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Abstract001

Recently, few-shot Named Entity Recognition002
(NER) has attracted significant attention due to003
the high cost of obtaining high-quality labeled004
data. Decomposition-based methods have005
demonstrated remarkable performance on this006
task, which initially train a type-independent007
span detector and subsequently classify the de-008
tected spans based on their types. However,009
this framework has an evident drawback as010
a domain-agnostic detector cannot ensure the011
identification of only those entity spans that are012
specific to the target domain. To address this is-013
sue, we propose Double-Checker, which lever-014
ages collaboration between Large Language015
Models (LLMs) and small models. Specifically,016
we employ LLMs to verify candidate spans pre-017
dicted by the small model and eliminate any018
spans that fall outside the scope of the target019
domain. Extensive experiments validate the ef-020
fectiveness of our method, consistently yielding021
improvements over two baseline approaches.022

1 Introduction023

In recent years, few-shot Named Entity Recogni-024

tion (NER) has attracted significant attention due025

to the high cost of obtaining high-quality labeled026

data (Ma et al., 2022a; Agrawal et al., 2022). This027

task mainly focuses on enabling the model to learn028

from a resource-rich source domain dataset, and029

further requires the model to predict unseen entity030

types in a resource-scarce target domain based on031

a small amount of data, i.e., the support data (Ma032

et al., 2022a; Das et al., 2022).033

To solve the above problem, a common approach034

is to decompose the task into entity span detection035

and entity type classification (Chen et al., 2023;036

Li et al., 2023). Specifically, a type-independent037

entity span detector is first trained, and then the038

type classification is performed according to the de-039

tection spans. Since the span detector trained in the040

first stage does not need to focus on specific entity041

types, it can effectively reduce the distribution gap 042

between the source domain and the target domain, 043

and has excellent performance (Wang et al., 2022; 044

Ma et al., 2022b). However, this paradigm has 045

an obvious drawback: a domain-agnostic detector 046

cannot guarantee that the entity span identified is 047

specific to the target domain, and it will obviously 048

identify many non-target domain candidates 1. 049

Fortunately, Large Language Models (LLMs) 050

have shown remarkable performance on various 051

natural language processing tasks, such as text gen- 052

eration (Zhang et al., 2023b; Hsieh et al., 2023) 053

and machine translation (Zhu et al., 2023; Moslem 054

et al., 2023). However, some recent studies point 055

out that LLMs are not ideal for NER directly (Han 056

et al., 2023; Xie et al., 2023), and often need to 057

decompose the task into multiple steps or continue 058

to fine-tune on large-scale data (Wei et al., 2023; 059

Xu et al., 2023; Zhou et al., 2023). These methods 060

will undoubtedly consume a lot of resources. 061

Therefore, in this paper, we propose to lever- 062

age the collaboration of Small Language Models 063

(SLMs) and LLMs to exploit their respective advan- 064

tages: low resource consumption of SLMs and the 065

extensive knowledge base of LLMs. We aim to ad- 066

dress the non-target domain entity span problem in- 067

herent in SLMs while mitigating the high resource 068

consumption of LLMs. Along these lines, we pro- 069

pose Double-Checker, a framework where the LLM 070

functions as a checker. Instead of re-identifying en- 071

tities, the LLM rechecks the candidates identified 072

by the small model, ensuring more accurate and 073

domain-specific entity recognition. Specifically, 074

we first obtain the candidates predicted by the SLM 075

on the target domain sentences. To balance perfor- 076

mance and resource consumption, we then utilize 077

a type-adaptive selector to identify which candi- 078

dates need to be rechecked. Finally, we use the 079

LLM to conduct a two-stage check of the selected 080

1In Appendix A.1, we conduct a related experiment.
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Target Sentence: “The traditional view among chilean historians 
and historians of the inca empire is that maule river{Location-bodiesofwater} 
was the frontier. ”

Candidate  Possible Type  Probability
maule river  location-bodiesofwater 8.299
inca empire location-GPE 4.385
chilean  location-other 3.172

[maule river] Correct

STEP 1

[inca empire] Recheck [chilean] Recheck

First-stage Check
Given Type Definition, Sentence, Types, and Candidate, answer the Question.
Type Definition: xxx refers to ..., None refers an entity that does not belong to the above 
types, or not an entity.
Sentence: The traditional view among chilean historians ...
Types: xxx, None.
Candidate: ...
Question: Please select the most relevant type (from Types) for Candidate in the Sentence.

