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Abstract— Adaptive Virtual Fixtures (VFs) for teleoperation
often rely on visual inputs for online adaptation. State estima-
tion from visual detections is never perfect, and thus affects the
quality and robustness of adaptation. It is therefore important
to be able to quantify how uncertain an estimation from vision
is. This can, for example, inform on how to modulate a fixture’s
stiffness to decrease the physical force a human operator has
to apply. Furthermore, the target of a manipulation operation
might not be known from the beginning of the task, which
creates the need for a principled way to add and remove fixtures
when possible targets appear in the robot workspace. In this
paper we propose an on-manifold Mixture of Experts (MoE)
model that synthesizes visual-servoing fixtures while elegantly
handling full pose detection uncertainties and 6D teleopera-
tion goals in a unified framework. An arbitration function
allocating the authority between multiple vision-based fixtures
arises naturally from the MoE formulation. We show that
this approach allows a teleoperator to insert multiple printed
circuit boards (PCBs) with high precision without requiring the
manual design of VFs to guide the robot motion. An exemplary
video visualizing the probability distribution resulting from our
model is available at: https://youtu.be/GKMQvbJ5OzA

I. INTRODUCTION

Virtual Fixtures play an important role in shared control
as haptic aids by providing force feedback to the teleoperator
[1], [2]. For VFs defined in relation to an object to be
manipulated, it is important to track the pose of that object
to be robust to changes in the environment or to non-
static objects. In this regard, visual-servoing fixtures are
especially well suited as they enable online adaptation while
not requiring changes of the workpiece. Using vision, it is
possible to actively compensate for pose uncertainties that
cannot be anticipated or modeled a priori [3].

Despite their usefulness, defining VFs can be challenging,
particularly when vision is involved. On the one hand, object
poses may not be known with sufficient certainty in advance,
making it impossible to use constant fixtures that are de-
signed once and rarely change. On the other hand, many
external factors, such as lighting, are non-trivial to model
and may rapidly degrade teleoperation performance. Indeed,
imperfect visual measurements are a reality in robotics –
yet, we have to rely on them even though they might be
uncertain. This means that teleoperation systems that have
access to uncertainty measurements, and are able to assign
authority based on them, are better equipped to succeed in
challenging environments.
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Fig. 1: The teleoperation setup with haptic input device on the left and
remote device on the right side.

In this work we introduce a probabilistic Mixture of Ex-
perts (MoE) [4], [2] approach to automate the arbitration of
uncertain visual-servoing fixtures. First, a probability distri-
bution is used to quantify the uncertainty of a detected object
(Sections III-A and III-B). The parameters of this distribution
define the attractor point and precision of that object’s visual-
servoing fixture. To take the orientation into account, we use
the R3 × S3 Riemannian manifold (Section II-B).

In parallel, a gating function that depends on the robot end-
effector and object poses assigns importance to the different
objects and their fixtures resulting in a MoE that corresponds
to a multi-modal probability distribution (Section III-C). The
expectation of the VF under this distribution is used to
compute one main fixture that is applied to the robot. Thanks
to its probabilistic nature, this fixture can change dynamically
as the robot interacts with the environment. On the one
hand this approach handles the appearance/disappearance of
objects elegantly by weighing their importance against all
other objects’. As a consequence, the effort to design fixtures
by hand is minimal. On the other hand, it allows for smooth
transitions between fixtures, with the teleoperator’s freedom
of motion being guided by the fixtures’ uncertainties. This
is achieved by setting end-effector stiffness gains such that
higher control authority is given to the teleoperator in direc-
tions of high uncertainty (Section III-D).

We present preliminary results on an experimental setup
with a PCB connector assembly task (Section IV).

