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ABSTRACT

Local learning offers an alternative to traditional end-to-end back-propagation in
deep neural networks, significantly reducing GPU memory usage. While local
learning has shown promise in image classification tasks, its application to other
visual tasks remains limited. This limitation arises primarily from two factors:
1) architectures tailored for classification are often not transferable to other tasks,
leading to a lack of reusability of task-specific knowledge; 2) the absence of cross-
scale feature communication results in degraded performance in tasks such as ob-
ject detection and super-resolution. To address these challenges, we propose the
Memory-augmented Auxiliary Network (MAN), which introduces a simplified
design principle and incorporates a feature bank to enhance cross-task adaptabil-
ity and communication. This work represents the first successful application of
local learning methods beyond classification, demonstrating that MAN not only
conserves GPU memory but also achieves performance on par with end-to-end
approaches across multiple datasets for various visual tasks.

1 INTRODUCTION

Back-propagation (BP) remains the cornerstone of deep learning optimization, but as models scale
to larger sizes Bengio et al. (2006); Krizhevsky et al. (2017), End-to-End (E2E) methods expose sev-
eral limitations Hinton et al. (2006); Guo et al. (2020). BP relies on the propagation of error signals
across multiple layers, a process that contrasts with biological neural transmission systems Crick
(1989) and introduces challenges, such as error accumulation in deep networks. This can degrade
the learning effectiveness of shallow neurons Qu et al. (1997). Moreover, updating hidden layers
in the deep network requires the completion of forward and backward passes, which hinders paral-
lel computation and significantly increases memory consumption on GPUs Jaderberg et al. (2017);
Belilovsky et al. (2020). As an alternative to E2E methods, supervised local learning enhances mem-
ory efficiency and parallelism by splitting the network into gradient-isolated blocks, each updated
independently via its own auxiliary network Belilovsky et al. (2020); Nøkland & Eidnes (2019).

However, current applications of local learning have largely been confined to image classification
tasks, where they have demonstrated competitive performance Ma et al. (2024); Wang et al. (2021)
compared to E2E methods by tailor-made auxiliary network. Despite this, the focus on auxiliary
networks architecture for classification has constrained their general applicability. When extend-
ing these architectures to more complex tasks like object detection or super-resolution, they often
fall short due to their lack of cross-task adaptability and the widely recognized ”short-sightedness”
problem Su et al. (2024b). Although the work Su et al. (2024a) mitigates short-sightedness by using
exponential moving averages to enhance single-scale communication, it fails to address the deeper
limitations posed by cross-task adaptability challenges, especially where multi-scale information
is essential. For example, object detection requires multi-scale information, and the classification-
oriented architecture’s lack of it exacerbates the short-sightedness issue. Consequently, these issues
limit the potential of traditional local learning methods, hindering their generalization and portability
across diverse visual tasks.

To this end, we present the Memory-Augmented Network (MAN), a novel framework designed to
address the challenges of scaling local learning methods across diverse tasks. This streamlined ap-
proach alleviates the above short-sightedness issue between local modules at different scales and
enables performance that closely matches end-to-end training. Specifically, MAN operates as an
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Figure 1: We compare with the state-of-the-art local learning and E2E methods on object detection,
classification, and super-resolution tasks.

auxiliary network within each gradient-isolated local module, adapting automatically to the target
task’s architecture, thus eliminating the need for manual design adjustments. It features a straight-
forward local module that emphasizes the reusability of task-specific knowledge, facilitating the
extension of local learning to various applications. A key innovation is the incorporation of a fea-
ture bank to enable multi-scale feature communication, allowing MAN to capture both generalized
and discriminative semantic features. By integrating cross-scale information from the feature bank,
MAN constructs a comprehensive semantic representation, advancing supervised local learning be-
yond classification tasks. Extensive experiments show that MAN achieves comparable performance
to end-to-end methods on a variety of challenging tasks shown in Figure1, including image classifi-
cation, object detection, and super-resolution, while significantly saving GPU memory.

The main contributions of this paper are as follows:

• This paper introduces the Memory-Augmented Network (MAN), which simplifies the net-
work structure for corresponding tasks. By facilitating access to cross-scale features, it
effectively addresses the needs of diverse applications, enabling the seamless extension of
local learning.

• Comprehensive experiments on image classification, object detection, and super-resolution
tasks validate the effectiveness of the MAN-designed local learning network. The MAN
approach achieves performance comparable to end-to-end back-propagation (BP) while
significantly reducing GPU memory usage.

• An in-depth analysis of the latent representations learned by models utilizing the MAN
method reveals that, compared to BP, local networks enhanced with key global information
help the network learn more discriminative features at shallow layers, thereby improving
the overall performance of the model.

