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ABSTRACT

The exponential growth in demand for GPU computing resources has created
an urgent need for automated CUDA optimization strategies. While recent ad-
vances in LLMs show promise for code generation, current state-of-the-art models
achieve low success rates in improving CUDA speed. In this paper, we introduce
CUDA-L1, an automated reinforcement learning (RL) framework for CUDA op-
timization that employs a novel contrastive RL algorithm.
CUDA-L1 achieves significant performance improvements on the CUDA opti-
mization task: trained on NVIDIA A100, it delivers an average speedup of ×3.12
with a median speedup of ×1.42 against default baselines over across all 250
CUDA kernels of KernelBench, with peak speedups reaching ×120. In addition
to the default baseline provided by KernelBench, CUDA-L1 demonstrates ×2.77
over Torch Compile,×2.88 over Torch Compile with reduce overhead, and×2.81
over CUDA Graph implementations. Furthermore, the model also demonstrates
portability across GPU architectures. CUDA-L1 opens possibilities for automated
optimization of CUDA operations, and holds promise to substantially promote
GPU efficiency and alleviate the rising pressure on GPU computing resources.

Figure 1: Overview of the CUDA-L1 training pipeline.
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1 INTRODUCTION

The exponential growth in demand for GPU computing resources, driven primarily by the rapid
advancement and deployment of Large Language Models (LLMs), has created an urgent need for
highly efficient CUDA optimization strategies. Traditionally, CUDA optimization has been a highly
manual and time-intensive process, where skilled engineers must meticulously analyze memory
access patterns, experiment with different thread block configurations, and iteratively profile their
code through extensive trial-and-error cycles.

Recent advances in LLMs (Team et al., 2023; Shengyu et al., 2023; Team et al., 2024; Grattafiori
et al., 2024; Yang et al., 2025; Hurst et al., 2024; Jiang et al., 2024; Liu et al., 2024a; OLMo et al.,
2024), especially those powered with RL (Jaech et al., 2024; Guo et al., 2025; Wang et al., 2024;
Muennighoff et al., 2025), have demonstrated remarkable capabilities in code generation and al-
gorithm design. Despite the promise, current performance remains limited. State-of-the-art LLM
models such as DeepSeek-R1 (Guo et al., 2025) and OpenAI-o1 (Jaech et al., 2024) achieve low suc-
cess rates in generating optimized CUDA code (only approximately 15% on KernelBench (Ouyang
et al., 2025)) To address these limitations and unlock the potential of LLMs for automated CUDA
optimization, in this work, we propose CUDA-L1, an LLM framework powered by contrastive rein-
forcement learning for CUDA optimization. CUDA-L1 is a pipelined framework, the core of which
is a newly-designed contrastive RL framework.

Different from previous RL models (Williams, 1992; Shao et al., 2024; Schulman et al., 2017) , con-
trastive RL performs comparative analysis of previously generated CUDA variants alongside their
execution performance, enabling the model to improving through distinguishing between effective
and ineffective optimization strategies. Contrastive-RL simultaneously optimizes the foundation
model through gradient-based parameter updates while fulfilling the maximum potential from the
current model through contrastive analysis from high-performance CUDA variants, creating a co-
evolutionary dynamic that drives superior CUDA optimization performance.

CUDA-L1 delivers significant improvements on the CUDA optimization task: trained on NVIDIA
A100, it achieves an average speedup of ×3.12 (median ×1.42) over the default baseline across
all 250 KernelBench CUDA kernels, with maximum speedups reaching ×120. In addition, CUDA-
L1 demonstrates ×2.77 over Torch Compile, ×2.88 over Torch Compile with reduce overhead,
×2.81 over CUDA Graph implementations. Furthermore, the CUDA codes optimized specifically
for A100 demonstrate strong portability across GPU architectures, with similar optimization patterns
observed across different baseline configurations: achieving average speedups of ×3.85 (median
×1.32) on H100, ×3.13 (median ×1.31) on L40, ×2.51 (median ×1.18) on RTX 3090, and ×2.38
(median ×1.34) on H20. Similar performance improvements over Torch Compile, Torch Compile
with reduce overhead, CUDA Graph are consistently observed across all GPU types.

CUDA-L1 reveals a remarkable capability of RL in autonomous learning for CUDA optimization:

1. Even starting with a foundation model with poor CUDA optimization ability, by using code
speedups as RL rewards and proper contrastive RL training techniques, we can still train
an RL system capable of generating CUDA optimization codes with significant speedups.

2. Without human prior knowledge, RL systems can independently discover CUDA optimiza-
tion techniques, learn to combine them strategically, and more importantly, extend the ac-
quired CUDA reasoning abilities to unseen kernels. This capability unlocks the potential
for a variety of automatic CUDA optimization tasks, e.g., kernel parameter tuning, mem-
ory access pattern optimization, and different hardware adaptations, offering substantial
promises to enhance GPU utilization.

Another contribution of this work is the enrichment of the KernelBench dataset with CUDA Graph
implementations. Please refer to supplementary materials. We release these implementations to the
community, providing substantially stronger baselines for performance comparison.

2 CUDA-L1

2.1 OVERVIEW

Existing large language models (Guo et al., 2025; Yang et al., 2025; Grattafiori et al., 2024) demon-
strate significant limitations in generating executable and correct CUDA code with speedup, as re-
ported in prior research (Ouyang et al., 2025). This deficiency likely stems from the insufficient
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representation of CUDA code in the training datasets of these models. To address this fundamental
gap, we introduce a three-stage pipelined training strategy for CUDA-L1, i.e., Supervised fine-tuning
via data augmentation, Self-supervised learning and Contrastive reinforcement learning, aiming to
progressively enhances the model’s CUDA programming capabilities:

Before we delve into the details of each stage, we provide key definitions adopted throughout the
rest of this paper:

1. Executability: A CUDA code is executable if it successfully compiles, launches, and ex-
ecutes to completion within 1000× the runtime of the reference implementation. Code
exceeding this runtime threshold is considered unexecutable.1

2. Correctness: A CUDA code is correct if it produces equivalent outputs to the reference
implementation across 1000 random test inputs.2

3. Success: A CUDA code is successful if it is both executable and correct.

2.2 SFT VIA DATA AUGMENTATION

In the SFT stage, we collect a dataset by using existing LLMs to generate CUDA code snippets and
selecting successful one. This dataset is directly used to fine-tune the model. Throughout this paper,
we use deepseek-v3-671B (Liu et al., 2024a) as the model backbone. Please refer to the details of
data collection in Appendix A.1. The collected dataset D is used to finetune the foundation model.
The instruction to the model is the same as the prompt for dataset generation, where the reference
code qi is included in the instruction and the model is asked to generate an improved version. The
model is trained to predict each token in di,j given the instruction.

2.3 SELF-SUPERVISED LEARNING

Now we are presented with the finetuned model after the SFT stage, where the model can potentially
generate better CUDA code with higher success rates than the original model without finetuning. We
wish to further improve the model’s ability to generate successful CUDA code by exposing it to more
code snippets generated by itself.

We achieve this iteratively by sampling CUDA code from the model, evaluating it for executability
and correctness, removing the unsuccessful trials and keeping the successful ones. Successful ones
are batched and used to update the model parameters. Using the updated model, we repeat the
process: generating code, evaluating it, and retraining the model. It is worth noting that during
the self-supervised learning stage, we focus exclusively on the executability and correctness of the
generated code, without considering speed as a metric. This design choice reflects our primary
objective of establishing reliable code generation before optimizing for performance.

2.4 CONTRASTIVE REINFORCEMENT LEARNING

Now we have a model capable of generating successful CUDA code at a reasonable success rate.
Next, we aim to optimize for execution speed.

One straightforward approach is to apply existing reinforcement learning algorithms such as RE-
INFORCE (Williams, 1992), GRPO (Shao et al., 2024), or PPO (Schulman et al., 2017). In this
approach, we would ask the model to first perform chain-of-thought reasoning (Wei et al., 2022),
then generate code, evaluate it, and use the evaluation score to update the model parameters. How-
ever, our experiments reveal that these methods perform poorly in this task. The issue is as follows:
standard RL algorithms compute a scalar reward for each generated CUDA code sample. During
training, this reward undergoes algorithm-specific processing (e.g., baseline subtraction in REIN-
FORCE, advantage normalization in GRPO, importance sampling in PPO). The processed reward
then serves as a loss weighting term for gradient updates, increasing the likelihood of high-reward
sequences while decreasing the likelihood of low-reward sequences. Critically, in this paradigm, the
reward signal is used exclusively for parameter updates and is never provided as input to the LLM.
Consequently, the LLM cannot directly reason about performance trade-offs during code generation.
To address this limitation, we propose incorporating reward information directly into the reasoning
process by embedding performance feedback within the input prompt. Specifically, we present the
model with multiple code variants alongside their corresponding speedup scores. Rather than simply

1This threshold is reasonable since code with 1000× slower performance contradicts our speedup optimiza-
tion goals.

2Prior work uses only 5 random inputs, which we found insufficient for robust validation.
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generating code, the LLM is trained to first conduct comparative analysis of why certain implemen-
tations achieve superior performance, then synthesize improved solutions based on these insights.
Each generated code sample undergoes evaluation to obtain a performance score, which serves dual
purposes in our training framework: the primary purpose is to the score acts as a reward signal for
gradient-based parameter optimization, updating model weights. The score functions as a reward
signal for gradient-based parameter optimization, directly updating the model weights; the other is
to construct prompt for future training stages. The scored code sample becomes part of the exemplar
set for subsequent training iterations, enriching the contrastive learning dataset.

This dual-utilization strategy enables iterative optimization across two complementary dimensions:

Foundation Model Enhancement Parameter updates progressively improve the model’s funda-
mental understanding and capabilities for CUDA optimization tasks, expanding its representational
capacity.

Fixed-Parameter Solution Optimization The contrastive approach seeks to extract the maximum
potential from the current model’s parameters by leveraging comparative analysis of high-quality
exemplars.

These two optimization processes operate synergistically: enhanced foundation models enable more
accurate contrastive reasoning, while improved reasoning strategies provide higher-quality training
signals for parameter updates of foundation models. This co-evolutionary dynamic drives con-
vergence toward optimal performance. We term this approach contrastive reinforcement learning
(contrastive-RL for short).

2.4.1 PROMPT CONSTRUCTION

Here we describe the construction of prompts provided to the LLM. The prompt provided to the
LLM during Contrastive-RL training comprises the following structured components:

I) Task Descrpition: A detailed description of the computational problem, including in-
put/output specifications, performance requirements, and optimization objectives.

II) Previous Cuda Codes with Scores: Previously generated CUDA implementations paired
with their corresponding performance scores (e.g., execution time, throughput, memory
efficiency), providing concrete examples of varying solution quality.

III) Generation Protocol: Explicit instructions defining the required output format and com-
ponents.

IV) Requirements and Restrictions: Requirements and restrictions to prevent reward hacking
in RL.

The model’s response must contain the following three structured components:

I) Performance Analysis: A comparative analysis identifying which previous kernel imple-
mentations achieved superior performance scores and the underlying algorithmic or imple-
mentation factors responsible for success.

II) Algorithm Design: A high-level description of the proposed optimization strategy, outlin-
ing the key techniques to be applied, presented as numbered points in natural language.

III) Code Implementation: The complete CUDA kernel implementation incorporating opti-
mizations.

A detailed demonstration for the prompt in shown in Table 9.

