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Abstract
The vast applications of deep generative mod-
els are anchored in three core capabilities—
generating new instances, reconstructing inputs,
and learning compact representations—across
various data types, such as discrete text/protein se-
quences and continuous images. Existing model
families, like variational autoencoders (VAEs),
generative adversarial networks (GANs), autore-
gressive models, and (latent) diffusion mod-
els, generally excel in specific capabilities and
data types but fall short in others. We intro-
duce Generalized Encoding-Decoding Diffusion
Probabilistic Models (EDDPMs) which integrate
the core capabilities for broad applicability and
enhanced performance. EDDPMs generalize the
Gaussian noising-denoising in standard diffusion
by introducing parameterized encoding-decoding.
Crucially, EDDPMs are compatible with the well-
established diffusion model objective and train-
ing recipes, allowing effective learning of the
encoder-decoder parameters jointly with diffu-
sion. By choosing appropriate encoder/decoder
(e.g., large language models), EDDPMs natu-
rally apply to different data types. Extensive ex-
periments on text, proteins, and images demon-
strate the flexibility to handle diverse data and
tasks and the strong improvement over various
existing models. Code is available at https:
//github.com/guangyliu/EDDPM

1. Introduction
Numerous real-world applications involve synthesizing,
modifying, restoring, and encoding data of different types,
such as text, images, and biological molecules. Deep gener-
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Figure 1. (a) Generation, reconstruction, and representation are
the core capabilities for diverse applications. (b) EDDPM shows
comprehensive abilities on different text tasks in the customer-
review domain (§4.1).

ative models are pivotal in these applications, owing to their
three fundamental capabilities: (1) Generation of new sam-
ples from the data distribution; (2) Reconstruction of given
instances with high fidelity; and (3) Extracting compact rep-
resentations of raw data. Different applications can require
different combinations of the capabilities (Figure 1a): for
example, protein editing requires to produce a new valid
protein sequence (generation) that retains many properties
of the original sequence (reconstruction), while text inter-
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polation could benefit from a latent space for continuous
transitioning (representation) before mapping back to the
discrete text space (generation).

Existing deep generative models typically show strengths
in some, but not all, of the three capabilities, resulting in
limited applicability or suboptimal performance (Figure 2).
For example, variational autoencoders (VAEs, Kingma &
Welling, 2014) are known for their tradeoff between re-
alistic generation and faithful reconstruction (Chen et al.,
2017; Higgins et al., 2017a), especially on text sequences
(Bowman et al., 2016; Yang et al., 2017; Li et al., 2020;
Liu et al., 2022; 2023a); Generative adversarial networks
(GANs, Goodfellow et al., 2014) inherently lack inference
of latent representations. Despite the rich subsequent re-
search of incorporating latent inference (Zhou et al., 2019;
Xia et al., 2023a; Donahue et al., 2016; Dumoulin et al.,
2017; Li et al., 2017) such as GAN inversion (Xia et al.,
2023b; Karras et al., 2020b), they fall short of faithfully
reconstructing the inputs (Preechakul et al., 2022); Autore-
gressive models (e.g., modern large language models) excel
in generating text, but often with limited diversity and lack-
ing compact semantic representations (Brown et al., 2020).
Similarly, recent diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021b) deliver new state-
of-the-arts on synthesizing photo-realistic images, yet lack
compact data representation and often rely on separately
trained components for remediation (Rombach et al., 2021;
Preechakul et al., 2022).

Moreover, these models often struggle with different forms
of data. For example, it has been notoriously difficult for
diffusion models and GANs to deal with text and protein
data due to their discrete nature (Li et al., 2022; Qin et al.,
2022; Kusner & Hernández-Lobato, 2016; Yu et al., 2017;
de Rosa & Papa, 2021), and VAEs suffer from “posterior
collapse” on text sequences (Bowman et al., 2016; Yang
et al., 2017).

In this paper, we investigate a new deep generative approach
based on generalized diffusion, that inherently integrates the
three core capabilities and offers added flexibility to model
both discrete and continuous data. Specifically, starting with
the popular variational inference perspective of diffusion
models (as in DDPM, Ho et al., 2020), we show that the stan-
dard formulation can be generalized by plugging in arbitrary
“noising” operation at early diffusion steps, as long as the
inverse “denoising” operation can be modeled. We can thus
go beyond the common Gaussian noise (or other predefined
image degradation, Bansal et al., 2022) and introduce pa-
rameterized encoder-decoder in place of noising-denoising.
Crucially, the encoder-decoder parameters can naturally be
learned together with other diffusion parameters using the
original DDPM framework which is well-established for
stable and scalable training (Rombach et al., 2021).

More specifically, we introduce encoder-decoder at the
first diffusion step. That is, the diffusion process first en-
codes the input data into a low-dimensional latent vector,
followed by common Gaussian noising steps. The result-
ing approach, EDDPMs (Generalized Encoding-Decoding
Dffusion Probabilistic Models), combine a number of desir-
able properties and overcome difficulties in aforementioned
deep generative models:

(1) Like VAEs and latent diffusion models (which are
based on VAEs), EDDPMs offer compact semantic
representation of data. Moreover, thanks to the unified
learning of the encoder-decoder within the standard dif-
fusion framework, EDDPMs obtain a much improved
representation space than VAEs and latent diffusion, as
shown in §4.

(2) The improved representation space also allows ED-
DPMs to avoid the trade-off between generation and
reconstruction capabilities observed in VAEs and aug-
mented GANs (Creswell & Bharath, 2019). Therefore,
EDDPMs seamlessly integrate the three core capabili-
ties, leading to more diverse applications and enhanced
performance.

(3) The flexibility of the generalized diffusion formulation
allows us to specify any desired encoder-decoder for
modeling both discrete and continuous data. EDDPMs
thus overcome the difficulty of standard diffusion and
GANs on text and other discrete modalities.

(4) Moreover, as described in §4, we could further plug
in large pretrained (autoregressive) language models
(LMs) for initializing the encoder-decoder. This leads
to greatly improved performance than previous text
diffusion models (Li et al., 2022; Lin et al., 2023; Wu
et al., 2023) that are inherently incompatible with off-
the-shelf pretrained LMs.

We conduct extensive experiments on text, images, and
protein sequences. EDDPMs demonstrate comprehensive
capabilities across a wide range of tasks, such as data synthe-
sis, reconstruction, interpolation, editing, and optimization
(e.g., Figure 1b) on the different data modalities. The uni-
fied capabilities and enhanced performance of EDDPMs
compared to existing generative models demonstrate its sig-
nificant potential as a foundational technique for developing
new, broadly applicable foundation models.

2. Background
We first give brief background of the popular diffusion
model formulation from the variational inference perspec-
tive (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021a). The training objective and model configurations
have been well-established and are effective for stable and
scalable training in practice (Rombach et al., 2021), show-
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Figure 2. Different families of deep generative models.

ing advantages to alternative diffusion formalisms and other
generative models. Our approach (§3) fits seamlessly in the
(generalized) formulation and inherits these advantages.

A standard diffusion model consists of noising and denois-
ing processes. Starting with a raw data point x0, the noising
process sequentially adds Gaussian noise to the data at each
diffusion step t ∈ {1, . . . , T}, following:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where βt is the predefined variance schedule, and xT be-
comes a standard Gaussian noise vector as T → ∞. The
denoising process learns to invert the above by learning a
denoising operation pθ(xt−1|xt) at each step t. When βt is
sufficiently small, we assume a Gaussian form:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

The parameters θ are learned with a variational lower bound
on the marginal likelihood: with a Gaussian prior p(xT ),

L(θ) = Eq[− log pθ(x0)]

≤ Eq

[
− log p(xT )−

T∑
t=1

log
pθ(xt−1|xt)

q(xt|xt−1)

]
.

(3)

Recent diffusion formulation, in particular the denoising dif-
fusion probabilistic models (DDPMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020), introduces a series of derivations
to simplify the above objective, by splitting the sum and
transforming and cancelling out relevant terms. The lower
bound is thus rewritten as:

Eq

[
− log p(xT )− log

pθ(x0|x1)

q(x1|x0)

−
T∑

t=2

log
pθ(xt−1|xt)

q(xt−1|xt,x0)

q(xt−1|x0)

q(xt|x0)

]

= Eq[KL (q(xT |x0)||p(xT ))︸ ︷︷ ︸
LT

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

+

T∑
t=2

KL (q(xt−1|xt,x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

.

(4)

Ho et al. (2020) further proposed to reparameterize
pθ(xt−1|xt) in Eq. (2) using µθ(xt, t) = 1√

ᾱt
(xt −

√
1− ᾱtϵθ(xt, t)), where αt and ᾱt are weights defined

by βt. The model is trained to directly predict the noise
term ϵθ(xt, t) instead of the mean µθ(xt, t), which has
demonstrated effectiveness in practice.

Despite their strengths, diffusion models have several limi-
tations. The noisy nature of the latent variables xt, which
represent corrupted versions of the data (x0), hinders their
ability to capture abstract semantic meaning, making them
less suitable for applications requiring such representations
(Preechakul et al., 2022). Additionally, the reliance on pre-
defined additive Gaussian noise restricts them to continuous,
fixed-length data, posing challenges for handling discrete
sequences of varying lengths. Recent efforts (Li et al., 2022;
Lin et al., 2023; Wu et al., 2023) adapt the approach to text
modeling, but their performance still greatly lags behind
pretrained autoregressive models.

3. Generalized Encoding-Decoding Diffusion
Probabilistic Models (EDDPMs)

We describe EDDPMs, which integrate the core capabilities
of generation, reconstruction, and compact representation
within one framework. EDDPMs thus combine the various
advantages and applicabilities of different existing deep
generative models while overcoming their limitations.