2 RELATED WORK

2.1 LOCAL LEARNING

Local learning is an innovative algorithm that strictly adheres to biological plausibility princi-
plesCrick (1989), aimed at utilizing memory more effectively for deep learning. Its key advantage
lies in addressing the limitations of global end-to-end (E2E) trainingHinton et al. (2006), thereby
fostering the development of alternative supervised local learning methods. In supervised local
learning, the progression of training primarily depends on using reasonable supervised local loss
functions or constructing efficient manual auxiliary networks. Previous research in differentiable
search algorithms utilizes self-supervised contrastive loss functions under local learning rulesIlling
et al. (2021); Xiong et al. (2020); Nøkland & Eidnes (2019); Wang et al. (2021), enabling local
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block-level learning through decoupling network blocks and selecting manual auxiliary networks
for each blockPyeon et al. (2020); Wang et al. (2021); Belilovsky et al. (2020). However, when
the aforementioned networks are partitioned into numerous local blocks without restraint, the per-
formance of the network suffers significantly due to the inability of backpropagation to effectively
relate parameters between these local blocks.

2.2 ALTERNATIVE METHODS TO E2E TRAINING

Due to the increasingly apparent shortcomings of E2E training, many researchersLillicrap et al.
(2020) have diligently pursued alternative approaches to E2E training to address the areas in E2E
training that did not adhere to biological plausibility principles. The weight transfer problemCrick
(1989) is addressed by attempting to directly propagate the global error to each hidden unitNøkland
(2016); Clark et al. (2021), or by employing different feedback connectionsLillicrap et al. (2016);
Akrout et al. (2019). AndLee et al. (2015); Bengio (2014); Le Cun (1986) employ localized object
reconstruction to train a dedicated backward-connected target propagation training method. while
recent workRen et al. (2022); Dellaferrera & Kreiman (2022)creatively employed forward gradient
learning to completely bypass the drawbacks of network backpropagation. These methods have,
to some extent, strengthened the biological plausibility principles of the network. However, they
struggle to achieve efficient performance on large datasetsDeng et al. (2009). Furthermore, their
critical drawback—dependency on global objectives, remains unresolved, which is fundamentally
different from the structure of neural systems in the real world that relies on local neuron connections
to transmit and update information.

2.3 OBJECT DETECTION

R-CNN and Faster R-CNNGirshick et al. (2014); Ren et al. (2015) are the origin and excellent
succession of the classic R-CNN model, respectively. They employed simple and scalable networks
for object detection, yet achieved very high detection accuracy. YOLOv1Redmon et al. (2016)
and YOLOv8Jocher (2023) represent the pioneering work and the latest iteration of the YOLO
(You Only Look Once) series, respectively. They treat object detection as a regression problem to
spatially separated bounding boxes and associated class probabilities, making it a real-time, fast
object detection model. On the other hand, RetinaNetLin et al. (2017b) is a dense detector utilizing
focal loss, offering high detection accuracy. DETRCarion et al. (2020) simplified the detection
process by directly treating object detection as a set prediction problem. This significantly reduced
the need for many components. However, the aforementioned methods still face the issue of high
memory consumption during training.

2.4 IMAGE SUPER-RESOLUTION

Image Super-Resolution (SR) research aims to reconstruct High-Resolution (HR) images from Low-
Resolution (LR) images. This technology has significant applications in various fieldsWang et al.
(2020); Georgescu et al. (2023); Razzak et al. (2023). SRCNNDong et al. (2015) is the pioneer of
deep learning-based super-resolution models. It is a simple model that addresses the image restora-
tion problem using just three layers, achieving impressive results. EDSRLim et al. (2017) is an en-
hanced deep super-resolution network that improves model performance by removing unnecessary
modules from the traditional residual network. RCANZhang et al. (2018) and SwinIRLiang et al.
(2021) utilize a very deep residual channel attention network and Swin Transformer, respectively, for
high-precision image super-resolution. Both have achieved outstanding results in super-resolution
tasks. However, the aforementioned image super-resolution models typically require a significant
amount of computational resources and storage space. This is particularly problematic when han-
dling high-resolution images, as they tend to consume excessive Graphics memory. This is an urgent
challenge that needs to be addressed, and our research can effectively resolve this issue.
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3 METHOD

3.1 PRELIMINARIES

To establish the foundation of our work, we begin with a brief overview of traditional end-to-end
supervised learning and backpropagation mechanisms. Let x denote a data sample and y its corre-
sponding ground-truth label. We partition the entire deep network into several local blocks. During
forward propagation, the output of the j-th block becomes the input to the (j + 1)-th block, which
can be expressed as xj+1 = fθj (xj). Here, θj represents the parameters of the j-th local block,
and f(·) denotes the forward computation performed by the block. We compute the loss function
L(ŷ, y) between the output ŷ of the final block and the ground-truth label y, and then iteratively
propagate this loss backward through the preceding blocks.

