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Abstract

A key challenge of Conversational Recommen-001
dation Systems (CRS) is to integrate the rec-002
ommendation function and the dialog genera-003
tion function smoothly. Previous works employ004
graph neural networks with external knowl-005
edge graphs (KG) to model individual recom-006
mendation items and integrate KGs with lan-007
guage models through attention mechanisms008
for response generation. Although previous009
approaches prove effective, there is still room010
for improvement. For example, KG-based ap-011
proaches only rely on entity relations and bag-012
of-words to recommend items and neglect the013
information in the conversational context. We014
propose to improve the usage of dialog context015
for both recommendation and response gen-016
eration using an encoding architecture along017
with the self-attention mechanism of transform-018
ers. In this paper, we propose a simple yet019
effective architecture comprising a pre-trained020
language model (PLM) and an item metadata021
encoder to integrate the recommendation and022
the dialog generation better. The proposed item023
encoder learns to map item metadata to em-024
beddings reflecting the rich information of the025
item, which can be matched with dialog context.026
The PLM then consumes the context-aware027
item embeddings and dialog context to generate028
high-quality recommendations and responses.029
Experimental results on the benchmark dataset030
REDIAL show that our model obtains state-031
of-the-art results on both recommendation and032
response generation tasks1.033

1 Introduction034

An automated conversational recommendation sys-035

tem (CRS) (Li et al., 2018; Zhou et al., 2020) is036

intended to interact with users and provide accu-037

rate product recommendations (e.g., movies, songs,038

and consumables). It has been a focal point of re-039

search lately due to its potential applications in the040

1Code is available online https://github.com/
by2299/MESE

e-commerce industry. Traditional recommendation 041

systems collect user preferences from implicit feed- 042

back such as click-through-rate (Zhou et al., 2018) 043

or purchase history and apply collaborative filter- 044

ing (Su and Khoshgoftaar, 2009; Shi et al., 2014) 045

or deep learning models (Covington et al., 2016; 046

He et al., 2017) to construct latent spaces for user 047

preferences. Unlike traditional recommendation 048

systems, CRSs directly extract user preferences 049

from live dialog history to precisely address the 050

users’ needs. 051

Although some progress has been made in this 052

area, there is still room for improvement. First, pre- 053

vious CRSs (Chen et al., 2019; Zhou et al., 2020; Li 054

et al., 2021) track entities mentioned in the dialog 055

context, and then search related items in knowledge 056

graphs to recommend to users. However, these 057

systems require a named-entity recognition (NER) 058

module to extract mentioned entities from the di- 059

alog context. Thus we need to collect additional 060

domain-specific data to train the NER module. In 061

practice, such NER modules have deficient perfor- 062

mance, leading to a bad accuracy of CRS. Second, 063

existing CRSs built upon graph neural networks 064

(Kipf and Welling, 2017; Schlichtkrull et al., 2018) 065

cannot quickly scale up or respond to rapid changes 066

of the underlining entities. In e-commerce, items 067

for recommendation change frequently due to con- 068

stant updates of merchants and products. Exist- 069

ing approaches require either re-training the en- 070

tire system when the structure of knowledge graph 071

changes (Dettmers et al., 2018) or adding complex 072

architectures on top to be adaptive (Wu et al., 2019). 073

A more flexible architecture can help the system 074

react to rapid changes and adapt itself to new items. 075

Moreover, meta-information about the items can 076

be leveraged. Similar information can be found 077

in both dialog context and item meta-information. 078

For example, in a movie recommendation setting, 079

words like "crime, gangsters, etc." are likely to ex- 080

ist in the dialog context when a user is searching 081
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for crime movies. In the synopsis of a crime movie,082