Answer: The most relevant type of inca empire is None.   
Answer: The most relevant type of chilean is Location-other.  

Second-stage Check
Question: Consider the Possible Type xxx, whether the 
Candidate in the Sentence is an entity or not and explain why.

[chilean]

[chilean] Removed  [inca empire] Removed

[inca empire]

Small Language Model

Type-Adaptive Selector

STEP 2

Figure 1: The overall framework of Double-Checker.

candidates, removing incorrectly identified spans081

to obtain the final results. We conduct extensive082

experiments on the standard few-shot NER dataset,083

Few-NERD, achieving consistent performance im-084

provements with the LLM on two state-of-the-art085

(SOTA) SLMs.086

2 Methodology087

In this section, we introduce Double-Checker, an088

efficient framework specifically designed for elimi-089

nating non-target domain candidates by rechecking090

the predictions made by small models. The frame-091

work consists of two main steps: firstly, we obtain092

the candidates predicted by the small model and093

select the ones to be rechecked; subsequently, a094

two-stage check utilizing LLM is conducted. An095

overview of the framework is shown in Figure 1.096

2.1 Step 1: Select the Candidates097

For each sentence xi in the target domain, we first098

leverage the small model to obtain the structural099

output, denoted as yi = [si, ti, pi]. Here, si repre-100

sents a candidate span, ti indicates the correspond-101

ing type, and pi is the probability values.102

Intuitively, outputs with higher predicted prob-103

ability values are less likely to be incorrect. How-104

ever, considering the high computational cost of105

using LLM, it is crucial to balance performance and106

cost by selecting an appropriate subset of data for107

the LLM to process. We assume that the probability108

distribution varies across different entity types and109

that prediction values for different types have vary-110

ing levels of importance. Therefore, we develop a111

type-adaptive selector that prioritizes samples for112

LLM check based on the type-specific probabil-113

ity distributions, ensuring the most critical data is114

checked within the same data proportion. Specifi- 115

cally, we first construct a collection of probability 116

values for each type: 117

Set(ti) = Set(ti)∪(pj×I(tj = ti))j=1,...,n, (1) 118

where n is the number of candidates, and I(·) de- 119

notes the indicator function. Next, we set a quan- 120

tile point α, which we assume to be 60%. If the 121

probability value of a candidate exceeds the 60th 122

percentile of the samples within its corresponding 123

type set, it is considered less likely to be incorrect. 124

Otherwise, it proceeds to the second step for fur- 125

ther verification. By implementing this process, we 126

effectively select the desired candidates. 127

2.2 Step 2: Two-stage Check 128

In this step, we utilize the rich external knowledge 129

of the LLM to perform a two-stage check of the 130

selected candidates. 131

Prompt Construction. Following Zhang et al. 132

(2023a), we transform the task into a QA format 133

comprising five components: Type Definition, Sen- 134

tence, Types, Candidate, and Question. Detailed 135

specifications of this format are provided in Ap- 136

pendix A.3. It is important to highlight the intro- 137

duction of Type Definition and the selection scope 138

of Types, which we will cover later. 139

One crucial reason for introducing the concept 140

of Type Definition is the variability in the range of 141

entity types across different datasets, which poses 142

a challenge for LLMs that are not inherently aware 143

of this variability. By incorporating a type-specific 144

description, we can enhance the LLM’s focus and 145

performance on a given dataset. To achieve this, we 146

input the entire set of types from the Few-NERD 147

dataset into the LLM simultaneously. This ap- 148

proach allows the LLM to consider the complete 149
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Models
Intra Inter

1∼2 shot 5∼10 shot Avg. 1∼2 shot 5∼10 shot Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

