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Abstract

Recently, few-shot Named Entity Recognition
(NER) has attracted significant attention due to
the high cost of obtaining high-quality labeled
data. Decomposition-based methods have
demonstrated remarkable performance on this
task, which initially train a type-independent
span detector and subsequently classify the de-
tected spans based on their types. However,
this framework has an evident drawback as
a domain-agnostic detector cannot ensure the
identification of only those entity spans that are
specific to the target domain. To address this is-
sue, we propose Double-Checker, which lever-
ages collaboration between Large Language
Models (LLMs) and small models. Specifically,
we employ LLMs to verify candidate spans pre-
dicted by the small model and eliminate any
spans that fall outside the scope of the target
domain. Extensive experiments validate the ef-
fectiveness of our method, consistently yielding
improvements over two baseline approaches.

1 Introduction

In recent years, few-shot Named Entity Recogni-
tion (NER) has attracted significant attention due
to the high cost of obtaining high-quality labeled
data (Ma et al., 2022a; Agrawal et al., 2022). This
task mainly focuses on enabling the model to learn
from a resource-rich source domain dataset, and
further requires the model to predict unseen entity
types in a resource-scarce target domain based on
a small amount of data, i.e., the support data (Ma
et al., 2022a; Das et al., 2022).

To solve the above problem, a common approach
is to decompose the task into entity span detection
and entity type classification (Chen et al., 2023;
Li et al., 2023). Specifically, a type-independent
entity span detector is first trained, and then the
type classification is performed according to the de-
tection spans. Since the span detector trained in the
first stage does not need to focus on specific entity

types, it can effectively reduce the distribution gap
between the source domain and the target domain,
and has excellent performance (Wang et al., 2022;
Ma et al., 2022b). However, this paradigm has
an obvious drawback: a domain-agnostic detector
cannot guarantee that the entity span identified is
specific to the target domain, and it will obviously
identify many non-target domain candidates .
Fortunately, Large Language Models (LLMs)
have shown remarkable performance on various
natural language processing tasks, such as text gen-
eration (Zhang et al., 2023b; Hsieh et al., 2023)
and machine translation (Zhu et al., 2023; Moslem
et al., 2023). However, some recent studies point
out that LLMs are not ideal for NER directly (Han
et al., 2023; Xie et al., 2023), and often need to
decompose the task into multiple steps or continue
to fine-tune on large-scale data (Wei et al., 2023;
Xu et al., 2023; Zhou et al., 2023). These methods
will undoubtedly consume a lot of resources.
Therefore, in this paper, we propose to lever-
age the collaboration of Small Language Models
(SLMs) and LLMs to exploit their respective advan-
tages: low resource consumption of SLMs and the
extensive knowledge base of LLMs. We aim to ad-
dress the non-target domain entity span problem in-
herent in SLMs while mitigating the high resource
consumption of LLMs. Along these lines, we pro-
pose Double-Checker, a framework where the LLM
functions as a checker. Instead of re-identifying en-
tities, the LLM rechecks the candidates identified
by the small model, ensuring more accurate and
domain-specific entity recognition. Specifically,
we first obtain the candidates predicted by the SLM
on the target domain sentences. To balance perfor-
mance and resource consumption, we then utilize
a type-adaptive selector to identify which candi-
dates need to be rechecked. Finally, we use the
LLM to conduct a two-stage check of the selected

'Tn Appendix A.1, we conduct a related experiment.
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Figure 1: The overall framework of Double-Checker.

candidates, removing incorrectly identified spans
to obtain the final results. We conduct extensive
experiments on the standard few-shot NER dataset,
Few-NERD, achieving consistent performance im-
provements with the LLM on two state-of-the-art
(SOTA) SLMs.

2 Methodology

In this section, we introduce Double-Checker, an
efficient framework specifically designed for elimi-
nating non-target domain candidates by rechecking
the predictions made by small models. The frame-
work consists of two main steps: firstly, we obtain
the candidates predicted by the small model and
select the ones to be rechecked; subsequently, a
two-stage check utilizing LLLM is conducted. An
overview of the framework is shown in Figure 1.

