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ABSTRACT

Global warming from greenhouse gas emissions is humanity’s largest environ-
mental hazard. Greenhouse gases, like CO2 emissions from transportation, no-
tably cars, contribute to the greenhouse effect. Effective CO2 emission monitoring
is needed to regulate vehicle emissions. Few studies have predicted automobile
CO2 emissions using OBD port data. For precise and effective prediction, the
system must capture the underlying cause-effect structure between vehicular pa-
rameters that may contribute to the emission of CO2 in the transportation sector.
Thus, we present a causal RNN-based generative deep learning architecture that
predicts vehicle CO2 emissions using OBD-II data while keeping the underlying
causal structure. Most widely used real-life datasets lack causal relationships be-
tween features or components, so we use our proposed architecture to discover and
learn the underlying causal structure as an adjacency matrix during training and
employ that during forecasting. Our framework learns a sparse adjacency matrix
by imposing a sparsity-encouraging penalty on model weights and allowing some
weights to be zero. This matrix is capable of capturing the causal relationships
between all variable pairs. In this work, we first train the model with widely used
synthetic datasets with known causal structure among variables, then we apply it
to the state-of-the-art OBD-II dataset to find the internal causal structure among
the vehicular parameters and perform causal inference to predict CO2 emission.
Experimental results reveal that our causal discovery and forecasting method sur-
passes state-of-the-art methods for the tasks of causal discovery in terms of AU-
ROC, forecasting on multivariate causal time series data, and OBD-II dataset in
terms of MMD, RMSE, and MAE. After successful completion, we will release
the code (Code for review - https://anonymous.4open.science/r/causal-obd-co2-
0A0C).

1 INTRODUCTION

In real-world scenarios, multivariate time series data used are generally ubiquitous in nature, for
example, electroencephalogram signals (Isaksson et al., 1981), climate records (Runge et al., 2019),
stellar light curves in astronomy (Huijse et al., 2012), stock prices from the stock market (Zhang
et al., 2017) and so on. Common data-driven decision making tasks for time series data encompass
discovering anomalies, forecasting, classification, and so on. One of the most prevalent methods in
forecasting or predicting future values is time series forecasting, which utilizes observations from
the past (Li et al., 2023). In the past few years, temporal forecasting models have been applied in
different applications of vehicular technology in the transportation sector. One such application is
the emission monitoring and prediction of carbon dioxide (CO2) and other greenhouse gases such
as nitrous oxide and methane (Melo et al., 2022; Bai & Sun, 2024). Carbon dioxide (CO2) is the
primary driver of the greenhouse effect, and it is the main emission produced by the electricity,
transportation, and manufacturing industries. Among which, transportation has long been a signif-
icant factor in the generation of CO2 emissions (Yoro & Daramola, 2020). An effective emission
monitoring system is necessary to regulate and restrict emissions. Monitoring vehicular emissions
is challenging due to the vast quantity and diverse range of vehicles. Furthermore, conducting ad-
ditional individual testing on such a vast number of vehicles is impractical. Previous works (Zeng
et al., 2016; Grote et al., 2018; Oduro et al., 2013; Zeng et al., 2015) have demonstrated that a
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data-driven model is effective for estimating CO2 levels. However, these models lack the ability to
deduce hidden characteristics that are not directly seen from the available data.

An effective generative forecasting model for time series should be capable of modeling both the
transition model p(xt|x1:t−1) and the joint distribution p(x1:t) for each given t. While popular pre-
dictive frameworks like kernel adaptive filters (KAF) (Liu et al., 2008), deep state-space models
(SSMs) (Rangapuram et al., 2018) and the fundamental autoregressive integrated moving average
(ARIMA) offer various approaches to capture p(xt|x1:t−1) or p(xt|xt−τ :t−1) within a window of
length τ , it is important to note that these models are deterministic mappers and not generative. Put
simply, these models cannot produce new values for time series by randomly selecting from a man-
ageable hidden distribution. In recent times, there has been a growing interest in finding causality
from time series data. For instance, in the fMRI data, it is crucial to determine the causal domi-
nations between activated areas of the brain (Deshpande et al., 2009). The causal graph presented
in this study may potentially offer valuable insights into the diagnosis of psychological illnesses
based on brain network analysis (Wang et al., 2020). Unlike purely statistical correlations, causality
provides a deeper understanding of how variables influence one another over time. In the context
of vehicular CO2 emissions, understanding that “engine load” causes “CO2 emissions” allows us to
identify and prioritize variables for emission reduction interventions. This is particularly crucial in
vehicular systems, where spurious correlations may lead to suboptimal decision-making.

Therefore, the need for an efficient data-driven CO2 emission prediction system from the envi-
ronmental perspective, as well as the need for a dependable generative forecasting model and the
contemporary inclination towards causal inference, is inevitable, especially for temporal data. Un-
derstanding causal links between different vehicular parameters (e.g., engine load → CO2 emis-
sions) enables identification of actionable factors contributing to emissions, thereby aiding decision-
making for emission control strategies. Through this work, we propose a novel temporal causal dis-
covery and generative forecasting framework, which itself is responsible for finding the underlying
causal structure among different pairs of variables, learning them in the form of an adjacency matrix,
and employing the knowledge during inference. To the best of our knowledge, our proposed work
is the first endeavor that uses a recurrent variational autoencoder (VAE), consisting of a single-head
encoder and multihead decoder, which integrates temporal causal discovery and generative fore-
casting of vehicular CO2 emissions, a unique combination not addressed in recent state-of-the-art
works. Formally, given an instance from a M-dimensional time series xt = {xd

t | ∀d ∈ [1,M ]}, our
framework comprises a recurrent encoder and a multi-head recurrent decoder, where each head is
dedicated for generating a certain dimension of xt (i.e., xd

t ,whered ∈ [1,M ]). In the decoder, we
apply a sparsity penalty to the input to the hidden state weight matrix. This penalty encourages the
model to come up with a matrix A ∈ RM×M that represents the underlying Granger causal relations
between the dimensions x in a sparse manner. In addition, we present an error-compensation module
that considers the immediate impact ϵt of one process without considering its history.