II. FUNDAMENTALS

A. Teleoperation System and Virtual Fixtures

We use the teleoperation system from [5] (Fig. 1). In
particular, we assume two gravity-compensated, impedance-
controlled manipulators where Cartesian wrenches wee ∈
R6 are commanded at the end-effector, with joint torques
computed as τ = J>wee [6]. Furthermore, the Cartesian
wrenches of remote and input robots are computed with

wee,remote = α (K∆x + D∆ẋ) + wVF (1)
wee,input = −αAdirwee,remote (2)
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where the adjoint Adir transforms wrenches from the remote
robot to the haptic input device which, in our case, is a
torque-controlled manipulator. The factor α scales motions
between both robots, ∆x and ∆ẋ corresponds to their
relative displacement and K, D, are positive definite constant
stiffness and damping gain matrices. The term wVF is the
wrench computed by the VF from1

wVF = KVF(xVF − xee), (3)

with the scaled stiffness matrix KVF (Section III-D). The
resulting wrench is applied to the end-effector of the remote
robot only while also being perceived by the user through
the coupling introduced by α. This formulation allows to
apply visual-servoing based VFs on the remote robot while
providing their effect as force feedback to the haptic input
device.

B. On-Manifold Probabilities

Object pose uncertainties appear both at position and
orientation levels. To be able to model both, we use an
on-manifold approach with Gaussian distributions [7], [8].
We use a pose defined as the product of the 3-dimensional
Euclidean space and the quaternion manifold, x ∈ R3 ×S3,
whose distribution is parameterized by a mean µ ∈ R3×S3
and a covariance matrix Σ ∈ R6×6 in the tangent space of
µ. Given a set of N pose samples, Maximum Likelihood
Estimation (MLE) [9] is achieved by computing the mean
iteratively with [7], [8]

∆ =
1

N

N∑
i=1

Logµxi (4)

µ← Expµ∆, (5)

and, upon convergence of (4)–(5), the covariance matrix

Σ =
1

N − 1

N∑
i=1

Logµ (xi)
>

Logµ (xi) . (6)

The logarithm function Logµ(.) maps points from the mani-
fold to the tangent space at µ. The exponential map Expµ(.)
maps a vector from the tangent space at µ onto the manifold.
Vectors in tangent space can be moved from one linearization
point to another using parallel transport which compensates
for different base vector orientations at different points
µ. Similarly to previous works, we rely on this property
to transport covariance matrices between different tangent
spaces.

III. APPROACH

Formally we assume that, at any moment, a number of
K ≥ 0 visual-servoing fixtures may be active, each trying
to bring the robot towards an object in its field of view
with different xVF. As the field of view changes with the
end-effector position, the number of active fixtures and their

1For the sake of the explanation we show the error term xVF − xee

using the Euclidean difference although, when x describes a full pose, the
computation is slightly different for the orientation part.

Fig. 2: Probabilistic target connector extraction by using multiple grayscale
thresholding values. Different thresholding values lead to “soft” borders (left
side, intermediate gray values) while the core of the connectors and the
outside, where all thresholding values give the same result, are uniformly
black respectively white. This results in different rectangles (right side).
Converted to 6DoF poses, we treat the grouped detections as samples from
a Gaussian distribution.

parameters depend on xee. Hence we treat each fixture as
a conditional distribution pk(xVF|xee) with k = 1, . . . ,K
that is computed from the uncertainty of the predicted poses
(Section III-A). To ensure smooth operation despite visual
noise Kalman filtering is used (Section III-B). When K > 1,
several fixtures pull the end-effector simultaneously. We
mitigate this issue by using a MoE to compute one single
distribution p(xVF|xee) from the K candidates (Section III-
C). With this distribution we are able to compute not only
an attractor point that drives the remote robot pose, but
also stiffness gains that regulate the required precision while
tracking it (Section III-D).

A. Probabilistic Target Connector Detection

Although the proposed approach remains general to any
type of object, in this work we focus on the use case of
CubeSat subsystem assembly [10]. In our previous work [5],
a fixed grayscale threshold was used to binarize the intensity
image I and extract targets using OpenCV [11] rectangle
extraction. Depending on illumination conditions and camera
settings, the optimal threshold differs. Furthermore, shadows
cast by the connectors make it very difficult to find a single
value for optimally extracting the target connector.