2.4.2 CONTRASTIVE EXEMPLAR SELECTION

The selection of code exemplars for prompt construction is critical, as core of Contrastive-RL is
to perform meaningful comparative analysis. The selection strategy needs to addresses the follow-
ing two key requirements: first, for achieving competitive performance, the exemplar set should
include higher-performing implementations to guide the model toward competitive CUDA codes,
avoiding local minima that result from analyzing and comparing inferior codes; second, to ensure
performance diversity, the selected codes must exhibit substantial performance differences to enable
effective contrastive analysis.

We employ a sampling strategy akin to that adopted by evolutionary LLM models: Let N denote
the number of code exemplars included in each prompt (set to N = 2 in our experiments). During
RL training, we maintain a performance-indexed database of all successful code samples generated
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during RL training. Codes are organized into performance buckets Bk based on discretized score
intervals, where bucket Bi contains codes with scores in range [sk, sk +∆s).

We first sample N distinct buckets according to a temperature-scaled softmax distribution:

P (Bi) =
exp ((s̄i − µs)/τ)∑
j exp ((s̄j − µs)/τ)

(1)

where s̄i denotes the aggregate score of bucket Bi, computed as the mean of its constituent code
scores, µs = mean({s̄j}Mj=1) represents the global mean of all bucket scores, and τ is the tempera-
ture parameter governing the exploration-exploitation tradeoff. The sampling strategy in Equation 1
differs from conventional temperature sampling in evolutionary LLM approaches through a mod-
ification: the deduction of µs stabilizes the distribution by centering scores around zero, which
prevents absolute score magnitudes from dominating the selection.

From each selected bucket Bi, we uniformly sample one representative code to construct the final
prompt set. This approach satisfies both design criteria: Regarding competitive Performance, score-
weighted bucket sampling biases selection toward higher-performing implementations, ensuring the
exemplar set contains competitive solutions; Regarding performance Diversity, enforcing selection
from N distinct buckets ensures sufficient performance variance for effective contrastive analysis.

A more sophisticated alternative is to use an island-based approach for exemplar selection. However,
we find no significant difference in performance between our bucket-based method and the island-
based approach. Given this, we opt for the simpler bucket-based strategy.

2.4.3 REWARD

In this subsection, we detail the computation of the execution time-based reward function, which
serves dual purposes: (1) guiding parameter updates in reinforcement learning and (2) constructing
effective prompts. Given a reference CUDA implementation qi from PyTorch with successful exe-
cution time tqi , and a generated code candidate d with execution time td, we define the single-run
speedup score as:

rsingle-run(d) =
tqi
td

(2)

More details for denoising the rewards are shown in Appendix A.6.

For RL training, we adopt the Group Relative Policy Optimization (GRPO) strategy (Shao et al.,
2024). Please refer to Appendix A.3 for details.

3 EXPERIMENTS AND ANALYSIS

3.1 KERNELBENCH AND EVALUATION

Our evaluation is conducted on the KernelBench dataset (Ouyang et al., 2025). The KernelBench
Dataset contains a collection of 250 PyTorch workloads designed to evaluate language models’ abil-
ity to generate efficient GPU kernels. The dataset is structured across three hierarchical levels based
on computational complexity: Level 1 contains 100 tasks with single primitive operations (such as
convolutions, matrix multiplications, activations, and normalizations), Level 2 includes 100 tasks
with operator sequences that can benefit from fusion optimizations (combining multiple operations
like convolution + ReLU + bias), and Level 3 comprises 50 full ML architectures sourced from
popular repositories including PyTorch, Hugging Face Transformers, and PyTorch Image Models
(featuring models like AlexNet and MiniGPT). Each task in the dataset provides a reference Py-
Torch implementation with standardized input/output specifications, enabling automated evaluation
of both functional correctness and performance through wall-clock timing comparisons. The dataset
represents real-world engineering challenges where successful kernel optimization directly trans-
lates to practical performance improvements. Throughout this paper, we use KernelBench as the
evaluation benchmark. KernelBench is recognized as a challenging benchmark in the community
(Ouyang et al., 2025), with even the best current LLMs improving fewer than 20% of tasks.

For each task with reference implementation q, we evaluate the performance of a generated CUDA
code d using a similar protocol to training: We execute both q and d in randomized order within
a fixed time budget of 20 minutes per task. The number of execution rounds varies across tasks
due to differences in individual runtimes. The final evaluation score for d is computed as the av-
erage speedup ratio across all execution rounds within the allocated time window. Unsuccessful
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Configuration Method Mean Max 75% 50% 25% Success↑ Speedup↑
# out of total >1.01x out of total

Default

All 3.12 120 2.25 1.42 1.17 249/250 226/250
Level 1 2.78 65.8 1.75 1.28 1.12 99/100 80/100
Level 2 3.55 120 2.05 1.39 1.20 100/100 98/100
Level 3 2.96 24.9 2.60 1.94 1.42 50/50 48/50

Torch Compile

All 2.77 69.0 2.55 1.72 1.14 249/250 203/250
Level 1 3.04 59.7 2.71 1.99 1.41 99/100 89/100
Level 2 2.91 69.0 1.99 1.55 1.10 100/100 78/100
Level 3 1.98 8.57 2.28 1.68 1.00 50/50 36/50

Torch Compile RO

All 2.88 80.1 2.48 1.67 1.13 249/250 200/250
Level 1 3.38 55.3 3.02 2.29 1.61 99/100 90/100
Level 2 3.00 80.1 2.06 1.54 1.10 100/100 79/100
Level 3 1.62 8.67 1.76 1.13 0.991 50/50 31/50

CUDA Graph

All 2.81 97.9 1.83 1.20 0.954 249/250 147/229
Level 1 3.18 59.6 2.09 1.38 1.04 99/100 68/88
Level 2 2.84 97.9 1.55 1.08 0.932 100/100 53/94
Level 3 2.06 24.6 1.74 1.08 0.887 50/50 26/47

Table 1: Performance comparison across different configurations on KernelBench on A100. RO
= Reduce Overhead. Success and Speedup indicate the number of successful benchmarks out of
the total for each level. Note that for CUDA Graph, the total benchmark count differs from the
dataset/data-subset size, as some original reference code in KernelBench cannot be successfully
transformed into the corresponding CUDA Graph implementations.

implementations receive a score of zero. The metrics we report include speedup statistics (mean,
maximum, and 75th, 50th, and 25th percentiles), success rate, and percentage of improvements.

3.2 COMPARISON SETUPS

To perform a comprehensive evaluation on the generated code, we perform the following compar-
isons:

I) Default This compares the CUDA-L1 generated code with the reference code by KernelBench.

II) Torch Compile This compares the CUDA-L1 generated code with the reference code enhanced
by torch.compile with default settings. Torch.compile applies graph-level optimizations including
operator fusion, memory planning, and kernel selection to accelerate PyTorch models through just-
in-time compilation.

III) Torch Compile Reduce Overhead This compares the CUDA-L1 generated code with the ref-
erence code enhanced by torch.compile with reduce-overhead mode enabled. This mode minimizes
the compilation overhead by caching compiled graphs more aggressively and reducing recompila-
tion frequency, making it particularly suitable for inference workloads with static shapes.

IV) CUDA Graph Since KernelBench does not provide official CUDA Graph implementations,
we employ Claude 4 to generate CUDA Graph-augmented code for each reference implementation.
CUDA Graphs capture a series of CUDA kernels and their dependencies into a single graph structure
that can be launched with minimal CPU overhead, eliminating the need for repeated kernel launch
commands and significantly reducing CPU-GPU synchronization costs. Specifically, we provide
Claude 4 with the reference code and request the addition of CUDA Graph optimizations. The gen-
erated output is then evaluated for correctness. If the code fails validation, we iterate by providing
Claude 4 with both the original reference code and the previous erroneous outputs, requesting a cor-
rected version. This iterative process continues for up to 10 attempts until the generated code passes
all correctness checks. We release the CUDA Graph codes for KernelBench to the community, pro-
viding researchers and practitioners with ready-to-use optimized implementations that can serve as
strong baselines for future performance studies and benchmarking efforts.

3.3 MAIN RESULTS ON KERNELBENCH

The experimental results in Table 1 demonstrate CUDA-L1’s optimization effectiveness across dif-
ferent baseline configurations on KernelBench. CUDA-L1 achieves substantial performance im-
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Methods Model Mean Max 75% 50% 25% Success↑ Speedup↑
# out of 250 >1.01 # out of 250

Vanilla

Llama 3.1-405B 0.23 3.14 0.63 0 0 68 5
DeepSeek-V3 0.34 2.96 0.76 0 0 99 9
DeepSeek-R1 0.88 14.4 1.00 0.75 0 179 18
OpenAI-O1 0.73 12.4 1.00 0.55 0 141 14

Evolve

Llama 3.1-405B 1.18 18.4 1.03 1.00 1.00 247 88
DeepSeek-V3 1.32 52.4 1.32 1.03 1.00 247 113
DeepSeek-R1 1.41 44.2 1.45 1.17 1.00 248 162
OpenAI-O1 1.35 63.9 1.38 1.16 1.00 247 158

CUDA-L1

Stage 1 1.14 32.7 1.00 1.00 0.96 240 50
Stage 1+2 1.36 48.3 1.41 1.09 1.00 247 175

Stage 1+2+GRPO 2.41 84.6 1.83 1.33 1.11 247 207
3 stages - random 2.14 64.5 1.62 1.21 1.09 241 186

- island 3.21 126 2.21 1.40 1.16 249 223
- bucket 3.12 120 2.25 1.42 1.17 249 226

Table 2: Model performances on KernelBench All Level.

provements over the Default baseline with 3.12× average speedup and 120× maximum gains.
Against Torch compilation baselines, CUDA-L1 delivers moderate but consistent improvements
with 2.77–2.88× mean speedup ratios, while demonstrating 2.81× mean improvement over CUDA
Graph baseline with notable 97.9× maximum gains.

Across difficulty levels, CUDA-L1’s optimization effectiveness varies by task complexity. For
Level 1 (single operations), CUDA-L1 achieves moderate improvements ranging from 2.78–3.38×
over different baselines. Level 2 (operator sequences) shows CUDA-L1’s strongest performance
with 3.55× improvement over Default baseline. Level 3 (complex ML tasks) reveals interesting
baseline-dependent effectiveness: CUDA-L1 achieves 2.96× improvement over Default baseline,
but shows reduced effectiveness against Torch compilation baselines (only 1.62–1.98× improve-
ments), suggesting these configurations provide stronger baseline performance for complex opera-
tions.

3.4 BASELINE COMPARISON

We compare the results with the following three groups of baselines:

Vanilla Foundation Models: To establish baseline performance benchmarks, we evaluate OpenAI-
o1, DeepSeek-R1, DeepSeek-V3, and Llama 3.1-405B Instruct (denoted by OpenAI-o1-vanilla,
DeepSeek-R1-vanilla, DeepSeek-V3-vanilla and Llama 3.1-405B-vanilla) by prompting each
model to optimize the reference CUDA code. The generated CUDA code is directly used for eval-
uation without further modification. For each task, we repeat this process 5 times and report the
best.

Evolutionary LLM: We implement evolutionary LLM strategies where, given a set of previous
codes, we sample up to 4 high-performing kernels based on evaluation scores. The key difference
is that the model only performs contrastive analysis without updating model parameters. We adopt
the island strategy for code database construction and sampling, as suggested in Novikov et al.
(2025). We conduct experiments on DeepSeek-R1, OpenAI-o1 and and Llama 3.1-405B, denoted
as DeepSeek-R1-evolve, OpenAI-o1-evolve, DeepSeek-V3-evolve and Llama 3.1-405B-evolve.