Full Test set

ProtoBERT∗ (Fritzler et al., 2019) 20.76±0.84 15.05±0.44 42.54±0.94 35.40±0.13 28.44 38.83±1.49 32.45±0.79 58.79±0.44 52.92±0.37 45.75
NNshot∗ (Yang and Katiyar, 2020) 25.78±0.91 18.27±0.41 36.18±0.79 27.38±0.53 26.90 47.24±1.00 38.87±0.21 55.64±0.63 49.57±2.73 47.83
StructShot∗ (Yang and Katiyar, 2020) 30.21±0.90 21.03±1.13 38.00±1.29 26.42±0.60 28.92 51.88±0.69 43.34±0.10 57.32±0.63 49.57±3.08 50.53
CONTaiNER∗ (Das et al., 2022) 41.51±0.07 36.62±0.04 57.83±0.01 51.04±0.24 46.75 50.92±0.29 47.02±0.24 63.35±0.07 60.14±0.16 55.36
ESD∗ (Wang et al., 2022) 36.08±1.60 30.00±0.70 52.14±1.50 42.15±2.60 40.09 59.29±1.25 52.16±0.79 69.06±0.80 64.00±0.43 61.13
DecomposedMeta∗ (Ma et al., 2022b) 49.48±0.85 42.84±0.46 62.92±0.57 57.31±0.25 53.14 64.75±0.35 58.65±0.43 71.49±0.47 68.11±0.05 65.75
HEProto∗ (Chen et al., 2023) 53.03±0.30 46.45±0.21 65.70±0.21 58.98±0.22 56.04 66.40±0.18 60.91±0.20 72.53±0.11 68.92±0.20 67.19
HEProto† 52.64 46.26 65.58 58.93 55.85 66.01 60.92 72.29 68.86 67.02
TadNER∗ (Li et al., 2023) 60.78±0.32 55.44±0.08 67.94±0.17 60.87±0.22 61.26 64.83±0.14 64.06±0.19 72.12±0.12 69.94±0.15 67.74
TadNER† 59.72 55.15 67.60 60.68 60.79 64.57 62.80 71.82 69.32 67.13

Sampled Test set

GPT-3.5-turbo 53.69 47.07 54.59 49.36 51.18 46.26 42.68 51.81 49.09 47.46
HEProto† 52.94 46.55 65.35 58.90 55.94 65.42 60.89 72.10 69.28 66.92
TadNER† 60.13 55.02 67.62 60.75 60.88 64.38 62.92 71.67 69.54 67.12
Double-Checker−HEProto 59.98 54.74 69.00 62.61 61.58 68.58 65.76 73.49 71.29 69.78
Double-Checker−TadNER 64.43 60.11 70.14 64.63 64.74 66.09 65.81 73.03 71.50 69.11
∆ Double-Checker vs. HEProto 7.04 ↑ 8.19 ↑ 3.65 ↑ 3.71 ↑ 5.64 ↑ 3.16 ↑ 4.87 ↑ 1.39 ↑ 2.01 ↑ 2.86 ↑
∆ Double-Checker vs. TadNER 4.13 ↑ 5.09 ↑ 2.52 ↑ 3.88 ↑ 3.86 ↑ 1.71 ↑ 2.89 ↑ 1.36 ↑ 1.96 ↑ 1.99 ↑

Table 1: Comparison of performance on Few-NERD with the Micro-F1 metric(%). † indicates that the results are
from our re-implementation with the same seed. ∗ denotes the results are obtained from Chen et al. (2023) and Li
et al. (2023). The best results are in bold.