2.1 Step 1: Select the Candidates

For each sentence z; in the target domain, we first
leverage the small model to obtain the structural
output, denoted as y; = [s;, t;, p;|. Here, s; repre-
sents a candidate span, ¢; indicates the correspond-
ing type, and p; is the probability values.
Intuitively, outputs with higher predicted prob-
ability values are less likely to be incorrect. How-
ever, considering the high computational cost of
using LLM, it is crucial to balance performance and
cost by selecting an appropriate subset of data for
the LLM to process. We assume that the probability
distribution varies across different entity types and
that prediction values for different types have vary-
ing levels of importance. Therefore, we develop a
type-adaptive selector that prioritizes samples for
LLM check based on the type-specific probabil-
ity distributions, ensuring the most critical data is

checked within the same data proportion. Specifi-
cally, we first construct a collection of probability
values for each type:

Set(t;) = Set(t;)U(p; x1(t; = t;))j=1...n, (1)

where n is the number of candidates, and I(+) de-
notes the indicator function. Next, we set a quan-
tile point o, which we assume to be 60%. If the
probability value of a candidate exceeds the 60th
percentile of the samples within its corresponding
type set, it is considered less likely to be incorrect.
Otherwise, it proceeds to the second step for fur-
ther verification. By implementing this process, we
effectively select the desired candidates.

2.2 Step 2: Two-stage Check

In this step, we utilize the rich external knowledge
of the LLM to perform a two-stage check of the
selected candidates.

Prompt Construction. Following Zhang et al.
(2023a), we transform the task into a QA format
comprising five components: Type Definition, Sen-
tence, Types, Candidate, and Question. Detailed
specifications of this format are provided in Ap-
pendix A.3. It is important to highlight the intro-
duction of Type Definition and the selection scope
of Types, which we will cover later.

One crucial reason for introducing the concept
of Type Definition is the variability in the range of
entity types across different datasets, which poses
a challenge for LLMs that are not inherently aware
of this variability. By incorporating a type-specific
description, we can enhance the LLM’s focus and
performance on a given dataset. To achieve this, we
input the entire set of types from the Few-NERD
dataset into the LLM simultaneously. This ap-
proach allows the LLM to consider the complete



Intra Inter
Models 1~2 shot 5~10 shot 1~2 shot 5~10 shot
Avg. Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way
Full Test set
ProtoBERT* (Fritzler et al., 2019) 20.76+0.84 15.05+0.44 42.544094 35.40+0.13 2844 38.83+149 32454079 58.79+044 52.92+037 45.75
NNshot* (Yang and Katiyar, 2020) 25.78+091 18.27+041 36.18+0.79 27.38+053 26.90 47.24+1.00 38.87+021 55.64+0.63 49.57+2.73 47.83
StructShot* (Yang and Katiyar, 2020)  30.21+090 21.03+1.13 38.00+£1.29 26.42+0.60 28.92 51.88+0.69 43.34+0.10 57.32+0.63 49.57+3.08 50.53
CONTaiNER* (Das et al., 2022) 41.51+0.07 36.62+0.04 57.83+0.01 51.04+024 46.75 50.92+029 47.02+024 63.35+£0.07 60.14+0.16 55.36
ESD* (Wang et al., 2022) 36.08+1.60 30.00+0.70 52.14+1.50 42.15+2.60 40.09 59.29+125 52.164£0.79 69.06+0.80 64.00+043 61.13
DecomposedMeta* (Ma et al., 2022b)  49.48+0.85 42.84+046 62.92+057 57.31+025 53.14 64.75+035 58.65+043 71.49+047 68.114+005 65.75
HEProto* (Chen et al., 2023) 53.03+0.30 46.45+021 65.70+021 58.98+022 56.04 66.40+0.18 60.91+020 72.53+0.11 68.92+020 67.19
HEProto® 52.64 46.26 65.58 58.93 55.85 66.01 60.92 72.29 68.86 67.02
TadNER* (Li et al., 2023) 60.78+0.32  55.44+0.08 67.94+0.17 60.87+£022 61.26 64.83+£0.14 64.06+0.19 72.12+0.12 69.94+0.15 67.74
TadNERT 59.72 55.15 67.60 60.68 60.79 64.57 62.80 71.82 69.32 67.13
Sampled Test set

GPT-3.5-turbo 53.69 47.07 54.59 49.36 51.18 46.26 42.68 51.81 49.09 47.46
HEProtof 52.94 46.55 65.35 58.90 55.94 65.42 60.89 72.10 69.28 66.92
TadNERT 60.13 55.02 67.62 60.75 60.88 64.38 62.92 71.67 69.54 67.12
Double-Checker_ i pyoto 59.98 54.74 69.00 62.61 61.58 68.58 65.76 73.49 71.29 69.78
Double-Checker_7qin R 64.43 60.11 70.14 64.63 64.74 66.09 65.81 73.03 71.50 69.11
A Double-Checker vs. HEProto 7.04 1 8.191 3.651 3711 5.64 1 3.16 1 4.87 1 1.39 1 20171 2.86 1
A Double-Checker vs. TadNER 4131 5.09 1 2521 3.88 1 3.86 1 1711 2.89 1 1.36 1 1.96 1 1.99 1