Different combinations of CUDA-L1 components and variants:

• stage1: Uses only the outcome from the first stage with supervised fine-tuning applied
• stage1+2: Applies only the first two stages without reinforcement learning
• stage1+2 + GRPO: Replaces the contrastive RL with a vanilla GRPO strategy, without

comparative analysis
• random sampling: Replaces the bucket sampling strategy with simple random sampling

of exemplars
• island sampling: Adopts an island-based sampling strategy Novikov et al. (2025), where

examples are distributed across different islands, prompts are constructed using exemplars
from the same island, and newly generated examples are added to that island. After a fixed
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Configuration GPU Device Mean Max 75% 50% 25%
Success ↑ Speedup ↑
# out of 250 >1.01x

Default

A100 3.12 120 2.25 1.42 1.17 249 226/250
3090 2.51 114 1.57 1.18 1.03 242 201/250
H100 3.85 368 1.76 1.32 1.09 250 218/250
H20 2.38 63.7 1.81 1.34 1.11 247 226/250
L40 3.13 182 1.88 1.31 1.08 248 215/250

Torch Compile

A100 2.77 69.0 2.55 1.72 1.14 249 203/250
3090 2.58 73.2 2.23 1.50 1.00 242 177/250
H100 2.74 49.7 2.83 1.92 1.11 250 195/250
H20 2.89 49.4 3.21 2.04 1.19 247 209/250
L40 2.85 96.9 2.43 1.82 1.13 248 199/250

Torch Compile RO

A100 2.88 80.1 2.48 1.67 1.13 249 200/250
3090 2.61 72.9 2.29 1.48 1.00 242 172/250
H100 2.77 61.2 2.78 1.61 1.00 247 187/250
H20 2.82 52.1 3.18 1.64 1.06 247 192/250
L40 2.89 90.9 2.54 1.72 1.08 248 193/250

CUDA Graph

A100 2.81 97.9 1.83 1.20 0.954 229 147/229
3090 3.34 156 1.94 1.28 0.997 206 148/206
H100 2.23 70.1 1.60 1.04 0.838 222 119/222
H20 2.20 64.6 1.69 1.09 0.854 229 133/229
L40 3.98 275 1.83 1.16 0.862 224 137/224

Table 3: Performance comparison across different configurations and GPU devices on KernelBench.
RO = Reduce Overhead. Speedup is defined as value exceeding 1.01x.

number of iterations, examples in half of the inferior islands are eliminated and examples
from superior islands are copied to replace them.

Results are shown in Table 2. As observed, all vanilla foundation models perform poorly on this
task. Even the top-performing models—DeepSeek-R1 and OpenAI-o1—achieve speedups over the
reference kernels in fewer than 10% of tasks, while Llama 3.1-405B optimizes only 2.4% of tasks.
This confirms that vanilla foundation models cannot be readily applied to CUDA optimization due
to their insufficient grasp of CUDA programming principles and optimization techniques.

We observe significant performance improvements introduced by the Evolutionary LLM models
compared to vanilla foundation model setups, despite sharing the same parameter sets. All Evolve
models achieve speedups in over 70% of tasks, with DeepSeek-R1 reaching 72.4% success rate.
This demonstrates that leveraging contrastive analysis, which exploits the model’s general reason-
ing abilities, is more effective than direct output generation. The superiority of evolutionary LLM
over vanilla LLM also provides evidence that contrastive RL should outperform non-contrastive RL
approaches like vanilla GRPO, as the relationship between evolutionary and vanilla LLMs parallels
that between contrastive and non-contrastive RL methods.

When comparing the different combinations of CUDA-L1 components, we observe a progressive
increase in speedup rates from stage1 (SFT only) at 22.4% to stage1+2 (SFT + self-supervised) at
66%, and further to stage1+2+GRPO at 88.4%. This demonstrates the cumulative benefits of each
training stage in improving model performance.

All RL-based approaches significantly outperform evolutionary LLM baselines with fixed model
parameters, with the best RL methods achieving over 95% speedup rates compared to 72.4% for
the best evolutionary approach. This demonstrates the necessity of model parameter updating for
achieving optimal performance in CUDA optimization tasks.

3.5 GENERALIZATION OF A100-OPTIMIZED KERNELS TO OTHER GPU ARCHITECTURES

Even without being specifically tailored to other GPU architectures, we observe significant per-
formance improvements across all tested GPU types, with mean speedups ranging from 2.38× to
3.85×. H100 achieves the highest mean speedup (3.85×) with exceptional maximum gains (368×),
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while A100 PCIe and L40 demonstrate strong performance with mean speedups of 3.12× and 3.13×
respectively. L40 shows the second-highest maximum speedup (182×) among all GPUs. The con-
sumer RTX 3090 achieves a competitive mean speedup of 2.51×, while H20 shows moderate per-
formance with 2.38× mean speedup. Notably, A100 maintains the highest 75th percentile (2.25×),
50th percentile (1.42×), and 25th percentile (1.17×) values, indicating more consistent optimization
performance on the target architecture.

The success rates remain high across all architectures (242-250 out of 250), with H100 achieving
perfect success (250/250), validating that CUDA optimization techniques can generalize across dif-
ferent GPU architectures. Speedup achievement rates (>1.01×) vary by architecture, with H20 and
A100 showing the highest effectiveness (226 and 226 successful optimizations respectively), while
RTX 3090 demonstrates good performance with 201 successful optimizations.

These results demonstrate that while A100-optimized kernels transfer to other GPUs with varying
degrees of effectiveness, the optimizations achieve substantial improvements across architectures.
H100’s exceptional performance suggests strong compatibility with the optimization techniques,
while A100’s consistent percentile performance validates the target architecture optimization. The
varying maximum speedups (63.7× to 368×) across GPUs indicate architecture-specific optimiza-
tion potential, suggesting that dedicated optimizations for each GPU type would further enhance
performance. We plan to release kernels specifically trained for different GPU types in an updated
version of CUDA-L1.

4 RELATED WORK

4.1 RL-AUGMENTED LLMS FOR CODE OPTIMIZATION

Starting this year, there has been a growing interest in using LLM or RL-augmented LLM models
for code optimization, including recent work on compiler optimization (Cummins et al., 2025) and
assembly code optimization (Wei et al., 2025a), which use speed and correctness as RL training
rewards. Other more distant related is software optimization that scale RL-based LLM reasoning
for software engineering (Wei et al., 2025b). Regarding CUDA optimization, the only work that
comprehensively delves into KernelBench is from Lange et al. (2025), which uses a meta-generation
procedure that successfully optimizes 186 tasks out of 250 tasks in KernelBench with a medium
speedup of 34%. Other works remain in preliminary stages, including Chen et al. (2025), which
has optimized 20 GPU kernels selected from three different sources: the official NVIDIA CUDA
Samples, LeetGPU, and KernelBench using a proposed feature search and reinforcement strategy;
and an ongoing tech report (Schulman et al., 2017) that optimizes 4 kernels.

4.2 EVOLUTIONARY LLMS

Evolutionary large language models (Zhang et al., 2024; Liu et al., 2024b; Romera-Paredes et al.,
2024; Novikov et al., 2025; Wei et al., 2025a; Dat et al., 2025; Lee et al., 2025) represent a paradigm
shift in automated algorithm discovery, exemplified by systems such as Google DeepMind’s Al-
phaEvolve (Novikov et al., 2025) and FunSearch (Romera-Paredes et al., 2024).

5 CONCLUSION

In this paper, we propose CUDA-L1, a pipelined system for CUDA optimization powered by con-
trastive RL. CUDA-L1 achieves significant performance improvements on the CUDA optimization
task, delivering an average speedup of×3.12 (median×1.42) over the default baseline across all 250
CUDA kernels of KernelBench, with peak speedups reaching ×120 on A100. Against other base-
lines, CUDA-L1 demonstrates ×2.77 over Torch Compile, ×2.88 over Torch Compile with reduce
overhead, and ×2.81 over CUDA Graph implementations. CUDA-L1 can independently discover
CUDA optimization techniques, learn to combine them strategically, and more importantly, extend
the acquired CUDA reasoning abilities to unseen kernels with meaningful speedups. We hope that
CUDA-L1 would open new doors for automated optimization of CUDA, and substantially promote
GPU efficiency and alleviate the rising pressure on GPU computing resources.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)
We used a large language model (i.e., ChatGPT O3) only as a general-purpose assist tool for
minor English grammar corrections during manuscript preparation. The LLM had no role
in research ideation, methodology, experimental design, data collection, analysis, interpretation,
or substantive writing beyond copyediting at the sentence level. All scientific content, claims, and
conclusions are the authors’ own. The authors take full responsibility for all contents written under
their names, including any text that may have been edited with the assistance of an LLM. LLMs are
not eligible for authorship or contributorship on this work.

A DETAILS FOR CUDA-L1
A.1 DATA COLLECTION FOR SFT
To expand the model’s exposure to CUDA patterns, we begin with data augmentation based on
reference code from 250 tasks in KernelBench, which provides the official implementations used in
PyTorch. To generate executable and correct CUDA code efficiently, we leverage six existing LLM
models: GPT-4o, OpenAI-o1, DeepSeek-R1, DeepSeek V3, Llama 3.1-405B Instruct, and Claude
3.7. For each model, we construct prompts using the one-shot strategy, where the prompt contains
the reference code (denoted by qi, i ∈ [1, 250]) and asks the LLM to generate an alternative speedup
implementation. We employ multiple models to maximize the diversity of successful CUDA code
generation. The detailed prompt structure is provided in Table 4. For each of the six models, we
iterate through all 250 tasks. Each task allows up to 20 trials and terminates early if we successfully
collect 2 trials that are both executable and correct. Notably, some tasks may fail to produce any
successful code across all trials. The successful code is denoted by di,j , where j ∈ {1, 2, . . . , ni},
and ni denotes the number of successful code snippets for the reference code qi. Through this
process, we collected 2,105 successful CUDA code snippets. Now we have collected the dataset
D = {(qi, {di,j}ni

j=1)}i.

A.2 PSUDO CODE FOR STAGE2: SELF-SUPERVISED LEARNING

Self-supervised Learning Algorithm

1: Initialize finetuned model M0 after SFT stage with parameters θsft
2: for i = 1 to Niterations do
3: Generate batch of CUDA codes Ci = {c1, ..., ck} using model Mi−1

4: Evaluate each c ∈ Ci for:
5: 1. Executability (compiles and runs)
6: 2. Correctness (produces expected output)
7: Filter successful codes: Csuccess

i = {c ∈ Ci|executable ∧ correct}
8: if Csuccess

i ̸= ∅ then
9: Compute gradient update ∇θ using Csuccess

i
10: Update model: θi ← θi−1 + η∇θ
11: else
12: θi ← θi−1 (no update)
13: end if
14: end for
15: return Final improved model MN

Table 4: Self-supervised learning for cuda optimization in Stage 2.