EDDPMs generalize the standard diffusion formulation
described in §2. The intuition is that the leading steps
(t = 0, 1, . . . ) in the diffusion process can go beyond using
only the common Gaussian noising-denoising. Instead, we
can plug in more sophisticated “noising” and “denoising”
operations. In particular, we use neural encoder and de-
coder with learnable parameters in place of “noising” and
“denoising”, respectively. The encoder allows the model to
map its inputs into a low-dimensional space for a compact
representation, and the decoder is to invert the encoding
step and recover the inputs. Crucially, this change is fully
compatible with the diffusion objective in Eqs. (3) and (4),
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allowing us to retain most of the critical derivations in the
well-established formulation (Sohl-Dickstein et al., 2015;
Ho et al., 2020) and thus inherit the stable effective train-
ing of both the original denoising parameters and the new
encoder-decoder parameters. As we discussed in §3.3, this
differs crucially from latent diffusion models that train a
VAE and a diffusion separately and are limited by the capa-
bility and quality of the VAE component. Our approach also
shows superiority over previous joint training (Preechakul
et al., 2022; Vahdat et al., 2021) which requires various ap-
proximations and can lead to unstable training and inferior
performance.

3.1. The Generalized Formulation

We introduce learnable encoder-decoder to the leading n
steps in the diffusion process (i.e., for all steps t, where
1 ≤ t ≤ n). For simplicity and clarity, this work considers
only the first step (i.e., t = n = 1) in the diffusion process,
though all the derivation can be applied to larger n for n-
layer hierarchical representations.

Let Eλ(·) denote the neural encoder with free parameters λ.
In the first diffusion step, the encoder transforms input x0

into a lower-dimensional latent vector x1, following:

qλ(x1|x0) := N (x1; Eλ(x0), β0I) (5)

The diffusion process then continues by adding standard
Gaussian noises to x1 step by step until reaching xT as in
§2. Let Dϕ(·) be the decoder with free parameters ϕ. At
the end of the denoising process, the decoder transforms x1

back to x0 in the data space. The actual form of Dϕ(·) and
its respective conditional pϕ(x0|x1) can vary depending on
the types of the data x0 (e.g., text, protein, image), as we
detailed later. This offers added flexibility compared to the
standard diffusion that is restricted to continuous data of
fixed dimensionality.

As mentioned earlier, we can generalize the standard dif-
fusion objective (Eqs. 3 and 4) to plug in the encoder and
decoder seamlessly. The full derivations are provided in the
appendix (§A). Briefly, we can adapt the left-hand side of
Eq. (4) as:

L(λ, ϕ, θ) ≤

Eq

[
− log p(xT )−

T∑
t=3

log
pθ(xt−1|xt)

q(xt−1|xt,x1)

q(xt−1|x1)

q(xt|x1)

− log
pθ(x1|x2)

q(x2|x1)
− log

pϕ(x0|x1)

qλ(x1|x0)

]
.

(6)

That is, compared to the original Eq. (4), we replace the
noising-denoising pθ(x0|x1)

q(x1|x0)
in step t = 1 with the param-

eterized encoder-decoder pϕ(x0|x1)
qλ(x1|x0)

; we also split from the
sum an additional step t = 2, which serves to form KL

divergences after rearrangement (see §A.2 for more details),
resulting in the final objective:

Eq

KL (q(xT |x1)||p(xT ))︸ ︷︷ ︸
LT

+

T∑
t=3

KL (q(xt−1|xt,x1)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

+ KL (qλ(x1|x0)||pθ(x1|x2))︸ ︷︷ ︸
Lalign

− log pϕ(x0|x1)︸ ︷︷ ︸
Lrec

 ,

(7)

where LT and Lt−1 match the respective terms in Eq. (4),
and Lalign and Lrec are new due to the generalization.

The Lalign term This term serves to align the compact
representations x1 from the encoder qλ(x1|x0) and the de-
noising process pθ(x1|x2), resulting in a consistent latent
representation space in the model. The KL divergence be-
tween the two Gaussians is written as:

Lalign = Eq

[
γ1 · ρ∥Eλ(x0)− µθ(x2, 1)∥2

]
+ const, (8)

where µθ is the Gaussian mean in Eq. (2); ρ := α1(1−ᾱ1)
β2
1

and, following the approximation in Ho et al. (2020), γ1 is
set to 1 in practice.

The Lrec term This terms is the data reconstruction loss
that corresponds to L0 in standard diffusion objective
Eq. (4). However, thanks to the incorporation of the de-
coder pϕ(x0|x1), we can generalize the original L0 (which
is only for continuous data like image) to model various
data modalities, such as text and protein sequences of vary-
ing lengths. For instance, for text data, the decoder can be
a (pretrained) language model and the reconstruction loss
becomes a standard sequential cross-entropy loss.

We provide more detailed derivations of the full final ob-
jective in §A.4 and the complete training process in §B.
Thanks to the compatibility with the standard diffusion for-
mulation (Ho et al., 2020)), we can largely follow their
training recipes for effective training. In practice, we intro-
duce a hyperparameter weight w to balance the term Lrec
against other terms like Lt−1 and Lalign, as detailed in §A.4.
In our experiments, using validation data, we set w = 8 for
text and w = 1 for both protein and images.

3.2. Generation, Reconstruction, and Representation

The trained EDDPMs can naturally support the three core
functionalities including generation, reconstruction, and rep-
resentation, as well as the diverse applications built on top of
the functionalities. To generate new samples, similar to stan-
dard diffusion, EDDPMs simulate a random noise xT from
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prior p(xT ), and go through the denoising process followed
by decoding into a sample x̂0 with the learned decoder. Due
to the stochastic nature of the process (e.g., drawing random
noise xT ), EDDPMs can generate highly diverse samples
(§4.1). Representing an input with a compact vector is done
straightforwardly by applying the learned encoder. To recon-
struct the input, we further apply the decoder on the latent
vector to obtain the reconstructed sample. The compact rep-
resentation space also facilitates other tasks (Figure 1), such
as interpolation which is done by drawing an intermediate
point between the representations of two given samples and
decoding it into the data space, and editing which modifies
the sample representation (e.g., with a latent classifier or
latent vector arithmetic) followed by decoding. We disucss
more details and analysis in experiments (§4).

3.3. Connections with Other Generative Models

We discuss the rich connections between EDDPMs to other
diverse deep generative models (Goodfellow et al., 2016;
Hu et al., 2018; Hu & Xing, 2022), providing insights into
the integrated advantages of the new approach. EDDPMs
can be viewed as VAEs with a learned diffusion model prior.
This can be seen through Eq. (7) where Lrec corresponds
to the reconstruction loss in VAEs and Lalign corresponds
to the KL regularization with prior. In this perspective, the
vanilla VAEs use a standard Gaussian prior p(x1) while ED-
DPMs learn the “prior” pθ(x1|x2) through diffusion model-
ing. Note that previous studies have also explored learnable
priors in VAEs to overcome the difficulty of vanilla VAEs
training and to improve expressiveness (Dilokthanakul et al.,
2016; Chen et al., 2017; Tomczak & Welling, 2018; Razavi
et al., 2019; Wehenkel & Louppe, 2021; Vahdat et al., 2021;
Goyal et al., 2017). Wehenkel & Louppe (2021) presented
a preliminary study of diffusion priors in VAEs but with-
out full derivations and experiments. If we replace all the
noising-denoising steps in diffusion with parameterized
encoders-decoders, we arrive at a hierarchical VAEs (e.g.,
NVAE, HiVAE, HVAE, Vahdat & Kautz, 2020b; Liu et al.,
2023b; Bai et al., 2023). Compared to hierarchical VAEs,
EDDPMs and diffusion allow for more effective training
for generation thanks to the special parameterizations and
training recipes (Ho et al., 2020). Latent diffusion (Esser
et al., 2021) combines VAEs with diffusion but trains them
separately. EDDPMs, inherently with unified training, offer
a better semantic representation space than latent diffusion
whose representation space is that of the vanilla VAEs. Dif-
fusion Autoencoders (DiffAE, Preechakul et al., 2022) and
LSGM (Vahdat et al., 2021) explore joining training strate-
gies of diffusion and autoencoder and introduce different
approximation for tractability. EDDPMs, benefiting from
the well-established training objective and recipe from vari-
ational diffusion (Ho et al., 2020), achieve more effective
training and better performance (§4.2). Also, the applica-

tions of DiffAE and LSGM on text/protein data have not
been explored. Compared to recent text diffusion models
(Yuan et al., 2023; He et al., 2022; Lin et al., 2023; Ye et al.,
2023) that generate text non-autoregressively, EDDPMs can
flexibly accommodate pretrained autogressive language
models as the decoder for much enhanced performance.

4. Experiments
In this section, we present the main experimental results on
text, image, and protein data. Additional results and related
analysis can be found in §C.

4.1. Text

Setup We use BERT-small (Devlin et al., 2019; Bhargava
et al., 2021) as the encoder and GPT2-xl (Radford et al.,
2019) as the decoder. A warmup training is done to align
the encoder and decoder using the bookcorpus dataset (Zhu
et al., 2015) without diffusion, followed by the proposed
unified EDDPM training on the Yelp review dataset (Shen
et al., 2017; Li et al., 2018). We compare EDDPM with La-
tentOps (Liu et al., 2023a) and Optimus-DAAE (Shen et al.,
2020; Li et al., 2020), using the same architecture and train-
ing procedure. LatentOps is a form of latent diffusion model
with successful applications on text data. It uses ordinary
differential equations (ODEs), instead of discrete diffusion
process as in standard latent diffusion models, on top of a
separately trained VAE latent space. Optimus-DAAE is an
improved variant of large-scale text VAEs (Li et al., 2020)
inspired by (Shen et al., 2020). We also compare with lat-
est text diffusion models, GENIE (Lin et al., 2023) and
AR-Diffusion (Wu et al., 2023). In addition, we compare
with fine-tuned GPT2-xl and 20-shot GPT4 (Achiam et al.,
2023). For comprehensive evaluation, we study tasks of
generation, reconstruction, interpolation, and editing. More
details are in §C.1.1. We use BLEU score to measure con-
tent preservation, MAUVE (Pillutla et al., 2021) to assess
the distribution match between the generated samples and
the original data, and perplexity to evaluate text fluency.
For text editing with latent arithmetic, transfer accuracy
is measured as the geometric mean (Liu et al., 2023a) of
the accuracy (by BERT classifiers) and the BLEU score
(relative to the input text).

