rn satisfies the No-Clipping Condition (Condition 2.4) with values (σ, η, c0, T ).

Fix nonnegative real numbers γ and λ. Consider running Algorithm 1, i.e., A(X,y; γ, λ, η, T, 0) with θ0 = 0 the initial
point. Assume γ ≥ 4c20σ

√
p. For any β ∈ (0, 1), if γ

ηλ ≥ 64c20p
√

ln 2nT/β, then with probability 1− β Algorithm 1 clips
no gradients.

Proof. We prove the claim by strong induction, relying on items (i-v) of the No-Clipping Condition (Condition 2.4). Before
beginning the induction, we prove a high-probability statement about the noise added for privacy.

Setup: Noise for Privacy Recall that, at time t, we add independent noise zt ∼ N (0, λ2I). We show that, with probability
at least 1− β, we have for all i ∈ [n] and t1, t2 ∈ [T ]

|x†i (I− ηΣ)t1zt2 | ≤ 2c0λ
√
p ·
(

7

8

)t1 √
ln 2nT/β.

For any fixed covariates, we have

x†i (I− ηΣ)t1zt2 ∼ λ · N
(
0, ‖(I− ηΣ)t1xi‖2

)
.

With probability at least 1− β (simultaneously over all i, t1, and t2) we have

|x†i (I− ηΣ)t1zt2 | ≤ 2λ‖(I− ηΣ)t1xi‖ ·
√

ln 2nT/β.

This holds independently of the value of the norm, so Conditions (i) and (ii) (and Cauchy–Schwarz repeatedly) proves
Equation (C.1).

We now proceed to the induction. Let gi,t = −xi(yi−x†iθt) be the gradient of the loss on point i with respect to parameter
θt. Observe that ‖gi,t‖ = |yi − x†iθt| · ‖xi‖ and, furthermore, that Condition (ii) promises ‖xi‖ ≤ c0

√
p. Thus, to show

that the norm of the gradient is less than γ we will show that the absolute residual is less than γ
c0
√
p .

Base Case: for t = 1, we start from θ0 = 0, which means our residual is just |yi|. By the triangle inequality and
Conditions (iii) and (iv), we have

|yi| = |yi − x†iθ
∗ + x†iθ

∗| ≤ |yi − x†iθ
∗|+ |x†iθ∗|

≤ c0σ + c0.

This is less than γ
c0
√
p by assumption.
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Induction Step: Consider time t+ 1 and assume that no gradients have been clipped from the start through time t. From
Lemma C.4, we have a formula for the value of θt:

θt = θ̂ + (I− ηΣ)t(θ0 − θ̂) + ηz′t.

Plugging this equation into the formula for the residual at time t, we have (after adding and subtracting identical terms)

|yi − x†iθt| = |yi − x†iθt + x†iθ − x†iθ|
= |x†i (θ − θt) + (yi − x†iθ)|
= |x†i

(
θ − θ̂ − (I− ηΣ)t(θ0 − θ̂)− ηz′t

)
+ (yi − x†iθ)|

= |x†i
(
θ − θ̂ − (I− ηΣ)t(θ0 − θ̂ + θ − θ)− ηz′t

)
+ (yi − x†iθ)|,

where in the final line we added and subtracted θ. We distribute terms and apply the triangle inequality, arriving at

|yi − x†iθt| ≤ |x†i
(
I− (I− ηΣ)t

)
(θ − θ̂)|︸ ︷︷ ︸

(i)

+ |x†i (I− ηΣ)t(θ0 − θ)|︸ ︷︷ ︸
(ii)

+ |η · x†iz′t|︸ ︷︷ ︸
(iii)

+ |yi − x†iθ|︸ ︷︷ ︸
(iv)

.

We will show that each of the four terms in Equation (C.1) is at most γ
4 · 1

c0
√
p with high probability. Combined with

Condition (ii), this establishes that ‖gi,t‖ = |yi − x†iθt| · ‖xi‖ ≤ γ, as we desire.

Term (i): We decompose the vector (θ − θ̂) (see Hsu et al., 2011, Lemma 1). As in Condition (v), define matrix At =
(I− (I− ηΣ)t)Σ−1. We have

|x†i
(
I− (I− ηΣ)t

)
(θ − θ̂)| = |x†i

(
I− (I− ηΣ)t

)
· 1

n

∑
j

Σ−1(yj − x†jθ)xj |

=
1

n
|
∑
j

(yj − x†jθ) · x†iAtxj |

≤ 1

n
· c0σ
√
np,

applying Condition (v) in the last line. Since n ≥ p by assumption, term (i) is at most c0σ, which is less than γ
4 · 1

c0
√
p by

assumption.