Supervised local learning strategies Nøkland & Eidnes (2019); Wang et al. (2021); Belilovsky et al.
(2020) incorporate auxiliary networks to provide local supervision. In this approach, an auxiliary
network is attached to each local block. The output of each local block is fed into its corresponding
auxiliary network, generating a local supervisory signal expressed as ŷj = gγj

(xj+1). Here, γj
denotes the parameters of the j-th auxiliary network.

In this setup, we update the parameters of the j-th auxiliary network and local block, γj , θj , as
follows:

γj ← γj − ηa ×∇γj
L(ŷj , y) (1)

θj ← θj − ηl ×∇θjL(ŷj , y) (2)

Here, ηa and ηl denote the learning rates of the auxiliary networks and the local blocks, respectively.
By attaching auxiliary networks, each local block becomes gradient-isolated and can be updated
using local supervision instead of global backpropagation.

However, when attempting to transfer existing local learning architectures to other tasks, signifi-
cant performance gaps arise for two main reasons. First, traditional local learning methods rely on
meticulously designed auxiliary network structures. While these structures enhance performance
in classification tasks, they constrain the network design to specific tasks, hindering adaptability
during transfer to other tasks. Second, Su et al. (2024b;a) highlight that a key limitation of local
learning architectures is the short-sightedness problem in addressing local modules. Unlike classi-
fication tasks, other tasks often require features at different scales, which exacerbates the effects of
short-sightedness and complicates task transfer.

3.2 MEMORY-AUGMENTED NETWORK

We propose the Memory-Augmented Network (MAN) architecture to extend local learning to dif-
ferent tasks. In this Chapter, we will briefly explain the MAN framework, and introduce how MAN
can transfer local-learning to different tasks in detail in Chapter 4.

As shown in the Figure 2, MAN consists of Simple Local Modules (SLM) and a Feature Bank, each
addressing two key challenges in task transfer. SLM provides a simple auxiliary network adaptable
to various tasks, overcoming the challenge of task-specific designs. The feature bank stores multi-
scale features and applies them in the auxiliary network, which alleviates the myopic problem of
local modules. Together, these components simplify the transfer of local learning techniques across
tasks. We will introduce these two parts separately

SLM: In networks designed for different tasks, the backbone is often carefully crafted based on
the specific task, leading to significant differences in the feature extraction processes of different
network architectures. By simply downsizing the backbone network, we retain its feature extraction
capabilities and ensure that the auxiliary network aligns with the objectives of the backbone. This
allows SLM to be easily adapted to different task requirements.

Through the design of SLM, local-learning can be easily extended to various tasks. However, this
can not solve the short-sighted problem of local modules inherent in local-learning, resulting in the
loss of task performance. We propose Feature bank to make up for this deficiency.
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Figure 2: Structure diagram of MAN method, where MAN consists of Feature Bank and SLM.
By extracting Discriminative features from the main network, and constructing the SLM network
homogeneous with the main network, the local modules of MAN and the backbone network are
used to update the gradient

Feature Bank: Feature bank is a repository for key features. In different tasks, there are some key
features of their respective tasks, such as fc features in classification tasks, multi-scale features in
target detectionLin et al. (2017a), and initial image features in low-level tasks represented by super-
resolution tasksLim et al. (2017), which have been proved to play a decisive role in their respective
tasks. The traditional lcoal-learning method has little influence on the model because the key feature
of the classification task is the last classification layer. However, when moving to areas such as object
detection, the absence of multi-scale features can have disastrous consequences, as shown in Table.3.
We do this by storing these key features in the Feature bank and using them in local-modules just
as they are used in the backbone network. To alleviate the problem of short-sightedness between
different blocks, after making a certain memory sacrifice, in exchange for amazing performance.

The feature map produced by layer l of the backbone network B as F(l) ∈ Rh×w×d, where h, w,
and d represent the spatial height, width, and depth of the feature map, respectively.

We denote the set of distinct features extracted from various layers of B as the feature bank, Fbank.
The feature bank is formally defined as a set of distinct feature representations:

Fbank =
{
F

(l)
i | i ∈ I, l ∈ {1, 2, . . . , L}

}
, (3)

where I is an empirically derived index set of distinct feature maps and F
(l)
i represents a selected

feature map from layer l.