such keywords are likely to exist as well. Ideally,083

an alignment between the semantics of dialog con-084

text and the item meta-information can be used to085

improve system’s performance.086

Driven by the motivations above, we present087

a Metadata Enhanced learning approach via088

Semantic Extraction from dialog context i.e.089

MESE. The major components of MESE contain090

a pre-trained language model (PLM) and an item091

encoder architecture. The item encoder takes item092

metadata as input and outputs a vector embedding.093

By jointly training the encoder and the PLM, the en-094

tire system can extract co-occurring information be-095

tween dialog context and item metadata, and item096

encoders can systematically construct representa-097

tions reflecting this alignment. Item embeddings098

are then consumed with dialog context by the self-099

attention mechanism of the PLM. This mechanism100

smoothly integrates dialog context and item infor-101

mation well into the recommendation and response102

generation tasks.103

The key contributions of this paper are summa-104

rized as follows: This paper presents MESE, a105

novel CRS framework that considers both item106

metadata and dialog context for recommendations.107

Our model employs a simple yet effective item108

metadata encoder that learns to represent rich item109

information during training. Such encoder can110

adapt to database changes quickly and is indepen-111

dent of task-specific architectures. Extensive exper-112

iments on standard dataset REDIAL demonstrate113

that MESE outperforms previous state-of-the-art114

methods on both response generation and recom-115

mendation with a large margin.116

2 Related Work117

The current CRS paradigm contains two major118

modules: a recommendation module that suggests119

items based on conversational context and a re-120

sponse generation module that generate responses121

based on dialog history and the recommended122

items. Integrating these two modules to perform123

well on both tasks has been a major challenge.124

Chen et al. (2019) leverage external knowledge and125

employees graph neural networks as the backbone126

to model entities and entity relations in the knowl-127

edge graph (KG) to enhance performance. Zhou128

et al. (2020) introduce a word-level KG (Speer129

et al., 2017) to the system with semantic fusion130

(Sun et al., 2019a) to enhance the semantic repre-131

sentations of words and items. Since item informa- 132

tion and dialog context are processed separately in 133

the above approaches, they loss integrated sentence- 134

level information. We propose to condition recom- 135

mendation on integrated contextual information of 136

both dialog context and mentioned entity informa- 137

tion. More recent works adopt pre-trained language 138

models (PLM) (Vaswani et al., 2017; Radford et al., 139

2019; Zhang et al., 2020) and template-based meth- 140

ods to facilitate response generation. Liang et al. 141

(2021) generate a response template containing a 142

mixture of contextual words and slot locations to 143

incorporate recommended items better. Wang et al. 144

(2021) expand the vocabulary list of the PLM to 145

include items to unify the process of item recom- 146

mendation with response generation. We propose 147

to enhance our PLM with an item metadata en- 148

coder to extract context-aware representations by 149

jointly training on both recommendation and re- 150

sponse generation tasks. We also generate response 151

templates with slot locations to better incorporate 152

recommended items into responses. 153

Our work is also inspired by studies from 154

other areas. Recent works have shown that cross- 155

modality training across vision and language tasks 156

can lead to outstanding results in building multi- 157

modal representations (Tan and Bansal, 2019; Lu 158

et al., 2019). In (Tan and Bansal, 2019), a large- 159

scale transformer-based model is adapted with 160

cross-modal encoders to connect visual and linguis- 161

tic semantics and pre-trained on vision-language 162

pairs to learn cross-modality relationships. Prompt 163

tuning (Li and Liang, 2021; Gao et al., 2021) meth- 164

ods show that PLMs are capable of integrating dif- 165

ferent sources of information into the same embed- 166

ding space. In terms of using PLM as a recom- 167

mendation system, Sun et al. (2019b) train a bidi- 168

rectional self-attention model to predict masked 169

items and achieve remarkable results. Inspired by 170

the above studies, we propose to use an encoder 171

module to map item meta-information to an embed- 172

ding space. By jointly training on dialog context 173

and encoded item representations, the system can 174

align these two information streams by fusing the 175

semantic spaces. 176

3 Approach 177

In this section, we present our framework MESE 178

that integrates item metadata with dialog context. 179

We first introduce how to encode item metadata 180

and how to blend item information into dialog con- 181
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text. We then illustrate how the recommendation182

module and the response generation module are183

built. Finally, we describe the training objectives184

and the testing process.185

3.1 Encoding Item Metadata186

We propose to use an item encoder to directly map187

the metadata of each item to an embedding. In the188

movie recommendation setting, description on title,189

genre, actors, directors, and plot are collected as190

metadata and concatenated with a "[SEP]" token191

for each movie. This concatenated information is192

the input to the item encoder which produces a vec-193

tor representation for each item. The item encoder194

consists of a DistilBERT (Sanh et al., 2019) model195

that maps the input sequence to a sequence of vec-196

tor embeddings, a pooling layer that condenses the197

sequence embeddings to a single vector embedding,198

and a feed-forward layer to produce the output em-199

bedding with a certain dimension. A visualization200

of this module is shown in Figure 1.201

DistilBERT

Venom [SEP] Tom Hardy … When Eddie …

(Title) (Actor) (Movie Plot)