We conduct two-stage experiments. At first, we perform experiments with synthetic sequences.
Regarding the forecasting of time series, we assess the similarity between the distribution of past
observations and the distribution of predicted data using both qualitative and quantitative methods.
Regarding causal discovery, we evaluate our identified causal network by comparing it to state-of-
the-art methods that also seek to detect causality. In the next phase, we apply our model on the
widely used open-source OBD-II dataset (Rettore et al., 2016; 2018) to discover the causal structure
and enhance the prediction of CO2 emissions from vehicles in real-time. As compared to other
recent state-of-the-art techniques, our model has outperformed in all the tasks.

2 RELATED WORKS

The proposed research is situated at the convergence of various areas of study, integrating concepts
from temporal autoregressive models, identifying Granger causal relationships, and variational in-
ferencing based time series models in the field of automotive applications.

2.1 GENERATIVE MODELS ON TIME SERIES

For generating synthetic time series data, simple Generative Adversarial Network (GAN) frame-
work(Goodfellow et al., 2014) has been proposed, which leverages the recurrent neural network
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Figure 1: Overall working of our proposed model for vehicular CO2 emission prediction. During
inference, it uses the obtained causal graph during training to select the features which are affecting
the CO2 emission. The error compensation module attempts to estimate the errors made during
forecasting and compensate that by adding with the output.

in modeling both the generator and discriminator (Mogren, 2016; Dimyati, 2021; Takahashi et al.,
2019). The major drawback is that, these GAN-based techniques are only capable of modeling
the joint distribution p(x1:T ), and they do not take into consideration the transaction dynamics
p(xt|x1:t−1). This issue is addressed by TimeGAN (Yoon et al., 2019), which does so by estimat-
ing and integrating this conditional density knowledge inside an internal latent space. On the other
hand, the variational autoencoder-based time series generation approach requires more exploration.
Few of the notable works, such as one by (Fabius & Van Amersfoort, 2014) and Z-forcing(Goyal
et al., 2017), have been proposed on this. However, the Z-forcing violates the fundamental Granger
causality principle, which is cause precedes its consequence, by encoding the future information in
the autoregressive structure. The recently introduced TimeVAE (Desai et al., 2021) makes use of
convolutional neural networks in both the encoder and the decoder. Although it uses many concur-
rent blocks in the decoder, each taking into account a temporal aspect like trend and seasonality, it
introduces additional hyperparameters that are challenging to measure in reality.

In the proposed framework, we have used a VAE-based generative forecasting framework; however,
our approach differs in several factors from the baselines discussed above. It discovers the underly-
ing Granger causal structure as a part of the training process, making it more transparent. It models
the conditional density p(xt|x1:t−1) explicitly and guarantees the integration of learned Granger
causal structure while generating the forecasted data from the encoded past observations.

2.2 CAUSAL DISCOVERY OF TIME SERIES

Various causal graphs may be explored for time series analysis (Assaad et al., 2022). In this context,
we examine the process of recovering a Granger causal graph. This graph distinguishes between
previous observations and current values of each variable and seeks to identify all potential causal
relationships from the past to the present. Recent works have shown notable advancements in causal
discovery and inference, following the principles of Granger causality (Granger, 1969).

The concept of ‘causation’ in time series was first introduced by Wiener (1956) in which, a time
series or variable x is said to be the cause of another variable y if, from an analytical point of
view, the value of y is enhanced by adding knowledge about x. However, Granger (1969) defined
causality within the framework of linear multivariate auto-regression (MVAR) by contrasting the
variances of the residual errors when x is included vs when it is excluded in the prediction of y.
Later, the fundamental concept of Granger causality was introduced for non-linear scenarios by
the use of the kernel technique (Marinazzo et al., 2008) and through the fitting of locally linear
models in the reconstructed phase space (Chen et al., 2004). Recently, the first work leveraging
deep neural networks to identify Granger causality has been carried out by (Tank et al., 2021), in
which the causal graph is learned by the implementation of sparsity restrictions on the autoregressive
network weights. The Temporal Causal Discovery Framework (Nauta et al., 2019) employs an
attention mechanism that is embedded inside dilated depthwise convolutional networks in order to
learn complicated non-linear causal links and, in certain instances, hidden confounders.

2.3 CO2 EMISSION PREDICTION FROM OBD SENSOR DATA

The widespread implementation of cellular communication technology indicates that telematic ap-
plications can be easily accessed (Amarasinghe et al., 2015). This is the main factor driving the
adoption of telematics-based prediction systems. Previous studies (Chen et al., 2015; Girma et al.,
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Table 1: Comparison of tasks performed by the chosen baselines with our proposed approach.