4.1.1. TEXT GENERATION AND RECONSTRUCTION

Figure 1(b) and Table 1 show the results. Autoencoding-
based models (LatentOps and Optimus-DAAE) exhibit pro-
ficiency in reconstruction tasks, primarily because their ob-
jectives rely heavily on reconstruction quality. However,
these models struggle to generate fluent text that aligns with
the real data distribution. This limitation stems from the
regularization in latent space designed to adhere to a specific
prior distribution, such as a standard Gaussian. The regular-
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Reconstruction Generation Latent Arithmetic Interpolation

Content↑ Fluency↓ Distr. Match↑ Diversity↑ Accuracy↑ Fluency↓ Distr. Match↑
LatentOps 87.6 68.1 0.240 0.50 57.3 32.5 0.697
Optimus-DAAE 86.1 94.1 0.006 0.17 51.0 33.7 0.770
GENIE 58.5 337.6 0.013 0.69 33.9 258.2 0.029
AR-Diffusion 64.1 157.8 0.007 0.32 17.0 163.9 0.012
GPT2 - 15.0 0.015 0.65 - - -
GPT4 100 25.7 0.007 0.87 49.3 39.7 0.010

EDDPM 92.1 16.4 0.977 0.79 57.1 30.8 0.763

Table 1. Evaluation of Text Reconstruction, Generation (§4.1.1), Latent Vector Arithmetic (§4.1.3), and Interpolation (§4.1.2). The best
results are highlighted in bold, and the second-best results are underlined.

ization, while mathematically sound, often results in a sig-
nificant disparity between the model’s latent space and the
actual latent distribution observed in real-world scenarios
(Yang et al., 2017; Li et al., 2020). The text diffusion models
GENIE and AR-Diffusion apply a diffusion process over
the token space. Despite the reconstruction-based training
objective, these models fall short of both reconstruction and
generation. The results highlight the difficulty of standard
diffusion modeling for discrete text data. The fine-tuned
GPT2 autoregressive model excels in generation fluency but
performs poorly in terms of generation diversity and domain
match. It also fails for reconstruction. Despite the general
capability of GPT4, it fails to capture the domain-specific
text characteristics via in-context demonstrations. In com-
parison, EDDPM achieves strong performance across all
metrics for both reconstruction and generation. The learned
autoencoding ensures effective reconstruction, while the
diffusion process introduces dynamic regularization to the
latent space, ensuring superior quality in text generation.

4.1.2. SENTENCE INTERPOLATION

In this experiment, we randomly selected 200 samples from
the test set, dividing them into two groups of 100 each. We
performed interpolation between these groups, encoding the
first 100 samples as x1

1 and the second 100 as x2
1. Given

that both sets of latent distributions adhere to a Gaussian
distribution, we utilized spherical linear interpolation (Slerp)
as per Shoemake’s method (Shoemake, 1985), employing
the formula Slerp(x1

1,x
2
1;α) where 0 ≤ α ≤ 1. Our aim

was to generate a series of sentences that smoothly transition
in semantics, achieving a fluent blend.

We set the number of interpolation steps to 10 and evaluated
the quality at each step to gauge performance. Particularly,
the interpolation results at the midpoint are shown in Ta-
ble 1. EDDPM demonstrates a consistent ability to produce
fluent sentences that closely align with the original data
distribution. In contrast, baseline models such as GENIE
and AR-Diffusion struggled, primarily due to their lack of
a semantically coherent latent space for whole sentences.
Additionally, we assessed the outcomes using MAUVE and

BLEU metrics, with detailed interpolation examples pro-
vided in §C.1.2.

4.1.3. LATENT VECTOR ARITHMETIC

Text editing (e.g., changing the text sentiment) necessitates
proficiency in all three fundamental abilities. Previous re-
search (Shen et al., 2020; Hu et al., 2017) demonstrated
that sentence representations can capture linguistic relation-
ships through simple arithmetic operations. We use this
approach as a proxy for evaluating the quality of the learned
latent space. Specifically, we use the sentiment attribute
and evaluate how well the learned latent space can sup-
port the inference of text sentiment change with simple
arithmetic operations in the latent space. We first obtain
a positive-sentiment latent vector by averaging the latent
vectors of 100 positive sentences randomly sampled from
the dataset. A negative-sentiment latent vector is obtained
similarly with 100 negative sentences. We then compute
the difference between the two sentiment vectors, denoted
as v. Given a new sentence, it is first encoded to obtain
its latent vector, x1 = Eλ(x0). The sentiment-transferred
sentence is then acquired via Dϕ(x1 ± kv), where k serves
as a weight modulating the degree of transfer. We tried dif-
ferent k ∈ range(1, 5, .5) and show the best one in Table 1.
EDDPM is on par with LatentOps and outperforms others,
validating a well-structured latent space.

4.1.4. TRAINING EFFICIENCY

To show the training efficiency of EDDPMs, we measured
the training cost on text data. The results shown in Table 2
validate that training EDDPMs is as efficient as training
VAEs and variants (e.g., Optimus-DAAE, LatentOps) with
the same encoder-decoder architecture. Due to the added
diffusion process, the training time of EDDPM for each
epoch is 1.3x that of LatentOps and Optimus-DAAE. How-
ever, thanks to the stable training process inherited from the
well-established DDPM formulation, EDDPMs avoid the
different training tricks necessary in VAEs and variants, such
as beta-annealing (Bowman et al., 2016), free bits (Kingma
et al., 2017), and cyclic annealing schedule (Fu et al., 2019).
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Models Time / Epoch Overall Training Time

LatentOps 13.98 mins 6.98 hrs
Optimus-DAAE 14.49 mins 7.02 hrs

EDDPM 19.35 mins 7.41 hrs

Table 2. Training cost.

Figure 3. Training curves. EDDPM converges fast in a stable way.
LatentOps, which depends on text VAE, relies on periodic schedul-
ing of the weight of the prior regularization. The scheduling is
common for training text VAE models (Li et al., 2020), and leads to
the ups-and-downs in the loss curve, indicating a difficult trade-off
between generation and reconstruction capabilities.

This allows EDDPMs to converge in fewer steps, leading
to similar overall training cost. Figure 3 shows the training
curves.

4.2. Image

Setup We adopt UNet (Long et al., 2015) as the encoder
and the diffusion-based model in DiffAE (Preechakul et al.,
2022)) as the decoder. Following DiffAE, we train our
model and then evaluate the reconstruction and genera-
tion abilities on the popular FFHQ (Karras et al., 2019),
CelebA (Karras et al., 2018), LSUN-Bedroom, and LSUN-
Horse (Yu et al., 2015) datasets. We use the CelebA-HQ
dataset to perform image manipulation tasks. In addition
to DiffAE, we compare our model with a number of latest
models, including the Latent Diffusion Model (LDM, Rom-
bach et al., 2021), DDIM (Song et al., 2021a), StyleGAN-
XL (Sauer et al., 2022), NVAE (Vahdat & Kautz, 2020b),
and Consistency Models (Song et al., 2023). We compare
EDDPM with these models where existing corresponding
model checkpoints exist. Following the common practice,
we use FID and reconstruction-FID (rFID) to evaluate the
generation quality and reconstruction quality, respectively.
To systematically evaluate EDDPM, besides the individual
evaluations of reconstruction and generation, we also per-
form image interpolation and manipulation (§4.2.2) tasks,
which can reflect the integrated ability. We perform interpo-
lation within the latent space and then reconstruct images

Figure 4. Overall performance comparison on images. SGXL
stands for StyleGAN-XL. We stack the FIDs of generation, re-
construction, and interpolation together to show the overall perfor-
mances of different models.

from the resulting interpolated representations. Given two
latent vectors, x1

1 and x2
1, we employ linear interpolation

using the formula: αx1
1 + (1 − α)x2

1, where α represents
the interpolation ratio and we use α = 0.2 and 0.4. This in-
terpolated latent vector is subsequently fed into the decoder
to produce the interpolated image. In total, 50k images are
used for interpolation and the obtained images are measured
against 50k images in the training set to obtain FID score.
The detailed image experimental setup is in §C.2.1.

4.2.1. GENERATION, RECONSTRUCT., INTERPOLATION

The overall performances for generation, reconstruction and
interpolation are shown in Figure 4. For all experiments
requiring diffusion process, we fix the inference steps to be
T = 50. From the figure, We could observe: (1) EDDPM
consistently achieves superior or at least comparable per-
formance across all three evaluated tasks, and is the best
in terms of aggregate performance across the datasets ex-
amined; (2) NVAE demonstrates robust capabilities in the
tasks of reconstruction and interpolation. However, its per-
formance in the generative task is notably less competitive
compared with other models; (3) LDM, while demonstrat-
ing commendable performance in reconstruction, falls short
in maintaining quality during interpolation. The detailed
experimental results are shown in Table 7 (§C.2.2).

4.2.2. IMAGE MANIPULATION

We deploy our model trained on FFHQ to the CelebA-HQ
domain in a zero-shot fashion. We select the CelebA-HQ
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Figure 5. Image Manipulation: The procedure for manipulation
is detailed in Section 4.2.2. The class names provided at the
bottom indicate the target class towards which the images are
being manipulated.

dataset for this task due to the availability of 40 binary
classification category labels.

Model ϵ = 0.1 ϵ = 0.3

DiffAE 19.62 23.69
EDDPM 13.48 18.43

Table 3. Manipulation (FID).

Following DiffAE, we
train a linear classifier,
y = w⊤x1 + b, on 70%
of the training data for
each attribute. This clas-
sifier predicts the attribute
based on the representation x1. To construct the manipu-
lated image representation, we use x′

1 = x1 + ϵw, where
ϵ is a scalar determining the manipulation magnitude. The
manipulated representation x′

1 is then used to generate the
corresponding image. We show the examples in Figure 5.
We compare ours with DiffAE as we follow its setting and
it is also one of the state-of-the-art attribute-based image
manipulation methods. Our evaluation focuses on two as-
pects: 1) image quality post-manipulation: as shown in
Table 3, EDDPM consistently yields high-quality images
after manipulation. 2) alignment with target class: we test
the linear classifier on the remaining 30% of the dataset. In
terms of weighted AUC, EDDPM’s representation achieves
0.915, closely matching DiffAE’s 0.917. Notably, EDDPM
surpasses in accuracy, registering 0.893 against DiffAE’s
0.795. A detailed AUC comparison can be found in §C.2.