Pooling Layer

Feed Forward Layer

Output Embedding

[SEP]

Figure 1: Item Encoder takes in the metadata of an item
and outputs an embedding of the item

Next, we discuss how to incorporate items into202

dialog context with the encoded embeddings and203

the PLM (Radford et al., 2019). Previous studies204

have shown that KG-based frameworks cannot al-205

ways integrate recommended items into generated206

replies (Wang et al., 2021). To solve this issue,207

we introduce a special placeholder token "[PH]" to208

the vocabulary list of the PLM. Every occurrence209

of item name in the corpus is replaced with this210

"[PH]" token. This modified dialog sequence is211

then mapped to a sequence of word token embed-212

dings (WTE) by the vocabulary embedding matrix213

of the PLM. To include item information into the214

context, an instance of the item encoder is used to215

encode item metadata into token embeddings. The216

item encoder takes in item metadata and outputs217

an item token embedding (ITE) with the same di-218

mensionality as a WTE of the PLM. The ITE is 219

then concatenated with the WTEs constructed from 220

the dialog context to be consumed by the PLM. An 221

example is shown in 2. 222

Have you seen Venom ?

Have you seen [PH] ?

ITEWTEs

Item Encoder

Venom Metadata

GPT-2

Figure 2: Dialog context is represented as a concatena-
tion of WTEs and ITEs to be consumed by the PLM.

3.2 Recommendation Module 223

Similar to (Covington et al., 2016), we pose rec- 224

ommendation as a two-phase process: candidate 225

selection and candidate ranking. During candidate 226

selection, the entire item database is traversed and 227

narrowed down to a few hundred candidates based 228

on a calculated similarity score between the dialog 229

context and the item metadata. During candidate 230

ranking, similarity scores between the dialog con- 231

text and the generated candidates are recomputed 232

with finer granularity by the self-attention mecha- 233

nism of the PLM. 234

3.2.1 Candidate Selection 235

In this section, we describe the training objective 236

of candidate selection. We add a special token 237

"[REC]" to the vocabulary embedding matrix of 238

PLM. This token is used to indicate the start of the 239

recommendation process and to summarize dialog 240

context. At the end of each turn, a token embed- 241

ding sequence is created following Figure 2 in the 242

format of an interleaving of word token embed- 243

dings (WTE) and item token embeddings (ITE) to 244

represent all previous dialog context. When recom- 245

mendation is labeled in a conversation turn in the 246

training dataset, the WTE of "[REC]" is appended 247

to the previous token embedding sequence to form 248

a new sequence D. Next, the PLM takes in D 249

and produces an output embedding sequence. We 250

denote the last vector of this output embedding se- 251

quence as DR which corresponds to the appended 252

special token "[REC]". DR summarizes dialog 253

context and can be used to retrieve candidate items. 254
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Dialog Context

User: Hi!

System: Hello!

User: I like action films.

System: Have you seen Venom ?

User: …

System: …

Item Encoder GPT-2

Similarity

I like action films REC

M samples from Item 

DB + ground truth

NNIDR

I like action films REC

FFN & Softmax

GPT-2

I like action films REC TVenom Have you seen [PH] ?

Item Encoder

(Ground Truth)

T0 T1 … TM

Item Encoder

K Nearest Candidates

DR
SMS0

ℒselect

ℒrank

ℒres

…

Training

Candidate Selection Candidate Ranking Response Generation

Venom 0.3

Titanic 0.2

… Venom 0.8

Avatar 0.1

…

Venom

GPT-2

I like action films REC

GPT-2

I like action films REC

GPT-2

Item Encoder

T0 T1 … TK-1

FFN & Softmax

Item Encoder

TVenom Have you …

Venom

Rank #1 Item

Item DB Item Encoder

Have you seen …
Testing Step (1) Testing Step (2) Testing Step (3)

Figure 3: Overview of MESE. During training, M items are sampled from the database to compute the joint loss
Lselect and Lrank, which are then combined with the response generation loss Lres and jointly optimized. During
testing, the entire metadata DB is stored as a nearest neighbor index (NNI). First, dialog context is condensed
into a vector DR. An approximate nearest neighbor search is performed on DR to get candidate items, which is
then passed to the ITE Encoder to compute their ranking scores and the the highest-ranked candidate is used as a
prompt to generate responses. We only present the case when there’s only one ground truth recommendation in the
utterance. However, it’s easy to extend the above approach to multiple recommendations.