4 APPLICATIONS

In different tasks, models are typically divided into a backbone network for feature extraction and
a head network for task execution. This structure allows for easy transfer of an end-to-end (E2E)
framework to other tasks by simply replacing the task-specific head. However, in local learning, the
incomplete network structure complicates the straightforward transfer to other tasks. For instance, in
object detection, predictions require features from different scales; however, gradient-independent
local networks often miss other essential features, making accurate predictions challenging.

Next, we will elaborate on how the MAN framework is applied to different tasks. We have selected
three classic tasks: classification, object detection, and super-resolution. They respectively represent
traditional application scenarios of local learning, challenging tasks in high-level tasks, and the most
representative tasks in low-level tasks.Due to the characteristics of classification networks, we will
focus on the construction of the backbone network in classification tasks, as well as how to apply
MAN to these tasks. In subsequent sections on detection and super-resolution, we will reuse the
backbone network architecture and emphasize how to leverage MAN for task transfer.
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4.1 MAN IN CLASSIFICATION

Taking the most classical ResNet classification network as an example, Its structure is shown in
Figure 3.If Bis a ResNet architecture of LBstages.Each auxiliary network Ai has a reduced structure
corresponding to the architecture of the backbone network B. where each stage s has ns layers, then
the auxiliary network Ai also contains LAi

stages with reduced layers, such that:

LAi
= LB, and ns,Ai

≪ ns for all stages s. (4)

Specifically, we define ns,Ai
= 1 for simplicity, which means that each stage in the auxiliary net-

work Ai consists of a single layer

Each auxiliary network Ai computes its own independent loss using a loss function structure iden-
tical to that of the backbone network B. Let LB be the loss function of the backbone network. The
loss function for auxiliary network Ai is denoted as LAi

and has the same structure as LB, but is
computed on the output of Ai using features from the feature bank Fbank. Formally, the loss for
auxiliary network Ai is defined as:

LAi
= Lstructure (yi, fAi

(x;Fbank,Wi)) , (5)

where yi represents the target for auxiliary network Ai, fAi is the forward function of Ai, and Wi

is the set of weights for Ai. The function fAi uses the distinct features from the feature bank Fbank
as input along with the weights Wi to generate predictions.

Each auxiliary network Ai optimizes its loss LAi
independently from the backbone network and

from other auxiliary networks:

min
Wi

LAi
, ∀i ∈ {1, 2, . . . , N}. (6)

This ensures that each auxiliary network adapts its parameters solely based on its own unique feature
set, preventing interference with other networks.

4.2 MAN IN OBJECT DETCETION

Figure 3: MAN is applied to structural diagrams in different ways, The dashed lines between layers
represent the gradient feedback flow between layers, the network below the main network is the
local network structure of the corresponding layer, and different colors represent the corresponding
key features. Where, the top of the picture is MAN in Classification, and the bottom is Detection.

Figure 3 illustrates the overall architecture of MAN in object detection networks. The backbone
network is divided into K local modules, each equipped with a MAN. The parameters of each local
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module are updated through its respective auxiliary network. Arrows between each layer and its
auxiliary network represent the gradient flow, while arrows between different layers indicate the
selection and utilization of features.

In object detection, we reuse the same method used in classification to simplify the feature extraction
part of the backbone network. During the head design process, since studies have shown that multi-
scale features are decisive for detection performance, we directly share the head part of the main
network to train and understand multi-scale information more effectively. At the same time, the
multi-scale FPN features are selected to be stored into the feature library. This allows the auxiliary
network to build a local FPN network for outcome prediction.

At the beginning of training, the feature maps of different scales generated by the backbone network
are stored into the feature library. We select feature maps from the layers preceding each down-
sampling layer to ensure information richness. In different local modules, we use SLM to extract
the multi-scale features needed to synthesize local FPN in the local network. At the same time, the
multi-scale features required by the global FPN are saved in the Feature bank, and the local FPN is
synthesized by reusing the feature maps existing in the feature bank. The design is adaptable and
avoids the need for manual design of auxiliary networks.

4.3 MAN IN SUPER-RESOLUTION

Figure 4: MAN in SR structure diagram, the left is the main network, the green structure is the
corresponding local-module of this layer, and its specific structure is the part in the right box in the
figure. The key feature is the initial input image, whose flow pattern is shown along the orange line.

Figure 4 illustrates the network architecture for applying MAN to the super-resolution domain. Simi-
lar to what we did in object detection, we build an SLM network that can be used for super-resolution
by reusing the simplified way of MAN in the backbone network and adding the head required for
super-resolution tasks. At the same time, we build MAN by finding discriminative features in super-
resolution tasks and putting them into the Feature bank.

