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Abstract

The rapid development of LLMs has led to widespread applications in interactive
environments, particularly in gaming, where LLM agents demonstrate impressive
decision-making and strategy execution capabilities. We focus on developing
a Pokémon battle agent based on GLMs through combining four techniques to
improve agent’s contextual understanding and generate effective battle commands:
(1) In-context reinforcement learning; (2) Knowledge-augmented generation; (3)
Consistent action generation; (4) Supervised Fine-Tuning. Through experiments
on Pokémon Showdown with robots and human, we evaluate the model’s win rates
and strategic performance, aiming to contribute to the development of LLM agents
capable of dynamic and complex environments. Results showed that despite the
capability limitations of LLMs, they still demonstrated acceptable performance,
proving their potential ability in analyze and strategize in the complex domain of
Pokémon battles.

1 Introduction

The increasing popularity of interactive AI systems underscores the importance of developing
engaging applications in gaming and education. Over the past few years, Large Language Models
(LLMs) such as GPT-3, GPT-4, and other advanced architectures have revolutionized the field
of natural language processing (NLP) [1] [2] [3]. These models, trained on massive datasets,
demonstrate an unprecedented ability to understand and generate human-like text, enabling a wide
range of applications. The capabilities of LLMs have been further amplified by advancements in
prompt engineering, fine-tuning techniques, and their integration with external tools and knowledge
bases.

LLM Agents is autonomous systems powered by LLMs capable of performing complex tasks through
reasoning and interaction [4] [5] [6]. Its emergence has opened up new possibilities across domains.
In gaming, LLM Agents offer the potential to redefine player experiences by enabling dynamic,
contextually aware interactions. For example, these agents can act as virtual opponents, collaborators,
or even storytellers, enhancing immersion and engagement. Similarly, in educational applications,
LLM Agents can simulate interactive tutors that adapt to learners’ needs, making learning experiences
more personalized and effective.

The gaming industry, in particular, provides a fertile ground for the development and deployment
of LLM Agents. Games often involve complex narratives, decision-making processes, and strategic
interactions, which align well with the strengths of LLMs. Within this space, turn-based strategy
games such as Pokémon battles present an ideal testbed for evaluating the contextual reasoning and
decision-making capabilities of LLMs. Pokémon, as a well-loved franchise, not only has a rich
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and structured gameplay system but also a global fanbase that appreciates nuanced and engaging
interactions.

Despite the potential, creating effective LLM Agents for games remains a challenging task. These
systems must balance contextual awareness, strategic depth, and user engagement while maintaining
computational efficiency. Our project aims to address these challenges by developing a contextually
aware Pokémon battle agent based on LLMs. We explore the effectiveness of four techniques to
enhance the agent’s performance:

(1) In-context reinforcement learning: The agent receives feedback on its previous actions in each
turn. This feedback provides insights into potential errors or areas for improvement, enabling the
agent to refine its decision-making process in subsequent turns.

(2) Knowledge-augmented generation: The agent’s understanding of the current battle state is enriched
with external knowledge, such as Pokémon type relationships and move effects. This augmentation
allows the agent to make more informed and contextually relevant decisions during battles.

(3) Consistent action generation: Using prompt engineering techniques including Chain of Thought
(CoT), Tree of Thought (ToT), and Self-Consistency to enhance the agent’s reasoning and consistency
when generating responses. These methods help the agent handle complex decision paths and improve
the reliability of its outputs.

(4) Supervised Fine-Tuning: Using a dataset of gameplay actions collected from human players and
high-win-rate bots to fine-tune the model to internalize effective strategies and decision patterns.

By integrating these methods, the framework ensures the agent possesses robust contextual awareness,
strategic depth, and enhanced response reliability in dynamic battle scenarios. We selected the
GLM model as the subject of our experiments, applying the aforementioned methods to enhance its
capabilities. The enhanced model was tested within the established battle framework to observe the
effectiveness of these methods and conduct evaluations about strategic performance.