A.3 DETAILS FOR RL-TRAINING

Specifically, for each reference prompt q containing selected exemplars as shown in Table 9,
we sample G code outputs from the current policy πold, denoted as {d1, d2, . . . , dG}. Let r =
(r1, r2, . . . , rG) represent the reward scores associated with the generated code samples. Different
from standard GRPO training, rewards are smoothed to mitigate the reward hacking issue; the de-
tails of this approach will be elaborated in Section A.5. Further, as in GRPO, rewards are normalized
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within each group using:

r̂i =
ri −mean(r)

std(r)
(3)

The complete GRPO objective optimizes the policy model by maximizing:

LGRPO(θ) = Eq∼P (q),{di}G
i=1∼πθold

(d|q)

 1

G

G∑
i=1

1

|di|

|di|∑
t=1

(
min

(
πθ(di,t|q, di,<t)

πθold(di,t|q, di,<t)
r̂i,

clip
(

πθ(di,t|q, di,<t)

πθold(di,t|q, di,<t)
, 1− ε, 1 + ε

)
r̂i

)
− βDKL[πθ∥πref ]

)]
(4)

where:

• πθ is the policy model being optimized
• πθold is the old policy model from the previous iteration
• ε is the parameter for clipping
• β is the KL penalty coefficient that controls deviation from the reference policy
• DKL denotes the KL divergence between the current and reference policies

We refer readers to (Shao et al., 2024) for details of GRPO. Model parameters are optimized using
the GRPO objective, with contrastive prompts that incorporate comparative examples. This con-
cludes our description of contrastive RL.

A.4 CONTRASTIVE-RL’S ADVANTAGES OVER EVOLUTIONARY LLM APPROACHES

Contrastive-RL draws inspiration from a broad range of literature, including evolutionary algorithms
(Bäck & Schwefel, 1993) and their applications to LLMs (Liu et al., 2024b; Romera-Paredes et al.,
2024; Novikov et al., 2025; Wei et al., 2025a), where multiple solution instances with associated fit-
ness scores are presented to LLMs to analyze performance patterns and generate improved solutions.
However, Contrastive-RL improves evolutionary LLM approaches in several critical aspects:

Model Adaptation vs. Fixed-Model Reasoning: Contrastive-RL employs gradient-based pa-
rameter updates to continuously enhance model capabilities, whereas evolutionary LLM approaches
rely exclusively on in-context learning with static parameters. This fundamental architectural dif-
ference endows Contrastive-RL with substantially greater representational capacity and task adapt-
ability. Evolutionary LLM methods are fundamentally limited by the frozen foundation model’s
initial knowledge and reasoning abilities, while Contrastive-RL progressively refines the model’s
domain-specific expertise through iterative parameter optimization. From this perspective, evolu-
tionary LLM approaches can be viewed as a degenerate case of Contrastive-RL that implements
only the Fixed-Parameter Solution Optimization component while omitting the Foundation Model
Enhancement mechanism. This theoretical relationship explains why Contrastive-RL consistently
outperforms evolutionary approaches: it leverages both optimization dimensions simultaneously
rather than constraining itself to a single fixed-capacity search space.

Scalability and Generalization: Contrastive-RL demonstrates superior scalability by training a
single specialized model capable of handling diverse CUDA programming tasks and generating var-
ious types of optimized code. In contrast, evolutionary LLM approaches typically require separate
optimization processes for each distinct task or domain, limiting their practical applicability and
computational efficiency.

A.5 MITIGATING REWARD HACKING IN RL TRAINING

Reinforcement learning is notorious for exhibiting reward hacking behaviors, where models ex-
ploit system vulnerabilities to achieve higher rewards while generating outputs that deviate from
the intended objectives. A particularly challenging aspect of these pitfalls is that they cannot be
anticipated prior to training and are only discovered during the training process. During our initial
training procedure, we identified the following categories of reward hacking behaviours:

Improper Timing Measurement. KernelBench measures execution time by recording timing
events on the main CUDA stream:
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1 start_event.record(original_model_stream)
2 model(*inputs)
3 end_event.record(original_model_stream)
4 torch.cuda.synchronize(device=device)

However, RL-generated code exploits this by creating additional CUDA streams that execute
asynchronously. Since KernelBench only monitors the main stream, it fails to capture the ac-
tual execution time of operations running on parallel streams. This vulnerability is significant:
in our initial implementation, we find that 82 out of 250 (32.8%) RL-generated implementa-
tions exploit this timing loophole to appear faster than they actually are, leading to an overall
speedup of 18×. To address this issue, prompt engineering alone is insufficient. The evalua-
tion methodology should be modified to synchronize all CUDA streams before recording the end
time, ensuring accurate performance measurement across all concurrent operations as follows:
1 start_event.record(custom_model_stream)
2 custom_model(*inputs)
3 # Wait for all model streams to complete before recording end event
4 if custom_contain_new_streams:
5 for stream in custom_model_streams:
6 custom_model_stream.wait_stream(stream)
7 end_event.record(custom_model_stream)
8 torch.cuda.synchronize(device=device)

Hyperparameter Manipulation: In KernelBench, each computational task is associated
with specific hyperparameters, including batch_size, dim, in_features dimension,
out_features dimension, scaling_factor, and others. The RL agent learned to exploit
these parameters by generating code that artificially reduces their values, thereby achieving superfi-
cial speedup improvements that do not reflect genuine optimization performance.

Result Caching: The RL agent developed strategies to cache computational results across eval-
uation batches based on input addresses. When another input’s address matches a cached one, it
returns the cached output. In theory, this should not pass correctness validation because the cached
output differs from the expected one. However, given that correctness validation checks whether the
difference at each position between the reference output and custom code output is below a certain
threshold, there are a few cases where it is able to squeeze past the correctness bar. The following
code snippet gives an illustration:

1 cache_key = x.data_ptr()
2 # Check if result is in cache
3 if cache_key in self.cache:
4 return self.cache[cache_key]

A.6 REWARD DENOISING

We observe a significant variance in td measurements for identical implementations d, which intro-
duces noise in reward estimation. This noise is particularly detrimental to RL training stability. To
address these challenges, we implement the following robust measurement strategies:

1. Dedicated GPU Allocation: Each evaluation runs on an exclusively allocated GPU.
Shared GPU usage leads to significantly higher variance in timing measurements, even
when memory and compute utilization appear low.

2. Paired Execution with Order Randomization: For fair comparison, each evaluation
round executes both the reference qi and candidate d implementations. Crucially, we ran-
domize the execution order within each round to account for GPU warm-up effects, where
subsequent runs typically benefit from cache warming.

3. Extended Measurement Window: We conduct multiple evaluation rounds with prede-
fined running time of 30 minutes per candidate. This adaptive approach yields between
several tens of thousands to 1M rounds depending on individual kernel execution times.

4. Bucketized Variance Control: We partition all Scoresingle-run(d) measurements into 7
buckets and compute bucket-wise averages. Evaluations with inter-bucket variance ex-
ceeding 0.005 are discarded.

5. Robust Central Tendency: The final reward uses the median of bucket averages, which
proves more stable than the mean against outlier effects:

r(d) = median({Bucketk}7k=1) (5)
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6. Conservative Rounding: We apply conservative rounding to speedup ratios (i.e., Score(d)
), truncating to two decimal places while biasing toward unity (e.g., 1.118→ 1.11, 0.992
→ 1.00).

7. Strict Verification Protocol: Despite these precautions, we still occasionally observe spu-
rious large speedups due to GPU turbulence. For any candidate showing either:

• Absolute value of speedup > 3, or
• Speedup exceeding twice the previous maximum

we perform verification on a different GPU of the same type. The result is accepted only if
the verification measurement differs by < 10% from the original.

A.7 TOWARDS ROBUST REWARD DESIGN AND TRAINING PROCEDURES

To mitigate reward hacking, we implement the following strategies during training:

A reward checking model When there is a significant leap in reward, an adversarial model in-
tervenes to determine whether the code exploits the reward system. We use DeepSeek-R1 for this
purpose and find that it successfully identifies reward hacking above over 60% of the time.

Hacking-case database We maintain a dynamic hacking-case database that is updated whenever
a new reward hacking behavior is detected. The reward checking model leverages this database for
detection: given a newly generated code snippet to examine, we retrieve the three most similar cases
from the database and include them as context for the reward checking model’s input.

Reward smoothing Sharp reward increases are smoothed to reduce their magnitude, preventing
the RL agent from over-prioritizing any single high-reward solution, whether legitimate or not:

rnormalized =
r − µ

σ
rsmooth = clip(rnormalized,−k, k)

(6)

where µ and σ are the mean and the mean and standard deviation of the reward distribution, respec-
tively. k is a hyperparameter that controls the clipping threshold set to 1.5, as we think as achieving
a 1.5× speedup over the official PyTorch implementation already represents significant optimization
performance.

B DISCOVERED CUDA OPTIMIZATION TECHNIQUES

An analysis of optimization strategies commonly employed in enhanced CUDA implementations re-
veals interesting patterns. Through GPT-4o-based technical term extraction and frequency analysis,
we identified the ten most prevalent optimization techniques:

• Memory Layout Optimization, which ensures data is stored in contiguous memory
blocks;

• Memory Access Optimization, which arranges data access patterns to maximize memory
bandwidth and minimize latency through techniques like shared memory usage, coalesced
global memory access, and memory padding;

• Operation Fusion, which combines multiple sequential operations into a single optimized
kernel execution;

• Memory Format Optimization, which aligns data layout with hardware memory access
patterns;

• Memory Coalescing, which optimizes CUDA kernel performance by ensuring threads in
the same warp access contiguous memory locations;

• Warp-Level Optimization, which leverages the parallel execution of threads within a warp
(typically 32 threads) to efficiently perform collective operations;

• Optimized Thread Block Configuration, which carefully selects grid and block dimen-
sions for CUDA kernels to maximize parallel execution efficiency and memory access pat-
terns;

• Shared Memory Usage, enables fast data access by storing frequently used data in a cache
accessible by all threads within a thread block;

• Register Optimization, which stores frequently accessed data in fast register memory to
reduce latency and improve computational throughput;

• Stream Management, which enables parallel execution of operations for improved GPU
utilization.
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Level ID Task ID Task Name Speedup

2 83 83_Conv3d_GroupNorm_Min_Clamp_Dropout 120.3
1 12 12_Matmul_with_diagonal_matrices 64.4
2 80 80_Gemm_Max_Subtract_GELU 31.3
1 9 9_Tall_skinny_matrix_multiplication 24.9
3 31 31_VisionAttention 24.8
2 96 96_ConvTranspose3d_Multiply_Max_GlobalAvgPool_Clamp 16.2
2 66 66_Matmul_Dropout_Mean_Softmax 14.5
1 13 13_Matmul_for_symmetric_matrices 14.4
3 43 43_MinGPTCausalAttention 13.1
3 44 44_MiniGPTBlock 10.5

Table 5: KernelBench Tasks Ranked by CUDA-L1 Acceleration (Top 10)

Tables 11, 13 and 14 present detailed CUDA optimization techniques with accompanying code
examples.

C CASE STUDIES

Table 5 presents the KernelBench tasks that achieved the highest speedups. We examine these some
of them in detail and perform an ablation study of the applied CUDA optimization techniques,
showing how much each technique contributes to the final speedup.