The core of super-resolution task is to preserve the original image features during the reconstruction
process. A key approach is to fuse the feature map with the initial low-resolution image before
upsampling, since the initial image is crucial for reconstructing the final high-resolution image. We
store the initial image in the Feature bank and use it for reconstruction when each Local modules
predicts imaging.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance of the MAN architecture on
different tasks. Section 5.1 presents the performance of MAN on traditional classification tasks,
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where we conduct experiments on CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011),
and STL-10 Coates et al. (2011). We select four state-of-the-art supervised local learning methods
for comparison: PredSim Nøkland & Eidnes (2019), DGL Belilovsky et al. (2020), InfoPro Wang
et al. (2021), and AugLocal Ma et al. (2024).In Section 5.2, we conduct more comprehensive ex-
periments on object detection tasks, providing an in-depth comparison to highlight the performance
of MAN in the field of object detection. We perform quantitative evaluations on the VOC Evering-
ham et al. (2010) and COCO Lin et al. (2014) datasets, achieving results close to end-to-end (E2E)
methods. We also compare local detection with other advanced local learning methods in terms of
reducing memory overhead. An ablation study on the architecture is conducted, providing in-depth
insights and qualitative analyses.In Section 5.3, we apply MAN to the super-resolution task and val-
idate its performance on the widely used DIV2K Agustsson & Timofte (2017) dataset. The detailed
experimental settings can be found in Appendix A.

Table 1: Results on the Classification

Method CIFAR-10 STL-10 SVHN
ACC Inference Speed ACC Inference Speed ACC Inference Speed

Predsim 77.29 174.50 67.1 189.40 91.92 174.30
DGL 85.92 48.30 72.86 34.30 94.95 43.60

InfoPro 87.07 192.10 70.72 182.60 94.03 197.70
AugLocal 92.48 90.60 79.69 134.00 96.80 111.80

Ours 91.75 81.70 79.74 127.20 96.68 90.00

5.1 CLASSIFICATION EXPERIMENTAL RESULTS

We first evaluate the performance of the MAN method on classic image classification tasks. As
shown in Table 1, although achieving the best performance was not our primary goal, MAN still
obtains the best or second-best results on the CIFAR-10, STL-10, and SVHN datasets, indicating that
it maintains strong transferability without sacrificing performance. Notably, in terms of inference
speed, due to the simplicity of the SLM design, we avoid using complex auxiliary network structures,
allowing MAN to achieve remarkable speed, second only to DGL. However, DGL’s accuracy is
significantly lower than MAN’s, highlighting MAN’s superior balance between performance and
efficiency.

5.2 OBJECT DETECTION EXPERIMENTAL RESULTS

Results on VOC dataset: To verify the performance of the MAN method, we first conduct exper-
iments on VOC dataset using the traditional Back Propagation (BP) method with our MAN. The
experimental results are shown in Table 2. Surprisingly, the MAN method achieves comparable per-
formance to the BP method in the vast majority of experimental groups. It is worth noting that the
MAN method achieves higher mAP results in the experiments with RetinaNet-R50 and other mod-
els. This improvement is attributed to our model scoring better on smaller objects such as bottles
and cars. This may be due to the fact that the MAN method can help the model identify the focal
features earlier, while the shallow layers used to identify small objects can effectively learn more
discriminative features. This leads to an overall performance enhancement of the model.

Moreover, we observe that even though the mAP performance of the MAN method is comparable to
that of the BP method, its AP50 and AP75 scores are still lower than those of the BP method. This
suggests that at higher threshold Settings, the features learned by the MAN method may be more
discriminative than the BP method, leading to better performance at these thresholds.

Result on MS COCO: We evaluate the performance of our MAN method on the more challenging
MS COCO dataset Lin et al. (2014). To control experimental costs and considering the fast training
speed of DGL shown in Table 1, we conduct experiments using RetinaNet-R34 for the DGL, MAN,
and BP methods. For traditional local-learning methods like DGL, we build an FPN structure in the
auxiliary network for DGL through upsampling and other transformations to realize transfer, instead
of simply predicting directly. This enhancement aims to provide better performance for traditional

8
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Table 2: Results on the validation set of VOC.
Model mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

RetinaNet-R34 53.9 68.6 58.2 49.4 40.3 21.5 58.2 50.7 81.6 31.9 51.0 43.8 76.9 71.5 65.3 54.8 22.4 43.2 55.6 76.6 57.3

Ours (K=17) 52.2 64.8 55.6 44.5 39.7 24.1 58.6 56.3 83.4 28.6 49.8 37.4 66.3 69.4 58.9 57.3 22.6 36.8 53.9 80.6 51.4