2 Related Work

Generative AI and Large Language Models (LLMs) have demonstrated remarkable success in NLP
tasks. A key future advancement will involve exploring how LLMs can autonomously operate in
the physical world, extending their capabilities from text to action, which is crucial in the quest for
Artificial General Intelligence. Games provide ideal environments for developing LLM-based agents
that interact with virtual settings in ways that mimic human behavior. Below is introduction to LLM
Agents in several existing types of games.

Adventure: Adventure games are known for their story-driven gameplay, where players explore
environments, solve quests, and interact with characters and objects to progress the narrative. In
typical adventure game like Red Dead Redemption 2, LLM-based agents could follow the main
storyline and finish real missions in complex games by using GCC(General Computer Control), with
minimal reliance on prior [7]. Additionally, in open-world adventure games like Minecraft incorporate
crafting and exploration elements, also exists agents that could make explorations themselves [5].

Competition: Competition games challenge players to test their skills or strategies against each
other to achieve victory. LLM Agents can be developed as intelligent player, offering varied levels
of difficulty and strategic depth. By training the model on game-specific data, such as strategies
and decision-making patterns, and applying reasoning frameworks to evaluate optimal moves, the
agents could have better understanding of game state and make excellent decision. Examples include
StarCraft II [8] and Pokémon Battles [9], where LLM Agents can act as formidable adversaries to
enrich the player’s experience.

Communication: Communication games focus on social interactions among players like conver-
sation, challenges and controversies. LLM Agents can function as participants offering realistic
reasoning and dialogue by mimic human players. This capability is achieved through fine-tuned
dialogue generation and self-consistency mechanisms, allowing the agents to maintain coherent
narratives and adapt their responses to specific gameplay scenarios. Examples include Werewolf [10]
and Avalon [11], where LLM Agents can play the role of human-like players smoothly in the game.
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Cooperation: Cooperation games emphasize players collaborating to achieve common objectives,
requiring teamwork and collective problem-solving. LLM Agents can act as teammates capable
of interpreting player intentions and adjusting their actions dynamically to complement the team‘s
efforts. In games like Overcooked, LLM Agents can assist by managing resources or coordinating
tasks, improving gameplay flow and minimizing frustration [12].

3 Background

3.1 Pokémon

Species: Pokémon are diverse creatures that inhabit the world, each belonging to specific species
that define their characteristics and abilities. For example, Pikachu is known for its electric abilities,
while Charizard is recognized for its fire-based attacks.

Type: Each Pokémon belongs to one or more types, such as Fire, Water, or Grass, influencing their
strengths and weaknesses. For instance, Water-types are strong against Fire-types but weak against
Electric-types.

Stats: Pokémon have distinct stats that determine their battle performance, including HP, Attack,
Defense, Special Attack, Special Defense, and Speed.

Ability: Every Pokémon possesses abilities that offer passive benefits during battles. For example,
the ability of Blaziken is Speed Boost, which increases its Speed each turn, enhancing its offensive
potential.

Moves: Pokémon can learn various moves that they can use in battles. These moves are categorized
into different types and can have varying effects, including damage, status conditions, or healing. For
example, Lucario can learn Aura Sphere, a powerful Fighting-type move that never misses, while
Jigglypuff might use Sing to put opponents to sleep. Trainers can strategize by selecting moves that
best complement their Pokémon’s types and abilities, further enhancing their effectiveness in battles.

3.2 Playground

Pokémon Showdown (https://play.pokemonshowdown.com/) is a remarkable open-source online
platform that serves as a comprehensive battle simulator, enabling enthusiastic Pokémon fans to dive
into the thrilling world of Pokémon battles without the necessity of engaging with the main series of
Pokémon video games. Within Pokémon Showdown, there is a plethora of battle formats available,
catering to a wide spectrum of preferences and skill levels.