4.3. Protein Sequences

Setup Following the setup of ReLSO (Castro et al., 2022),
a protein autoencoder, we adopt a simple transformer as the
encoder and convolutional layers as the decoder. In line with
the settings of ReLSO, we jointly train a simple regressor
to predict the fitness values from the latent embeddings of
protein sequences. This fitness value, representing some
desired properties of proteins, serves as a performance met-
ric with higher values indicating superiority. Our models
are trained and evaluated on the Gifford (Liu et al., 2019)

Figure 6. EDDPM shows robust performance on fundamental tasks
about protein sequences. R, G, and O denote Representation,
Generation, and Optimization respectively. Results are normalized
for better visualization. Detailed results in §C.3

dataset and GFP (Sarkisyan et al., 2016) dataset separately.
In addition to ReLSO, we provided quantitative comparisons
between our models and several baseline models, namely
NOS (Gruver et al., 2023) which utilized transformer-based
discrete diffusion and Gaussian diffusion model for protein
design, as well as vanilla VAEs (Kingma & Welling, 2014).
Detailed experimental setups are in §C.3.1. We evaluate
EDDPM’s representation ability in §4.3.1 and its genera-
tion ability through both protein optimization (§4.3.2) and
protein generation (§C.3.4). The evaluation on EDDPM’s
reconstruction ability is provided in the appendix at §C.3.3.

4.3.1. PROTEIN REPRESENTATION

After training, each protein sequence in the test set is trans-
formed into a latent representation, upon which the fitness
value is predicted using the regressor in the latent space.
Evaluation metrics, including MSE, L1 Norm, Pearson and
Spearman correlation coefficients, are computed between
the predicted values and the ground truth. The results are
presented in Table 9. The regressor trained in the latent
space of EDDPM demonstrates superior performance over
the regressors from the baseline models on all four metrics
on the Gifford Dataset. This suggests that EDDPM obtained
more refined representations for the protein sequences, lead-
ing to more accurate predictions by the regressor. This is
also evident from the visualization of the latent space. In
Figure 7, we display the latent spaces for both ReLSO (left)
and EDDPM (right), coloring proteins by their respective
fitness value intervals. In the latent space of ReLSO in Fig-
ure 7(left), proteins with fitness values less than 0 exhibits
an overlap (inside the red box). While some overlap persists
across intervals inside the red box in EDDPM’s latent space
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Figure 7. Protein Latent Space of ReLSO (left) and EDDPM
(right). Different colors represent different fitness values of the
corresponding protein sequence.

Figure 8. Optimized Protein Sequence of ReLSO (left) and ED-
DPM (right) in the latent space.

in Figure 7 (right), the delineation between each interval is
much clearer.

4.3.2. PROTEIN OPTIMIZATION

We optimize a protein sequence by optimizing its corre-
sponding representation in the latent space. We adopt the
sampling algorithm introduced in LatentOps (Liu et al.,
2023a) that solves an ODE involving the regressor (Liu
et al., 2023a). This approach requires a target fitness value
to guide the optimization. We set this value to 1, 1.5, 2,
and 2.5 for Gifford proteins; 3, 4 for GFP proteins, all of
which represent reasonably high fitness values within the
respective dataset. Visualizations of the optimized sequence
with ReLSO and EDDPM algorithms are shown in Figure 8.
The grey dots represent proteins from the Gifford dataset,
while colored dots represents optimized proteins with vary-
ing target fitness values. As shown in Figure 8 (left), the
pseudo-convex nature of ReLSO leads to convergence of
optimized sequences to a singular point, revealing a lack of
diversity. In contrast, as depicted in Figure 8 (right), our
model not only achieves superior fitness values but also
fosters a broader protein variety. For a detailed quantitative
analysis, refer to §C.3.2.

5. Other Related Works
To tackle the limitations of current generative models, past
research has ventured into developing hybrid models by
combining VAEs (Razavi et al., 2019; Vahdat & Kautz,
2020a; Dai & Wipf, 2019) and GANs (Karras et al., 2020a;
Esser et al., 2021; Xia et al., 2023a) to create VAE-GAN

hybrids (Larsen et al., 2016; Hu et al., 2018; Wu et al.,
2020; Xu et al., 2021). Recently, diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) have been noted for
their generative ability, yet they fall short in providing a ro-
bust semantic latent space. Efforts like Wehenkel & Louppe
(2021) and Vahdat et al. (2021) explored the parameteriza-
tion of the variational prior with diffusion models. Latent
diffusion models (e.g., stable diffusion) (Rombach et al.,
2021) merge autoencoder and diffusion model architectures,
optimizing diffusion training with the VAE’s pivotal role in
image dimension compression. A deep dive can be found
in §D.1. Despite these advancements, it remains elusive to
achieve all three capabilities of representation, generation,
and reconstruction effectively. EDDPMs aim to tackle these
challenges.

6. Conclusion
This work generalized the diffusion model to introduce ED-
DPMs, an innovative generative framework designed to
seamlessly integrate the three core functionalities for gener-
ative models: generation, reconstruction and representation.
To this end, we incorporated parameterized encoder and
decoder transformations into the conventional diffusion pro-
cess. We derived an end-to-end training objective from the
data likelihood inspired from the widely-used DDPM train-
ing framework. Experimental results across image, text,
and protein sequence data demonstrate that EDDPMs con-
sistently outperform strong baselines across all three core
functionalities. Building a compact high-quality representa-
tion space with the versatile utilities (generation, reconstruc-
tion, encoding, interpolation, editing) can be significant for
building new foundation models, such as world models (Hu
& Shu, 2023; LeCun, 2022; Assran et al., 2023), for more
robust machine reasoning (Hao et al., 2023; Wong et al.,
2023).

Limitations In this work, EDDPMs have not been verified
on other data modalities such as videos, audios, and time
series. It would be interesting to see how EDDPMs will
perform on all the diverse forms of data, and even multi-
modal data (such as text-image). In addition, we have only
parameterized the first diffusion step with learnable encod-
ing/decoding. A single latent vector representation could be
limited to capture relevant information of data for different
tasks. We would like to investigate our approach with more
encoding/decoding-based diffusion steps for hierarchical
latent representations.

Impact Statement
There are potential societal consequences associated with
diffusion modeling and deep generative models in general
regarding content creation, privacy, and others.
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A. Derivation
A.1. Derivation of our ELBO loss

Below is a derivation of the error bound of the log-likelihood loss.

Ex0∼q(x0) [− log pϕ,θ(x0)] (9)
≤ Ex0∼q(x0) [− log pϕ,θ(x0) + KL(qλ(x1:T |x0)||pϕ,θ(x1:T |x0))] (10)

= Ex0∼q(x0)

[
− log pϕ,θ(x0) + Ex1:T∼qλ(x1:T |x0)[log

qλ(x1:T |x0)

pϕ,θ(x1:T |x0)
]

]
(11)

= Ex0∼q(x0)

[
− log pϕ,θ(x0) + Ex1:T∼qλ(x1:T |x0)[log

qλ(x1:T |x0)

pϕ,θ(x0:T )/pϕ,θ(x0)
]

]
(12)

= Ex0∼q(x0)

[
− log pϕ,θ(x0) + Ex1:T∼qλ(x1:T |x0)[log

qλ(x1:T |x0)

pϕ,θ(x0:T )
] + log pϕ,θ(x0)

]
(13)

= Ex0∼q(x0),x1:T∼qλ(x1:T |x0)

[
log

qλ(x1:T |x0)

pϕ,θ(x0:T )

]
(14)

= Eq

[
− log

pϕ,θ(x0:T )

qλ(x1:T |x0)

]
(15)

A.2. Derivation of our KL loss

Below is a derivation of Eq. (7).

L(λ, ϕ, θ) =Eq

[
− log

pϕ,θ(x0:T )

qλ(x1:T |x0)

]
(16)

= Eq

[
− log

pϕ(x0|x1)pθ(x1:T )

q(x2:T |x1)qλ(x1|x0)

]
(17)

= Eq

[
− log

pϕ(x0|x1)p(xT )
∏T

t=1 pθ(xt−1|xt)∏T
t=1 q(xt|xt−1)qλ(x1|x0)

]
(18)

= Eq

[
− log p(xT )−

T∑
t=3

log
pθ(xt−1|xt)

q(xt|xt−1)
− log

pθ(x1|x2)

q(x2|x1)
− log

pϕ(x0|x1)

qλ(x1|x0)

]
(19)

= Eq

[
− log p(xT )−

T∑
t=3

log
pθ(xt−1|xt)

q(xt−1|xt,x1)
· q(xt−1|x1)

q(xt|x1)
− log

pθ(x1|x2)

q(x2|x1)
− log

pϕ(x0|x1)

qλ(x1|x0)

]
(20)

= Eq

[
− log

p(xT )

q(xT |x1)
−

T∑
t=3

log
pθ(xt−1|xt)

q(xt−1|xt,x1)
− log

pθ(x1|x2)

qλ(x1|x0)
− log pϕ(x0|x1)

]
(21)

= Eq

KL (q(xT |x1)||p(xT ))︸ ︷︷ ︸
LT

+

T∑
t=3

KL (q(xt−1|xt,x1)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

+KL (qλ(x1|x0)||pθ(x1|x2))︸ ︷︷ ︸
Lalign

− log pϕ(x0|x1)︸ ︷︷ ︸
Lrec

 . (22)

A.3. Derivation of each KL term

In line with (Ho et al., 2020), our objective exclusively involves KL divergences between Gaussians, thus facilitating
closed-form evaluations.

For LT : The posterior distribution q lacks learnable parameters due to the deterministic forward mapping from x1 to xT .
Specifically, we have q(xT |x1) = N (xT ;

√
ᾱTx1, (1− ᾱT )I). When ᾱT ≈ 1, this simplifies to q(xT |x1) = N (xT ;0, I).