Table 1: Comparison of performance on Few-NERD with the Micro-F1 metric(%). t indicates that the results are
from our re-implementation with the same seed. * denotes the results are obtained from Chen et al. (2023) and Li

et al. (2023). The best results are in bold.

spectrum of entity types and generate tailored de-
scriptions for each specific domain type. In Ap-
pendix A.4, we show the full description of the
target domain types obtained from GPT-3.5-turbo.

We then define the scope of Types. Unlike re-
ranking methods (Ma et al., 2023; Zhang et al.,
2024) that focus on calibrating false entity types,
our approach aims to exclude non-target domain
spans or non-entities. Consequently, in most scenar-
ios, it suffices to include only the highest predicted
type and “None” (indicating a non-target domain
entity or non-entity) within type scope. In certain
cases, we also incorporate the second most likely
type predicted by the small model to enhance over-
all performance. In Section 3.3.2, we delve into the
impact of varying the types scope on performance.

Two-stage Check Workflow. The right part of
Figure 1 illustrates the workflow. For each selected
candidate, we obtain the corresponding Type Defi-
nition based on its predicted type and input it into
the LLM along with other necessary information
from the prompt to obtain recheck results. If a
candidate is determined as “None”, it is removed
and the process ends; otherwise, we proceed to the
second stage of checking. The check in the second
stage serves solely to determine whether the candi-
date is an entity. Based on the context in previous
stage, we directly input the new Question. If the
candidate is deemed as an entity, it will be included
in the final result; otherwise, it will be excluded.
Through the above process, we remove the false

entity span and combine the unselected candidates
to constitute the final result.

3 Experiments

3.1 Main Results

Considering the high cost of LLM, we sample the
first 10,000 sentences in each sub-setting on the full
test set, and reproduce a portion of baselines with
the same seed for a fair comparison. Table 1 shows
the main results of the comparison between our pro-
posed Double-Checker and baselines. It is evident
that Double-Checker achieves consistent improve-
ments over both SLMs. Specifically, there is a min-
imum increase of 1.39% and a maximum increase
of 8.19% on HEProto, while it ranges from 1.36%
to 5.09% on TadNER respectively. Furthermore,
based on the average performance comparison, we
observe that the improvement is more pronounced
in the Intra setting due to a wider distribution gap
between source and target domains where external
knowledge provided by LLM effectively is better to
bridges this. It is worth noting that GPT-3.5-turbo
alone does not yield satisfactory results and even
exhibits significant disparities compared to SOTA
methods in most cases; however, when combined
as part of Double-Checker, it not only consumes
fewer resources but also achieves superior perfor-
mance compared to both individual models.



Intra Inter

Methods 1~2 shot 5~10 shot 1~2 shot 5~10 shot

Avg. Avg.

Sway 10way Sway 10 way Sway 10way Sway 10 way

Double-Checker_7,gnvpr 6443 6011  70.14 64.63 64.74 66.09 6581 73.03 7150 69.11
w/o Two-stage Check 63.67 5941 69.60 6397 64.16 6501 65.05 7207 7091 68.26
w/o Type Definition 62.92 5876 68.66 62.86 63.30 65.60 6557 72.60 70.53 68.58
w/o Recheck 60.13 55.02 67.62 60.75 60.88 64.38 6292 71.67 69.54 67.12

Table 2: Ablation study on Few-NERD with the Micro-F1 metric(%).
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Figure 2: (a) Results of different selecting strategy. (b)
Results of different types scope in prompt.

3.2 Ablation Study

As shown in Table 2, we choose TadNER as
SLM to conduct ablation experiments to investigate
the impact of different compositions on Double-
Checker. The removal of two-stage checks resulted
in a decline in model performance, which validates
the effectiveness of secondary reprocessing results.
When type definition are absent, Double-Checker
drops more in Intra, indicating that enabling LLM
to comprehend label ranges for more challenging
tasks can better activate their internal knowledge.

3.3 Comparative Analysis

In this section, we conduct additional experiments
to explore the following practical questions:

Q1: Why do we need type-adaptive selector?

Q2: How to adjust types scope in prompt?