Figure 1: 2 Players Battling on Pokémon Showdown
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3.3 Battle Rule

We use [Gen 8] Random Battle in Pokémon Showdown as our battle rule where players face off
using a randomly generated team of Pokémon, all selected from the Pokémon available in Generation
8 (the Sword and Shield era). In this game mode, each player is given a random team of six Pokémon
with a random moveset (often based on a general understanding of what that Pokémon can learn
naturally in Generation 8). Players cannot prepare or customize their teams beforehand. Everything
is determined randomly at the beginning of the match.

4 Methodology

We employed four methods to strengthen our agent. The overall framework process is as follows: in
each turn, the agent receives corresponding text-based feedback on its previous to refine the decision
as well as current battle state enhanced by external knowledge, such as type relationships and move
effects. Then we use several prompt engineering techniques including Chain of Thought (CoT), Tree
of Thought (ToT), and Self-Consistency, to improve the performance of the model’s final responses.
In addition, we use battle actions collected from humans and high-win-rate bots as samples to conduct
supervised fine-tuning of the model, further enhancing the agent’s decision-making capabilities in
battles. Figure 2 illustrates our overall framework, which integrates four methods to enhance the
capabilities of our agent.

Figure 2: Overall framework

4.1 In-Context Reinforcement Learning (ICRL)

When human players making decisions, it relies on both current state and explicit or implicit feedback
from previous actions, such as the effectiveness of a move used in the previous turn or any additional
effects triggered by the move. But in our basic framework, the agent only receives the current battle
state at each turn, which might cause the agent to repeat the same erroneous action.

For example, the Pokémon Rotom has the ability "Levitate", which grants immunity to Ground-type
moves. But this information is neither included in the agent’s prior knowledge nor present in the
current turn’s battle state (it is only displayed on the screen when player selects the move). Without
feedback from previous actions, if the agent’s team currently has a Ground-type Pokémon on the field,
the agent may fail to understand the situation and repeatedly execute incorrect actions, ultimately
leading to defeat.

In-Context Reinforcement Learning (ICRL) is a approach that leverages the language understanding
capabilities of large language models (LLMs) to optimize decision-making policies. Reinforcement
learning uses numerical rewards to evaluate and refine actions, while ICRL uses text-based feedback
as a form of reward. By incorporating feedback from previous actions into the current context, the
agent could adjust its policy. This enables the agent to learn and adapt dynamically without requiring
explicit pretraining for every scenario.

In our framework, we provided the agent with four types of feedback: (1) The change in HP between
turns, which reflects the actual damage caused by the attack move; (2) The effectiveness of attack
move, indicating whether it’s super-effective, ineffective, or immune; (3) The actual effects of
executed moves, such as stat boosts or debuffs, or inflicting status conditions; (4) The execution
priority of the move in the previous turn, providing a rough estimate of speed. Figure 3 presents an
example of feedback on previous turn that includes all four types of feedback described above.
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Figure 3: Feedback example of Turn 10: opposing Cramorant started Dynamax. opposing Cramorant
used Max Geyser. It damaged Aegislash’s HP by 39% (61% left). Aegislash used Close Combat. It
was ineffective to opposing Cramorant. It damaged opposing Cramorant’s HP by 18% (82% left).
It decreased Aegislash’s def 1 level. It decreased Aegislash’s spd 1 level. opposing Cramorant
outspeeded Aegislash.

4.2 Knowledge-Augmented Generation (KAG)

ICRL could reduce the agent’s erroneous decisions to some extent, but it requires at least one turn
of feedback samples to adjust. This delay can still lead to fatal consequences. For example, if the
agent sends out a grass-type Pokémon against a fire-type Pokémon, the grass-type Pokémon may be
defeated in a single turn before the agent realizes it was a poor decision.

To further mitigate such fatal decisions, additional methods are needed. Retrieval-Augmented
Generation (RAG) [13] [14] has been proposed to reduce hallucinations in LLMs by enhancing the
generation process with external knowledge retrieval. In our framework, we adopt a similar approach
by introducing Pokémon-related knowledge data in advance, implementing a Knowledge-Augmented
Generation (KAG) method.