Given this property, LT remains constant during training and can be excluded from optimization.
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For L1:T−1 : This term aligns with the conventional diffusion model. Given the two conditional Gaussian distributions,
q(xt−1|xt,x1) is derived as

q(xt−1|xt,x1) = N (xt−1; µ̃(xt,x1), β̃t), (23)

where µ̃t(xt,x1) :=

√
ᾱt−1βt

1− ᾱt
x1 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt, (24)

Lt−1 can be compactly represented as:

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t(xt,x1)− µθ(xt, t)∥2
]
+ C, (25)

where C is a constant, independent with θ. We can expand Eq. (25) further by reparameterizing q(xt|x1) as xt(x1, ϵ) =√
ᾱtx1 +

√
1− ᾱtϵ for ϵ ∼ N (0, I) and reparemetrizing µθ(xt, t) as 1√

ᾱt
(xt −

√
1− ᾱtϵθ(xt, t)):

Lt−1 = Ex1∼q(x1),ϵ∼N (0,I)

[
γt

∥∥ϵ− ϵθ
(√

ᾱtx1 +
√
1− ᾱtϵ, t

)∥∥2] , (26)

where γt =
β2
t

2σ2
tαt(1−ᾱt)

.

For Lalign : This loss serves to align the latent representations derived from both the encoder and the diffusion model,
ensuring consistent latent spaces across the framework. Both pθ(x1|x2) and qλ(x1|x0) are Gaussian distributions. Therefore,
the KL divergence has the similar form as Eq. (25), while the µ̃t(xt,x1) becomes the mean of qλ(x1|x0), which corresponds
to Eλ(x0). So the loss function becomes:

Lalign = Eq

[
1

2σ2
1

∥Eλ(x0)− µθ(x2, 1)∥2
]

(27)

= Eq

[
β2
1

2σ2
1αt(1− ᾱ1)

α1(1− ᾱ1)

β2
1

∥Eλ(x0)− µθ(x2, 1)∥2
]

(28)

= Eq

[
γ1 · ρ∥Eλ(x0)− µθ(x2, 1)∥2

]
(29)

where γ1 is consistent with Eq. (26), ρ := α1(1−ᾱ1)
β2
1

is a constant, and µθ(x2, 1) is reparemeterized under the same

reparemetrization trick used in L1:T−1, i.e., µθ(x2, 1) =
1√
ᾱ1

(x2 −
√
1− ᾱ1ϵθ(x2, 1)).

For Lrec : This is the reconstruction loss corresponding to the one in VAE. Depending on the data type, it can be formulated
using different loss functions. In our model, we employ MSE loss for continuous data like images and cross-entropy for
discrete data, including texts and proteins.

A.4. Derivation of our Final loss

The final objective in Eq. (7) in can be reformulated as:

Eq,ϵ

[
T∑

t=3

γt ∥ϵ− ϵθ (xt, t)∥2 + γ1 · ρ∥Eλ(x0)− µθ(x2, 1)∥2 + Lrec

]
(30)

= Eq,ϵ

[
T∑

t=3

γt ∥ϵ− ϵθ (xt, t)∥2 + γ1 · ρ∥Eλ(x0)− µθ(x2, 1)∥2 + T · 1
T
Lrec

]
(31)

= Eq,ϵ

[
T∑

t=3

γt

(
∥ϵ− ϵθ (xt, t)∥2 +

1

γtT
Lrec

)
+ γ1

(
ρ∥Eλ(x0)− µθ(x2, 1)∥2 +

1

γ1T
Lrec

)]
(32)
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We further introduce a hyperparameter w to balance the diffusion/align loss with the reconstruction loss, which gives us the
following loss:

Lfinal = Eq,ϵ


T∑

t=3

γt

(
w ∥ϵ− ϵθ (xt, t)∥2 +

1

γtT
Lrec

)
︸ ︷︷ ︸

Lfinal
t−1

+ γ1

(
w
(
ρ∥Eλ(x0)− µθ(x2, 1)∥2

)
+

1

γ1T
Lrec

)
︸ ︷︷ ︸

Lfinal
1

 . (33)

A.5. Derivation of our loss from a learnable prior perspective

The following is a derivation of our loss from the VAE perspective as shown in §3.3, the objective from a learnable prior
perspective.

L(λ, ϕ, θ;x0) = Eq

[
− log

pϕ,θ(x0:T )

qλ(x1:T |x0)

]
(34)

= Eq

[
− log

pϕ(x0|x1)pθ(x1:T )

qλ(x1|x0)q(x2:T |x1)

]
(35)

= Eq

[
− log

pϕ(x0|x1)pθ(x1)

qλ(x1|x0)

]
(36)

= −Eqλ(x1|x0)[log pϕ(x0|x1)] + KL(qλ(x1|x0)||pθ(x1)) (37)

B. Algorithm
Below shows the complete training algorithm of EDDPMs.

Algorithm 1 Training
1: repeat
2: x ∼ q(x)
3: ϵ0 ∼ N (0, I)
4: x1 = Eλ(x0) + β0ϵ0
5: t ∼ Uniform({1, . . . , T − 1})
6: ϵ ∼ N (0, I)
7: xt =

√
ᾱtx1 +

√
1− ᾱtϵ

8: if t == 1 then
9: µθ(x2, 1) =

1√
ᾱ1

(x2 −
√
1− ᾱ1ϵθ(x2, 1))

10: Take gradient descent step on Lfinal
1

11: else
12: Take gradient descent step on Lfinal

t

13: end if
14: until converged

C. Details of Experiments
This section is the counterpart of the experiment section §4.

C.1. Text

C.1.1. SETUP

Model Architecture We closely adhere to the experimental setup presented in LatentOps (Liu et al., 2023a). For our
encoder, denoted as Eλ, we utilize the BERT-small model1(Devlin et al., 2019; Bhargava et al., 2021). As for the decoder,

1The BERT model follows the Apache 2.0 License.
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represented as Dϕ, we employ the GPT2-xl architecture2(Radford et al., 2019). Our diffusion model is constructed using a
straightforward MLP with skip connections, as inspired by (Preechakul et al., 2022). The latent dimension is set to 128.

Building upon the methodologies of Li et al. (2020); Liu et al. (2023a), we equip the pretrained language model (LM) with
a linear layer that precedes the LM, facilitating the passage of x1 to the decoder. To maintain generative capabilities and
acclimate the LM to the latent space, we incorporate an additional transformer layer between the original first layer and the
embedding layer of the LM, fostering adaptability. During the training phase, our optimization is confined to the MLP layers,
the embedding layer, the newly inserted transformer layer, the encoder, and the diffusion model with all other parameters
remaining frozen.

Dataset Regarding our dataset selection, we commence with the bookcorpus dataset (Zhu et al., 2015) to train the
autoencoder in the absence of the diffusion model. Subsequently, we engage in joint training of the model with diffusion,
utilizing the Yelp review dataset3 (Shen et al., 2017), which has been preprocessed by Li et al. (2018). It’s noteworthy that
Yelp serves as a sentiment dataset, encompassing approximately 179K negative and 268K positive sentences.

Baselines To ensure a comprehensive and fair comparison, our approach is primarily benchmarked against two key models:
LatentOps (Liu et al., 2023a) and Optimus-DAAE (Shen et al., 2020; Li et al., 2020). We have maintained consistency in
both architecture and training procedures across these comparisons. The primary difference lies in the training objectives.
Optimus-DAAE represents a modified, large-scale autoencoder. It enhances text generation capabilities by reconstructing
sentences from their slightly altered versions and integrates adversarial training with a denoising objective.

In addition, we have conducted comparisons with the latest advancements in text diffusion models, namely GENIE (Lin
et al., 2023) and AR-Diffusion (Wu et al., 2023). GENIE stands out as a non-autoregressive, large-scale pre-training text
diffusion framework designed for text generation. AR-Diffusion, on the other hand, is an auto-regressive text diffusion
model characterized by its multi-level diffusion strategy, which operates at both sentence and token levels. To evaluate these
models comprehensively, we trained both GENIE and AR-Diffusion using the Yelp dataset and applied them to various
downstream tasks. In addition to the text diffusion models, our comparative analysis extends to include two state-of-the-art
purely auto-regressive models: GPT2 and GPT4 (Achiam et al., 2023). Specifically, we adapted GPT2 for our experiments
by fine-tuning it on the Yelp dataset; however, its application was limited to text generation tasks due to its model architecture
and capabilities. Conversely, GPT4 was evaluated across a broader range of tasks, utilizing a diverse set of prompts designed
to explore its extensive generative potential and versatility.

Tasks In our study, we aim to comprehensively assess the holistic performance of EDDPMs by evaluating it across three
foundational capabilities: generation, reconstruction, and latent vector arithmetic. To achieve this, we focus on four specific
tasks: generation, reconstruction, interpolation, and text style transfer using latent vector arithmetic. Each of these tasks is
selected for the following reasons:

• Good Reconstruction: A key aspect of our model’s performance is its ability to accurately preserve content. This is
particularly evident in its reconstruction capability, which is critical for tasks like text style transfer and interpolation,
where maintaining the original content’s integrity is essential.

• Robust Representation: Our model aims to do more than just preserve content; it strives to capture the intrinsic
meaning, nuances, and essential features of the input text. This ability is vital for tasks requiring a deep understanding
of the source material, such as text style transfer.

• Fluent Generation: The ultimate test of our model’s effectiveness lies in the quality of its output. For EDDPM,
the fluency and coherence of the generated text are crucial indicators of its robust generative capabilities. This is
demonstrated in generation tasks, text style transfer, and interpolation.

By evaluating EDDPM on these four tasks, we can effectively reflect and analyze its performance in terms of the three core
functionalities.

2The GPT2 model follows the MIT License.
3The datasets are distributed under CC BY-SA 4.0 license.
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C.1.2. DETAILED RESULTS

We present detailed results of our text experiments. The results for reconstruction, generation, and style transfer are
displayed in Table 4. Additionally, results of interpolation are separately provided in two tables: Table 5 focuses on content
preservation, while Table 6 addresses fluency and divergence.