3.3.1 Impact of Selector

We compare the performance of ours type-adaptive
selector and normal selector (that is, selecting can-
didates based on all types) on Intra 10-way 1-shot.
The Figure 2 (a) clearly demonstrates that our adap-
tive selector consistently outperforms in most cases,
particularly when the proportion of selected data is
low, thereby highlighting this phenomenon more
prominently. Moreover, our method excels at se-
lecting a greater number of non-target domain can-
didates with an equivalent data proportion. Addi-
tionally, it is worth noting that model performance

does not always exhibit a linear relationship with
the proportion of data; instead, it reaches a plateau
and even declines. Consequently, considering both
performance and resource consumption factors, the
selector we have designed proves to be more suit-
able for realistic scenarios while achieving superior
performance within limited resources.

3.3.2 Impact of Types Scope

The Figure 2 (b) illustrates a comparison of the
impact of different types of scopes in prompt for 5-
way 1-shot setting. It is evident that employing the
full-type prompt yields the poorest results in both
settings, whereas the other two options exhibit no
significant differences. This can be attributed to a
higher occurrence of errors in predicting non-target
domain spans rather than type errors within the few-
shot NER scenario. When providing a larger selec-
tion of types as input prompts to the large model, it
inevitably introduces disturbances and shifts its ob-
jective from removing non-target domain spans to
reclassifying spans, resulting in performance degra-
dation. Therefore, for practical applications, it is
advisable to limit the range of types provided as
input prompts to minimize inference costs while
potentially improving performance.

4 Conclusion

In this paper, we presented Double-Checker, a
framework that effectively combines LLM and
SLM for few-shot NER task. Specifically, we ini-
tially employed a type-adaptive selector to choose
candidates predicted by the small model. Subse-
quently, the LLM is utilized to conduct a two-stage
check process on these selected candidates, remov-
ing entity spans and non-entities that are not rele-
vant to the target domain. Extensive experiments
conducted using two different small models con-
sistently demonstrated significant improvements,
thereby showcasing the efficacy of our approach.



5 Limitations

Our approach aims to combine the complementary
strengths of LLM and small models to enhance
overall performance. Due to resource constraints,
we are unable to run the LLM experiments on the
entire test dataset (e.g., the Intra 10 way 5 shot
setting includes over 300,000 sentences). There-
fore, we sample 10,000 sentences for each setting.
Another limitation is that we did not conduct exper-
iments on domain-specific datasets, such as NER
datasets in the biomedical field. Generally, more
non-domain-specific entity spans are identified in
these datasets (Labrak et al., 2024), which we be-
lieve are better suited to our framework. We plan
to address these limitations in a follow-up study.
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A Appendix

A.1 Interference from the Source Domain

The domain-agnostic detector is affected by the
source domain. In order to demonstrate this phe-
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Figure 3: Results of different domain “entity attacks”
on SOTA methods and GPT-3.5 on Few-NERD dataset.
“Other Domain” denotes the dev set, and “Source Do-
main” refers to the train set.

nomenon, we re-constructed the target domain (test
set) of Few-NERD (Ding et al., 2021) by “entity at-
tacks”. Specifically, we first collect entity sets from
the source domain (train set) and other domain (dev
set). Then, we randomly select a non-entity posi-
tion in the target domain sentence and insert entities
from the two domains separately, thus constructing
two interference datasets for entity attacks from dif-
ferent domains. As shown in the Figure 3, we can
observe that all the models have a huge drop in per-
formance on two interference datasets. Notice that
the BERT-based models have proportionally more
performance degradation compared to the GPT-3.5
(OpenAl, 2023) and are subject to more interfer-
ence from source domain attacks. We attribute this
to the fact that the BERT-based model needs to
absorb the knowledge of the source domain during
the training process, and the span detector fine-
tuned on the target domain cannot completely get
rid of the influence of the source domain knowl-
edge, leading to easier detection of entity spans in
the non-target domain. Large Language Models, on
the other hand, possess rich internal knowledge and
are naturally more resistant to interference (Achiam
et al., 2023; Qi et al., 2023; Chang et al., 2024).

A.2 Datasets and Experimental Setup

We evaluate Double-Checker on standard few-shot
NER dataset Few-NERD (Ding et al., 2021), which
consists of 8 coarse-grained entity types and 66
fine-grained entity types. It is divided into Intra
and Inter settings, and the entity types of the train
set, dev set and test set are non-overlapping under
each setting. In this case, the Intra setting is divided
according to coarse-grained types, while the Inter



is divided according to fine-grained types.