Model Causal Discovery Causal Inference Data Generation
LPCMCI (Gerhardus & Runge, 2020) Ë é é
NGC (Tank et al., 2021) Ë Ë é
ACD (Löwe et al., 2022) Ë é é
PCMCIΩ Gao et al. (2024) Ë é é
ScoreGrad (Yan et al., 2021) é é Ë
D3VAE (Li et al., 2022) é é Ë
CSDI (Tashiro et al., 2021) é é Ë
Proposed Ë Ë Ë

2019) have also shown the importance of telematics data, which can be employed in many indus-
tries and application areas. Moreover, with the progress in modern data-driven decision making
technologies, telematics can make the systems highly significant and insightful. Earlier and recent
works have employed artificial neural networks (ANN), support vector machines (SVM), VT-Micro
approaches, and Bayesian neural networks to estimate CO2 levels (Zeng et al., 2016; Nocera et al.,
2018; Yavari et al., 2023). These works have used very limited number of features and have used
straightforward non-temporal approaches for prediction, which have caused in poor estimation of
CO2 emission.

The work of Grote et al. (2018) includes Inductive Loop Detectors data and automotive sensor data
including speed, acceleration, fuel flow, and mileage. The estimate is obtained from a hybrid model
that uses the OBD model to set the parameters for the ILD model. Oduro et al. (2013) employed
regression analysis to forecast CO2 levels based on vehicle speed and acceleration, recommending
emphasizing on OBD traits. Their investigation shows a direct relationship between CO2 levels,
velocity, and vehicle acceleration, with speed correlating more with emissions than acceleration.
The study of Zeng et al. (2015) shows that factors other than vehicle speed and distance effect fuel
use. The authors demonstrate a direct relationship between object velocity and fuel usage. Recently
proposed work by (Singh & Dubey, 2021) uses long short term memory (LSTM) (Schmidhuber
et al., 1997) based recurrent architecture for prediction of CO2 emission from the OBD-II dataset.
Their work uses statistical techniques such as correlation analysis and principal component analysis
(PCA) to choose the features for training. This approach lacks in capturing the proper cause-effect
relationships between the different OBD features.

The brief survey shows that CO2 estimate and modeling approaches are very few in number and
mostly use speed, congestion data, and specialized sensors. Although speed and acceleration are
strongly linked to CO2 emissions, they only provide limited insight into a vehicle’s emission char-
acteristics. Additionally, the survey reveals the utmost need of using a wide set of OBD features
to accurately model CO2 emission as the different factors are related to each other by some means.
Therefore, there lies the possibility of strong spurious correlations among different OBD features,
which may encode false or unwanted effects in forecasting (Calude & Longo, 2017; Yang et al.,
2023). Thus, there is a strong need for integrating causal perspective and knowledge of cause-effect
pairs of variables into the prediction model (Simon, 2017; Ye et al., 2024), which exactly we have
done in this work. Causality provides a deeper understanding of the temporal influence of variables
on each other as opposed to simple statistical correlations. Our proposed approach ensures to learn
the effects of potential ‘cause’ variables on another variable in a pair-wise manner and apply that
during inference to ensure that each variable in the generated instance should have a potential effect
from its ‘cause’ variables only.

3 PROBLEM DEFINITION

The overarching goal is to acquire knowledge about a distribution p̂(x1:T ) that is a close match to
the actual joint distribution p(x1:T ). This is accomplished by sampling from a straightforward and
controllable distribution p(z) and then mapping to a more complex distribution p̂(x1:T ). This is
done from the standpoint of a generative model. In most cases, modeling p(x1:T ) is challenging
due to the fact that its dimension M, length T, and perhaps non-stationary nature make it tough to
work with. In order to derive the sequence in an iterative manner, we may utilize the autoregressive
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decomposition, which is represented by the equation p(x1:T ) = ΠT
t=1p(xt|x1:t−1). Therefore, our

first objective reduces to,
min
p̂

D(p(xt|x1:t−1) || p̂(xt|x1:t−1)) (1)

for any t, where D is the divergence between the two distributions. For the second objective, let us
assume an instance from a M-dimensional time series be xt = {x1

t , x
2
t , · · · , xM

t }, which follows
the Granger causal matrix given as G = (V,E). An edge (u, v) in the adjacency matrix A of G is
given as,

Au,v =

{
1 if xv

t− causes xu
t

0 otherwise
(2)

where xt− denotes the previous observations of xt. Let PA(xd) denotes the set of causes of xd in
G. Integrating the additive noise model (Hoyer et al., 2008), xd can be represented as,

xd
t = fp(x

d
t−, PA(xd)t−) + ϵdt (3)

where PA(xd)t− represents the historical observations of the cause variables of xd
t . Both PA(xd)t−

and ϵdt are jointly independent with respect to d and t, and for each d, they are independent and
identically distributed in t. Consequently, our next objective is to ascertain fd(·) for each xd and to
determine the causal matrix A.

We then evaluate the approach on two synthetic causal sequences, Hénon and Lorenz-96, followed
by applying the approach on OBD-II dataset. Experiments on synthetic causal sequences are impor-
tant in order to show that our approach perfectly works for causal discovery as well as inferece, as
OBD-II dataset does not have ground truths on causal relations.

4 PROPOSED METHODOLOGY

In this work, our main objective is to train a recurrent variational autoencoder which can approximate
the actual joint distribution of the data and find the underlying Granger causal matrix. Furthermore,
we apply the real world OBD-II dataset in order to learn its distribution, find the causal structure and
forecast the emission of CO2, following the discovered causal relations.