Figure 4: Extra annotation in current state: politoed as defender, GRASS,ELECTRIC deal 2x
damage; STEEL,ICE,FIRE only deal 0.5x damage to politoed; politoed as attacker, WATER
deal 2x damage to GROUND,FIRE pokemon; WATER deal 0.5x damage to GRASS pokemon;
Move- thunderbolt: Type: ELECTRIC, Cate: Special, Power: 92, Acc: 100%, Effect: Has a 10%
chance to paralyze the target.

We incorporate two types of external knowledge to fundamentally enhance the agent’s decision-
making capabilities: type advantage/weakness relationship and move/ability effect. In the original
battle state, we had already annotated the type information for all Pokémon and their available moves.
Bases on this, we explicitly annotated the type advantages and weaknesses for both the opponent’s
Pokémon and our own Pokémon. For example: “Kartana as defender, FIGHTING deals 2x damage;
NORMAL, FAIRY, STEEL, ROCK only deal 0.5x damage; GRASS only deals 0.25x damage; POISON
has no effect.” Additionally, while the original state only provided the type, power and accuracy of
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moves, some moves have special effects that are not within the agent’s knowledge. For instance, the
Sludge move not only deals damage but also has a 30% chance to poison the target. We explicitly
annotate such effects in the state to enable the agent to utilize these additional effects to better
guide its decision-making during the battle. Figure 4 presents an example of knowledge-augmented
generation, given extra annotation to make agent use super-effective move.

4.3 Consistent Action Generation

Existing research has demonstrated that reasoning and prompting techniques can enhance the per-
formance of LLMs in solving complex tasks. Rather than generating a single-step action, we use
several prompting methods, including Chain-of-Thought (CoT) [15], Tree-of-Thought (ToT) [16] and
Self-Consistency (SC) [17]. In the CoT approach, the agent first generates an intermediate reasoning
process to analyze the current battle situation and then outputs an action based on that reasoning. In
the ToT method, the agent produces three potential action choices and evaluates them internally to
identify the optimal one. For SC, the agent generates three possible actions and selects the one with
the majority vote as the final decision.

These methods play a critical role in Pokémon battles by enhancing the reasoning capabilities of
large language models (LLMs), allowing the agent to make more strategic and informed decisions.
CoT enables the agent to break down the complex battle situation into intermediate reasoning steps,
analyzing the opponent’s Pokémon, current status, and possible outcomes before determining the
most appropriate action. ToT extends this approach by exploring multiple potential action paths,
evaluating their consequences, and selecting the optimal action, which increases adaptability during
dynamic battles. SC improves decision reliability by generating multiple candidate actions and voting
for the most consistent one, reducing randomness and mitigating errors from single-shot predictions.
These methods help the agent better analyze type matchups, move effects, and the evolving state of
the battle, leading to more consistent, accurate, and strategic decision-making. Figure 5 shows the
pipeline of SC, the agent generates options for 3 times and choose the majority one, which is better
for the current battle state.

Figure 5: Agent generate 3 move options in Self-Consistency, the first one choose "U-Turn" to change
pokemon while the other 2 use "Brave Bird" to cast super-effective attack. It is actually more proper
to choose attack because there has an advantage both on speed and type.

4.4 Supervised Fine-Tuning (SFT)

To further enhance the agent’s decision-making abilities in Pokémon battles, Supervised Fine-Tuning
(SFT) [1] is employed. By collecting battle actions as training samples from human players and
high-win-rate bots, the model undergoes supervised fine-tuning to align its decision-making process
with optimal strategies demonstrated in these examples. We selected decisive actions from the
winning side of battles, such as defeating an opponent’s Pokémon or making a proper switch, as
high-quality training samples. This process allows the agent to learn excellent decision patterns, such
as recognizing type matchups, predicting opponent moves, and selecting the most effective actions.
Figure 6 shows a high-quality human player battle example, human player misdirects the opponent
to use dragon type attack by sending a dragon Pokémon first, and immediately change to anther one
to cause immunity.
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Figure 6: Human player use deceptive switch strategy to lure the opponent into making a high-
powered, but immune attack.