We randomly sample M items and their meta-255

data from the database as negative examples and256

combine them with the ground truth item labeled257

in the dataset to get the training samples. Another258

instance of the item encoder, is used to create candi-259

date token embeddings for each item in the training260

samples. The item Encoder takes in the metadata of261

samples items and outputs a set of candidate token262

embeddings C = (c0, c1, ..., cM ), each with the263

same dimensionality as DR. The recommendation264

task at this phase is posed as a multi-class classifi-265

cation problem of predicting the ground truth item266

over the negative samples (Covington et al., 2016).267

The probability of each candidate item is defined in268

(1) and optimized by a cross-entropy loss function,269

denoted as Lselect:270

P (i) =
eci·DR∑M

n=0 e
cn·DR

(1)271

Note that the purpose of this learning objective272

is to let the model learn how to construct the DR273

representation instead of learning the probabilities274

of candidate items. The DR representation is later275

used in an approximate nearest neighbor search276

(Liu et al., 2004) to select candidates from the en-277

tire database in testing 3.5.278

3.2.2 Candidate Ranking 279

In this section, we describe the training objective of 280

candidate ranking. The goal of candidate ranking 281

is to further perform more fine-grained scoring on 282

the similarities between generated candidates and 283

dialog context so that the final rankings of items 284

can better reflect users’ preferences. We propose 285

to use the PLM and its self-attention to compute 286

ranking scores. 287

During training, the same context token embed- 288

ding sequence D and the same training sample with 289

M negative examples are used. The ITE encoder 290

from section 3.1 is used to map the metadata of the 291

sample to an ITE set T = (t0, t1, ..., tM ), where 292

the subscript of each ti corresponds to their index 293

in the database. A concatenation of context se- 294

quence D and T are created and consumed by the 295

same PLM used above and the output embeddings 296

are computed. The order of candidate items should 297

not make a difference in the values of the outputs. 298

Therefore, we add the same positional encoding 299

to each ITE in T and remove the attention masks 300

among the ITEs. The output embeddings of PLM 301

that correspond to the ITEs in T are then passed to 302

a feed-forward layer to reduce each vector from a 303

higher dimension to a single number with dimen- 304

sionality equals 1. This set of numbers is denoted 305
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by Q = (q0, q1, ..., qM ) where the index of each306