4.1 MODEL ARCHITECTURE

It consists of a RNN encoder and a multihead RNN decoder. The model with a past observation
window size or lag τ can be mathematically denoted as,

x̂R = DΘ(xR, EΦ(xL)) + ϵT (4)

where xL = xT−2τ−1:T−τ−1, xR = xT−τ :T−1, x̂R = x̂T−τ+1:T , D(·) and E(·) represent the en-
coder and decoder, parameterized by Θ and Φ respectively. ϵ is the additive noise term which is as-
sumed to follow no specific distribution. To simplify, given a time series x = {x1, · · · , xτ , · · · , xT },
the encoder takes the segment x1:τ−1 as input and passes it to the decoder. The decoder predicts the
segment xτ+1:T , given the encoded latent vector z = EΦ(x1:τ−1) and the segment xτ :T−1. In this
manner, we adhere to the Granger causality principle by avoiding the encoding of future information
prior to its decoding.

The model architecture block diagram has been given in Figure 2. Figure 2a shows the encoder
block diagram of our model. Assuming h be the hidden states of the encoder, we can mathematically
represent it as,

ht = tanh (Winxt +Whht−1 + b),

µ = WµhT−τ−1 + bµ,

log(σ) = WσhT−τ−1 + bσ

(5)

where {Win,Wh,Wµ,Wσ} ⊆ Θ. The weights associated with the input and hidden states are de-
noted with Win and Wh respectively. Wµ and Wσ are the weights used to calculate the mean and
standard deviation of the derived Gaussian distribution, respectively. Bias is represented by b. Figure
2b displays the multihead decoder block diagram of our model. It illustrates the configuration of the
first head utilizing a pentavariate slice of Hénon maps. The collection of all heads accurately repre-
sents the conditional probability distribution p(xt|x1:t−1). The decoder’s starting state is randomly

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) RNN Encoder (b) Multihead RNN Decoder

Figure 2: Block diagrams of Encoder and Decoder. We use x0:t−1 segment as input to the encoder. The
reparameterized latent vector z is passed to the decoder along with the segment xt−1:T−1 in order to predict
the segment xt:T sequentially. Each head of the decoder is responsible for predicting a specific dimension of x
i.e. d = 1, · · · ,M . During the training, the causal matrix is estimated in the form of adjacency matrix Â.

selected from a Gaussian distribution, which is defined by the parameters µ and σ. Considering s be
the hidden state of the decoder, we can mathametically represent the decoder as,

sT−τ = tanh (Ure(µ+ σz) + bre) where z ∼ (0, 1),

sdt = tanh (Ud
inxt−1 + Ud

hs
d
t−1 + bd),

Âd = Ud
in,

x̂d
t = Ud

outs
d
t + bdout

(6)

where {Ud
in, Ure, U

d
h , U

d
out} ⊆ Φ. The weights associated with the input and hidden states of the

dth decoder head are denoted as Ud
in and Ud

h . Similarly, Ure and Ud
out denote the reparameterization

and output layer weights respectively. Âd denotes the dth row of the estimated causal matrix Â

representing the Granger causal graph. The nonzero entries in Âd are the cause variables of dth
variable.

Popular works on recurrent VAEs (Fabius & Van Amersfoort, 2014; Fraccaro et al., 2016; Goyal
et al., 2017) employ the same time segment in both the encoder and the decoder, which allows them
to encode future information in the recurrent structure. Thus, we have followed the idea proposed in
T-forcing (Williams & Zipser, 1989), and other predictive autoregressive models (Litterman, 1986;
Bengio et al., 2015), which make use of the actual data from the past in order to forecast the cur-
rent value in the sequence. Another characteristic which differentiates our model from the above
mentioned works is that our decoder possesses multiple heads, with the pth head being utilized to
approximate fp(·) in Equation (3). Subsequently, the complete vector array xt is constructed by
aggregating the outputs of all M heads. A concise explanation of the term DΘ(xR, EΦ(xL)) is that
it acquires the ability to estimate a collection of {fd(·)|p = 1, 2, · · · ,M}.

In order to further enhance the performance of sequence creation, an error compensation module is
utilized to approximate a complementary noise term ϵt in Equation (4), with an assumption that its
value cannot be inferred from its past observations. To implement, we have used another recurrent
variational autoencoder, parameterized by {ξ, ζ}, to estimate ϵT−τ :T . As it does not unravel the
estimated causal network Â, we employ the same sequence for both encoder and decoder functions.

4.2 OBJECTIVE FUNCTION

To estimate the causal matrix A during training, we have employed sparsification method exploited
in many recent causal discovery works (Liu et al., 2020; Tank et al., 2021; Marcinkevičs & Vogt,
2021). It imposes a sparsity-inducing penalty on Â, assuming that the actual causal matrix A is
sparse. Thus, we train our model using stochastic gradient descent and proximal gradients in order
to minimize the penalized objective function as below,

Lm(Θ,Φ) =

M∑
d=1

[EqΦ(z|xL)[logpΘ
(x̂R|xR, z)]] − DKL(qΦ(z|xL)||p(z)) + λR(Â) (7)
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Algorithm 1 Training pipeline of our proposed approach

Require: Time lag τ ; ISTA step size λ and learning rate γ; initialize models FΘ,Φ and Fξ,ζ ;
Input: The multivariate time series {xt}Tt=1 with M dimensions;
Output: Estimated Granger causal matrix Â and trained models FΘ,Φ and Fξ,ζ ;
1: while not converged or stopping criteria not met do
2: Extract xL = xT−2τ−1:T−τ−1 from {xt}Tt=1
3: Calculate the gradients of Lmcvx