RetinaNet-R50 56.2 67.5 59.6 53.1 44.8 24.1 58.2 54.5 82.6 30.7 57.8 44.5 80.9 76.8 68.3 56.5 21.2 46.5 57.9 79.1 60.2

Ours (K=17) 56.5 64.9 51.3 56.5 45.2 25.3 58.9 55.7 85.1 29.3 58.4 40.5 73.9 76.6 64.5 59.2 22.9 37.5 56.5 83.2 59.0

RetinaNet-R101 58.2 69.9 61.6 53.0 51.5 26.1 61.7 57.1 84.3 35.5 58.7 44.4 81.4 77.1 70.4 58.7 24.0 45.8 61.7 81.8 60.8

Ours (K=34) 56.9 62.4 55.5 57.1 50.9 25.5 61.4 55.9 86.7 32.4 57.3 39.9 77.1 77.4 65.5 59.4 25.2 35.5 57.9 83.9 56.5

RetinaNet-R152 61.0 72.2 64.8 57.7 50.2 31.9 62.8 59.9 85.3 41.2 63.2 53.3 81.9 78.9 70.2 61.2 28.5 47.4 63.2 81.5 65.0

Ours (K=51) 60.9 69.4 60.5 62.7 51.1 30.5 65.1 56.4 83.5 43.3 60.7 54.0 74.9 81.4 62.8 63.7 27.1 45.5 63.1 85.5 65.6

YOLO-R34 58.9 63.6 65.2 62.9 42.2 30.6 67.7 67.4 77.3 36.4 63.5 49.9 74.3 76.8 67.5 60.6 27.4 60.0 52.2 72.9 60.3

Ours (K=17) 58.6 64.2 63.5 63.3 34.8 30.1 66.9 65.1 77.3 30.5 62.8 48.5 70.3 82.6 65.4 61.0 28.1 61.2 49.7 72.4 61.3

YOLO-R50 58.5 57.0 73.2 60.9 37.8 30.4 66.6 66.5 76.7 37.7 61.1 44.2 76.9 77.0 67.8 60.1 29.3 58.8 56.5 64.6 60.8

Ours (K=17) 57.1 56.9 73.7 59.4 35.5 31.8 61.4 67.8 77.9 34.5 60.4 44.4 68.5 81.8 66.1 61.9 29.1 54.3 55.9 70.1 60.9

YOLO-R101 60.4 65.1 68.1 64.9 45.1 27.5 69.1 68.2 76.7 38.6 65.0 51.1 76.6 78.8 73.4 62.5 32.4 62.2 57.2 67.7 57.1

Ours (K=34) 60.6 65.7 64.5 62.9 47.4 29.1 67.1 70.7 78.4 36.9 64.3 53.4 70.2 79.9 74.2 61.8 33.5 59.9 57.5 70.5 55.8

YOLO-R152 64.3 66.2 77.6 68.9 50.3 38.1 69.9 75.1 76.8 43.8 72.5 51.0 77.8 81.2 74.8 63.8 34.6 64.8 57.0 74.8 66.2

Ours (K=51) 63.5 65.9 70.7 64.5 50.1 42.3 65.7 73.9 80.1 44.1 65.8 52.2 74.2 80.8 76.0 64.4 36.5 59.4 55.5 77.9 56.1

Table 3: Results on the validation set of COCO.The red arrow represents the accuracy improvement
of the MAN method compared with the traditional Local-learning on the detectin task, and the green
arrow represents the ability of the MAN method to save memory overhead compared with the BP
method

Model Method mAP AP50 AP75 GPU Memory

RetinaNet-R34

BP 28.7 49.3 29.5 10.32GB
DGL(K=8) 21.3 43.9 16.6 9.57GB
Ours(K=8) 28.9(↑7.6) 48.7(↑4.8) 28.7(↑12.1) 8.60GB (↓16.70%)

DGL(K=17) 19.5 41.8 15.2 9.37GB
Ours(K=17) 28.5(↑9.0) 47.6(↑5.8) 28.4(↑13.2) 8.19GB (↓20.60%)

RetinaNet-R50 BP 29.7 51.6 30.4 18.05GB
Ours(K=17) 29.4 48.3 29.7 15.34GB (↓15.01%)

RetinaNet-R101 BP 31.8 53.6 32.3 22.46GB
Ours(K=34) 31.9 52.4 32.6 20.61GB (↓8.24%)

RetinaNet-R152 BP 33.2 56.2 33.5 31.84GB
Ours(K=51) 33.5 56.1 33.6 28.36GB (↓10.92%)