spectrum of entity types and generate tailored de-150

scriptions for each specific domain type. In Ap-151

pendix A.4, we show the full description of the152

target domain types obtained from GPT-3.5-turbo.153

We then define the scope of Types. Unlike re-154

ranking methods (Ma et al., 2023; Zhang et al.,155

2024) that focus on calibrating false entity types,156

our approach aims to exclude non-target domain157

spans or non-entities. Consequently, in most scenar-158

ios, it suffices to include only the highest predicted159

type and “None” (indicating a non-target domain160

entity or non-entity) within type scope. In certain161

cases, we also incorporate the second most likely162

type predicted by the small model to enhance over-163

all performance. In Section 3.3.2, we delve into the164

impact of varying the types scope on performance.165

Two-stage Check Workflow. The right part of166

Figure 1 illustrates the workflow. For each selected167

candidate, we obtain the corresponding Type Defi-168

nition based on its predicted type and input it into169

the LLM along with other necessary information170

from the prompt to obtain recheck results. If a171

candidate is determined as “None”, it is removed172

and the process ends; otherwise, we proceed to the173

second stage of checking. The check in the second174

stage serves solely to determine whether the candi-175

date is an entity. Based on the context in previous176

stage, we directly input the new Question. If the177

candidate is deemed as an entity, it will be included178

in the final result; otherwise, it will be excluded.179

Through the above process, we remove the false180

entity span and combine the unselected candidates 181

to constitute the final result. 182

3 Experiments 183

3.1 Main Results 184

Considering the high cost of LLM, we sample the 185

first 10,000 sentences in each sub-setting on the full 186

test set, and reproduce a portion of baselines with 187

the same seed for a fair comparison. Table 1 shows 188

the main results of the comparison between our pro- 189

posed Double-Checker and baselines. It is evident 190

that Double-Checker achieves consistent improve- 191

ments over both SLMs. Specifically, there is a min- 192

imum increase of 1.39% and a maximum increase 193

of 8.19% on HEProto, while it ranges from 1.36% 194

to 5.09% on TadNER respectively. Furthermore, 195

based on the average performance comparison, we 196

observe that the improvement is more pronounced 197

in the Intra setting due to a wider distribution gap 198

between source and target domains where external 199

knowledge provided by LLM effectively is better to 200

bridges this. It is worth noting that GPT-3.5-turbo 201

alone does not yield satisfactory results and even 202

exhibits significant disparities compared to SOTA 203

methods in most cases; however, when combined 204

as part of Double-Checker, it not only consumes 205

fewer resources but also achieves superior perfor- 206

mance compared to both individual models. 207
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Methods
Intra Inter

1∼2 shot 5∼10 shot Avg. 1∼2 shot 5∼10 shot Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

Double-Checker−TadNER 64.43 60.11 70.14 64.63 64.74 66.09 65.81 73.03 71.50 69.11
w/o Two-stage Check 63.67 59.41 69.60 63.97 64.16 65.01 65.05 72.07 70.91 68.26
w/o Type Definition 62.92 58.76 68.66 62.86 63.30 65.60 65.57 72.60 70.53 68.58
w/o Recheck 60.13 55.02 67.62 60.75 60.88 64.38 62.92 71.67 69.54 67.12

Table 2: Ablation study on Few-NERD with the Micro-F1 metric(%).

Setting

(a) (b)

Figure 2: (a) Results of different selecting strategy. (b)
Results of different types scope in prompt.