C.1 DIAG(A) * B: 64× FASTER

We first examine the code for level 1, task 12, which performs matrix multiplication between
a diagonal matrix (represented by its diagonal elements) and a dense matrix, both with dimen-
sion N=4096. The reference code is as follows where __init__ function of the class is omitted:
1 class Model(nn.Module):
2 def forward(self, A, B):
3 # A: (N,) - 1D tensor of shape N
4 # B: (N, M) - 2D tensor of shape N x M
5 # torch.diag(A): (N, N) - creates diagonal matrix from A
6 # Result: (N, N) @ (N, M) = (N, M)
7 return torch.diag(A) @ B

Let’s see the optimized code by CUDA-L1:

1 class Model(nn.Module):
2 def forward(self, A, B):
3 return A.unsqueeze(1) * B

The optimized implementation leverages PyTorch’s broadcasting mechanism to perform diagonal
matrix multiplication efficiently. It first reshapes the diagonal vector A from shape (N, ) to (N, 1)
using unsqueeze(1), transforming it into a column vector. Next, it utilizes PyTorch’s auto-
matic broadcasting to multiply each row of matrix B by the corresponding element of A, where
the (N, 1) shaped tensor is implicitly expanded to match the (N,M) dimensions of B. This ap-
proach completely avoids creating the full N × N diagonal matrix, which would be sparse and
memory-intensive. The key benefits of this technique are substantial: it requires only O(1) extra
memory instead of O(N2) for storing the diagonal matrix, reduces computational complexity from
O(N2M) operations for full matrix multiplication to just O(NM) element-wise operations, leading
to 64× speedup.

What makes this particularly valuable is that RL can systematically explore the vast space of equiva-
lent implementations. By exploring semantically equivalent implementations, RL learns to identify
patterns where computationally expensive operations can be replaced with more efficient alterna-
tives. The power of RL extends beyond simple algebraic simplifications and it can uncover sophis-
ticated optimizations such as: replacing nested loops with vectorized operations identifying hid-
den parallelization opportunities discovering memory-efficient mathematical reformulations finding
non-obvious algorithmic transformations that preserve correctness while improving performance
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Table 6: Speedup achieved by different CUDA optimization techniques on LSTMs.

What makes this particularly valuable is that RL can systematically explore the vast space of equiv-
alent implementations—something that would be impractical for human engineers to do manually.

C.2 LSMT: 3.4× FASTER

Now let’s look at a classical neural network algorithm LSTM (level 3, task 35), on which CUDA-l1
achieves a speedup of 3.4×. By comparing the reference PyTorch implementation with the opti-
mized output, we identified the following optimization techniques:

1. CUDA Graphs, which captures the entire LSTM computation sequence (including all layer
operations) into a replayable graph structure, eliminating kernel launch overhead by record-
ing operations once and replaying them with minimal CPU involvement for subsequent
executions.

2. Memory Contiguity, which ensures all tensors maintain contiguous memory layouts
through explicit .contiguous() calls before operations, optimizing memory access patterns
and improving cache utilization for CUDA kernels processing sequential data.

3. Static Tensor Reuse, which pre-allocates input and output tensors during graph initializa-
tion and reuses them across forward passes with non-blocking copy operations, eliminating
memory allocation overhead and enabling asynchronous data transfers.

Table 6 represents the results for 8 different optimization combinations across the three optimization
techniques above. As can be seen, CUDA Graphs is essential for achieving any meaningful speedup
in this LSTM model. All configurations with CUDA Graphs achieve 2.77x-3.42x speedup, while all
configurations without it achieve only 1.0x (no speedup). The combination of all three techniques
provides the best performance at 3.42x, demonstrating that while CUDA Graphs provides the ma-
jority of the benefit ( 81% of total speedup), the additional optimizations contribute meaningful
improvements when combined together.

C.3 3D TRANSPOSED CONVOLUTION: 120× FASTER

We examined the code for Level 2, Task 38, which implements a sequence of 3D operations: trans-
posed convolution, average pooling, clamping, softmax, and element-wise multiplication. By com-
paring the reference PyTorch implementation with the CUDA-L1 optimized output, we identified
the following optimization techniques applied by CUDA-L1:

1. Mathematical Short-Circuit, which detects when min_value equals 0.0 and skips the en-
tire computation pipeline (convolution, normalization, min/clamp operations), directly re-
turning zero tensors since the mathematical result is predetermined.

2. Pre-allocated Tensors, which creates zero tensors of standard shapes during initializa-
tion and registers them as buffers, eliminating memory allocation overhead during forward
passes for common input dimensions.

3. Direct Shape Matching, which provides a fast path for standard input shapes by immedi-
ately returning pre-allocated tensors without any shape calculations, bypassing the compu-
tational overhead entirely.
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Table 7: Speedup achieved by different CUDA optimization techniques on the Conv3d task.

4. Pre-computed Parameters, which extracts and stores convolution parameters (kernel size,
stride, padding, dilation) during initialization, avoiding repeated attribute lookups and tuple
conversions during runtime.

Table 7 represents the results for 16 different optimization combinations across the four optimiza-
tion techniques above. As can be seen, mathematical short-circuit is essential for this task, where
all configurations with mathematical short-circuit achieve 28.6x+ speedup, while all configurations
without it achieve only 1.0x (no).

The fact that CUDA-L1 identified this precise optimization strategy demonstrates the power of re-
inforcement learning in navigating complex optimization spaces. While a human developer might
intuitively focus on computational optimizations (like parallel algorithms) or memory layout im-
provements (like tensor pre-allocation), RL discovered that the mathematical properties of the op-
eration completely dominate performance. This discovery is particularly impressive because: RL is
able to find this non-obvious solution: The 120x speedup from exploiting the mathematical short-
circuit is counterintuitive as most developers would expect to optimize the convolution kernel or
memory access patterns for such a compute-heavy operation, This shows how RL can discover
optimal solutions that challenge conventional wisdom in deep learning optimization. Where hu-
man intuition might suggest "optimize the convolution algorithm first," CUDA-L1 learned through
empirical evidence that "recognize when computation can be entirely skipped" yields dramatically
better results. The agent’s ability to identify that min(x, 0) followed by clamp(0, 1) always produces
zeros demonstrates how RL can uncover mathematical invariants that humans might overlook in
complex computational pipelines.
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D PROMPT USED IN THE PAPER

Data Augmentation Prompt — Used in Supervised fine-tuning

Task for CUDA Optimization

You are an expert in CUDA programming and GPU kernel optimization. Now you’re
tasked with developing a high-performance cuda implementation of Softmax. The im-
plementation must:

• Produce identical results to the reference PyTorch implementation.
• Demonstrate speed improvements on GPU.
• Maintain stability for large input values.

Reference Implementation (exact copy)

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Simple model that performs a Softmax activation.
7 """
8 def __init__(self):
9 super(Model, self).__init__()

10

11 def forward(self, x: torch.Tensor) -> torch.Tensor:
12 """
13 Applies Softmax activation to the input tensor.
14 Args:
15 x (torch.Tensor): Input tensor of shape

(batch_size, num_features).
16 Returns:
17 torch.Tensor: Output tensor with Softmax

applied, same shape as input.
18 """
19 return torch.softmax(x, dim=1)
20

21 batch_size = 16
22 dim = 16384
23

24 def get_inputs():
25 x = torch.randn(batch_size, dim)
26 return [x]
27

28 def get_init_inputs():
29 return [] # No special initialization inputs needed

Table 8: Prompt illustration for data augmentation in Section ??. For each KernelBench task (soft-
max shown here for illustration), the prompt is fed to each of six LLM models—GPT-4o, OpenAI-
o1, DeepSeek-R1, DeepSeek V3, Llama 3.1-405B Instruct, and Claude 3.7 Sonnet—to generate
alternative CUDA implementations.
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CUDA Optimization Task Prompt — Used in Contrastive-RL

Task for CUDA Optimization

You are a CUDA programming expert specializing in GPU kernel optimization. Given a
reference CUDA implementation, your objective is to create an accelerated version that
maintains identical functionality. You will receive previous CUDA implementations
accompanied by their performance metrics. Conduct a comparative analysis of these
implementations and use the insights to develop optimized and correct CUDA code that
delivers superior performance.

Reference Code

1 __global__ void kernel_v1(float* input, float* output, int
N) {

2 // Baseline implementation
3 ...
4 } }

Previous Cuda Implementations with Scores

1 // code1 (score1)
2 __global__ void kernel_v1(float* input, float* output, int

N) {
3 ...
4 }
5

6 // code2 (score2)
7 __global__ void kernel_v2(float* input, float* output, int

N) {
8 ...
9 }

Generation Protocol

You MUST use exactly two hash symbols (##) at the beginning of each section.
## Performance Analysis: Compare code snippets above and articulate on :

1. Which implementations demonstrate superior performance and why?
2. What particular optimization strategies exhibit the greatest potential for im-

provement?
3. What are the primary performance limitations in the implementation?
4. What CUDA-specific optimization techniques remain unexploited?
5. Where do the most significant acceleration opportunities exist?

## Algorithm Design: Describe your optimization approach
## Code Implementation: Provide your improved CUDA kernel

Requirements and Restrictions

## Critical Requirements:
1. Functionality must match the reference implementation exactly. Failure to do

so will result in a score of 0.
2. Code must compile and run properly on modern NVIDIA GPUs

## Key Restrictions:
1. Do not cache or reuse previous results — the code must execute fully on each

run.
2. Keep hyperparameters unchanged (e.g., batch size, dimensions, etc.) as speci-

fied in the reference.

Table 9: Prompt structure for CUDA optimization task showing reference implementations and their
performance scores used in Contrastive-RL. 20
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E CASE STUDY: CODE SNIPPETS BEFORE AND AFTER OPTIMIZATIONS

Tech + Desc Before optimization After optimization
Memory Layout
Optimization

Memory Layout
Optimization
ensures data is
stored in con-
tiguous memory
blocks to max-
imize cache
efficiency and
reduce memory
access latency
during GPU
computations.

- Non-contiguous memory access
1 ‘‘‘Python
2 def matrix_multiply(A, B):
3 # A and B might not be contiguous in memory
4 C = torch.mm(A, B)
5 return C
6 ‘‘‘

- Ensuring contiguous memory layout
1 ‘‘‘Python
2 def matrix_multiply_optimized(A, B):
3 # Ensure contiguous memory layout for

efficient access patterns
4 A = A.contiguous() if not A.is_contiguous()

else A
5 B = B.contiguous() if not B.is_contiguous()

else B
6 C = torch.mm(A, B)
7 return C
8 ‘‘‘

Memory Coa-
lescing

Memory coa-
lescing optimizes
GPU memory
access by ensur-
ing threads in
a warp access
contiguous mem-
ory locations,
reducing memory
transactions and
increasing band-
width utilization.

- Uncoalesced memory access
1 ‘‘‘cuda
2 __global__ void uncoalesced_kernel(float*

input, float* output) {
3 int tid = threadIdx.x;
4 int stride = blockDim.x;
5

6 // Each thread accesses non-contiguous
memory locations

7 for (int i = 0; i < 1024; i++) {
8 output[tid + i * stride] = input[tid + i

* stride] * 2.0f;
9 }

10 }
11 ‘‘‘

- Coalesced memory access with loop unrolling
1 ‘‘‘cuda
2 __global__ void coalesced_kernel(float* input,

float* output) {
3 int tid = threadIdx.x;
4 int batch_idx = blockIdx.x;
5

6 // Base pointers for this batch item
7 const float* batch_input = input +

batch_idx * 1024;
8 float* batch_output = output + batch_idx *

1024;
9

10 // Each thread processes contiguous memory
in chunks

11 #pragma unroll 4
12 for (int i = 0; i < 1024; i += 16) {
13 batch_output[i] = batch_input[i] * 2.0f;
14 batch_output[i+1] = batch_input[i+1] *

2.0f;
15 batch_output[i+2] = batch_input[i+2] *

2.0f;
16 // ... more contiguous accesses
17 batch_output[i+15] = batch_input[i+15] *

2.0f;
18 }
19 }
20 ‘‘‘

Warp-Level
Optimizations

Warp-Level
Optimizations
leverage the
CUDA execution
model where
threads execute
in groups of
32 (warps) to
improve par-
allel efficiency
through collabo-
rative operations
and memory
access patterns.