Term (ii): Since θ0 = 0, Condition (iv) directly says that term (ii) is at most c0, which is less than γ
4 · 1

c0
√
p by assumption.

Term (iii): Push x†i inside the sum and apply the triangle inequality:

|η · x†iZt| = η · |
t∑
`=1

x†i (I− ηΣ)`−1zt−`|

≤ η
t∑
`=1

|x†i (I− ηΣ)`−1zt−`|.

By Equation (C.1) (which relies on Conditions (i) and (ii)), we have an upper bound on each of these terms that holds with
probability at least 1− β. Plugging this in, we have

‖η · x†iz′t‖ ≤ η
t∑
`=1

2c0λ
√
p (7/8)

`−1
√

ln 2nT/β

≤ 2c0ηλ
√
p
√

ln 2nT/β

t∑
`=1

(7/8)
`−1

.
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where in the second line we have pulled out the terms that do not depend on `. Because it is a geometric series, the sum is
at most 8. Rearranging, we see that term (iii) is at most γ4 · 1

c0
√
p when

γ

ηλ
≥ 64c20p

√
ln 2nT/β,

which is exactly what we assumed.

Term (iv): Condition (iii) says that term (iv) is at most σc0, which is less than γ
4 · 1

c0
√
p by assumption.

Lemma C.6. Let x1, . . . ,xn be drawn i.i.d. from N (0, I). Let η be a real number and t an integer. Let Σ = 1
n

∑
i xix

†
i .

For any i, the distribution of (I− ηΣ)txi is spherically symmetric.

Proof. Let v be a vector and Π an orthogonal rotation matrix. We will show that

Pr
[
(I− ηΣ)txi = v

]
= Pr

[
(I− ηΣ)txi = Πv

]
,

using the spherical symmetry of the covariates’ distribution. We write out

Pr
[
(I− ηΣ)txi = v

]
= Pr

[
Π(I− ηΣ)txi = Πv

]
= Pr [Π(I− ηΣ) · · · (I− ηΣ)xi = Πv]

= Pr
[
Π
(
Π†Π

)
(I− ηΣ)(Π†Π) · · · (I− ηΣ)(Π†Π)xi = Πv

]
,

inserting I = Π†Π between each term. We cancel and rearrange:

Pr
[
(I− ηΣ)txi = v

]
= Pr

[
(I− η(ΠΣΠ†)) · · · (I− η(ΠΣΠ†))(Πxi) = Πv

]
.

Of course, we have ΠΣΠ† = Π
(

1
nxix

†
i

)
Π† = 1

n

∑
i(Πxi)(Πxi)

†. Therefore, by the rotation invariance of the Gaussian

distribution, we arrive at Pr [(I− ηΣ)txi = v] = Pr [(I− ηΣ)txi = Πv].

Lemma C.7 (Restatement of Lemma 2.6). Fix data set size n and data dimension p ≥ 2. Fix θ∗ with ‖θ∗‖ ≤ 1, let
covariates xi be drawn i.i.d. from N (0, I), and responses yi = x†iθ

∗ + ξi for ξi ∼ N (0, σ2). Fix the step size η = 1
4 and

a natural number T . There exists a constant c such that, for any β ∈ (0, 1), if n ≥ c(p + ln 1/β) then with probability at
least 1− β data set (X, y) satisfies the No-Clipping Condition (Condition 2.4) with c0 = 12 ln1.5(5nT/β).

Proof. the No-Clipping Condition has five sub-conditions. We prove each holds with probability at least 1− β/5; a union
bound finishes the proof. To establish Conditions (iii), (iv), and (v), we take θ ← θ∗.

Condition (i) By Claim A.10, with probability at least 1 − β/5 we have 1
2 I � Σ � 2I. Applying η = 1/4 establishes

Condition (i).

Condition (ii) By Claim A.9, for any fixed xi we have ‖xi‖ ≤ √p +
√

2 ln 5n/β with probability at least 1 − β/(5n).
Let c1 = (1 +

√
2/p ln 5n/β), so we have ‖xi‖ ≤ c1√p; this is at most 3

√
ln 5n/β and, furthermore, no greater than c0.

A union bound over all n covariates means this condition holds with probability at least 1− β/5.