3.2 Ablation Study208

As shown in Table 2, we choose TadNER as209

SLM to conduct ablation experiments to investigate210

the impact of different compositions on Double-211

Checker. The removal of two-stage checks resulted212

in a decline in model performance, which validates213

the effectiveness of secondary reprocessing results.214

When type definition are absent, Double-Checker215

drops more in Intra, indicating that enabling LLM216

to comprehend label ranges for more challenging217

tasks can better activate their internal knowledge.218

3.3 Comparative Analysis219

In this section, we conduct additional experiments220

to explore the following practical questions:221

Q1: Why do we need type-adaptive selector?222

Q2: How to adjust types scope in prompt?223

3.3.1 Impact of Selector224

We compare the performance of ours type-adaptive225

selector and normal selector (that is, selecting can-226

didates based on all types) on Intra 10-way 1-shot.227

The Figure 2 (a) clearly demonstrates that our adap-228

tive selector consistently outperforms in most cases,229

particularly when the proportion of selected data is230

low, thereby highlighting this phenomenon more231

prominently. Moreover, our method excels at se-232

lecting a greater number of non-target domain can-233

didates with an equivalent data proportion. Addi-234

tionally, it is worth noting that model performance235

does not always exhibit a linear relationship with 236

the proportion of data; instead, it reaches a plateau 237

and even declines. Consequently, considering both 238

performance and resource consumption factors, the 239

selector we have designed proves to be more suit- 240

able for realistic scenarios while achieving superior 241

performance within limited resources. 242

3.3.2 Impact of Types Scope 243

The Figure 2 (b) illustrates a comparison of the 244

impact of different types of scopes in prompt for 5- 245

way 1-shot setting. It is evident that employing the 246

full-type prompt yields the poorest results in both 247

settings, whereas the other two options exhibit no 248

significant differences. This can be attributed to a 249

higher occurrence of errors in predicting non-target 250

domain spans rather than type errors within the few- 251

shot NER scenario. When providing a larger selec- 252

tion of types as input prompts to the large model, it 253

inevitably introduces disturbances and shifts its ob- 254

jective from removing non-target domain spans to 255

reclassifying spans, resulting in performance degra- 256

dation. Therefore, for practical applications, it is 257

advisable to limit the range of types provided as 258

input prompts to minimize inference costs while 259

potentially improving performance. 260

4 Conclusion 261

In this paper, we presented Double-Checker, a 262

framework that effectively combines LLM and 263

SLM for few-shot NER task. Specifically, we ini- 264

tially employed a type-adaptive selector to choose 265

candidates predicted by the small model. Subse- 266

quently, the LLM is utilized to conduct a two-stage 267

check process on these selected candidates, remov- 268

ing entity spans and non-entities that are not rele- 269

vant to the target domain. Extensive experiments 270

conducted using two different small models con- 271

sistently demonstrated significant improvements, 272

thereby showcasing the efficacy of our approach. 273
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5 Limitations274

Our approach aims to combine the complementary275

strengths of LLM and small models to enhance276

overall performance. Due to resource constraints,277

we are unable to run the LLM experiments on the278

entire test dataset (e.g., the Intra 10 way 5 shot279

setting includes over 300,000 sentences). There-280

fore, we sample 10,000 sentences for each setting.281

Another limitation is that we did not conduct exper-282

iments on domain-specific datasets, such as NER283

datasets in the biomedical field. Generally, more284

non-domain-specific entity spans are identified in285

these datasets (Labrak et al., 2024), which we be-286

lieve are better suited to our framework. We plan287

to address these limitations in a follow-up study.288
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A Appendix431

A.1 Interference from the Source Domain432

The domain-agnostic detector is affected by the433

source domain. In order to demonstrate this phe-434

HEProto TadNER GPT-3.5
Models
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Figure 3: Results of different domain “entity attacks”
on SOTA methods and GPT-3.5 on Few-NERD dataset.
“Other Domain” denotes the dev set, and “Source Do-
main” refers to the train set.

nomenon, we re-constructed the target domain (test 435

set) of Few-NERD (Ding et al., 2021) by “entity at- 436

tacks”. Specifically, we first collect entity sets from 437

the source domain (train set) and other domain (dev 438

set). Then, we randomly select a non-entity posi- 439

tion in the target domain sentence and insert entities 440

from the two domains separately, thus constructing 441

two interference datasets for entity attacks from dif- 442

ferent domains. As shown in the Figure 3, we can 443

observe that all the models have a huge drop in per- 444

formance on two interference datasets. Notice that 445

the BERT-based models have proportionally more 446

performance degradation compared to the GPT-3.5 447

(OpenAI, 2023) and are subject to more interfer- 448

ence from source domain attacks. We attribute this 449

to the fact that the BERT-based model needs to 450

absorb the knowledge of the source domain during 451

the training process, and the span detector fine- 452

tuned on the target domain cannot completely get 453

rid of the influence of the source domain knowl- 454

edge, leading to easier detection of entity spans in 455

the non-target domain. Large Language Models, on 456

the other hand, possess rich internal knowledge and 457

are naturally more resistant to interference (Achiam 458

et al., 2023; Qi et al., 2023; Chang et al., 2024). 459

A.2 Datasets and Experimental Setup 460

We evaluate Double-Checker on standard few-shot 461

NER dataset Few-NERD (Ding et al., 2021), which 462

consists of 8 coarse-grained entity types and 66 463

fine-grained entity types. It is divided into Intra 464

and Inter settings, and the entity types of the train 465

set, dev set and test set are non-overlapping under 466

each setting. In this case, the Intra setting is divided 467

according to coarse-grained types, while the Inter 468
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is divided according to fine-grained types.469