The use of SFT would improve the agent’s battle performance. It helps the model better imitate
human-like strategic reasoning and adapt to diverse combat scenarios, while also reduces poor
decision-making by embedding strong prior knowledge derived from expert gameplay. Fine-tuning
ensures that the agent develops a more robust policy, allowing it to make consistent and reliable
decisions, particularly in high-pressure or unfamiliar situations.

5 Experiment

5.1 Battle Settings

We adopt a heuristic bot to benchmark the performance of GLMs [18]. The algorithm of the bot
considers the stats of Pokémon, the power of moves, and type advantages/weaknesses, uses status-
boosting moves, sets entry hazards, and selects the most effective actions, which enables the bot
to maximize the chances of victory and minimizing the exposure to threats. This comprehensive
approach ensures that the heuristic bot provides a robust and realistic standard against which to
measure the capabilities of GLMs in the complex and strategic environment of Pokémon battles.

5.2 Results and Analysis

First, we apply ICRL, KAG and consistent action generation to GLM models and evaluated their win
rate against the heuristic bot in the battle rule mentioned above. Specifically, we test the performance
of the CoT, ToT, and SC methods based on the application of ICRL and KAG techniques through
100 battles each method (i.e., the number of shots in the input prompt = 1, the number of turns of
historical battle information = 2, and relevant knowledge is added in the prompt).

Win Rate (%) None CoT ToT SC
GLM-4-air 9.00 17.00 20.00 23.00

GLM-4v-Flash 8.00 16.00 18.00 16.00

The results show that when GLMs are directly applied to Pokémon battles without using any tuning
strategies, the winning rate of the model is quite low, which is consistent with the conclusion drawn
in [9]. After using ICLR, KAG, and consistent action generation, the winning rate of the models in
battles has improved to some extent. However, due to the capability limitations of the base models, it
still cannot reach the level comparable to that of human players.

Second, we explore the impact of SFT on GLMs in Pokémon battles. We fine-tuned a GLM-4-
Flash model using battle data generated from the heuristic bot, improving the win rate of GLM-4-
Flash against the heuristic bot from 2% to 10%. Meanwhile, the fine-tuned model also has some
improvements in output specification, such as outputting data directly in JSON format without
inclusion of the ``` json wrapper, and avoiding outputting illegal actions.
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6 Conclusion

This study has explored the application of large language models in the context of Pokémon battles
and has revealed several important findings. Firstly, when large models are applied directly to
specific professional tasks without any optimization, such as Pokémon battles, their performance
is significantly limited. As shown in the results, the win rate of the battles is quite low when the
model is called without any enhancements. Even with the introduction of optimizations such as
consistent action generation, the improvement in the model’s performance is still relatively modest,
which is different from the relevant results in [9]. This inconsistency may be attributed to the different
capabilities of the base models. Meanwhile, we have observed a phenomenon that although many
tuning strategies are applied, the strategies of the GLMs remain relatively simple and lack intelligence,
such as simply switching Pokémon in order, choosing the moves that have no effect to the opponent
and neglecting type advantage/weakness relationship. This reflects the problem that big models are
still not capable enough to deal with complex problems.

Secondly, our research demonstrates that supervised fine-tuning of large models can effectively alter
their behavioral characteristics, indicating that the behavior and performance of these models can be
shaped to better suit the requirements of specific tasks or environments. By fine-tuning the model with
targeted supervision, we can enhance its adaptability and effectiveness in the domain of Pokémon
battles, and potentially in other specialized fields as well.

Overall, while large models hold great promise for a wide range of applications, their deployment in
niche areas such as Pokémon battles requires careful optimization and fine-tuning. The limited success
achieved through the application of ICLR, KAG and consistent action generation and the potential
seen in supervised fine-tuning highlight the ongoing challenges and opportunities in leveraging
these models for specialized tasks. Future research should focus on developing more sophisticated
optimization techniques and fine-tuning strategies to further improve the performance of large models
in such contexts.
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