YOLO-R34 BP 20.23 41.27 21.10 11.80GB
Ours(K=17) 20.16 40.38 20.06 8.89GB (↓24.66%)

YOLO-R50 BP 20.94 42.02 21.97 26.15GB
Ours(K=17) 20.97 42.00 20.15 21.37GB (↓18.27%)

YOLO-R101 BP 22.41 44.36 22.53 37.05GB
Ours(K=34) 22.35 43.67 22.18 26.40GB (↓28.77%)

YOLO-R152 BP 25.00 47.15 24.33 49.88GB
Ours(K=51) 24.84 45.34 24.91 40.02GB (↓19.76%)

local-learning methods, ensuring a fair comparison. However, as shown in Table 3, there remains
a significant performance gap between the DGL method and the BP method.Our experiments indi-
cate that although DGL structurally possesses the capability to perform object detection tasks, the
absence of multi-scale information hinders its performance in extending to such tasks effectively.

Notably, in the RetinaNet-R34 experiments, when K < 8, and in the RetinaNet-R101 experiments,
MAN outperforms BP, confirming MAN’s significant potential. It can also be observed that as
the number of segments K decreases, the model performance generally improves. However, when
K = 4, MAN’s mAP performance slightly decreases, with the AP50 metric increasing and the
AP75 metric decreasing. This further supports our hypothesis that, compared to BP, local learning
methods can help the model learn different feature representations.

When comparing GPU memory usage, MAN demonstrates superior memory-saving capabilities
compared to DGL due to our simplified local structure. In RetinaNet-R34, YOLO-R34, and YOLO-
R101, MAN reduces memory overhead by 20.6%, 24.66%, and 28.77%, respectively, while main-
taining performance comparable to BP.

9
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Ablation Study: We perform ablation experiments on MAN; due to space limitations, we only
present part of the experiments in the main text, and other experiments will be provided in the
supplementary material.

We try to incrementally reduce the modules of the local detection, and the results are shown in
Table 4. Where Adapt represents whether to use MAN’s SLM and Feature bank methods, and Head
represents whether to share the same detection head with the network. We find that although the
shared detection head can help the model improve the performance at a certain increase in memory
overhead. This shows that while one can simply introduce local learning methods to the task, there
is still much room for improvement in how to exploit these important features once they are added
to the local network. There may be potential to consistently outperform BP architectures. But
achieving state-of-the-art performance in each task is not the main goal of this paper; We leave it as
future work.

Table 4: Ablation study between modules
of different local detection schemes. Here,
Adapt indicates whether the adaptive MAN
network is used, and Head indicates whether
the shared prediction head is used.

Adapt Head mAP GPU Memory
× × 28.7 10.32
✓ × 27.7 8.07
✓ ✓ 28.5 8.19

Table 5: Results on the validation set of
DIV2K.

Task Method PSNR GPU Memory

×2 BP 34.62 10.55GB
Ours 33.89 5.20GB

×3 BP 31.04 10.30GB
Ours 29.33 5.19GB

×4 BP 28.92 10.06GB
Ours 27.71 5.16GB

5.3 SUPER-RESOLUTION EXPERIMENTAL RESULTS

We conduct experiments on the DIV2KAgustsson & Timofte (2017) dataset to evaluate the per-
formance of our model. Because the traditional Local-learning method lacks the key information
of the initial image, it leads to a catastrophic performance gap and is difficult to be transferred to
super-resolution tasks. We choose to perform a more nuanced comparison with the E2E method. As
shown in Table 5, our MAN method shows a performance gap compared to the BP method, with a
difference of 1.73 in the ×2 task,1.71 in the ×3 task and 1.21 in the ×4 task.It can be observed that
the performance gap between MAN and BP is gradually narrowing as the difficulty of the super-
resolution task increases, which may be due to the fact that MAN is able to learn more essential
features. At the same time, the GPU overhead of the MAN method is only 5.20GB, 5.19GB and
5.16GB, saving 51% of memory. This may be due to the fact that the super-resolution task, apart
from the backbone, is simpler compared to the object detection task, which does not involve complex
head components, leading to a smaller proportion of additional memory overhead in the model.

6 CONCLUSION

In this paper, we introduce Memory-Augmented Network (MAN), a novel design of auxiliary net-
works that for the first time extends the application of local learning to different tasks. The design
of MAN eliminates the need for tedious manual configuration and instead makes full use of the
structure of the backbone network as well as the features at different levels. By augment the fea-
ture memory and increasing the utilization of cross-scale information by local modules, we apply
MAN to different tasks, such as object detection and image super-resolution, and show that MAN
significantly reduces GPU memory usage while maintaining comparable performance to BP.