Condition (iii) Since ξi ∼ N (0, σ2), we apply Claim A.8: with probability at least 1 − β/5, for all i ∈ [n] we have
|ξi| ≤ σ

√
2 ln 10n/β.

Condition (iv) Fix i and t. Observe that the distribution of (I − ηΣ)txi is spherically symmetric and independent of θ∗.
(Lemma C.6, below, contains a rigorous proof of this statement.) Thus we can write it (I− ηΣ)txi = λi,tui,t for λi,t ∈ R
and ui,t ∈ Sp−1. By Lemma A.11, then, with probability at least 1− β/(5nT ) we have

|x†i (I− ηΣ)tθ∗| = λi,t · |u†i,tθ∗|

≤ λi,t ·
4 ln 5nT/β√

p− 1
.

Conditions (i) and (ii) imply λi,t = ‖(I− η)txi‖ ≤ c0√p, so we arrive at |x†i (I− ηΣ)tθ∗| ≤ 4c0 ln 5nT/β
1−p−1/2 , which is at most

16c0 ln 5nT/β for p ≥ 2. A union bound over all n, T implies this holds with probability at least 1− β/5.
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Condition (v) We want to bound |∑j(yj − x†jθ
∗) · x†iAtxj | for At = (I− (I− ηΣ)t)Σ−1. Recall that ξj = yi − x†jθ

∗ by
definition. For any fixed value of the covariates, the variances sum: we have

∑
j

ξj · x†iAtxj ∼ N

0, σ2
∑
j

(x†iAtxj)
2

 .

Developing the square, we have ∑
j

(x†iAtxj)
2 =

∑
j

x†iAtxjx
†
jA

T
t xi

= n · x†iAt

 1

n

∑
j

xjx
†
j

ATt xi

= n · x†iAtΣATt xi.

Plugging in the definition of At, we cancel and apply Cauchy–Schwarz:∑
j

(x†iAtxj)
2 = n · x†i (I− (I− ηΣ)t)Σ−1ΣΣ−1(I− (I− ηΣ)t)xi

= n · x†i (I− (I− ηΣ)t)Σ−1(I− (I− ηΣ)t)xi

≤ n · ‖(I− (I− ηΣ)t)Σ−1(I− (I− ηΣ)t)‖ · ‖xi‖2

≤ n · ‖I− (I− ηΣ)t)‖2 · ‖Σ−1‖ · ‖xi‖2.

Our previous assumptions imply that ‖I− (I− ηΣ)t‖ ≤ ‖I‖+ ‖I− ηΣ‖ ≤ 2 and ‖Σ−1‖ ≤ 2, so we arrive at∑
j

(x†iAtxj)
2 ≤ 8c21np,

plugging in ‖xi‖ ≤ c1√p from Condition (ii).

Thus, with probability at least 1− β/5, for all i and t we have

|
∑
j

ξj · x†iAtxj | ≤
√
σ2
∑
j

(x†iAtxj)
2 ·
√

2 ln 5nT/β

≤
√
σ28c21np ·

√
2 ln 5nT/β.

Plugging in c1 ≤ 3
√

ln 5n/β concludes the proof.

Theorem C.8 (Restatement of Theorem 2.7, Main Accuracy Claim). Fix θ∗ ∈ Rp with p ≥ 2 and ‖θ∗‖ ≤ 1, let n
covariates xi be drawn i.i.d. from N (0, I) and responses yi = x†iθ

∗ + ξi for ξi ∼ N (0, σ2) for some fixed σ.

Fix ρ ≥ 0 and β ∈ (0, 1). Consider running Algorithm 1, i.e., A(X,y; γ, λ, η, T, 0) with step size η = 1
4 , initial point

θ0 = 0, and, for some absolute constant c,

T = c log
nρ

p
, λ2 =

2Tγ2

ρn2
, and

γ = cσ
√
p log3

(
nT

β

)
.

Recall θ̂ the OLS solution. If n ≥ c
(
p+
√
p log4 ρ/β

)
, then with probability at least 1 − β Algorithm 1 returns a final

iterate θT such that, for some constant c′,

‖θ̂ − θT ‖ ≤ c′ ln4(nρ/βp) · σp√
ρn
.
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Proof. By Lemma 2.6, with probability at least 1 − β/4 we have that data set (X,y) satisfies the No-Clipping Condition
with c0 = 12 ln1.5(20nT/β). This uses the assumption that n ≥ c(p+ ln 1/β).