We choose the two SOTA methods (HEProto470

(Chen et al., 2023) and TadNER (Li et al., 2023))471

as our SLMs, and use GPT-3.5-turbo as the LLM472

for all experiments. Follow previous works (Ma473

et al., 2022b; Chen et al., 2023), we use the entity-474

level micro f1 score for evaluation, which requires475

both the predicted entity span and type to be correct.476

For quantile point α, we set it to 0.5 for Inter setting477

and 0.7 to Intra setting.478

A.3 Prompt Example479

We select a candidate from target sentence and480

construct the corresponding prompt, the details of481

which are shown in the Table 3.482

A.4 Type Definition Example483

We use GPT-3.5-turbo to generate the full type484

definitions in the test set for both Intra and Inter485

settings, which are presented in the Table 4 and 5.486
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<First-stage Check Prompt>
Given the Type Definition, Sentence, Types, and Candidate, answer the Question.
Type Definition: location-GPE includes names of countries, cities, states, provinces, and other regions
that have a political or geographical significance. None refers an entity that does not belong to the
above types, or is not an entity.
Sentence: he was born into a christian family in the predominantly muslim north.
Types: location-GPE, None
Candidate: muslim north
Question: Please refer to Type Definition and select the most relevant type (from Types) for Candidate
in the Sentence. Answer in the format of json like: {’answer’: ”}

<Second-stage Check Prompt>
Question: Consider the Possible Type {first-stage answer}, whether the Candidate in the Sentence is
an entity or not. Answer in the format of json like: {’answer’: ”}

Table 3: An example of the prompt of our two-stage check.

Type Defnition

location-GPE includes names of countries, cities, states, provinces, and other regions that have a
political or geographical significance.
location-other is a catch-all category within the location entity type that includes geographical locations
which do not fit into the more specific subcategories listed.
location-mountain refers to geographical entities that are elevated landforms characterized by steep
slopes, rocky terrain, and often having peaks or summits.
location-bodiesofwater refers to geographical entities that are large bodies of water, such as oceans,
seas, rivers, lakes, and other water reservoirs.
location-island refers to geographical entities that are landmasses surrounded by water on all sides.
location-park refers to designated areas of land that are preserved or managed for recreational,
conservation, or aesthetic purposes.
location-road/railway/highway/transit refers to infrastructure designed for transportation, including
roads, railways, highways, and transit systems.
organization-education refers to institutions or entities primarily focused on providing education and
academic instruction.
organization-government/governmentagency refers to entities that are part of or associated with
governmental bodies and agencies.
organization-company refers to entities that are businesses or commercial enterprises. This category
includes names of companies, corporations, firms, and other types of business organizations.
organization-politicalparty refers to entities that are organized groups of people with similar political
aims and opinions.
organization-other is a category within the organization entity type that includes organized groups or
entities which do not fit into the more specific subcategories listed.
organization-media/newspaper refers to entities involved in the production and dissemination of
news and information to the public through various media channels.
organization-religion refers to entities associated with religious beliefs, practices, and institutions.
organization-showorganization refers to entities involved in the production, promotion, or organiza-
tion of entertainment events and performances.
organization-sportsleague refers to entities that are structured groups or associations governing a
particular sport or a group of sports.
organization-sportsteam refers to entities that are teams participating in competitive sports, usually
within the structure of a sports league or association.

Table 4: Definition of types on the target domain of Few-NERD Intra.
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Type Defnition

other-medical refers to entities, concepts, or items related to the field of medicine that do not fit into
more specific categories.
person-athlete refers to individuals who engage in physical sports or other forms of competitive
physical activities.
event-sportsevent refers to organized competitive events or activities in which athletes or teams
participate in sports.
art-music refers to entities and works associated with the creation, performance, and recording of
music.
other-livingthing refers to entities that are living organisms but do not fit into more specific categories
like humans, specific animals, or plants.
building-hospital refers to structures specifically designed and equipped for the delivery of healthcare
services.
building-theater refers to structures specifically designed for the performance of live entertainment,
such as plays, musicals, dance performances, concerts, and other stage productions.
other-educationaldegree refers to academic qualifications or titles that do not belong to more specific
categories within the educational domain.
person-actor refers to individuals who professionally perform roles in plays, films, television shows,
or other forms of entertainment media.
product-car refers to automobiles or vehicles designed for transportation purposes.
product-weapon refers to devices or instruments designed or used for inflicting harm, damage, or
destruction.
art-writtenart refers to artistic works that are expressed through the written word.
event-election refers to the process of selecting individuals for specific roles or positions through a
structured voting system.
None refers an entity that does not belong to the above types, or is not an entity.

Table 5: Definition of types on the target domain of Few-NERD Inter, some of which are described in Table 4.
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