Reconstruction Generation ——- Style Transfer (Arithmetic) ——-

Content↑ Fluency↓ Divergence↑ Accuracy↑ Attribute↑ Content↑
LatentOps (Liu et al., 2023a) 87.6 68.1 0.240 57.3 71.5 45.9
Optimus-DAAE (Shen et al., 2020) 86.1 94.1 0.006 51.0 74.7 34.8
GENIE (Lin et al., 2023) 58.5 337.6 0.013 33.9 20.8 55.2
AR-Diffusion (Wu et al., 2023) 64.1 157.8 0.007 17.0 4.6 62.7
GPT2 (Radford et al., 2019) - 15.04 0.015 - - -
GPT4 (Achiam et al., 2023) 100 25.65 0.007 49.3 80.5 30.1

EDDPM 92.1 16.4 0.977 57.1 77.6 42.1

Table 4. Evaluation of Text Reconstruction, Generation and Style Transfer. Accuracy of style transfer is the geometric mean of attribute
score (classifier) and content score (BLEU).

Models α = 0.0/1.0 α = 0.1/0.9 α = 0.2/0.8 α = 0.3/0.7 α = 0.4/0.6 α = 0.5

LatentOps (Liu et al., 2023a) 0.0 / 92.0 0.0 / 90.1 0.0 / 83.7 0.8 / 63.2 0.9 / 35.2 9.5
Optimus-DAAE (Shen et al., 2020) 0.0 / 91.4 0.0 / 87.2 0.0 / 73.5 0.5 / 46.5 2.2 / 21.0 7.8
GENIE (Lin et al., 2023) 0.8 / 66.2 0.6 / 67.8 0.8 / 65.6 0.8 / 66.6 0.5 / 52.1 10.1
AR-Diffusion (Wu et al., 2023) 0.7 / 60.9 0.9 / 87.3 0.9 / 86.9 1.0 / 84.8 0.6 / 62.2 15.9

EDDPM 0.0 / 97.2 0.0 / 95.6 0.3/ 91.7 0.4 / 69.9 3.0 / 30.3 11.5

Table 5. Evaluation of Text Interpolation Content Consistency. This table quantifies the consistency of interpolated text between two input
sentences using BLEU scores. The degree of interpolation is denoted by α. A higher BLEU score indicates greater text consistency with
the corresponding input sentence.

Models α = 0.0/1.0 α = 0.1/0.9 α = 0.2/0.8 α = 0.3/0.7 α = 0.4/0.6 α = 0.5

LatentOps (Liu et al., 2023a) 19.5 / 0.871 19.5 / 0.886 19.7 / 0.867 21.3 / 0.798 26.9 / 0.856 32.5 / 0.697
Optimus-DAAE (Shen et al., 2020) 20.2 / 0.848 20.4 / 0.847 20.9 / 0.849 26.0 / 0.799 31.6 / 0.655 33.7 / 0.623
GENIE (Lin et al., 2023) 49.8 / 0.013 45.4 / 0.010 46.9 / 0.015 45.0 / 0.008 77.4 / 0.027 300.0 / 0.029
AR-Diffusion (Wu et al., 2023) 63.1 / 0.008 25.9 / 0.007 26.3 / 0.006 29.1 / 0.008 60.4 / 0.011 156.0 / 0.012
GPT4(Achiam et al., 2023) - - - - - 39.7 / 0.010

EDDPM 17.8 / 0.867 17.9 / 0.884 18.1 / 0.868 19.9 / 0.910 26.5 / 0.909 30.8 /0.763

Table 6. Evaluation of Text Interpolation Fluency and Divergence. The table presents perplexity scores / MAUVE scores. Lower perplexity
scores signify higher fluency and higher MAUVE scores represent smaller gap with the training data.

C.2. Image

C.2.1. SETUP

Model Architecture In line with the architecture presented by Diffusion Autoencoders (DiffAE) (Preechakul et al., 2022),
our model is structured with an encoder designed as a UNet and a decoder functioning as a conditional diffusion-based
model at the pixel level. Given the latent semantic representation x1 and a random Gaussian sample xT that shares the same
dimensionality as the raw data x, the decoder employs reverse diffusion transitions to produce the output x̂. Complementing
this, we integrate an additional standard diffusion process, with transitions realized through a straightforward MLP fortified
with skip connections.

Dataset Following the approach of DiffAE, we train our model and subsequently evaluate its reconstruction and generation
capabilities on FFHQ (Karras et al., 2019), CelebA (Karras et al., 2018), LSUN-Bedroom and LSUN-Horses (Yu et al.,
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2015). To assess the representation ability, we employ the CelebA-HQ dataset (Karras et al., 2018).

Hyperparameter settings We trained our model on two Nvidia A100-SXM4-40GB GPUs with a batch size of 100. For
evaluation purposes, we sampled 50,000 images to compute the FID, setting total steps T = 100 for both the diffusion
process and the decoder at every 500,000 training steps interval. The optimization was carried out using the Adam Optimizer,
with a learning rate of 1× 10−4 and no weight decay. The image dimensions inputted into the model were consistently set
at 128× 128 for FFHQ and 64× 64 for CelebA.

Evaluation Metrics For the assessment of the generated images’ quality, we resort to the Fréchet Inception Distance
(FID) (Heusel et al., 2017), a widely-accepted metric in the field. To assess the fidelity of our reconstruction, we employ the
reconstruction-FID (rFID) metric.

Baselines In our experiments, we compare our method against the following prominent baselines:

1. DDIM (Song et al., 2021a): Following the implementation by (Preechakul et al., 2022), we ensure a fair comparison
by adopting the DDIM approach described therein.

2. DiffAE (Preechakul et al., 2022): In this baseline, the encoder-decoder structure is trained in isolation, separate from
the latent diffusion model.

3. StyleGAN-XL (Sauer et al., 2022): StyleGAN-XL is the scaled version of StyleGAN3 generator on Imagenet,
achieving state-of-the-art results on large-scale image synthesis. The provided checkpoint on FFHQ is of resolution
256, thus we perform all the experiments with 256× 256 but resize the images into 128× 128 for FID calculation.

4. NVAE (Vahdat & Kautz, 2020b): Nouveau VAE (NVAE) is a deep hierarchical VAE built for image generation.

5. Consistency Models: Consistency Models (CM) are proposed to overcome the limitation that diffusion models are
too slow during generation. It could achieve new state-of-the-art results with one-step generation. In our experiments,
we adopt the best setting which is run by two steps. Specifically, we use the model openai/diffusers-cd_
bedroom256_lpips in our experiments as it performs better than openai/diffusers-cd_bedroom256_
l2 (Generation FID of the former is lower). Similar to StyleGAN-XL, we conduct all the experiments in the resolution
256× 256 and calculate FID with resolution 128× 128.

6. Latent Diffusion Model (LDM) (Rombach et al., 2021): For this method, the Variational AutoEncoder (VAE) is
pretrained prior to training the latent diffusion model. We leverage the pre-trained weights from (Rombach et al., 2021)
to generate images with a resolution of 224× 224. Subsequent to generation, these images are downscaled to a 64× 64
resolution for Fréchet Inception Distance (FID) computation. For tasks including reconstruction, interpolation, and
manipulation, the VAE from the LDM approach serves as the benchmark.

C.2.2. DETAILED EXPERIMENTAL RESULTS

Detailed Overall Performance Comparison for Generation, Reconstruction, and Interpolation. The results are
shown in Table 7. Note that we draw Figure 4 according to the generation, reconstruction performances, and interpolation
results with α = 0.4. As for the results of CM-CD, the reported FID for generation in the original paper (Song et al.,
2023) is 5.22, whereas we obtained an FID of 7.01. This discrepancy arises due to two main reasons: (1) We calculate the
reference statistics (mean and variance) using the original images, resulting in slightly different statistics compared to those
provided here4. (2) The original model was trained on images with a resolution of 256x256. Consequently, we need to
convert the generated 256x256 images to 128x128 for evaluation, which may introduce differences in FID. When using the
pre-calculated statistics and evaluating the model at a resolution of 256x256, we obtain an FID of 5.82, which is close to the
5.22 reported in the original paper. Using the newly calculated statistics, the FID is 6.56. Upon converting the images to
128x128, the FID becomes 7.01.

4https://github.com/openai/guided-diffusion/tree/main/evaluations
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Dataset Model Generation FID Reconstruction rFID α = 0.2 α = 0.4
T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50

FFHQ 128

LDM 67.78 30.43 12.90 ——- 4.87 ——- ——- 21.29 ——- ——- 75.13 ——-
NVAE ——- 41.26 ——- ——- 5.73 ——- ——- 6.28 ——- ——- 9.34 ——-

StyleGAN-XL ——- 24.72 ——- ——- 34.09 ——- ——- 46.82 ——- ——- 59.64 ——-
DDIM 29.56 21.45 15.08 88.22 45.30 22.23 144.40 104.91 75.81 181.07 131.80 105.31
DiffAE 20.80 16.70 12.57 12.59 9.23 5.93 13.25 11.33 9.38 22.93 23.01 22.17

EDDPM 18.41 14.38 12.26 11.50 8.17 5.48 12.57 9.80 6.66 19.11 18.36 16.98

CelebA 64

LDM 41.87 31.40 25.80 ——- 9.58 ——- ——- 9.95 ——- ——- 28.78 ——-
NVAE ——- 23.11 ——- ——- 1.55 ——- ——- 3.03 ——- ——- 8.49 ——-
DDIM 16.38 12.70 8.52 78.44 20.20 16.76 148.22 80.06 51.84 163.26 103.01 82.77
DiffAE 12.92 10.18 7.05 14.14 10.09 5.87 11.09 9.30 6.90 17.13 16.82 15.35

EDDPM 12.35 9.49 6.65 11.84 8.60 5.15 9.75 8.68 6.23 16.12 16.56 14.85

Horse
DDIM 22.17 12.92 7.92 157.24 73.50 22.59 266.54 243.47 181.69 316.98 301.88 226.54
DiffAE 11.97 9.37 7.44 9.62 6.83 4.71 12.41 10.07 7.88 24.04 21.19 18.34

EDDPM 12.53 9.80 8.90 9.15 6.36 3.98 10.45 8.31 6.19 19.64 17.18 14.55

Bedroom

LDM 41.67 10.86 4.39 ——- 2.28 ——- ——- 5.80 ——- ——- 67.42 ——-
CM-CD ——- 7.01 ——- ——- 29.53 ——- ——- 169.57 ——- ——- 241.90 ——-
DDIM 13.70 9.23 7.14 108.72 59.11 11.81 190.04 157.81 76.28 250.50 224.96 139.81
DiffAE 10.69 8.19 6.50 7.10 5.26 4.13 8.42 7.08 6.00 15.15 13.32 12.01

EDDPM 11.01 8.03 6.35 6.21 4.77 3.49 7.26 6.31 5.39 13.20 11.83 10.58

Table 7. Overall performance comparison in various tasks. We use FID and rFID to evaluate the performances of the generation and
reconstruction, respectively. For the interpolation tasks, we test two settings α = 0.2 and α = 0.4, where FID is also used to evaluate the
performance. We highlight the best performance within the performances of methods that need to set up the parameter T with bold. The
performances of the methods with only one step such as NVAE, StyleGAN-XL, and CM-CD are underlined if their performances are
better than the best performances of other methods with T = 50.