We choose the two SOTA methods (HEProto
(Chen et al., 2023) and TadNER (Li et al., 2023))
as our SLMs, and use GPT-3.5-turbo as the LLM
for all experiments. Follow previous works (Ma
et al., 2022b; Chen et al., 2023), we use the entity-
level micro f1 score for evaluation, which requires
both the predicted entity span and type to be correct.
For quantile point o, we set it to 0.5 for Inter setting
and 0.7 to Intra setting.

A.3 Prompt Example

We select a candidate from target sentence and
construct the corresponding prompt, the details of
which are shown in the Table 3.

A4 Type Definition Example

We use GPT-3.5-turbo to generate the full type
definitions in the test set for both Intra and Inter
settings, which are presented in the Table 4 and 5.



<First-stage Check Prompt>

Given the Type Definition, Sentence, Types, and Candidate, answer the Question.

Type Definition: location-GPE includes names of countries, cities, states, provinces, and other regions
that have a political or geographical significance. None refers an entity that does not belong to the
above types, or is not an entity.

Sentence: he was born into a christian family in the predominantly muslim north.

Types: location-GPE, None

Candidate: muslim north

Question: Please refer to Type Definition and select the most relevant type (from Types) for Candidate
in the Sentence. Answer in the format of json like: {’answer’: '}

<Second-stage Check Prompt>
Question: Consider the Possible Type {first-stage answer}, whether the Candidate in the Sentence is
an entity or not. Answer in the format of json like: {’answer’: "’}

Table 3: An example of the prompt of our two-stage check.

Type Defnition

location-GPE includes names of countries, cities, states, provinces, and other regions that have a
political or geographical significance.

location-other is a catch-all category within the location entity type that includes geographical locations
which do not fit into the more specific subcategories listed.

location-mountain refers to geographical entities that are elevated landforms characterized by steep
slopes, rocky terrain, and often having peaks or summits.

location-bodiesofwater refers to geographical entities that are large bodies of water, such as oceans,
seas, rivers, lakes, and other water reservoirs.

location-island refers to geographical entities that are landmasses surrounded by water on all sides.
location-park refers to designated areas of land that are preserved or managed for recreational,
conservation, or aesthetic purposes.

location-road/railway/highway/transit refers to infrastructure designed for transportation, including
roads, railways, highways, and transit systems.

organization-education refers to institutions or entities primarily focused on providing education and
academic instruction.

organization-government/governmentagency refers to entities that are part of or associated with
governmental bodies and agencies.

organization-company refers to entities that are businesses or commercial enterprises. This category
includes names of companies, corporations, firms, and other types of business organizations.
organization-politicalparty refers to entities that are organized groups of people with similar political
aims and opinions.

organization-other is a category within the organization entity type that includes organized groups or
entities which do not fit into the more specific subcategories listed.

organization-media/newspaper refers to entities involved in the production and dissemination of
news and information to the public through various media channels.

organization-religion refers to entities associated with religious beliefs, practices, and institutions.
organization-showorganization refers to entities involved in the production, promotion, or organiza-
tion of entertainment events and performances.

organization-sportsleague refers to entities that are structured groups or associations governing a
particular sport or a group of sports.

organization-sportsteam refers to entities that are teams participating in competitive sports, usually
within the structure of a sports league or association.

Table 4: Definition of types on the target domain of Few-NERD Intra.



Type Defnition

other-medical refers to entities, concepts, or items related to the field of medicine that do not fit into
more specific categories.

person-athlete refers to individuals who engage in physical sports or other forms of competitive
physical activities.

event-sportsevent refers to organized competitive events or activities in which athletes or teams
participate in sports.

art-music refers to entities and works associated with the creation, performance, and recording of
music.

other-livingthing refers to entities that are living organisms but do not fit into more specific categories
like humans, specific animals, or plants.

building-hospital refers to structures specifically designed and equipped for the delivery of healthcare
services.

building-theater refers to structures specifically designed for the performance of live entertainment,
such as plays, musicals, dance performances, concerts, and other stage productions.
other-educationaldegree refers to academic qualifications or titles that do not belong to more specific
categories within the educational domain.

person-actor refers to individuals who professionally perform roles in plays, films, television shows,
or other forms of entertainment media.

product-car refers to automobiles or vehicles designed for transportation purposes.
product-weapon refers to devices or instruments designed or used for inflicting harm, damage, or
destruction.

art-writtenart refers to artistic works that are expressed through the written word.

event-election refers to the process of selecting individuals for specific roles or positions through a
structured voting system.

None refers an entity that does not belong to the above types, or is not an entity.

Table 5: Definition of types on the target domain of Few-NERD Inter, some of which are described in Table 4.
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