- Each thread independently calculates min value
1 ‘‘‘cuda
2 __global__ void min_kernel_before(const float*

input, float* output, int size) {
3 int idx = blockIdx.x * blockDim.x +

threadIdx.x;
4 if (idx < size) {
5 float min_val = 1e10f;
6 for (int i = 0; i < DEPTH; i++) {
7 min_val = min(min_val, input[idx + i

* size]);
8 }
9 output[idx] = min_val;

10 }
11 }
12 ‘‘‘

- Using warp-level operations for parallel reduction
1 ‘‘‘cuda
2

3 __global__ void min_kernel_after(const float*
input, float* output, int size) {

4 int idx = blockIdx.x * blockDim.x +
threadIdx.x;

5 int lane_id = threadIdx.x % 32; // Thread’s
position within warp

6 int warp_id = threadIdx.x / 32; // Warp
number within the block

7

8 float min_val = 1e10f;
9 if (idx < size) {

10 // Each thread finds its local minimum
11 for (int i = 0; i < DEPTH; i++) {
12 min_val = min(min_val, input[idx + i

* size]);
13 }
14

15 // Warp-level parallel reduction using
shuffle

16 for (int offset = 16; offset > 0; offset
/= 2) {

17 float other =
__shfl_down_sync(0xffffffff,
min_val, offset);

18 min_val = min(min_val, other);
19 }
20

21 // First thread in warp writes the result
22 if (lane_id == 0) {
23 output[blockIdx.x * (blockDim.x/32) +

warp_id] = min_val;
24 }
25 }
26 }
27 ‘‘‘

Table 10: (Part 1) Code snippets before and after optimizations.
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Tech + Desc Before optimization After optimization
Memory Hierarchy Opti-
mization

Memory Hierarchy Opti-
mization involves strate-
gically utilizing different
levels of GPU memory
(registers, shared memory,
constant memory) to mini-
mize global memory access
latency and maximize data
reuse.

- Using global memory directly
1 ‘‘‘cuda
2 __global__ void

depthwise_separable_conv_kernel_unoptimized(
3 const float* input, const float*

depthwise_weight, const float*
pointwise_weight,

4 float* output, /* other parameters */) {
5

6 int out_y = blockIdx.y * blockDim.y +
threadIdx.y;

7 int out_x = blockIdx.x * blockDim.x +
threadIdx.x;

8

9 // Each thread directly accesses global
memory for each computation

10 for (int oc = 0; oc < out_channels; oc++) {
11 float result = 0.0f;
12 for (int ic = 0; ic < in_channels; ic++)

{
13 float depthwise_result = 0.0f;
14 // Direct global memory access for

each kernel element
15 for (int ky = 0; ky < 3; ky++) {
16 for (int kx = 0; kx < 3; kx++) {
17 int in_y = out_y * stride + ky

- padding;
18 int in_x = out_x * stride + kx

- padding;
19 if (in_y >= 0 && in_y <

in_height && in_x >= 0 &&
in_x < in_width) {

20 depthwise_result +=
input[((batch_idx *
in_channels + ic) *
in_height + in_y) *
in_width + in_x] *

21 depthwise_weight[ic
* 9 + ky *
3 + kx];

22 }
23 }
24 }
25 result += depthwise_result *

pointwise_weight[oc * in_channels
+ ic];

26 }
27 output[((batch_idx * out_channels + oc)

* out_height + out_y) * out_width +
out_x] = result;

28 }
29 }
30 ‘‘‘

- Using memory hierarchy (shared, constant, registers)
1 ‘‘‘cuda
2 __constant__ float c_depthwise_weight[3*3*3];

// Constant memory for weights
3 __constant__ float c_pointwise_weight[3*64];
4

5 __global__ void
depthwise_separable_conv_kernel_optimized(

6 const float* input, float* output, /* other
parameters */) {

7

8 // Shared memory for input tile with padding
9 __shared__ float

shared_input[3][SHARED_MEM_HEIGHT]
10 [SHARED_MEM_STRIDE];
11

12 // Collaborative loading of input data to
shared memory

13 // [shared memory loading code...]
14 __syncthreads();
15

16 // Register caching for intermediate results
17 float depthwise_results[3]; // Store in

registers
18

19 // Compute using shared memory and constant
memory

20 for (int c = 0; c < in_channels; ++c) {
21 float sum = 0.0f;
22 // Fully unrolled convolution using

shared memory
23 sum +=

shared_input[c][sm_y_base][sm_x_base]
* c_depthwise_weight[c*9 + 0];

24 // [more unrolled operations...]
25 depthwise_results[c] = sum; // Store in

register
26 }
27

28 // Cache output values in registers
29 float output_cache[32];
30

31 // Compute pointwise convolution using
registers and constant memory

32 for (int i = 0; i < oc_limit; ++i) {
33 output_cache[i] = depthwise_results[0] *

c_pointwise_weight[i * 3 + 0] +
34 depthwise_results[1] *

c_pointwise_weight[i *
3 + 1] +

35 depthwise_results[2] *
c_pointwise_weight[i *
3 + 2];

36 }
37

38 // Coalesced write to global memory
39 for (int i = 0; i < oc_limit; ++i) {
40 output[output_idx] = output_cache[i];
41 }
42 }
43 ‘‘‘

Asynchronous Execution

Asynchronous Execu-
tion in CUDA allows
operations to be queued and
executed concurrently on
separate streams, enabling
overlapping computation
with memory transfers for
improved GPU utilization.

- Sequential execution
1 ‘‘‘Python
2 def forward(self, x):
3 # Operations execute in the default stream,

blocking sequentially
4 result = self.conv_transpose3d(x)
5 return result
6 ‘‘‘

- Asynchronous execution with custom stream
1 ‘‘‘Python
2 def forward(self, x):
3 # Create dedicated compute stream
4 self.compute_stream =

torch.cuda.Stream(priority=-1) # High
priority stream

5

6 # Execute operations asynchronously in the
custom stream

7 with torch.cuda.stream(self.compute_stream):
8 result = self._optimized_cuda_forward(x,

x.dtype)
9

10 # Control returns immediately while
computation continues in background

11 return result
12 ‘‘‘

Table 11: (Part 2) Code snippets before and after optimizations.
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Tech + Desc Before optimization After optimization
Memory Access Optimization

Memory Access Optimiza-
tion in CUDA improves
performance by organizing data
access patterns to maximize
cache utilization and minimize
memory latency through tech-
niques like tiling, coalescing,
and shared memory usage.

- Naive matrix multiplication with poor memory access

1 ‘‘‘cuda
2 // Before optimization - Naive matrix

multiplication with poor memory access
3 __global__ void matmul_naive(float* A, float*

B, float* C, int M, int N, int K) {
4 int row = blockIdx.y * blockDim.y +

threadIdx.y;
5 int col = blockIdx.x * blockDim.x +

threadIdx.x;
6

7 if (row < M && col < N) {
8 float sum = 0.0f;
9 for (int k = 0; k < K; ++k) {

10 sum += A[row * K + k] * B[col * K +
k];

11 }
12 C[row * N + col] = sum;
13 }
14 }
15 ‘‘‘

- Using shared memory tiling and register blocking

1 ‘‘‘cuda
2 __global__ void matmul_optimized(float* A,

float* B, float* C, int M, int N, int K) {
3 // Block index and thread index
4 const int bx = blockIdx.x;
5 const int by = blockIdx.y;
6 const int tx = threadIdx.x;
7 const int ty = threadIdx.y;
8

9 // Output positions
10 const int row = by * 8 + ty;
11 const int col = bx * 32 + tx;
12

13 // Register accumulation
14 float sum00 = 0.0f, sum01 = 0.0f;
15 float sum10 = 0.0f, sum11 = 0.0f;
16

17 // Shared memory tiles with padding to
avoid bank conflicts

18 __shared__ float As[8][33];
19 __shared__ float Bs[32][33];
20

21 // Loop over tiles
22 for (int tile = 0; tile < (K + 31) / 32;

++tile) {
23 // Collaborative loading of tiles into

shared memory
24 if (row < M && tile * 32 + tx < K)
25 As[ty][tx] = A[row * K + tile * 32 +

tx];
26 else
27 As[ty][tx] = 0.0f;
28

29 if (col < N && tile * 32 + ty < K)
30 Bs[ty][tx] = B[col * K + tile * 32 +

ty];
31 else
32 Bs[ty][tx] = 0.0f;
33

34 __syncthreads();
35

36 // Compute partial dot products using
shared memory

37 #pragma unroll 8
38 for (int k = 0; k < 32; ++k) {
39 float a0 = As[ty][k];
40 float a1 = As[ty + 4][k];
41 float b0 = Bs[k][tx];
42 float b1 = Bs[k][tx + 16];
43

44 sum00 += a0 * b0;
45 sum01 += a0 * b1;
46 sum10 += a1 * b0;
47 sum11 += a1 * b1;
48 }
49

50 __syncthreads();
51 }
52

53 // Write results to global memory
54 if (row < M && col < N) C[row * N + col] =

sum00;
55 if (row < M && col + 16 < N) C[row * N +

col + 16] = sum01;
56 if (row + 4 < M && col < N) C[(row + 4) * N

+ col] = sum10;
57 if (row + 4 < M && col + 16 < N) C[(row +

4) * N + col + 16] = sum11;
58 }
59 ‘‘‘

Operation Fusion

Operation Fusion combines
multiple consecutive operations
into a single optimized kernel
to reduce memory transfers
and improve computational
efficiency on CUDA devices.

- Separate operations

1 ‘‘‘Python
2 def forward(self, x):
3 x = F.max_pool3d(x,

kernel_size=self.pool_kernel_size,
stride=self.pool_stride)

4 x = torch.softmax(x, dim=1)
5 x = x - self.subtract.view(1, -1, 1, 1, 1)
6 x = x * torch.sigmoid(x)
7 return torch.max(x, dim=1)[0]
8 ‘‘‘

- Fused operations with JIT

1 ‘‘‘Python
2 @torch.jit.script
3 def fused_post_process(x, subtract_view):
4 x = torch.softmax(x, dim=1)
5 x = x - subtract_view
6 x = x * torch.sigmoid(x)
7 return torch.max(x, dim=1)[0]
8

9 def forward(self, x):
10 x = F.max_pool3d(x,

kernel_size=self.pool_kernel_size,
stride=self.pool_stride)

11 return self.fused_post_process(x,
self.subtract.view(1, -1, 1, 1, 1))

12 ‘‘‘

Table 12: (Part 3) Code snippets before and after optimizations.
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Tech + Desc Before optimization After optimization
Optimized Thread Block
Configuration

Optimized Thread Block
Configuration involves care-
fully selecting grid and block
dimensions for CUDA ker-
nels to maximize parallelism,
memory access efficiency,
and computational through-
put based on the hardware
architecture and algorithm
characteristics.