Using the idea of soft grayscale thresholds [12], [13] we
propose to extract potential target connectors on a symmetric
range of different grayscale values (Fig. 2)

T ∈ Tnom ± {∆T0,∆T1, . . . } (7)

around the nominal threshold Tnom with threshold incre-
ments ∆Ti. As shown in Algorithm 1, we group these ex-
tractions using their 2D coordinates (groupByXy), assigning
exactly one matching rectangle per grayscale threshold value.
Then, we convert them to 6D poses (convertTo6D) and, for
each connector k, treat them as set of Nk individual samples
drawn from a noisy measurement of the target. Using (4)–(6),
the MLE estimate of the samples is computed to approximate
pk(xVF|xee) = N (xVF|µk,Σk), where Σk provides a
measure of the uncertainty associated with a connector. As
final step of the detection, we associate new measurements
with already existing, tracked connectors based on their
distance. If no existing tracked connector is found, a new
tracking instance is created using the mean and covariance of
the measurement as initial state. In case a tracked connector
exists, we employ Kalman filtering for data fusion.



Algorithm 1 Probabilistic target connector detection on
grayscale image I(Hee) with threshold values Ti.

rects← empty list
for i in len(T ) do

B ← I > Ti
rects← rects + minAreaRects(B) . list append

end for
sorted rects← groupByXy(rects) . one rect per Ti
for k in len(sorted rects) do

6d det←Hee · convertTo6d(sorted rects[k])
µk ← mean(6d det) . Eqs. (4) and (5)
Σk ← covµk

(6d det) . Eq. (6)
end for

B. On-manifold Kalman Filtering

For fusing incoming measurements with the existing pose
estimate pk(µk,Σk) of a connector, we employ a Kalman
filter. As we assume static targets, the update equations
simplify to

µk,t|t−1 = µk,t−1 (8)
Σk,t|t−1 = Σk,t−1 +Q (9)

with the on-manifold state mean µ ∈ R3 × S3 and the
covariance Σ ∈ R6×6 as well as the process noise Q ∈ R6×6

in tangent space. Subscripts t denote the time step, k the
connector. Because our measurement and its covariance are
expressed in the same coordinates, the measurement equation
simplifies to the identity matrix. We thus arrive at a Gaussian
product [14], [15] which we solve iteratively using parallel-
transported covariance matrices [7] until convergence

Σk,t,i =
(
Σ−1k,t−1 + Σ−1k,m

)−1
(10)

µk,t,i = µk,t,i−1Expµk,t,i−1

(
Σk,t,i

(
Σ−1k,t−1Logµk,t,i−1

µk,t−1

+ Σ−1k,mLogµk,t,i−1
µk,m

))
. (11)

(.)k,t,i denotes quantities of the current state and next step,
(.)k,t,i−1 those of the previous iteration step. (.)k,t−1 is the
state of the previous step and (.)k,m the measurement.

C. On-Manifold Mixture of Experts

Having represented the uncertainty of candidate VFs in the
robot workspace with pk(xVF|xee), we express p(xVF|xee)
in a unified manner using a MoE model [4], [9], [2]

p(xVF|xee) =

K∑
k=1

ĥk(xee,µk)pk(xVF|xee). (12)

Our proposed gating function hk takes into account the
robot end-effector pose and the predicted expert locations
µk to compute an on-manifold, distance-based metric that
determines the influence of each expert through

hk(xee,µk) = exp

(
−1

2
λLogxee

(µk)
>

Logxee
(µk)

)
+ γ

(13)

where λ is a hyperparameter that regulates the influence of
nearby points and γ is a regularization factor that stabilizes
(12) numerically when far from the objects. We further
normalize ĥk(xee,µk) = hk(xee,µk)/

∑K
j hj(xee,µk) to

ensure that the value of the gating functions sums to 1.
Our chosen gating function shares connections with kernel
methods, where it can be seen as a linear combination of a
RBF kernel and a constant kernel [16], [17]. Equation (13)
ensures a peaked assignment when close to one connector
while assigning very similar weights when far from all
connectors. The factors λ and γ can be used to adjust the
gating function to the scale of the problem. A smaller λ
increases the peak while a smaller γ increases the distance
required to assign similar weights to all targets.