C.2.3. IMAGE GENERATION

For FFHQ128, we present the generated images in Figure 9, 10, 11). Then for CelebA64, the generated images are shown
in Figure 12, 13, 14. As depicted in the figures, images generated with T = 50 typically exhibit finer granularity when
contrasted against those produced with T = 10 or T = 20.

C.2.4. IMAGE RECONSTRUCTION

For a comparative analysis, we present reconstructed images from various models, each utilizing a distinct total step T in
the decoder. The results for FFHQ128 and CelebA64 are depicted in Figure 15 and Figure 16, respectively. From the figures,
it’s clear that the VAE in LDM is effective at reconstruction. Our model EDDPM also produces strong results.

C.2.5. IMAGE REPRESENTATION

Interpolation The interpolation results for FFHQ128 and CelebA64 are illustrated in Figure 17 and Figure 18, respectively.
A close examination of the figures reveals that while the VAE in LDM is adept at reconstruction, its interpolation with
α = 0.4 appears akin to a superposition of two images. This aligns with the inherent nature of their VAE, where the
representation predominantly encodes spatial rather than semantic information. In contrast, both our approach and DiffAE
yield superior results at α = 0.4. Specifically, our method demonstrates fewer visual artifacts compared with DiffAE,
underscoring the better representation space of our model.

Manipulation The comprehensive comparisons are presented in Table 8. As indicated by the table, our model consistently
delivers comparable AUC values across all classes.

C.3. Protein

Protein design plays a crucial role in drug discovery, protein therapeutics and various other applications in biotechnology.
However, due to the complex and large search space of protein sequences, traditional empirical methods that demands
intensive and thorough experiments and screening for validation are expensive and time-consuming. Recent advances in
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Figure 9. FFHQ128, T=10

Figure 10. FFHQ128, T=20

Figure 11. FFHQ128, T=50

machine learning and computational methods introduces new approaches for protein optimization, however, most of these
methods focuses on protein design in the discrete text space and lacks a meaningful latent space. Our work combines the
Autoencoder and Diffusion Model, enabling effective protein generation/optimization and establishing a robust latent space
for protein representation.

C.3.1. SETUP

Architecture We adopt the set up of ReLSO (Castro et al., 2022) which consists of a simple transformer as the encoder
and convolutional layers as the decoder. While ReLSO relies on Negative Sampling Loss which augments the datasets with
synthetic samples with negative labels and Interpolative Regularization which penalizes differences between interpolated
points and nearest neighbors to achieve a smooth pseudo-convex latent space, we leverage the same MLP with skip
connections in our text model as the backbone of the diffusion model to act as a learnable prior. In line with ReLSO, we
jointly train a simple regressor consists of linear layers and ReLU that predicts the fitness value with the latent embedding of
a protein sequence. The regressor is trained with Mean Squared Error and added to final objective derived in §A.4 :

Lprotein
t = wprotein ∗ Lfinal + Lregressor, (38)

The dimension of the latent space is set to 30. And we have trained 2 separate models with wprotein set to 1 and 5.

Dataset The models are trained and evaluaed on the Gifford Liu et al. (2019) dataset and the GFP(Sarkisyan et al.,
2016) dataset. The Gifford dataset was generated from directed evolution of 1010 mutants of an antibody against a single
target(Ranibizumab) through three rounds of phage display panning. Fitness value is defined as the log of the round-to-round
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Figure 12. CelebA64, T=10

Figure 13. CelebA64, T=20

Figure 14. CelebA64, T=50

ratio of sequence frequencies and a higher fitness value indicate better performance. In this dataset, each protein sequence
has a length of 20 with a vocabulary of 20 amino acids which are represented by 20 letters. The resulting dataset consists of
57603 sequences in the training set, 10166 sequences in the validation set, and 22690 sequences in the test set. The GFP
dataset was sampled from a fluorescent protein(avGFP) through mutagenesis. The dataset consists of 51175 sequences
with length of 237 and an average mutation of 3.7. The fitness is defined as the fluorescence of the proteins assayed with
fluorescence-activated cell sorting of the sequences.

Baseline In addition to ReLSO, an autoencoder-based model introduced above, we trained a vanilla Variational Autoen-
coder(Kingma & Welling, 2014) consists of the same transformer as encoder and convolutional layers as decoder. The
dimension of the latent space of ReLSO and VAE are all set to 30. Furthermore, we have conducted comparisons with latest
advancements in protein sequence diffusion models, namely NOS (Gruver et al., 2023). NOS proposes a Discrete Diffusion
Model that based on BERT and utilized [MASK] as noise, and a Gaussian Diffusion Model that jointly learned a word
embedding function and used BERT as the backbone of the diffusion model. While ReLSO, VAE and EDDPM utilized
a regressor of linear layers and ReLU, the regressor of NOS required an additional BertPooler to aggregate a sequence
of latent embeddings. We have conducted experiments on Protein Representation with EDDPM, ReLSO, VAE and NOS;
Protein Optimization with EDDPM, ReLSO and VAE; Protein Reconstruction with EDDPM, ReLSO and VAE; and Protein
Generation with EDDPM, VAE and NOS.
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Figure 15. Image reconstructions for FFHQ128 with different models. Best viewed with zooming in.

C.3.2. PROTEIN OPTIMIZATION

We optimize a protein sequence by optimizing its corresponding embedding in the latent space. Given a protein sequence x0,
we first obtain its latent embedding with x1 = Eλ(x0). We adopt the sampling algorithm introduced in LatentOps that solves
an ODE involving the regressor Liu et al. (2023a). This approach requires a target fitness value to guide the optimization.
We set this value to 1, 1.5, 2, and 2.5 for the Gifford dataset and 3, 4 for the GFP dataset which are all reasonably high
fitness values in their corresponding datasets. For evaluation, we optimize 60 random protein sequence and evaluate their
fitness value using the regressor. We assess the results on Diversity, quantified by the average Levenshtein distance of each
sequence relative to the other 59 optimized sequences; on Novelty, determined by the median of the minimum Levenshtein
distance between each optimized sequence and the training set; and on Quality, measured by the negative log likelihood
given by ProtGPT2, a large protein language model trained on the UniRef50 dataset. The results are presented in Table 10,
Table 11 and Table 12.

C.3.3. PROTEIN RECONSTRUCTION

Reconstruction is evaluated with Cross Entropy to compare input and reconstructed protein sequences in the test set. The
results are presented in the last column of Table 9. From Table 9, EDDPM achieves comparable reconstruction ability
compared to the baselines. Note that since NOS is a transformer-based model with word embedding that could not perform
reconstruction in the same settings as other models.

C.3.4. CONDITIONAL PROTEIN GENERATION

For conditional generation with VAE and EDDPM, latent representations are sampled and optimized with LatentOps
algorithm with target fitness of 1 and 3 for Gifford and GFP dataset respectively. For NOS, the latents are updated through
out each step of the diffusion process with Langevin Dynamics using gradients of the regressor. The quantitative evaluation
are presentsed in 13. Although NOS models achieved better NLL, the generated proteins are have lower fitness values than
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Figure 16. Image reconstructions for CelebA64 with different models. Best viewed with zooming in.

other methods.

C.3.5. INFLUENCE OF WEIGHT w

In the objective (Eq.33), the weight w aims to balance the generation and reconstruction. As mentioned in §3.1, we adopt
w = 8 for text and w = 1 for both image and protein. The choice of w is primarily influenced by the different loss functions
used for the reconstruction term LRec (Eq.4) across various data types. For example, cross-entropy is used for text, while
mean squared error (MSE) is used for images. To ensure that the different loss terms have similar scales, we selected w
values that roughly balanced their magnitudes. The w values are then fixed during training. As a comparison, beta-VAE
on text typically requires careful scheduling/annealing of β values during training (Higgins et al., 2017b; Li et al., 2020),
making the training more difficult and unstable.

C.3.6. POSTERIOR COLLAPSE

EDDPM can alleviate the posterior collapse issue on text sequences thanks to the improved formulation and training:

• As discussed in §3.3, EDDPMs can be viewed as a VAE with a jointly learned diffusion model prior (instead of a
standard Gaussian prior in vanilla VAEs). More formally, the EDDPMs’ objective in Eq.7 includes the Lalign term
that explicitly encourages alignment between the encoder’s posterior distribution qλ(x1|x0) and the diffusion model’s
prior pθ(x1|x2). This learned prior is more flexible and helps avoid the unreasonable regularization posed by standard
Gaussian prior that causes posterior collapse.

• EDDPMs derive the training objective from the well-established DDPM framework, enabling stable and effective joint
training of the encoder, decoder, and diffusion components. For example, as mentioned above, EDDPMs are robust to
the balancing weight w. This is in contrast to the instability and sensitivity to hyperparameters in text-VAE training. To
alleviate posterior collapse, training text-VAEs often requires tricks like beta-annealing (Bowman et al., 2016), free
bits (Kingma et al., 2017), cyclic annealing schedule (Fu et al., 2019), and so on. This can be observed through the
training loss curves in Figure 3.

Therefore, the posterior collapse issue is not obvious in EDDPMs.
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Figure 17. Image interpolations for FFHQ128 with different models. T is fixed to 50 in these experiments. Best viewed with zooming in.