number corresponds to their index in T . The final307

ranking score of each candidate item is defined in308

(2) and optimized by a cross-entropy loss function,309

denoted as Lrank:310

R(i) =
eqi∑M

n=0 e
qn

(2)311

3.3 Response Generation Module312

In this section, we describe how to train the model313

to generate responses based on the recommended314

items’ metadata. The same token embedding se-315

quence D is used as context and current system316

utterance U = (w0, w1, ..., wn) is used as targets317

where each wi represents a WTE. We only optimize318

the PLM to reconstruct system utterances.319

If the current utterance contains recommenda-320

tions, we create ITEs by passing metadata of the321

recommended items through the item Encoder used322

in 2 and append the ITEs to context token embed-323

ding sequence D to obtain D′. If the current utter-324

ance doesn’t contain recommendations, D′ is the325

same as D. The PLM is trained to reconstruct the326

ground truth U based on D′. The probability of327

generated response is formulated as:328

P (U |D′) =
n∏

i=1

P (wi|wi−1, ..., w0, D
′) (3)329

The loss function is set to be:330

Lres = − 1

N

N∑
i=1

log(P (Ui|D′)) (4)331

Where N is the total number of system utterances332

in one dialog.333

3.4 Joint Training334

Finally, we use the following combined loss to335

jointly train both the encoders and the PLM:336

Loss = a · Lselect + b · Lrank + c · Lres (5)337

Where a, b and c are the weights of language train-338

ing and recommendation training objectives. Dur-339

ing training, all weight parameters of the two item340

encoders, the PLM and relevant feed-forward lay-341

ers participate in back-propagation. An overview342

of training is shown in Figure 3343

3.5 Testing 344

During testing, a candidate embedding set over 345

the entire item database is built by running meta- 346

data through the item encoder used in section 3.2.1 347

and stored with a nearest neighbor index (NNI) 348

(Muja and Lowe, 2014). During response genera- 349

tion, when a "[REC]" token is generated, candidate 350

selection 3.2.1 is activated. An approximate nearest 351

neighbor search is conducted over the NNI and K 352

closest candidates are selected based on their simi- 353

larities from the DR vector2. Candidate ranking is 354

then activated and the PLM and the item encoder 355

from 2 are used to generate a score for each candi- 356

date. When ranking finishes, the ITE that receives 357

the highest ranking score is appended to the dia- 358

log context D and response generation continues 359

until the end-of-sentence token is generated. After 360

generation is completed, we replace the occurrence 361

of the placeholder token "[PH]" with the title of 362

the recommended item to form the final response. 363

Note that when the turn involves no recommen- 364

dation, our PLM simply generates a clarification 365

question or a chitchat response with no placeholder 366

tokens. An overview of testing is shown in Figure 367

3 368

4 Experiments 369

In this section, we discuss the datasets used, exper- 370

imental setup, experimental results on both recom- 371

mendation and language metrics, and report analy- 372

sis results with ablation studies. 373

4.1 Datasets 374

We evaluated our model on two datasets: ReDial 375

dataset (Li et al., 2018) for comparison with previ- 376

ous models and INSPIRED dataset (Hayati et al., 377

2020) for ablation studies. Both datasets were col- 378

lected on Amazon Mechanical Turk (AMT) plat- 379

form where workers made conversations related 380

to movie seeking and recommending following a 381

set of extensive instructions. The statistics of both 382

datasets are shown in Table 1 383

Dataset dialogs utterances avg turns
ReDial 10006 182150 18.2

INSPIRED 1001 35811 10.73

Table 1: Statistics of Datasets

2Multi-Source Selection in Appendix A
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4.2 Experimental Setup384