Despite unifying predictions from different experts, (12)
is by design multi-modal, which is not well-suited to our
VF implementation requiring a single attractor point. To
mitigate this issue we rely on the expectation and covariance
of xVF under p(xVF|xee). Since the experts are Gaussian,
the resulting distribution will be a uni-modal Gaussian. This
approximation is often referred to as moment matching, see
[18], [19] for derivations. Similarly to II-B, the mean is
computed iteratively, this time using the means of each expert
µk and their importance ĥk

∆ =

K∑
k=1

ĥkLogµVF
µk, µVF ← ExpµVF

∆. (14)

Subsequently, the covariance computation in Euclidean space
is modified to the manifold by using

ΣVF =

K∑
k=1

hk

(
ΣµVF

||µk
+ LogµVF

(µk)
T

LogµVF
(µk)

)
,

(15)
where ΣµVF

||µk
denotes Σk mapped from the tangent space of

µk to that of µVF using parallel transport. Under (14), we
use µVF as the attractor point in (3). Moreover, due to our
choice of hk, (15) matches Σk in the vicinity of connector k,
increasing as the end-effector moves away. For this reason,
we use ΣVF to design stiffness gains that regulate the control
precision associated with each fixture.

D. Variable Stiffness Control

We use the precision matrix PVF = Σ−1VF to scale the
stiffness of the resulting visual servoing fixture. For this, the
elements of KVF are set elementwise

KVF,ij = Kijmin (max (η (Pij − κ) , 0) , 1) (16)

where Pij is the entry of PVF at indices i, j. Precision
entries < κ result in zero fixture stiffness and precision
entries > 1

η + κ in full stiffness. Values in between are
linearly scaled. With this gain design we ensure that direc-
tions that have larger variance allow for more freedom to
the teleoperator, while directions with low variance are more
strict in enforcing the visual-servoing fixture.

Using human prior knowledge that the insertion is per-
formed in z-direction, we do not generate forces along the



A

(a) End-effector close to one connector.

B

(b) End-effector in-between two connectors. (c) End-effector far from the board.

Fig. 3: Probabilistic visual-servoing fixture estimation. White spheres represent the position of detected connectors with their orientation shown as coordinate
frames. The small yellow ellipsoids are the Gaussian distributions associated with each connector, which represent their uncertainty, acting as individual
candidate fixtures to drive the robot end-effector (the so-called experts in our approach). The purple ellipsoid depicts the 3D Gaussian distribution that
represents the main VF in position space. The mean of this distribution is highlighted by the green sphere, making the location of the end-effector attractor
point clear. Finally, the blue sphere is added for clarity and it shows the 3D end-effector position projected on the horizontal plane.

Fig. 4: As the orientation also influences the distance function, the
probability of the left connector is higher, despite the end-effector being
closer to the right one.

z axis. When there are no tracked detections (K = 0), we
do not output a force. Both could also be represented in the
experts themselves respectively by an additional expert; for
simplicity reasons we however resort to explicitly program-
ming these properties.

IV. EVALUATION AND DISCUSSION

In this section we report preliminary results on the pro-
posed approach. We evaluate our method on the use case
of CubeSat subsystem assembly [10]. We empirically set
λ = 1× 104, γ = 1× 10−20, κ = 3× 103, η = 1× 10−6.

Fig. 3 shows different end-effector poses and the resulting
estimated Gaussian, according to (14)–(15), given the visual-
ized detections. The obtained results show that the proposed
probabilistic fixture gives a strong positional and rotational
guidance to the user when close to one target as illustrated
by the small purple ellipsoid A in Fig. 3a. Despite the
strong guidance the user is able to ‘escape’ the fixture and
switch to a different connector as seen in Fig. 3b. Notice the
large variance of the purple Gaussian in the direction of the
connectors B . This is because our choice of gating function
influences the MoE model to combine the experts based
on distance. Thanks to our variable stiffness formulation
(Section III-D), this results in a decreased stiffness along
that direction, facilitating the transition. When far away (e.g.
above the backplane PCB, Fig. 3c), the user can not only
displace the end effector in the xy plane but also rotate the
end effector freely around the z axis. This provides a flexible
way for the teleoperator to prepare for new insertions.