Figure 18. Image interpolations for CelebA64 with different models. T is fixed to 50 in these experiments. Best viewed with zooming in.
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Class # Positives DiffAE EDDPM

5 o Clock Shadow 1314 0.9469 0.9466
Arched Eyebrows 3171 0.8822 0.8811

Attractive 5009 0.8849 0.8792
Bags Under Eyes 2528 0.8787 0.8821

Bald 174 0.9886 0.9843
Bangs 1593 0.9779 0.9770

Big Lips 3187 0.7031 0.7108
Big Nose 2796 0.8757 0.8683

Black Hair 1895 0.9483 0.9427
Blond Hair 1469 0.9775 0.9760

Blurry 27 0.8434 0.8762
Brown Hair 2074 0.8476 0.8334

Bushy Eyebrows 1658 0.9174 0.9117
Chubby 579 0.9439 0.9339

Double Chin 481 0.9503 0.9486
Eyeglasses 404 0.9916 0.9877

Goatee 650 0.9724 0.9690
Gray Hair 346 0.9865 0.9856

Heavy Makeup 3963 0.9714 0.9695
High Cheekbones 4043 0.9490 0.9474

Male 3184 0.9977 0.9969
Mouth Slightly Open 4125 0.9784 0.9777

Mustache 495 0.9573 0.9547
Narrow Eyes 1061 0.8569 0.8600

No Beard 7047 0.9784 0.9754
Oval Face 1772 0.7494 0.7469
Pale Skin 458 0.9635 0.9618

Pointy Nose 2738 0.7263 0.7235
Receding Hairline 718 0.9373 0.9340

Rosy Cheeks 975 0.9482 0.9416
Sideburns 684 0.9768 0.9726
Smiling 4050 0.9827 0.9803

Straight Hair 1866 0.8030 0.8027
Wavy Hair 3099 0.8804 0.8770

Wearing Earrings 2328 0.8933 0.8851
Wearing Hat 311 0.9875 0.9862

Wearing Lipstick 4911 0.9803 0.9789
Wearing Necklace 1496 0.7788 0.7789
Wearing Necktie 600 0.9583 0.9560

Young 6871 0.9230 0.9130

Weighted Avg AUC - 0.9174 0.9154
Weighted Avg ACC - 0.7954 0.8929

Table 8. Classification performance comparison.

Dataset Model MSE L1 Pearson Spearman Reconstruction CE

Gifford

VAE (Kingma & Welling, 2014) 0.255 0.361 0.829 0.454 1.464
ReLSO (Castro et al., 2022) 0.293 0.401 0.826 0.477 0.940

NOS-Discrete (Gruver et al., 2023) 0.563 0.648 0.633 0.407 -
NOS-Gaussian (Gruver et al., 2023) 0.753 0.785 0.350 0.292 -

EDDPM (wprotein=0.5) 0.231 0.346 0.840 0.477 1.016
EDDPM (wprotein=5) 0.211 0.331 0.844 0.472 1.143

GFP

VAE (Kingma & Welling, 2014) 0.681 0.615 0.873 0.764 0.093
ReLSO (Castro et al., 2022) 0.516 0.592 0.793 0.701 0.099

NOS-Discrete (Gruver et al., 2023) 7.984 2.620 0.378 0.350 -
NOS-Gaussian (Gruver et al., 2023) 8.040 2.630 -0.124 -0.129 -

EDDPM (wprotein=0.5) 0.496 0.464 0.854 0.753 0.095
EDDPM (wprotein=0.5) 0.488 0.440 0.848 0.734 0.094

Table 9. Protein Representation and Reconstruction
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Dataset Model Max Fitness Mean Fitness Diversity Novelty NLL

Gifford

VAE (Kingma & Welling, 2014) 2.005 1.969 14.789 7 29.301
ReLSO (Castro et al., 2022) 0.738 0.737 2.14 7 28.736

EDDPM (wprotein=0.5) 2.003 2.000 12.615 6 29.219
EDDPM (wprotein=5) 2.000 2.000 12.256 4 29.452

GFP

VAE (Kingma & Welling, 2014) 4.007 4.000 2.743 1 23.476
ReLSO (Castro et al., 2022) 2.875 2.524 1.70 1 23.468

EDDPM (wprotein=0.5) 4.001 4.000 12.836 1 23.488
EDDPM (wprotein=5) 4.001 4.000 1.076 1 23.480

Table 10. Comparison of Protein Optimization.

Target Fitness Model Max Fitness Mean Fitness Diversity Novelty NLL

1 ReLSO 0.738 0.737 2.70 6 28.645
EDDPM (wprotein=0.5) 1.000 1.000 13.35 6 29.352

1.5 ReLSO 0.738 0.737 2.06 7 28.713
EDDPM (wprotein=0.5) 1.501 1.500 13.07 6 29.294

2 ReLSO 0.738 0.737 2.14 7 28.736
EDDPM (wprotein=0.5) 2.003 2.000 12.61 6 29.219

2.5 ReLSO 0.738 0.737 2.26 7 28.790
EDDPM (wprotein=0.5) 2.504 2.500 12.30 6 28.736

Table 11. Comparison of Protein Optimization with different Target Fitness Value on Gifford.

Target Fitness Model Max Fitness Mean Fitness Diversity Novelty NLL

3 ReLSO 2.873 2.872 1.70 1 23.468
EDDPM (wprotein=0.5) 3.001 3.000 3.41 1 23.478

4 ReLSO 2.873 2.872 1.08 1 23.469
EDDPM (wprotein=0.5) 4.000 4.000 12.83 1 23.488

Table 12. Comparison of Protein Optimization with different Target Fitness Value on GFP.

Dataset Model Max Fitness Mean Fitness Diversity Novelty NLL

Gifford

VAE (Kingma & Welling, 2014) 1.010 0.999 15.771 9 29.389
NOS-Discrete (Gruver et al., 2023) 1.650 0.702 14.549 10 29.01
NOS-Gaussian (Gruver et al., 2023) 0.493 -0.112 8.160 3 29.05

EDDPM (wprotein=0.5) 1.003 1.000 13.067 6 29.200
EDDPM (wprotein=5) 1.004 1.000 12.486 5 29.490

GFP

VAE (Kingma & Welling, 2014) 3.036 3.000 114.2 105.5 23.702
NOS-Discrete (Gruver et al., 2023) 0.056 0.023 22.450 220 10.218
NOS-Gaussian (Gruver et al., 2023) -0.005 -0.007 3.626 220 10.066

EDDPM (wprotein=0.5) 3.007 3.001 4.173 1 23.481
EDDPM (wprotein=5) 3.003 3.002 0.715 1 23.475

Table 13. Comparison of Protein Conditional Generation.
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D. Contrasting with Similar Works
In §3.3, we provide a high-level comparison of EDDPMs with many related models, highlighting the connections and
differences between our approach and various existing methods. In §5, we present additional discussion of related works,
focusing on recent efforts to combine VAEs, GANs, and diffusion models. We further mention the limitations of these
approaches and how EDDPMs aim to overcome them. In this section, we would like to offer an in-depth discussion of
EDDPMs with two closely related methods: Latent Diffusion Models and Latent Score-based Generative Models.

D.1. Latent Diffusion Models

Latent Diffusion Models (LDMs), often termed Stable Diffusion (Rombach et al., 2021), utilize an architectural combination
of an autoencoder and a diffusion model in latent space. In this section, we delineate the primary distinctions between LDMs
and our proposed approach in detail:

Autoencoder’s Functionality: LDMs: The overarching objective of their autoencoder is twofold: to compress images
into a compact latent representation and to ensure robust reconstruction capabilities from these latent vectors. To bias the
autoencoder towards stronger reconstruction, they introduce a KL term but assign it a minute KL weight (∼ 10−6). Their
employment of a purely convolution-based encoder-decoder emphasizes spatial preservation in the latent space, which,
while bolstering reconstruction, poses challenges to distilling semantically rich latent features.

Our Approach: Our autoencoder extends beyond mere dimensionality reduction. It’s intricately tailored to synchronize
effectively with the diffusion process, thereby fostering a more semantically-coherent latent space. Instead of relying on the
conventional KL regularization against a standard Gaussian, we harness a learnable prior, rendering our latent space more
adaptive and insightful.

Training Paradigm: LDMs: Their training strategy bifurcates into two discrete phases: initial autoencoder training
followed by subsequent training of the diffusion model in latent space. Consequently, the latent space’s architecture
predominantly adheres to the objectives set forth by the autoencoder.

Our Approach: Our methodology pivots on end-to-end training, ensuring the latent space’s structure is sculpted by the
holistic objectives of the entire model. This integrated approach instills the latent space with nuanced semantics and more
discernible significance, enhancing both interpretability and utility.

D.2. Latent Score-based Generative Model

The Latent Score-based Generative Model (LSGM) enhances generative capabilities by learning Score-based Generative
Models (SGM) within the latent space of a Variational Autoencoder (VAE). We will delineate the detailed differences
between LSGM and EDDPMs in the following sections.

Training Objective: LSGM: Their method can be regarded as a Variational Autoencoder (VAE) with a Score-based
Generative Model (SGM) as the prior. Consequently, their objective is derived from Eq. (37). However, they uniquely
decompose the KL term into two components, and each component is approximated based on certain assumptions. This
approach results in a fundamentally different final training objective to that of EDDPMs.

Our Approach: Our method begins with a foundational Diffusion model framework. In this context, we interpret the encoder
and decoder as an extended step in the diffusion process. We then formulate a novel, generalized diffusion process that
incorporates a learnable noise addition step. The derivation of our training objective strictly adheres to the conventional
principles of standard diffusion models and does not rely on further approximations.

Training Paradigm: LSGM: In their approach, there are two distinct training objectives: one for the VAE and another for
the SGM. Although both losses are computed and used to update the model parameters, they are theoretically independent.
For instance, the SGM objective does not update the weights of the VAE. This implies that the latent space of the
VAE is not actively regularized by the SGM; rather, the SGM learns the latent distribution as defined by the VAE.
Furthermore, the training process for their model incorporates some complex tricks, resulting in instability. This complexity
makes it challenging to train their model effectively, a point acknowledged by the authors themselves in their repository
https://github.com/NVlabs/LSGM?tab=readme-ov-file#common-issues.
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Our Approach: Contrarily, our method employs a singular, unified training objective for the entire model, which is trained
in an end-to-end manner. The latent diffusion model is learned in conjunction with the encoder/decoder, which actively
regularizes the latent space. This results in an improved latent structure, as detailed in §3.
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