4.2.1 baselines385

The baseline models for evaluation on the ReDial386

dataset is described below:387

ReDial (Li et al., 2018): A dialogue generation388

model using HRED (Sordoni et al., 2015) as back-389

bone for dialog module390

KBRD (Chen et al., 2019): The dialog genera-391

tion module based on the Transformer architecture392

(Vaswani et al., 2017). It exploits external knowl-393

edge to perform recommendations and language394

generation.395

KGSF (Zhou et al., 2020): Concept-net is used396

alongside knowledge graph to perform semantic-397

aware recommendations.398

CR-Walker (Ma et al., 2021): performs tree-399

structured reasoning on a knowledge graph and400

guides language generation with dialog acts401

CRFR (Zhou et al., 2021): conversational402

context-based reinforcement learning model with403

multi-hop reasoning on KGs.404

NTRD (Liang et al., 2021): an encoder-decoder405

model is used to generate a response template with406

slot locations to be filled in with recommended407

items using a sufficient attention mechanism.408

RID (Wang et al., 2021): pre-trained language409

model and knowledge graph are used to improve410

CRS performance.411

4.2.2 Implementation Details412

We employed GPT-2 model (Radford et al., 2019)413

as the backbone of MESE for dialog generation,414

which contains 12 layers, 768 hidden units, 12415

heads, with 117M parameters. We recruited 2 item416

encoders (Sanh et al., 2019) to encoder items in417

candidate generation 3.2.1 and candidate ranking418

3.2.2, respectively, each has a distil-bert model419

with 6 layers, 768 hidden units, 12 heads, with420

66M parameters. We used the AdamW optimizer421

(Loshchilov and Hutter, 2019) with epsilon set to422

1e−6, learning rate set to 3e−5. The model was423

trained for 8 epochs on ReDial dataset, and the424

first epoch was dedicated to warm up with a linear425

scheduler. We set the sample size M during can-426

didate generation and candidate ranking to be 150.427

We set a=0.8, b = 1.0 and c = 0.28 as coefficients428

for 3 loss functions respectively. We chose K = 500429

for the number of candidates during testing.430

4.2.3 Evaluation Metrics431

We performed two evaluations, recommendation432

evaluation and dialog evaluation, for the model. For433

recommendation evaluation, we used Recall@X 434

(R@X), which shows whether the top X items rec- 435

ommended by the system include the ground truth 436

item suggested by human recommenders. In par- 437

ticular, we chose R@1, R@10 and R@50 follow- 438

ing previous works (Chen et al., 2019; Zhou et al., 439

2020). We also defined recall accuracy of MESE 440

to be the percentage of ground truth items that ap- 441

pear among the 500 generated candidates in the 442

candidate generation phase 3.2.1 and ranking ac- 443

curacy to be the percentage of items that appear in 444

the top k (k=1, 10, 50) position of the sorted can- 445

didates in the candidate ranking phase 3.2.2. The 446

product of the recall and ranking accuracy is the 447

final recommendation accuracy of MESE. We also 448

adopted end-to-end response evaluation following 449

(Wang et al., 2021). We computed response recall 450

(ReR) as whether the final response contains the tar- 451

get items recommended by human annotators. For 452

dialog evaluation, we adopted perplexity, distinct n- 453

grams (Li et al., 2016), and BLEU score (Papineni 454

et al., 2002) for automatic evaluations. Human 455

evaluation (on a random sampling of 100 dialogs 456

from the test set) is also conducted on dialog evalu- 457

ation in comparison with KGSF. We invite three 458

annotators to score the generated samples in two 459

aspects, Fluency and Informativeness. The annota- 460

tor is asked to select a better response based on the 461

given context. Ties are allowed if two responses 462

have similar qualities. The score is the percentage 463

of the model’s response being selected. The final 464

performance is calculated using the average scores 465

of the three annotators. 466

5 Experimental Results 467

5.1 Evaluation Results 468

We first report recall, ranking, and final accuracy 469

on REDIAL dataset of MESE in table 3. From the 470

results, it can be seen that candidate ranking has 471

remarkable performance gains in scoring the items. 472

It demonstrates that PLMs have great potential in 473

making recommendations. One possible reason 474

behind this is that the PLM and its self-attention 475

mechanism is effective in learning the similarities 476

and discrepancies between item semantics and dia- 477

log semantics. 478

Table 2 compares different models on REDIAL 479

dataset. The superiority of MESE persists across 480

recommendation and language generation. On all 481

recommendation metrics, including R@1, R@10, 482

and R@50, MESE outperforms the state-of-the-art 483
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Model
Recommendation metrics Language generation metrics

R@1 R@10 R@50 ReR PPL Dist2 Dist3 Dist4 Bleu2 Bleu4
ReDial 2.4 14.0 32.0 0.7 28.1 0.225 0.236 0.228 0.178 0.074
KBRD 3.1 15.0 33.6 0.8 17.9 0.263 0.368 0.423 0.185 0.074
KGSF 3.9 18.3 37.8 0.9 5.6 0.289 0.434 0.519 0.164 0.074

CR-Walker 4.0 18.7 37.6 - - - - - - -
CRFR 4.0 20.2 39.9 - - - - - - -
RID - - - 3.1 54.1 0.518 0.624 0.598 0.204 0.110

NTRD - - - 1.8 4.4 0.578 0.820 1.005 - -
MESE 5.6 25.6 45.5 6.4 12.9 0.822 1.152 1.313 0.246 0.143

Table 2: Results and comparison with the literature on REDIAL.

top k Ranking Acc Recall Acc Final Acc
@1 7.2 0.778 5.6

@10 33.0 0.778 25.6
@50 58.5 0.778 45.5

Table 3: Recall, Ranking and Final Accuracy of MESE.