Fig. 4 shows the effect of including the orientation in
the distance function. As seen from the position of the blue
sphere, the closest connector is the right-most one. However,

TABLE I: MANIPULATION TIME AND FORCE / TORQUE VALUE
COMPARISON, QUANTITIES IN BRACKETS DENOTE THE VARIANCE.

Method Manipulation time [s] Force [N] Torque [Nm]
Previous [5] 8.92 (5.45) 11.03 (5.25) 0.144 (0.01)

MoE approach 11.73 (16.01) 7.93 (4.62) 0.172 (0.01)

due to the large difference in orientation, our model knows
that the most likely target is the left-most connector, thus
pulling the robot towards it (green sphere as attractor).

In order to obtain a preliminary comparison with our
previous method [5], an experienced user performed five
plugging trials for three of the connectors with both the pre-
vious method and the approach described in this paper. The
completion times and forces are summarized in Section IV.
The results suggest that with the new method, we do also
achieve good support for an experienced teleoperator, which
can be seen by similar manipulation time and force/torque
values. The advantage of the proposed approach, however, is
in the fact that there is no need to program fixtures to guide
the robot to the connectors manually as our model allows
the user to select the target automatically.

V. CONCLUSION

We proposed an approach based on a mixture of experts
model to automatically detect and arbitrate visual-servoing
fixtures in shared control. Our results show that with our
method we could obtain a natural arbitration of multiple
targets and extract a meaningful covariance that was used
to modulate the end-effector stiffness further facilitating
teleoperation. The experimental evaluation shows that the
method supports the plugging of CubeSat subsystems into
multiple possible target connectors, providing guidance as
well as giving the user the choice of different possible targets.

In future work, we plan to extend our method to incor-
porate position-based VFs to profit from the multi-phase
guidance capabilities of our previous approach [5].
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Albu-Schäffer, “AI-In-Orbit-Factory - AI approaches for adaptive
robotic in-orbit manufacturing of modular satellites,” in Proceedings
of the International Astronautical Congress, IAC, 2021.

[11] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[12] C. Gillmann, P. Arbelaez, J. T. Hernandez, H. Hagen, and T. Wischgoll,
“An uncertainty-aware visual system for image pre-processing,” Jour-
nal of Imaging, vol. 4, no. 9, 2018. doi: 10.3390/jimaging4090109

[13] C. Dalitz and H. Niederrhein, “Soft thresholding for visual image
enhancement,” Hochschule Niederrhein, Fachbereich Elektrotechnik
und Informatik, Tech. Rep., 2014.

[14] T. D. Barfoot and P. T. Furgale, “Associating uncertainty with three-
dimensional poses for use in estimation problems,” IEEE Transactions
on Robotics, vol. 30, no. 3, pp. 679–693, 2014. doi: 10.1109/TRO.
2014.2298059

[15] E. Eade, “Lie groups for 2d and 3d transformations,” Tech. Rep., 2013.
[16] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for

machine learning. MIT Press, 2006.
[17] D. Duvenaud, “Automatic model construction with Gaussian pro-

cesses,” Ph.D. dissertation, 2014.
[18] S. Calinon, “A tutorial on task-parameterized movement learning and

retrieval,” Intelligent service robotics, vol. 9, no. 1, pp. 1–29, 2016.
[19] H. G. Sung, “Gaussian mixture regression and classification,” Ph.D.

dissertation, 2004.

http://dx.doi.org/10.1162/neco.1991.3.1.79
http://dx.doi.org/10.1109/LRA.2017.2657001
http://dx.doi.org/10.1109/MRA.2020.2980548
http://dx.doi.org/10.1109/MRA.2020.2980548
http://dx.doi.org/10.3390/jimaging4090109
http://dx.doi.org/10.1109/TRO.2014.2298059
http://dx.doi.org/10.1109/TRO.2014.2298059

	Introduction
	Fundamentals
	Teleoperation System and Virtual Fixtures
	On-Manifold Probabilities

	Approach
	Probabilistic Target Connector Detection
	On-manifold Kalman Filtering
	On-Manifold Mixture of Experts
	Variable Stiffness Control

	Evaluation and Discussion
	Conclusion
	References