4: Update FΘ,Φ using SGD
5: Update Uin using proximal operation (Equation 10)
6: end while
7: Stack Uin to obtain estimated causal matrix Â
8: Remove all zero edges in Uin following Â
9: while not converged or stopping criteria not met do

10: Update Fξ,ζ by minimizing Equation 8 using Adam
11: end while
12: return Â and trained models FΘ,Φ and Fξ,ζ

where xL, xR, x̂R denote the same as in Equation (4) and p(z) is a standard normal distribution.
The first component of the loss function is the mean squared error (MSE) loss, which encourages
the model to closely match the sample space. This is follwed by the KL divergence term, which
ensures that the latent space follows a Gaussian distribution. Lastly, a regularization term R(·) on
the estimated causal matrix Â, which promotes sparsity and is controlled by the hyper-parameter λ.
Similarly, the error compensation network is trained by minimizing the following,

Lϵ(ξ, ζ) = Eqζ(zϵ|ϵT−τ:T )(log pξ(ϵT−τ :T |zϵ)) − DKL(qζ(zϵ|ϵT−τ :T )||p(zϵ)) (8)

The updates made by Equation (8) does not affect the estimation of Â.

4.3 TRAINING PIPELINE AND OPTIMIZATION

The optimal selection for R(·) in Equation 7 is the l0 norm, which quantifies the amount of non-
zero components. However, the optimization of the l0 norm in neural networks remains a difficult
task. Therefore, we utilize the l1 norm, which transforms Equation 7 into a standard lasso problem.
The proximal gradient descent algorithm is often used for optimizing non-convex lasso objectives.
Iterative shrinkage thresholding algorithms (ISTA) (Daubechies et al., 2004; Chambolle et al., 1998)
with fixed step size are commonly used in practice. The thresholding feature in Ud

in results in precise
zero answers. More precisely, we begin the process of updating the weights Ud

in iteratively, starting
with the initial weights Ud

in(0) by following Equation 9.

Ud
in(i+ 1) = proxγ,λ(U

d
in(i)− γ∇Lmcvx

(Ud
in(i))), (9)

proxγ,λ(U
d
in) = Ud

in(1−
λγ

||Ud
in||F

)+ (10)

Here proxγ,λ(·) represents the proximal operator with a step size λ and γ is the learning rate. Lmcvx

refers to the convex component of the loss function, which corresponds to the first and second terms
in Equation 7. The proximal step for applying the group lasso penalty on the input weights involves
performing a group soft-thresholding operation on the input weights (Gong et al., 2013), which is
given in Equation 10. Here, ||x||F represents the Frobenius norm and (x)+ = max(0, x). During
the training process, three distinct optimization approaches are utilized: stochastic gradient descent
(SGD) on all parameters of main model, proximal gradient on the weights of the decoder input layers
(Ud

in) of the main model and Adam optimizer on the error compensation network. After training,
we can acquire the estimated causal matrix by stacking Ud

in. During prediction, we encode the past
observations in z and acquire the prediction error ϵ, for each dimension, of the first predicted value
from the last instance of past observation, and then input them into the decoders to build a time
series of any window length in a step-by-step manner. The overall training pipeline has been given
in Algorithm 1.
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4.4 DATASETS

We methodically assess the efficacy of our proposed approach in both causal discovery and time se-
ries forecasting using two extensively utilized synthetic causal time series datasets. This is followed
by applying our method to the real life OBD-II dataset. Later, we have shown that our approach
surpasses in causal forecasting, as compared to the baselines, when applied to OBD-II dataset.

Hénon maps: We choose 10 interconnected Hénon chaotic maps (Kugiumtzis, 2013), where the
actual causal relationship is xi−1 → xi. We create a total of 5,000 samples that comprise our
training and evaluation data.

Lorenz-96 model: The Lorenz model (Lorenz, 1996) is a nonlinear model used to simulate cli-
mate dynamics. We simulate a 10 dimensional (p=10) model with the forcing constant set as 10.
We generate 5,000 samples that comprise our training and evaluation data. The equations for data
generation and other details regarding synthetic causal sequences have been given in Appendix A.

OBD-II dataset: The OBD-II dataset (Rettore et al., 2016; 2018) is a real life dataset, which of-
fers real-time sensor data within the car, including Engine Load, Manifold Pressure, Fuel Trim, and
Engine RPM, as well as diagnostic trouble codes for the vehicle. The emission of an internal com-
bustion engine is closely correlated to its sensor data, such as RPM, load, throttle, and other factors.
Hence, the OBD-II data provides information, either directly or indirectly, on the emission charac-
teristics of a vehicle (Ortenzi & Costagliola, 2010). The details of the dataset and features selected
for the experiment have been discussed in Appendix B. The implementation setup details have been
given in Appendix E.

5 RESULTS AND EVALUATION

First, we compare and evaluate our proposed model with state-of-the-art causal discovery and tem-
poral generative models. This is followed by applying the same baselines of both the categories on
the OBD-II dataset.

(a) Ground Truth (b) LPCMCI (c) ACD (d) PCMCIΩ (e) NGC (f) Ours

Figure 3: Estimated causal matrices from the chosen baselines for causal discovery and our proposed
approach on Hénon maps. Wrongly identified causal relations have been highlighted using red
rectangles.