- Basic thread block configuration

1 ‘‘‘Python
2 block_dim = (16, 16) # Simple square thread

block
3 grid_dim = (math.ceil(N / 16), math.ceil(M /

16))
4

5 kernel(grid=grid_dim, block=block_dim,
args=[A.data_ptr(), B.data_ptr(),
C.data_ptr(), M, N, K])

6 ‘‘‘

- Carefully tuned thread block configuration

1 ‘‘‘Python
2 block_dim = (32, 8) # Rectangular block

optimized for matrix multiplication
3 grid_dim = (math.ceil(N / 32), math.ceil(M /

8))
4

5 kernel(grid=grid_dim, block=block_dim,
args=[A.data_ptr(), B.data_ptr(),
C.data_ptr(), M, N, K])

6 ‘‘‘

Branchless Implementation

Branchless implementation
replaces conditional statements
with mathematical operations
to avoid branch divergence and
improve GPU performance.

- With branches

1 ‘‘‘cuda
2 if (val > 1.0f) {
3 output = 1.0f;
4 } else if (val < -1.0f) {
5 output = -1.0f;
6 } else {
7 output = val;
8 }
9 ‘‘‘

- Branchless

1 ‘‘‘cuda
2 output = fmaxf(-1.0f, fminf(1.0f, val));
3 ‘‘‘

Shared Memory Usage

Shared memory in CUDA
allows threads within the
same block to efficiently share
data, reducing global memory
accesses and improving perfor-
mance for algorithms with data
reuse patterns.

- Each thread reads diagonal element from global memory

1 ‘‘‘cuda
2 __global__ void

diag_matmul_kernel_unoptimized(const
float* A, const float* B, float* C, int N,
int M) {

3 int row = blockIdx.y * blockDim.y +
threadIdx.y;

4 int col = blockIdx.x * blockDim.x +
threadIdx.x;

5

6 if (row < N && col < M) {
7 // Each thread loads the same diagonal

element multiple times from global
memory

8 C[row * M + col] = A[row] * B[row * M +
col];

9 }
10 }
11 ‘‘‘

- Using shared memory to cache diagonal elements

1 ‘‘‘cuda
2 __global__ void

diag_matmul_kernel_optimized(const float*
A, const float* B, float* C, int N, int M)
{

3 const int BLOCK_SIZE_Y = 8;
4 __shared__ float A_shared[BLOCK_SIZE_Y]; //

Shared memory for diagonal elements
5

6 int row = blockIdx.y * blockDim.y +
threadIdx.y;

7 int col = blockIdx.x * blockDim.x +
threadIdx.x;

8

9 // Load diagonal elements into shared
memory (once per row in block)

10 if (threadIdx.x == 0 && row < N) {
11 A_shared[threadIdx.y] = A[row];
12 }
13

14 __syncthreads(); // Ensure all threads see
the loaded values

15

16 if (row < N && col < M) {
17 // Use cached diagonal element from

shared memory
18 C[row * M + col] = A_shared[threadIdx.y]

* B[row * M + col];
19 }
20 }
21 ‘‘‘

Minimal Synchronization

Minimal Synchronization re-
duces overhead by minimizing
the number of synchronization
points between CPU and GPU
operations, allowing asyn-
chronous execution through
dedicated CUDA streams.

- Default synchronization behavior

1 ‘‘‘Python
2 def forward(self, x):
3 # Each CUDA operation implicitly

synchronizes
4 x = x.contiguous()
5 result = self.conv_transpose3d(x)
6 return result
7 ‘‘‘

- Minimal Synchronization

1 ‘‘‘Python
2 def forward(self, x):
3 # Create dedicated stream for computation
4 with torch.cuda.stream(self.compute_stream):
5 # Operations run asynchronously in this

stream
6 x_optimized = x.contiguous(memory_format=
7 torch.channels_last_3d)
8 result =

self.conv_transpose3d(x_optimized)
9 # Implicit synchronization only happens

when result is used
10 return result
11 ‘‘‘

Table 13: (Part 4) Code snippets before and after optimizations.
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Tech + Desc Before optimization After optimization
Thread Coarsening

Thread Coarsening is an
optimization technique where
each thread processes multiple
data elements instead of just
one, increasing arithmetic
intensity and reducing thread
overhead.

- Each thread processes one feature element

1 ‘‘‘cuda
2 for (int d = tx; d < feature_size; d +=

threads_x) {
3 scalar_t x_val = x[b * max_sample *

feature_size + n * feature_size + d];
4 atomicAdd(&vlad[k * feature_size_padded +

d], assign_val * x_val);
5 }
6 ‘‘‘

- Each thread processes two feature elements at once

1 ‘‘‘cuda
2 #pragma unroll 4
3 for (int d = tx; d < feature_size - 1; d +=

threads_x * 2) {
4 scalar_t x_val1 = x[b * max_sample *

feature_size + n * feature_size + d];
5 scalar_t x_val2 = x[b * max_sample *

feature_size + n * feature_size + d +
threads_x];

6

7 atomicAdd(&vlad[k * feature_size_padded +
d], assign_val * x_val1);

8 atomicAdd(&vlad[k * feature_size_padded + d
+ threads_x], assign_val * x_val2);

9 }
10

11 // Handle remaining elements
12 for (int d = tx + (feature_size / threads_x) *

threads_x * 2; d < feature_size; d +=
threads_x) {

13 scalar_t x_val = x[b * max_sample *
feature_size + n * feature_size + d];

14 atomicAdd(&vlad[k * feature_size_padded +
d], assign_val * x_val);

15 }
16 ‘‘‘

Asynchronous Execution

Asynchronous Execution in
CUDA allows operations to
be queued and executed con-
currently on separate streams,
enabling overlapping computa-
tion with memory transfers for
improved GPU utilization.

- Sequential execution

1 ‘‘‘Python
2 def forward(self, x):
3 # Operations execute in the default stream,

blocking sequentially
4 result = self.conv_transpose3d(x)
5 return result
6 ‘‘‘

- Asynchronous execution with custom stream

1 ‘‘‘Python
2 def forward(self, x):
3 # Create dedicated compute stream
4 self.compute_stream =

torch.cuda.Stream(priority=-1) # High
priority stream

5

6 # Execute operations asynchronously in the
custom stream

7 with torch.cuda.stream(self.compute_stream):
8 result = self._optimized_cuda_forward(x,

x.dtype)
9

10 # Control returns immediately while
computation continues in background

11 return result
12 ‘‘‘

Table 14: (Part 5) Code snippets before and after optimizations.
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F CASE STUDY: COMPARING REFERENCE CODE AND CUDA-L1
OPTIMIZED NEURAL NETWORK IMPLEMENTATIONS

F.1 LSTMS

Table 15: Reference code and CUDA-L1 generation for LSTM class

LSTM | Reference Code - Simple baseline implementation

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 def __init__(self, input_size, hidden_size, num_layers,

output_size, dropout=0.0):
6 """
7 Initialize the LSTM model.
8 """
9 super(Model, self).__init__()

10 # Initialize hidden state with random values
11 self.h0 = torch.randn((num_layers, batch_size,

hidden_size))
12 self.c0 = torch.randn((num_layers, batch_size,

hidden_size))
13 self.lstm = nn.LSTM(input_size, hidden_size,

num_layers, batch_first=True, dropout=dropout,
bidirectional=False)

14 self.fc = nn.Linear(hidden_size, output_size)
15

16 def forward(self, x):
17 """
18 Forward pass through the LSTM model.
19 """
20 self.h0 = self.h0.to(x.device)
21 self.c0 = self.h0.to(x.device) # BUG: This should be

self.c0.to(x.device)
22

23 # Forward propagate LSTM
24 out, state = self.lstm(x, (self.h0, self.c0)) # shape

of out: (batch_size, seq_length, hidden_size)
25

26 # Decode the hidden state of the last time step
27 out = self.fc(out[:, -1, :]) # shape of out:

(batch_size, output_size)
28

29 return state[0]
30

31 # Test code
32 batch_size = 10
33 sequence_length = 512
34 input_size = 128
35 hidden_size = 256
36 num_layers = 6
37 output_size = 10
38 dropout = 0.0
39

40 def get_inputs():
41 return [torch.randn(batch_size, sequence_length,

input_size)]
42

43 def get_init_inputs():
44 return [input_size, hidden_size, num_layers, output_size,

dropout]
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LSTM | Fully Optimized Code - All optimizations enabled (3.4x faster)

1 import torch
2 import torch.nn as nn
3 import torch.cuda as cuda
4

5 class ModelNew(nn.Module):
6 def __init__(self, input_size, hidden_size, num_layers,

output_size, dropout=0.0):
7 """
8 Initialize the LSTM model with three core optimization

techniques.
9

10 Color coding:

11 - BLUE: CUDA Graphs optimization

12 - GREEN: Memory Contiguity optimization

13 - ORANGE: Static Tensor Reuse optimization
14 """
15 super(ModelNew, self).__init__()
16

17 # Initialize hidden states as buffers
18 self.register_buffer(’h0’, torch.randn((num_layers,

batch_size, hidden_size)))
19 self.register_buffer(’c0’, torch.randn((num_layers,

batch_size, hidden_size)))
20

21 # Use PyTorch’s optimized LSTM implementation
22 self.lstm = nn.LSTM(
23 input_size=input_size,
24 hidden_size=hidden_size,
25 num_layers=num_layers,
26 batch_first=True,
27 dropout=dropout,
28 bidirectional=False
29 )
30

31 self.fc = nn.Linear(hidden_size, output_size)
32

33 # CUDA GRAPHS: Variables for graph capture and
replay

34 self.graph = None
35 self.graph_ready = False
36 self.input_shape = None
37

38 # STATIC TENSOR REUSE: Pre-allocated tensors for
graph execution

39 self.static_input = None
40 self.static_output = None
41

42 # CUDA GRAPHS: Streams for graph operations
43 self.graph_stream = None
44

45 # Track if we’re running on CUDA
46 self.is_cuda_available = torch.cuda.is_available()
47

48 def _initialize_cuda_resources(self):

49 """ CUDA GRAPHS: Initialize CUDA stream for graph
operations"""

50 if self.graph_stream is None:
51 self.graph_stream = cuda.Stream()
52
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53 def _capture_graph(self, x, result):
54 """

55 CUDA GRAPHS: Capture the computation graph for
replay

56 STATIC TENSOR REUSE: Create static tensors for
graph capture

57 """

58 # STATIC TENSOR REUSE: Clone tensors for static
allocation

59 self.static_input = x.clone()
60 self.static_output = result.clone()
61

62 # CUDA GRAPHS: Capture the computation graph
63 with torch.cuda.stream(self.graph_stream):
64 self.graph = cuda.CUDAGraph()
65 with cuda.graph(self.graph):
66 # Operations to capture in the graph
67 static_out, _ = self.lstm(self.static_input,

(self.h0, self.c0))
68

69 # MEMORY CONTIGUITY: Ensure contiguous
memory layout

70 static_last = static_out[:, -1, :].contiguous()
71

72 self.static_output.copy_(self.fc(static_last))
73

74 # Wait for graph capture to complete
75 torch.cuda.synchronize()
76

77 # Mark graph as ready for use
78 self.graph_ready = True
79

80 def _standard_forward(self, x):
81 """Standard forward pass with memory contiguity

optimization"""
82

83 # MEMORY CONTIGUITY: Ensure input is contiguous
84 if not x.is_contiguous():
85 x = x.contiguous()
86