Under this condition, Lemma 2.5 says that Algorithm 1 does not clip with probability at least 1 − β/4. This uses the
assumptions that

γ ≥ 4c20σ
√
p = 576 ln3(20nT/β)× σ√p

γ

ηλ
≥ 64c20p

√
ln(2nT/β).

The first is satisfied by construction. To see that the second is satisfied, plug in η = 1
4 , λ =

√
2Tγ√
ρn , and T = c log nρ

p to
turn this into a lower bound on n: omitting constants, it suffices to take

n &
√
p log4(nρ/βp).

This is satisfied when n ≥ c√p log4(ρ/β) for some sufficiently large constant c.

This implies, via Lemma 2.2, that the total variation distance between the output of Algorithm 1 and the same algorithm
without clipping (i.e., γ = +∞) is at most β/2. Thus, if we prove an error bound for Algorithm 1 with γ =∞ that holds
with probability at least 1− β/2, then the same guarantee holds for the clipped version of Algorithm 1 with probability at
least 1− β.

Lemma 2.3 gives us the explicit distribution for the algorithm’s final iterate θT . We take the `2 norm and apply the triangle
inequality:

‖θT − θ̂‖2 ≤ ‖(I− ηΣ)T θ̂‖2 + ‖η · z′T ‖2.

Here z′T is a noise term: defining D = (I− ηΣ)2 as in Lemma 2.3, we have z′T ∼ N (0, λ2A(T )) for

A = (I−D)−1(I−DT ).

The No-Clipping Condition gives us upper and lower bounds on D: in particular, we have ‖A‖ ≤ 16. Thus, with
probability at least 1− β/4, we have ‖η · z′T ‖ ≤ ηλ

√
32p ln 4/β.

The second term in Equation (C.1) decays exponentially with T . By Cauchy–Schwarz, it is at most ‖(I− ηΣ)T ‖ · ‖θ̂‖ ≤
(7/8)T ‖θ̂‖, applying Condition 2.4 to bound the operator norm. We bound the norm of θ̂ based on its distance to θ∗:

‖θ̂‖ = ‖θ̂ − θ∗ + θ∗‖ ≤ ‖θ∗‖+ ‖θ̂ − θ∗‖

= ‖θ∗‖+ ‖ 1

n

∑
j

Σ−1ξjxj‖.

The first norm is at most 1 by assumption; a rough bound suffices for the second:

‖ 1

n

∑
j

Σ−1ξjxj‖ ≤
1

n

∑
j

‖Σ−1‖ · |yj − x†iθ
∗| · ‖xj‖ ≤ 2c20σ

√
p,

applying our assumptions.

Plugging these bounds back into Equation (C.1) and plugging in our expressions for η, λ, and γ, we have (omitting
constants)

‖θT − θ̂‖ . σ
√
p log3

(
nT

β

)(
7

8

)T
+ ηλ

√
p log 1/β

. σ
√
p log3

(
nT

β

)(
7

8

)T
+
σp
√
T√

ρn
· log3.5(nT/β).

The first term is dominated by the second when T ≥ c log(nρ/p). Substituting in this value of T finishes the proof.
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C.2. Confidence Intervals (Proof of Theorem 3.1)

C.2.1. CONFIDENCE INTERVALS FOR INDEPENDENT DRAWS

A fundamental task in statistical inference is to produce confidence intervals for the mean given independent samples from
a normal distribution with unknown mean and variance. Claim C.9 reproduces this basic fact. After that, we observe that
confidence intervals produced in this way are valid for samples from distributions that are close in TV distance.

Claim C.9. Let {θi}i∈[m] be m samples drawn i.i.d. from N (µ,Σ), for any µ ∈ Rp and Σ ∈ Rp×p. For any j ∈ [p], let

θ̄j = 1
m

∑m
i=1(θi)j be the sample mean and σ̂2

j = 1
m−1

∑m
i=1

(
(θi)j − θ̄j

)2

the sample variance. Then (θ̄)j ± tα/2,m−1 ·
σ̂j√
m

, is a 1−α confidence interval. Here tα,m−1 denotes the α percentile for the student’s t distribution withm−1 degrees
of freedom.

Claim C.10. Suppose mechanism M : Rm → R2, when given samples z1, . . . , zm drawn i.i.d. from a distribution
N (µ, σ2), produces a 1 − α confidence interval for µ. Let q be a distribution over Rm. If (z′i, . . . , z

′
m) ∼ q, then

M(z′1, . . . , z
′
m) produces a 1− α− TV(q,N (µ, σ2)⊗m) confidence interval for µ.