Limitations and Future Work: Although the proposed Memory Augmented Network (MAN) per-
forms well in terms of performance and adaptability for various tasks, it uses an explicit Feature
bank, which brings additional memory overhead. Our future work will explore how to transfer
information across scales implicitly.

10
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A APPENDIX

A.1 MORE RESULTS

Representation Similarity: We conduct a Centered Kernel Alignment (CKA)Kornblith et al.
(2019) experiment to validate the effectiveness of MAN. Specifically, we calculate the CKA simi-
larity for each layer using MAN, DGLBelilovsky et al. (2019), and BP under different methods and
averaged results. As shown in Figure 5, the representation differences among the methods are min-
imal in the later layers, with DGL being closer to BP than MAN. However, MAN achieves higher
similarity in the early layers due to its Focal Features Selection, which aids the model in learning
key discriminative features early on. This experiment confirmed that MAN’s design enhances the
model’s understanding of early features.

Figure 5: Diagram of the construction method of Memory-Augmented Network

A.2 IMPLEMENTATION DETAILS OF CLASSIFICATION

In our experiments, we continue the same experimental setup as Auglocal. The experiments on
CIFAR-10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011), and STL-10 Coates et al. (2011)
datasets with ResNet-32He et al. (2016), we utilize the SGD optimizer with Nesterov momentum
set at 0.9 and an L2 weight decay factor of 1e-4. We employ batch sizes of 1024 for CIFAR-10 and
SVHN and 128 for STL-10. The training duration spans 400 epochs, starting with initial learning
rates of 0.8 for CIFAR-10 / SVHN and 0.1 for STL-10, following a cosine annealing scheduler
Coates et al. (2011).

A.3 IMPLEMENTATION DETAILS OF OBJECT DETECTION

Dataset: To validate the model’s ability to fit large datasets, we use the VOC detection
datasetEveringham et al. (2010) containing 9,963 images and the COCO datasetLin et al. (2014)
containing 123,287 images for our object detection experiments. Additionally, all backbones are
pre-trained on the ImageNet dataset, which includes approximately 1.3 million images.

Model Variants: To validate the scalability of the proposed method, we employ entirely different
network architectures, namely YOLO Redmon et al. (2016) and RetinaNet Lin et al. (2017c). For
a fair comparison with other models, the YOLO model used ResNet-based YOLOv1. Networks
using the local detection method are referred to as MAN versions. Each model was trained using
ResNet-34, ResNet-50, ResNet-101, and ResNet-152.

Furthermore, to compare the performance of the local detection method with other local learning
methods in terms of memory overhead reduction, we conduct comparisons under the same model
partitioning conditions. We adopted the state-of-the-art local learning method DGL Belilovsky et al.
(2019) for the object detection task. To validate the effectiveness of the local detection algorithm,
we compared its memory-saving performance.
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Training and Fine-tuning: We utilize the SGD optimizer Keskar & Socher (2017) with Nesterov
momentum Dozat (2016) set at 0.9 and an L2 weight decay factor of 1e-4. The training duration
spans 160 epochs, with a learning rate employing a warm-up strategy that is set to 0 for the first 5
iterations, followed by 1e-4, and adheres to a cosine annealing schedule. When using ResNet-34 as
the backbone, it is divided into 16 modules. Similarly, when employing ResNet-50, ResNet-101,
and ResNet-152 as backbones, the networks are divided into 16, 33, and 50 modules, respectively.
This division is based on the block parameters used in the construction of ResNet, with each local
module’s auxiliary network having its unique parameters. During training, RetinaNet uses a batch
size of 64, whereas YOLO uses a batch size of 32.

A.4 IMPLEMENTATION DETAILS OF SUPER-RESOLUTION

Dataset: For the super-resolution task, we utilize the DIV2K Agustsson & Timofte (2017) dataset,
which comprises over 1000 high-resolution images, each exceeding 2K in resolution. This dataset
is extensively employed in various super-resolution challenges and competitions.

Model Variants: On the DIV2K dataset, we conduct tests for 2x, 3x, and 4x super-resolution tasks
to evaluate the model’s performance, using EDSR as the benchmark model. The configurations
employing the MAN method for local learning are denoted as EDSR-MAN.

Training and Fine-tuning: During training, we use patches of 48x48 low-resolution (LR) images
and their corresponding high-resolution (HR) patches. ADAM is used as the optimizer, with the
learning rate set at 1e-4. Initially, we begin training from scratch on the ×2 model. Once the model
converges, it is used as a pre-trained network for training on the ×3 and ×4 models.
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