5.1 EVALUATION ON CAUSAL DISCOVERY

As a baseline for Granger causal discovery, we have chosen four popular methods : LPCMCI (Ger-
hardus & Runge, 2020), a constraint-based causal discovery algorithm for autocorrelated time se-
ries with latent confounders that iteratively refines conditioning sets by including causal parents to
improve the effect size of conditional independence tests and applies novel orientation rules for ac-
curate identification of causal and ancestral relationships; NGC (Tank et al., 2021), the first neural
network-based methods that actively and automatically extract causal relationships during the learn-
ing process; ACD (Löwe et al., 2022), a variational encoder-decoder framework that infers causal
graphs from time-series data by leveraging shared dynamics across samples with different under-
lying causal graphs, enabling efficient and scalable causal discovery without refitting for each new
sample; PCMCIΩ (Gao et al., 2024), a non-parametric, constraint-based algorithm that extends the
PCMCI framework to perform causal discovery in semi-stationary time series by detecting periodic
changes in causal mechanisms through conditional independence tests. In addition to these, we have
chosen three more causal discovery techniques closely relevant to our proposed approach, which
have been discussed in Appendix D.1 due to space constraint.
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(a) ScoreGrad (b) D3VAE (c) CSDI (d) Proposed

Figure 4: t-SNE visualizations on Hénon. Red samples represent actual time series xt:T−1 and blue
samples represent the forecasted time series x̂t+1:T .

In each technique, we assess the calculated causal adjacency matrices by comparing them to the
ground truth. We use the AUROC score as a quantitative indicator. When using neural network-
based methods, we choose the predicted causal matrices by searching for the minimum convex loss.
The hyperparameters of all learnable models are kept as mentioned in the respective works.

First part of Table 2 presents a concise overview and comparison of the quantitative results for
causal discovery. The performance of our model surpasses that of other baselines in all datasets
and is comparable to that of NGC. Figure 3 represents a qualitative comparison on Hénon maps
in terms of the estimated causal adjacency matrix. All the baselines perform well in discovering
self-cause; however, as compared to our proposed approach, they discover additional false causal
relations. Note that we have not reported any causal discovery results for the OBD-II dataset, as no
ground truth is available for this dataset.

(a) ScoreGrad (b) D3VAE (c) CSDI (d) Proposed

Figure 5: t-SNE visualizations on the OBD-II dataset. Red samples represent actual time series
xt:T−1 and blue samples represent the forecasted time series x̂t+1:T .

5.2 EVALUATION ON GENERATIVE TIME SERIES FORECASTING

As a baseline, we have chosen three baselines : ScoreGrad (Yan et al., 2021), a multivariate prob-
abilistic time series forecasting framework that leverages continuous energy-based generative mod-
els, integrating a time series feature extraction module with a conditional stochastic differential
equation-based score matching module to iteratively predict future states by solving reverse-time
SDEs; D3VAE (Li et al., 2022), a generative forecasting model that leverages a coupled diffusion
probabilistic process to augment time series data, multiscale denoising score matching to reduce
noise and improve accuracy, and disentangled latent representations to enhance interpretability and
robustness in forecasting; CSDI (Tashiro et al., 2021), which uses probabilistic forecasting, utiliz-
ing conditional denoising diffusion processes with self-supervised training and a two-dimensional
attention mechanism to model future time steps based on historical data while capturing temporal
and feature dependencies. We have modified their available implementations to generate, or rather
forecast, the future predictions by taking the encoded latent variable generated from the past obser-
vations. In addition to these, we have chosen three more methods which are relevant to our proposed
approach, which have been discussed in Appendix D.2 due to space constraint.

Initially, we assess the quality of the produced time series by subjectively evaluating both actual
and forecasted ones using t-SNE (Van der Maaten & Hinton, 2008) by projecting them into a 2-
dimensional space. An effective generative model is anticipated to promote the convergence of
probability distributions for both actual and generated data. Figure 4 clearly shows that our pro-
posed approach exhibits significantly higher overlap with the input data for Hénon maps as com-
pared to ScoreGrad and CSDI, and it performs somewhat better than D3VAE. Figure 5 shows the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

comparison when the methods are applied on OBD-II dataset. The predicted data can be seen cre-
ating clusters for all the approaches, however, in our proposed approach, the generated data clusters
show better overlap with each other as well as the input data, as compared to the chosen baselines.
Subsequently, we employ the maximum mean discrepancy (MMD) (Gretton et al., 2012) and root
mean square error (RMSE) to quantitatively assess the effectiveness of various techniques. More
precisely, MMD is employed to quantify the discrepancy between generated data and actual data.
If a generative model accurately represents the underlying transition dynamics of a real time series
(i.e., p(xt|x1:t−1)), it is predicted to have minimal prediction error. As shown in Table 2, our pro-
posed approach outperforms all the baselines in generative forecasting in terms of RMSE, while it
is slightly outperformed by D3VAE in terms of MMD for Lorenz-96 data.

Table 2: Quantitative comparison for causal discovery and forecasting. Best results have been given
in bold. The second best results have been underlined. In Simple RNN-based forecasting, LSTM
refers to the work of Singh & Dubey (2021).