C.2.2. ANALYZING INDEPENDENT RUNS AND CHECKPOINTS

Lemma 2.3 tells us that the t-th iterate of DP-GD without clipping has the distribution

θt = θ̂ + (I− ηΣ)t(θ0 − θ̂) + z′t,

where z′t ∼ N (0, η2λ2A(t)) for A(t) = (I−D)−1(I−Dt) and D = (I− ηΣ)2. Recall η the step size and Σ = 1
nX
†X

the empirical covariance. For appropriate D, as t grows this approaches the distributionN (θ̂, η2λ2A(∞)), where A(∞) =
(I−D)−1.

In this section, we give guarantees for two algorithms that constructing confidence intervals: independent runs and check-
points. We show that each produces a sequence of m vectors which, as a whole, is close in total variation distance to m
independent draws from N (θ̂, η2λ2A(∞)). We call this latter the “ideal” case, as it corresponds to Claim C.9. The other
two cases are “independent runs” and “checkpoints.” Thus, we consider three sets of random variables: θ(1)

1 , . . . , θ
(1)
m

are drawn i.i.d. from N (θ̂, η2λ2A(∞)); θ(2)
1 , . . . , θ

(2)
m , where θ(2)

` is t-th iterate of an independent run of DP-GD with-
out clipping; and θ(3)

1 , . . . , θ
(3)
m , where θ(2)

` is the `t-th iterate of a single run of DP-GD without clipping. We interpret
each of these as a draw from a multivariate Gaussian distribution in mp dimensions: we define the concatenated vector
θ(1) =

[
θ

(1)
1

∣∣· · · ∣∣θ(1)
m

]
and let µ(1) ∈ Rmp and Σ(1) ∈ Rmp×mp be its mean and covariance, respectively. We define

the analogous notation for the other two collections. Our calculations will only require us to index into these objects
“blockwise,” so we abuse notation and define, for `, k ∈ [m],

µ
(1)
` = E

[
θ

(1)
`

]
∈ Rp and Σ

(1)
`,k = E

[(
θ

(1)
` − µ

(1)
`

)(
θ

(1)
k − µ

(1)
k

)†]
∈ Rp×p.

We establish that the vectors from our algorithms are close in total variation to the ideal case by showing that the relevant
means and covariances are close. We use the following standard fact.

Claim C.11 (See, e.g., (Diakonikolas et al., 2019)). There exists a constant K such that, for any β ≤ 1
2 , vectors

µ1, µ2 ∈ Rd, and positive definite Σ1,Σ2 ∈ Rd×d, if ‖µ1 − µ2‖Σ1
≤ β and ‖Σ−1/2

1 Σ2Σ
−1/2
1 − I‖F ≤ β then

TV(N (µ1,Σ1),N (µ2,Σ2)) ≤ Kβ.

Ideal Case Each vector is an independent draw from a fixed Gaussian, so for any ` and any k 6= ` we have

µ
(1)
` = θ̂, Σ

(1)
`,` = η2λ2A(∞), and Σ

(1)
`,k = 0.

Independent Runs Here the vectors are also independent Gaussian random variables, but with different parameters. For
any ` and any k 6= ` we have

µ
(2)
` = θ̂ + (I− ηΣ)t(θ0 − θ̂), Σ

(2)
`,` = η2λ2A(t), and Σ

(2)
`,k = 0.
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Checkpoints Here the vectors are no longer independent, so we have additional work. We have

µ
(3)
` = θ̂ + (I− ηΣ)`t(θ0 − θ̂), Σ

(3)
`,` = η2λ2A(`t), and Σ

(3)
`,k = E

[
(z′`t)(z

′
kt)
†] .

We now analyze this third term. Recall from Lemma C.4 that these vectors z′`t stand in for sums that depend on all the
noise vectors added so far:

z′t = η

t∑
i=1

(I− ηΣ)i−1zt−i = η

t−1∑
i=0

(I− ηΣ)t−i−1zi,

where the second equation was re-indexed to simplify the next operation. The random variables zi are drawn i.i.d. from
N (0, λ2I). This allows us to understand the covariance in Σ

(3)
`,k , as some of the noise terms are duplicated and some are

not. For any pair of integers τ > t, we have

z′τ = η

τ−1∑
i=0

(I− ηΣ)τ−i−1zi

= η
t−1∑
i=0

(I− ηΣ)τ−i−1zi + η
τ−1∑
i=t

(I− ηΣ)τ−i−1zi

= (I− ηΣ)τ−t · η
t−1∑
i=0

(I− ηΣ)t−i−1zi + η

τ−1∑
i=t

(I− ηΣ)τ−i−1zi

= (I− ηΣ)τ−tz′t + η

τ−1∑
i=t

(I− ηΣ)τ−i−1zi.