models by a large margin. We argue in 5.2 that484

this significant gain of performance is due to the485

effectiveness of the item encoder. MESE also per-486

forms well on the ReR score, which indicates that487

the filling placeholder tokens can help integrate488

recommended items into responses. For language489

generation, MESE also achieves significantly bet-490

ter performance than all other models on distinct491

ngrams and bleu scores with the exception that the492

PPL is worse than those of KGSF and NTRD. This493

indicates that MESE can generate more diverse494

responses while sticking to the topic.495

Model Fluency Informativeness
KGSF 24% 19%
MESE 38% 31%

Table 4: Human Evaluation of Response Generation

Table 4 presents the results of human evaluation.496

Our proposed model MESE outperforms KGSF by497

a large margin on both fluency and informativeness.498

Responses of MESE have a 50% more chance of499

being chosen as the better answer than responses of500

KGSF. By using the encoded item embeddings and501

joint training, MESE can better integrate its pre-502

trained weights with the injected item information.503

Therefore, it generates more fluent responses that504

contain richer information about the items.505

5.2 Ablation Studies and Analysis 506

In this section, we first analyze the reason behind 507

the performance gain of our recommendation mod- 508

ule by analyzing the embeddings learned by the 509

item encoder. 510

How much does metadata help recommen- 511

dation? We argue that our training objectives on 512

recommendation enable the item encoder to selec- 513

tively extract useful features pertinent to the recom- 514

mendation task from item metadata and construct 515

item representations that resonate with instructional 516

semantic properties in the dialog histories. For 517

example, in REDIAL dataset, movie genre infor- 518

mation is the most frequently mentioned property 519

in dialog histories and human recommenders of- 520

ten make recommendation decisions based on this 521

property. Although other properties like actors also 522

help with recommendations, they do not appear in 523

the corpus as often as genres or movie plots. We 524

designed the following experiments to test our hy- 525

pothesis. First, we train MESE with movie genre 526

and plot information removed from the metadata, 527

which we refer to as MESE w/o content, and com- 528

pare its recommendation performance with MESE 529

in Table 5. 530

Model R@1 R@10 R@50
MESE w/o content 3.9 19.5 37.9

MESE 5.6 25.6 45.5

Table 5: Comparison Results of MESE and MESE w/o
content.

As we can see from the table, there is a signifi- 531

cant performance decrease after we remove genre 532

and plot information, which indicates that MESE 533

depends on the item information to make high- 534

quality recommendations. We also point out that 535

movie titles contain weak genre information but 536
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are not able to provide adequate features for the537

item encoder to extract from.538

How does the item encoder help recommen-539

dation? We claim that the item encoder can con-540

struct embeddings in a systematic way that aligns541

matching information between its input and dialog542

context. We designed an experiment to prove the543

point. Specifically, we select all movie items with544

only one genre as our candidates, resulting in a sub-545

set of ~700 movies. We then select 2 item encoders546

(section 3.2.2) from MESE, MESE w/o content,547

and the item encoder before training (MESE raw),548

respectively, and obtain 3 sets of item embeddings549

of the selected movie subset. On each set of em-550

beddings, we run a K-means clustering algorithm551

with K being set to be 3, 4, and 5, respectively. For552

each cluster obtained, we calculated the proportion553

of the majority genre among all item candidates.554

This process is repeated 20 times and the average555

accuracy is reported in Table 6. Genre informa-556

tion appears most frequently in dialog context and557

most recommendations are made based on genre558

attributes. Our item encoder, after joint training,559

should construct item embeddings that reflect genre560

information. Hence, the embeddings should be561

more clustered in terms of genre.562

Model K=3 K=4 K=5
MESE raw 0.492 0.514 0.574

MESE w/o content 0.555 0.589 0.606
MESE 0.695 0.725 0.738

Table 6: Item Encoders Clustering Accuracy

As we can see from the table, without training,563

MESE raw, being the least sensitive to genre infor-564

mation, achieves the lowest accuracy scores on all565

clusters. MESE w/o content, although deprived of566

genre and plot, still has slightly higher accuracy567

than MESE raw due to its exposure to REDIAL568

conversations. MESE is most sensitive to genre569

information. This is an indication that by aligning570

matching information in both dialog context and571

item metadata, our item encoder is able to generate572

meaningful representations, which can facilitate573

the PLM to produce better rankings through its574

self-attention mechanism.575

What if we remove mentioned entities from576

dialog context? Mentioned entities are crucial577

to previous approaches (Chen et al., 2019; Zhou578

et al., 2020) in terms of recommendations. We579

train MESE with mentioned entities removed from580

dialog history and compare its performance with 581

MESE on REDIAL dataset and INSPIRED dataset 582

in table 7. 583

Dataset Model R@1 R@10 R@50
REDIAL MESE w/o item 3.4 18.1 38.7

MESE 5.6 25.6 45.5
INSPIRED MESE w/o item 4.3 11.9 26.7

MESE 4.8 13.5 30.1

Table 7: Results of MESE and MESE w/o on REDIAL
and INSPIRED.