Task Metric Model Hénon Lorenz-96 OBD-II

Causal
Discovery AUROC

LPCMCI 0.854 0.713 NA
NGC 0.961 0.961 NA
ACD 0.825 0.645 NA
PCMCIΩ 0.907 0.827 NA
Proposed 0.980 0.975 NA

Generative
Forecasting

MMD

ScoreGrad 0.395 0.109 3.225
D3VAE 0.127 0.015 1.856
CSDI 0.195 0.076 1.976
Proposed 0.119 0.019 1.839

RMSE

ScoreGrad 0.236 0.124 0.821
D3VAE 0.139 0.119 0.529
CSDI 0.165 0.158 0.676
Proposed 0.120 0.109 0.492

Simple
RNN-based
forecasting

RMSE LSTM 0.159 0.142 0.932
Proposed 0.120 0.109 0.492

MAE LSTM 0.136 0.129 0.816
Proposed 0.109 0.093 0.688

6 CONCLUSION

The study proposes a temporal causal recurrent framework that incorporates the principles of
Granger causality from the data during training and incorporates the knowledge during forecast-
ing. We have also shown how this model can be used for CO2 emission prediction for vehicles using
the open source real-life OBD-II dataset. We have performed experiments using two causal syn-
thetic dynamic systems, namely Hénon and Lorenz-96, widely used for temporal causal discovery
research. Our model has shown the lowest maximum mean discrepancy value for Hénon, the second
lowest value for Lorenz-96 and outperformed all the chosen baselines in terms of prediction root
mean square error. Furthermore, we trained all the baselines on OBD-II dataset and compared their
forecasting performance with the proposed model. Again, we have achieved lowest value of root
mean square error and mean average error.

Future temporal Granger causal discovery research should include unmeasured confounders affect-
ing known variables. Traffic and road conditions affect OBD sensor readings and the model’s CO2

emission predictions, subject to vehicle environment changes. Thus, to better understand predic-
tion algorithm outcomes from vehicular data, the recommended technique must be evaluated across
different vehicle types and conditions.
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A SYNTHETIC DATA GENERATION AND SPLITTING

Following these equations, we have generated the Hénon chaotic maps,

x1
t+1 = 1.4− (x1

t )
2 + 0.3x1

t−1, (11)

xd
t+1 = 1.4− (exd−1

t + (1− e)xd
t )

2 + 0.3xd
t−1, (12)

where d ∈ [2,M ], M is the dimensionality, e = 0.3 and d = 10. The true causal relations
xd → xd+1 and self causal relations xd → xd in the corresponding adjacency matrix should be 1.
The lag length has been taken as 2.

Similarly, we have used the following equations for simulating the M-dimensional Lorenz-96 chaotic
maps,

dxp
t

dt
= (xp+1

t − xp−2
t )xp−1

t − xp
t + F (13)

where x−1
t = xM−1

t , x0
t = xM

t , xM+1
t = x1

t , p is the index variable and F is the forcing constant
that dictates the degree of nonlinearity and chaos in the series.

We generated around 5000 samples for each dataset. For the Hénon and Lorenz-96 systems, we
sample initial values from a typical Gaussian distribution and then infer the trajectories via transition
functions.

(a) First 100 timesteps of Hénon

(b) First 200 timesteps of Lorenz-96

Figure 6: Visualization of the first 4 dimensions of the generated Hénon and Lorenz-96 datasets

The generated data is then divided into several chunks of consecutive timesteps. Each of the chunks
is considered as a single instance. We divide the set of instances into train and validation sets in
a ratio of 80:20. For all the experiments, we have taken the chunk size X1:T = 30. As shown in
Figure 2, each chunk is then divided into two parts, X1:τ−1 and Xτ :T−1 where τ = 15.

B DETAILS ON OBD-II DATASET

The OBD-II dataset was introduced in the work by Rettore et al. (2016). Mainly, the authors utilized
an OBD Bluetooth adapter and a smartphone to collect data from two vehicles, then analyzed the
correlation between RPM and speed data to ascertain whether it indicates the vehicle’s present gear.
The two cars belong to the same size category, although their manufacturers and engine power differ.
The OBD-II interface, extensively utilized, was developed to standardize the physical connection,
its pin configuration, signaling protocols, and message format. It is utilized for aftermarket mainte-
nance, granting access to engine trouble codes and describing mechanics about breakdowns across
the vehicle, therefore conserving significant time in diagnosing the source of issues.

The dataset contains around 43 features, including the car and driver identifiers, features directly
obtained from the OBD scanner, calculated features, and variables obtained by smartphone sensors
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such as GPS, Altitude and Air pressure. As our work focuses on vehicle sensor data, we have
manually removed the features other than those directly obtained from the OBD sensors. We leave
the investigation of causal effects of other variables in the dataset in CO2 emission as a future
work. The selected 15 OBD features, excluding the car identifier (Car ID), used in this work are
summarised in Table 3.

Table 3: Summarization of the OBD features used in our study

Feature name Description
Intake Air Temperature Temperature of the air utilized in the air-fuel combination.
Engine Temperature Current temperature of the engine coolant fluid.
Engine load Degree of stress or force exerted on an engine during operation.
Engine RPM Engine’s Revolutions per Minute.
Fuel flow Instantaneous usage of fuel by the engine.
Fuel level Current amount of fuel.
Instant Mileage Immediate fuel use per kilometer.
Average Mileage Average fuel use per kilometer for each log.
Speed Speed reading from odometer.
Ambient Temperature Temperature of air around the vehicle.
Air pedal Percentage, indicating how fully the pedal is pressed.
Acceleration Change of speed between two observations.
Air drag force Measure of aerodynamic resistance that opposes a vehicle’s motion.
Instant CO2 emission Instantaneous CO2 emission reading.
Average CO2 emission Average CO2 emission reading.

The total number of instances in the dataset is 91,794 in which, 81,095 instances come from vehicle 1
(Car ID = 1) and the rest of the 6,699 instances come from vehicle 2 (Car ID = 2). In our experiment,
we have used the instances of vehcile 1 exclusively as training set and that of vehicle 2 as validation
set.