The second sum is independent of z′t, since it involves only later terms in the algorithm. Applying this with τ ← `t and
t← kt (assuming without loss of generality that ` > k), we have

Σ
(3)
`,k = E

[
(z′`t)(z

′
kt)
†] = (I− ηΣ)(`−k)t

E
[
(z′kt)(z

′
kt)
†]

= η2λ2(I− ηΣ)(`−k)tA(kt).

Setup We derive some facts which will be useful for both of our case-specific analyses. Since the data satisfies the
No-Clipping Condition, we have 1

2 I � Σ � 2I and ‖I − ηΣ‖ ≤ 7
8 . These in turn establish operator norm bounds for

D,A(∞), I −D (and their inverses) of at most c for some absolute constant c, which yields a Frobenius norm bound of
c
√
m. We also have ‖Dt‖F ≤

√
m ·

(
7
8

)t
.

We pass from the rescaled norms needed in Claim C.11 to Frobenius and `2 norms:

‖(Σ(1))−1/2(Σ(2))(Σ(1))−1/2 − I‖F ≤
1

λmin(Σ(1))
· ‖Σ(2) − Σ(1)‖F , and

‖µ(1) − µ(2)‖Σ(1) ≤ 1√
λmin(Σ(1))

· ‖µ(1) − µ(2)‖2.

Since the minimum eigenvalue of a block-diagonal matrix is the minimum eigenvalue of the blocks and, in the ideal case,
the blocks are diagonal, we have λmin(Σ(1)) = λmin(η2λ2A(∞)) ≥ η2λ2c for some constant c.

Analyze Independent Runs With the above tools in hand, it suffices to analyze ‖Σ(2) − Σ(1)‖F . Observe that Σ(2) is
equal to Σ(1) plus a block-diagonal matrix where each block is η2λ2 times A(∞) −A(t) = A(∞)Dt. So we have

‖Σ(2) − Σ(1)‖F ≤ η2λ2m · ‖A(∞)Dt‖F ≤ cη2λ2m2

(
7

8

)t
for some constant c. Cancelling the η2λ2 from λmin in Equation (C.2.2), we have ‖(Σ(1))−1/2(Σ(2))(Σ(1))−1/2−I‖F ≤ β
when t ≥ c logm/β for some constant c.
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The mean is similar: the m blocks of the vector are identical, so we have

‖µ(1) − µ(2)‖2 ≤
√
m‖(I− ηΣ)t(θ0 − θ̂)‖2.

The No-Clipping Condition implies that ‖θ0 − θ̂‖2 ≤ 2c20σ
√
p (as in the proof of Theorem 2.7). Thus, combining with

Equation (C.2.2), we have ‖µ(1) − µ(2)‖Σ(1) ≤ β when t ≥ c log σmp
ηλβ for some constant c.

Analyze Checkpoints We apply similar arguments. The upper bound on ‖µ(1) − µ(3)‖Σ(1) is identical to the previous
case except that we apply ‖D`t‖F ≤ ‖Dt‖F for all ` ∈ [m]. The covariance analysis is similar, but Σ(1) − Σ(3) is no
longer block-diagonal (as the checkpoints are not independent). So the main additional work is to control the effect of
these off-diagonal blocks.

We expand over the m2 blocks, moving temporarily to the squared Frobenius norm:

‖Σ(3) − Σ(1)‖2F = η4λ4

(
m∑
`=1

‖A(∞) −A(`t)‖2F + 2
∑
`>k

‖0− (I− ηΣ)(`−k)tA(kt)‖2F

)

≤ η4λ4

(
m∑
`=1

‖A(∞)Dt‖2F + 2
∑
`>k

‖(I− ηΣ)(`−k)t‖22 · ‖A(kt)‖2F

)
.

As before, we combine with Equation (C.2.2) to obtain an upper bound on the (unsquared) norm of poly (m) ·
(

7
8

)t
, which

is less than β when t ≥ c logm/β for some constant c.
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