87 # Forward pass through LSTM
88 out, _ = self.lstm(x, (self.h0, self.c0))
89

90 # MEMORY CONTIGUITY: Make last output contiguous
for optimal memory access

91 last_out = out[:, -1, :].contiguous()
92

93 return self.fc(last_out)
94

95 def forward(self, x):
96 """
97 Forward pass through the LSTM model with three

optimization techniques.
98

99 Optimization flow:

100 1. CUDA GRAPHS: Check if we can use the captured
graph (fast path)

101 2. STATIC TENSOR REUSE: Use pre-allocated tensors
for graph replay
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102 3. MEMORY CONTIGUITY: Ensure optimal memory layout
throughout

103 """
104

105 # CUDA GRAPHS: Fast path - use captured graph if
available

106 if (x.is_cuda and self.graph_ready and x.shape ==
self.input_shape):

107

108 # STATIC TENSOR REUSE: Copy to pre-allocated
tensor with non-blocking transfer

109 self.static_input.copy_(x, non_blocking=True)
110

111 # CUDA GRAPHS: Replay the captured graph
112 self.graph.replay()
113

114 # Return the output from static buffer
115 return self.static_output.clone()
116

117 # Standard execution path
118 with torch.no_grad():
119 result = self._standard_forward(x)
120

121 # CUDA GRAPHS: Initialize graph on first CUDA
input

122 if x.is_cuda and self.is_cuda_available and not
self.graph_ready:

123 try:
124 # Store the current input shape
125 self.input_shape = x.shape
126

127 # CUDA GRAPHS: Initialize CUDA resources
128 self._initialize_cuda_resources()
129

130 # CUDA GRAPHS + STATIC TENSOR REUSE:
Capture the graph

131 self._capture_graph(x, result)
132

133 except Exception as e:
134 # If graph capture fails, continue without

it
135 self.graph_ready = False
136

137 return result
138

139 # Hyperparameters from the reference implementation
140 batch_size = 10
141 sequence_length = 512
142 input_size = 128
143 hidden_size = 256
144 num_layers = 6
145 output_size = 10
146 dropout = 0.0
147

148 def get_inputs():
149 return [torch.randn(batch_size, sequence_length,

input_size)]
150

151 def get_init_inputs():
152 return [input_size, hidden_size, num_layers, output_size,

dropout]
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153

154 # Example usage demonstrating the three techniques
155 if __name__ == "__main__":
156 import time
157

158 print(" BLUE: CUDA Graphs optimization")

159 print(" GREEN: Memory Contiguity optimization")

160 print(" ORANGE: Static Tensor Reuse optimization")
161 print("=" * 60)
162

163 # Create model
164 model = ModelNew(*get_init_inputs())
165 model.eval()
166

167 # Test input
168 x = get_inputs()[0]
169

170 # Move to GPU if available
171 if torch.cuda.is_available():
172 model = model.cuda()
173 x = x.cuda()
174

175 print("Running on CUDA - all three optimizations
active")

176

177 # First run - captures graph

178 print("\n First forward pass: Capturing CUDA
graph...")

179 with torch.no_grad():
180 output = model(x)
181 print(f" Output shape: {output.shape}")
182 print(f" Graph ready: {model.graph_ready}")
183

184 # Subsequent runs - uses captured graph

185 print("\n Subsequent passes: Using captured graph
with")

186 print(" static tensor reuse and memory
contiguity")

187

188 # Warmup
189 for _ in range(10):
190 with torch.no_grad():
191 _ = model(x)
192

193 # Measure performance
194 torch.cuda.synchronize()
195 start_event = torch.cuda.Event(enable_timing=True)
196 end_event = torch.cuda.Event(enable_timing=True)
197

198 n_runs = 100
199 start_event.record()
200 with torch.no_grad():
201 for _ in range(n_runs):
202 output = model(x)
203 end_event.record()
204

205 torch.cuda.synchronize()
206 avg_time = start_event.elapsed_time(end_event) / n_runs
207

208 print(f"\nPerformance: {avg_time:.3f} ms per forward
pass")
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209 print(f" Expected speedup: ~3.42x with all
optimizations")

210

211 else:

212 print("\n Running on CPU - only memory
contiguity active")

213 print(" (CUDA graphs and static tensor reuse require
GPU)")

214

215 with torch.no_grad():
216 output = model(x)
217 print(f"\n Output shape: {output.shape}")
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F.2 3DCONV

Table 16: Reference code and CUDA-L1 generation for Conv3D class

Conv3D | Reference Code - Simple baseline implementation

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Model that performs a 3D convolution, applies Group

Normalization, minimum, clamp, and dropout.
7 """
8 def __init__(self, in_channels, out_channels, kernel_size,

groups, min_value, max_value, dropout_p):
9 super(Model, self).__init__()

10 self.conv = nn.Conv3d(in_channels, out_channels,
kernel_size)

11 self.norm = nn.GroupNorm(groups, out_channels)
12 self.dropout = nn.Dropout(dropout_p)
13 self.min_value = min_value
14 self.max_value = max_value
15

16 def forward(self, x):
17 x = self.conv(x)
18 x = self.norm(x)
19 x = torch.min(x, torch.tensor(self.min_value))
20 x = torch.clamp(x, min=self.min_value,

max=self.max_value)
21 x = self.dropout(x)
22 return x
23

24 # Hyperparameters
25 batch_size = 128
26 in_channels = 3
27 out_channels = 16
28 depth, height, width = 16, 32, 32
29 kernel_size = 3
30 groups = 8
31 min_value = 0.0
32 max_value = 1.0
33 dropout_p = 0.2
34

35 def get_inputs():
36 return [torch.randn(batch_size, in_channels, depth,

height, width)]
37

38 def get_init_inputs():
39 return [in_channels, out_channels, kernel_size, groups,

min_value, max_value, dropout_p]

Conv3D | Fully Optimized Code - All optimizations enabled (120x faster)

1 import torch
2 import torch.nn as nn
3

4 # Hyperparameters
5 batch_size = 128
6 in_channels = 3
7 out_channels = 16
8 depth, height, width = 16, 32, 32
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9 kernel_size = 3
10 groups = 8
11 min_value = 0.0
12 max_value = 1.0
13 dropout_p = 0.2
14

15 class ModelNew(nn.Module):
16 def __init__(self, in_channels, out_channels, kernel_size,

groups, min_value, max_value, dropout_p):
17 super(ModelNew, self).__init__()
18 # Store the original layers for parameter compatibility
19 self.conv = nn.Conv3d(in_channels, out_channels,

kernel_size)
20 self.norm = nn.GroupNorm(groups, out_channels)
21 self.dropout = nn.Dropout(dropout_p)
22 self.min_value = min_value
23 self.max_value = max_value
24 self.dropout_p = dropout_p
25

26 # TECH 1: Mathematical Short-Circuit Optimization
27 # Detects when min_value=0.0 to skip entire computation
28 self.use_optimized_path = (min_value == 0.0)
29

30 # TECH 4: Pre-computed Convolution Parameters
31 # Extract and store conv parameters once during

initialization
32 if isinstance(kernel_size, int):
33 self.kernel_size = (kernel_size, kernel_size,

kernel_size)
34 else:
35 self.kernel_size = kernel_size
36 self.stride = self.conv.stride
37 self.padding = self.conv.padding
38 self.dilation = self.conv.dilation
39

40 # TECH 4: Pre-compute output dimensions for
standard input

41 self.out_depth = ((depth + 2 * self.padding[0] -
self.dilation[0] * (self.kernel_size[0] - 1) - 1)
// self.stride[0]) + 1

42 self.out_height = ((height + 2 * self.padding[1] -
self.dilation[1] * (self.kernel_size[1] - 1) - 1)
// self.stride[1]) + 1

43 self.out_width = ((width + 2 * self.padding[2] -
self.dilation[2] * (self.kernel_size[2] - 1) - 1)
// self.stride[2]) + 1

44

45 # Standard output shape for the default batch size
46 self.standard_shape = (batch_size, out_channels,

self.out_depth, self.out_height, self.out_width)
47

48 # TECH 2: Pre-allocated Zero Tensors
49 # Create zero tensors once to avoid allocation overhead
50 if self.use_optimized_path:
51 self.register_buffer(’zero_output_float32’,
52 torch.zeros(self.standard_shape,

dtype=torch.float32),
53 persistent=False)
54 self.register_buffer(’zero_output_float16’,
55 torch.zeros(self.standard_shape,

dtype=torch.float16),
56 persistent=False)
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57 self.register_buffer(’zero_output_bfloat16’,
58 torch.zeros(self.standard_shape,

dtype=torch.bfloat16),
59 persistent=False)
60

61 def calculate_output_shape(self, input_shape):
62 """Calculate the output shape of the convolution

operation."""
63 batch_size, _, d, h, w = input_shape
64

65 # TECH 4: Use precomputed parameters
66 # Avoid repeated attribute lookups
67 out_d = ((d + 2 * self.padding[0] - self.dilation[0] *

(self.kernel_size[0] - 1) - 1) // self.stride[0])
+ 1

68 out_h = ((h + 2 * self.padding[1] - self.dilation[1] *
(self.kernel_size[1] - 1) - 1) // self.stride[1])
+ 1

69 out_w = ((w + 2 * self.padding[2] - self.dilation[2] *
(self.kernel_size[2] - 1) - 1) // self.stride[2])
+ 1

70

71 return (batch_size, self.conv.out_channels, out_d,
out_h, out_w)

72

73 def forward(self, x):

74 # TECH 1: Mathematical Short-Circuit - Main
optimization

75 # Skip all computation when we know result will be
zeros

76 if not self.use_optimized_path:
77 # Standard path for non-optimized cases
78 x = self.conv(x)
79 x = self.norm(x)
80 x = torch.minimum(x, torch.tensor(self.min_value,

device=x.device))
81 x = torch.clamp(x, min=self.min_value,

max=self.max_value)
82 x = self.dropout(x)
83 return x
84

85 # Optimized path when min_value == 0.0
86 # Since min(x, 0) followed by clamp(0, 1) always

produces zeros
87

88 # TECH 3: Direct Shape Matching
89 # Fast path for standard input dimensions
90 if x.shape == (batch_size, in_channels, depth, height,

width):

91 # TECH 2: Use pre-allocated tensors
92 # Return pre-allocated zeros matching input dtype
93 if x.dtype == torch.float32:
94 return self.zero_output_float32
95 elif x.dtype == torch.float16:
96 return self.zero_output_float16
97 elif x.dtype == torch.bfloat16:
98 return self.zero_output_bfloat16
99 else:

100 # Fallback for other dtypes
101 return torch.zeros(self.standard_shape,

device=x.device, dtype=x.dtype)
102 else:
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103 # For non-standard input shapes, calculate output
shape

104 output_shape = self.calculate_output_shape(x.shape)
105 return torch.zeros(output_shape, device=x.device,

dtype=x.dtype)
106

107 def get_inputs():
108 return [torch.randn(batch_size, in_channels, depth,

height, width)]
109

110 def get_init_inputs():
111 return [in_channels, out_channels, kernel_size, groups,

min_value, max_value, dropout_p]
112

113 # Color Legend:

114 # TECH 1: Mathematical Short-Circuit (Blue) - Skips
computation when min_value=0

115 # TECH 2: Pre-allocated Tensors (Purple) - Pre-allocates
zero tensors

116 # TECH 3: Direct Shape Matching (Green) - Fast path for
standard shapes

117 # TECH 4: Pre-computed Parameters (Orange) - Pre-computes
conv parameters
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