We can see removing the entities led to an aver- 584

age of 26.3% performance drop on REDIAL and an 585

average of 11.2% performance drop on INSPIRED. 586

The recommendation performance on REDIAL is 587

more impacted by the removal of entities because 588

the conversations in REDIAL are rich with enti- 589

ties and weak in semantic information, whereas 590

INSPIRED is more sparse on entities but contains 591

richer dialog information. In REDIAL, there is 1 592

mentioned movies among every 21.85 word tokens. 593

The sentence level distinct 1-grams and 3-grams 594

are 0.15 and 2.81. In contract, there is 1 men- 595

tioned movies among every 63.54 word tokens in 596

INSPIRED. Its sentence level distinct 1-grams and 597

3-grams are 0.59 and 6.84. This proves that our 598

model can efficiently infer user interests from texts 599

to make high-quality recommendations without ex- 600

plicitly using mentioned entities. This property 601

could be useful in an e-commerce setting where 602

users tend to convey their requirements more with 603

texts than entities. It could also be useful in a cold 604

start scenario where we don’t have many entities in 605

the context. 606

6 Conclusion and Future Work 607

In this paper, we introduced MESE, a novel CRS 608

framework. By utilizing item encoders to construct 609

embeddings from metadata, MESE can provide 610

high-quality recommendations that align with the 611

dialog history. Our approach yields better perfor- 612

mance than existing state-of-the-art models. Abla- 613

tion studies explain the reason behind this perfor- 614

mance gain. As for future work, we will consider 615

applying this approach to a broader domain of CRS 616

datasets. Currently, we only experiment on movie 617

recommendations. However, the encoder of MESE 618

is flexible and can potentially work well with cross- 619

modality tasks. Multi-modal CRSs can be explored 620

in the e-commerce domain with MESE. 621
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A Candidate Selection With Multiple819

Sources820

To maximize the performance of candidate selec-821

tion, we blend candidates selected from the nearest822

neighbor search source with a rule based source.823

The rule based source is constructed by travers-824

ing the training data and maintaining a list of co-825

occurring items for each individual item. For ex-826

ample, if item A and item B both occurred in a con-827

versation in the training set, we add them to each828

other’s list. During testing, if item A is mentioned829

in the dialog context, the maintained co-occurring830

item list is combined with the candidates retrieved831

by nearest neighbor search as the final selection.832

B Response Generation and833

Recommendation Trade-Off834

The trade-off between response generation and835

recommendation during training. We separate836

language training objective from the jointly trained837

loss and compare the trained models on language838

generation metrics on ReDial in table 8. MESE-839

LG denotes the model trained with only the lan-840

guage generation objective Lres.841

Model Dist2 Dist4 Bleu2 Bleu4
MESE-LG 1.13 2.25 0.295 0.171

MESE 0.822 1.313 0.246 0.143

Table 8: Results of MESE and MESE-LG on REDIAL.

As we can see, training only on language gener-842

ation objective yields better results. In the settings843

of MESE, both tasks update the weights of the844

same pre-trained language model simultaneously845

with different goals: In recommendation, the846

language model needs to construct meaningful847

scores for generated candidates; In response gener-848

ation, the language model aims to generate next849

token given previous contexts. This experiment850

showed that this joint training approach induces a851

trade-off between training on response generation852

and recommendation: back-propagation on the853

recommendation objective can lead to catastrophic854

forgetting of information learned from pre-855

training, which leads to worse language metrics.856

857

858

859

860

C Response Generation Example 861

We include example dialog of human seeker and 862

MESE model in table 9. 863

User: Hello, how are you?
System: Good, how are you?

What type of movies do you like?
User: I’m great. thanks!

I’m looking for crime movies to watch.
System: Have you seen Goodfellas?
User: Yes, I love that movie.

Could you recommend another one?
System: If you haven’t seen The Rise of The Krays

you should give it a try.
User: I never saw that I should check it out.

Thank you and have a great afternoon!
System: You too! Have a great day!

Table 9: Conversation Example
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