C THEORETICAL ASPECTS OF CAUSAL INFERENCE

In order to complement our experiments using real-life OBD-II dataset with no causal ground truths
available, we delve deep into the theoretical aspects of the causal inference of our model. We have
imposed sparsification on Ud

in, the weights associated with the input to hidden states of the dth

decoder head. For a D dimensional time series dataset, we obtain the estimated causal adjacency
matrix ÂD×D by stacking all the Ud

in, where d ∈ D. This is followed by normalizing and threshold-
ing the values of the matrix, where the negative values are zeroed and positive values are retained as
1’s, converting it to a sparse square binary matrix.

In Â, the columns represent the ‘cause’ variables and the rows represent ‘effect’ variables. More
specifically, the 1’s in the dth column represent the variables, which are the ‘cause’ variables of the
dth variable. Similarly, the 1’s in the dth row represent the variables that are being affected by the
dth variable. From the generative forecasting point of view, the former is the essential one as for
generating each of the dimensions d at time step t, the dth column of Â filters out the variables
that are the ‘cause’ of the dth variable and incorporates their past observations in the generating
process of that specific dimension. Thus, our proposed methodology brings transparency during
data generation process by maintaining the cause-effect relationships between pair-wise variables.

D ADDITIONAL BASELINE COMPARISONS

In addition to the comparison with the recent state-of-the-art methods (§5.1 and §5.2), we have
chosen few other significant works closely related to our approach.
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D.1 CAUSAL DISCOVERY

For the task of causal discovery, we have chosen four popular methods : Kernel Granger Causality
(KGC) (Marinazzo et al., 2008), which utilizes the kernel trick to extend Granger causality from
linear to non-linear scenarios; Transfer Entropy (TE) (Schreiber, 2000), estimated using the matrix-
based Rényi’s α-order entropy functional (Giraldo et al., 2014); Temporal Causal Discovery Frame-
work (TCDF) (Nauta et al., 2019) incorporates an attention mechanism into a neural network. KGC
and TE utilize information-theoretic measures, that is, focusing on independence or conditional in-
dependence, and employ postprocessing techniques such as hypothesis testing. On the other hand,
TCDF and our proposed approach are neural network-based methods that actively and automatically
extract causal relationships during the learning process.

The quantitative comparison has been done in terms of AUROC, which has been shown in the
first part of Table 4. Figure 7 represents a qualitative comparison on Hénon maps in terms of the
estimated causal adjacency matrix. It is to be noted that Neural network-based methods significantly
outperform classical methods KGC and TE. This is because conventional methods lack the ability
to identify self-cause.

(a) Ground Truth (b) KGC (c) TE (d) TCDF (e) Ours

Figure 7: Estimated causal matrices from the additional baselines for causal discovery and our
proposed approach on Hénon maps. Wrongly identified causal relations have been highlighted using
red rectangles.

(a) TGAN (b) VRNN (c) VRAE (d) Proposed

Figure 8: t-SNE visualizations on Hénon. Red samples represent actual time series xt:T−1 and blue
samples represent the forecasted time series x̂t+1:T .

(a) TGAN (b) VRNN (c) VRAE (d) Proposed

Figure 9: t-SNE visualizations on OBD-II dataset. Red samples represent actual time series xt:T−1

and blue samples represent the forecasted time series x̂t+1:T .
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Table 4: Quantitative comparison for causal discovery and forecasting. Best results have been given
in bold. The second best results have been underlined.

Task Metric Model Hénon Lorenz-96 OBD-II

Causal
Discovery AUROC

KGC 0.462 0.635 NA
TE 0.465 0.410 NA
TCDF 0.905 0.870 NA
Proposed 0.980 0.975 NA

Generative
Forecasting

MMD

TGAN 0.475 0.039 2.109
VRNN 0.321 0.043 1.915
VRAE 0.125 0.011 1.877
Proposed 0.119 0.019 1.839

RMSE

TGAN 0.291 0.124 0.901
VRNN 0.179 0.129 0.618
VRAE 0.125 0.123 0.756
Proposed 0.120 0.109 0.492

D.2 GENERATIVE FORECASTING

For the generative forecasting task, we have chosen three baselines : Time-series generative adver-
sarial network (TGAN) (Yoon et al., 2019) is a type of generative adversarial network that incor-
porates transition dynamics within the GAN framework; variational RNN (VRNN) (Chung et al.,
2015) and variational recurrent autoencoder (VRAE) (Kingma, 2013). As these models are genera-
tive models, thus during inference, they generate data from a random noise sampled from a gaussian
distribution N ∼ (0, 1) (Brophy et al., 2023).

We assess the quality of the generated time series using t-SNE by projecting them into a 2-
dimensional space. Figure 8 and Figure 9 show the qualitative comparisons with the above men-
tioned methods on Hénon maps and the OBD-II dataset respectively. The quantitative comparison
has been done in terms of MMD and RMSE, which have been reported in the second part of Table
4.

E IMPLEMENTATION SETUP

The whole system has been implemented in PyTorch v2.4.0 with support of CUDA v12.5 and trained
on a single NVIDIA V100 GPU with 32GB VRAM. We have chosen single-layer LSTM (Schmid-
huber et al., 1997) for implementing the main causal recurrent model and the error compensation
model. We have set the value of λ in PGD as 0.1 and kept the default values of β1 and β2 in Adam,
which are 0.9 and 0.999, respectively. The maximum number of epochs is 2,000 and the learn-
ing rate γ has been set at 0.03. Additionally, we have incorporated Early stopping regularization
based on the validation loss, which stops the training if the validation loss does not decrease for 200
consecutive epochs.
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