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Abstract001

Current temporal knowledge graph question002
answering (TKGQA) methods primarily focus003
on implicit temporal constraints, lacking004
the capability of handling more complex005
temporal queries, and struggle with limited006
reasoning abilities and error propagation in007
decomposition frameworks. We propose008
RTQA, a novel framework to address these009
challenges by enhancing reasoning over TKGs010
without requiring training. Following recur-011
sive thinking, RTQA recursively decomposes012
questions into sub-problems, solves them013
bottom-up using LLMs and TKG knowledge,014
and employs multi-path answer aggregation015
to improve fault tolerance. RTQA consists of016
three core components: the Temporal Question017
Decomposer, the Recursive Solver, and the018
Answer Aggregator. Experiments on MultiTQ019
and TimelineKGQA benchmarks demonstrate020
significant Hits@1 improvements in "Multiple"021
and "Complex" categories, outperforming022
state-of-the-art methods.023

1 Introduction024

In the real world, entities and relationships025

evolve dynamically, making Temporal Knowledge026

Graphs (TKGs) with time-aware quadruples more027

challenging yet practically significant for Question028

Answering (QA) compared to static Knowledge029

Graphs (KGs). For instance, the question "Who is030

the US President in 2025?" can be answered using031

the quadruple (Trump, president of, United States,032

2025), representing a simple temporal query.033

Recent TKGQA research targets complex034

queries, including implicit temporal constraints,035

multi-constraint combinations, multi-hop reason-036

ing, and multi-granular time, as exemplified by037

the question in Figure 1: "Before Kuwait, which038

country received the Government Delegation of039

North Korea’s visit last?" Such queries are highly040

relevant to real-world applications.041

Question:  Before Kuwait, which country received the Government 
Delegation of North Korea's visit last? 

LLM only

(Response): To determine which country received the Government Delegation of North Korea's visit 
before Kuwait, we need to follow the chronological order of the delegation's visits. 
So the answer is:  Country visited immediately before Kuwait, e.g., "United Arab Emirates"

United Arab Emirates

LLM + TKG Laos

(Retrieved Facts): [Kuwait, Host a visit, Government Delegation (North Korea), 2014-06-04].  
[Government Delegation (North Korea), Make a visit, Kuwait, 2014-06-04]……
(Response): The last visit by the Government Delegation of North Korea before Kuwait's visit was to 
Laos on 2014-08-07. So the answer is: Laos.

+

Implicit 
Handle

Vietnam

(Implicit question -> Explicit question): Before 2014-06-04, which country……
(Responce): From the historical facts, the last recorded visit of the Government Delegation of 
North Korea before visiting Kuwait on 2014-06-04 was to Vietnam on 2014-08-02. So the answer is: 
Vietnam.

++

RTQA South Korea

Root:  Before Kuwait, which country received the 
Government Delegation of North Korea's visit last? 

Sub[1]: When did Kuwait 
receive the Government 

Delegation of North 
Korea's visit?

Answer: 2014-06-04

Sub[2]: Before #1, which country 
received the Government 

Delegation of North Korea's visit?
Answer: China 2006-02-04, 
  South Korea 2006-06-14

Sub[3]: Which country was 
the last one among them?

Answer: South Korea 

(a)

(b)

(c)

(d)

Figure 1: Motivation comparison: Prior methods (a–
c) fail at multi-constraint reasoning, while (d) RTQA
solves it via recursive sub-question decomposition.

While prior works have focused on simple (Sax- 042

ena et al., 2021; Mavromatis et al., 2022) or implicit 043

temporal questions (Chen et al., 2022; Qian et al., 044

2024; Jia et al., 2024), the integration of Large 045

Language Models (LLMs) into TKGQA offers 046

new opportunities due to their excellent reasoning 047

ability. However, two key challenges persist: 048

(1) Limited reasoning for complex temporal 049

queries. LLMs often hallucinate when addressing 050

intricate questions. As shown in Figure 1(a), 051

relying solely on internal knowledge yields 052

incorrect answers like "United Arab Emirates". 053

(b) Incorporating TKG facts resolves simpler 054

queries but fails to handle implicit constraints 055

like "before Kuwait", producing errors such as 056

"Laos". (c) Single-round question rewriting 057

converts implicit constraints to explicit timestamps 058

(e.g., "before 2014-06-04"), but struggles with 059

combined constraints like "before/last", leading 060

to incorrect answers like "Vietnam". Developing 061
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frameworks for multi-fact and multi-constraint062

temporal reasoning remains critical.063

(2) Error propagation in decomposition064

frameworks. Existing methods lack fault toler-065

ance, allowing sub-question errors to propagate.066

For example, in Figure 2(b), the query "When067

Stalin ended his leadership in his own country,068

what job did Churchill work for?" is decomposed069

into sub-questions: "Stalin was the leadership of070

which country?" yields "Soviet Union", followed071

by "When was Stalin end his leadership in072

#11?" answered incorrectly as "1929", leading073

to the erroneous final answer "Chancellor of the074

Exchequer" for "When #22, what job did Churchill075

work for?". Addressing error propagation issues076

and building more robust frameworks that enhance077

fault tolerance in LLM reasoning or fact retrieval078

processes represents another significant challenge.079

To address these challenges, we introduce080

RTQA (Recursive Temporal Knowledge Graph081

Question Answering), a novel TKGQA framework082

that decomposes complex temporal questions into083

sub-questions and performs recursive bottom-up084

reasoning. By integrating external knowledge from085

TKGs, RTQA enhances LLMs’ ability to tackle086

intricate temporal queries.087

Following a divide-and-conquer strategy, RTQA088

mimics human problem-solving by breaking down089

complex questions into manageable parts. As090

shown in Figure 1(d), a question is split into three091

sub-questions: extracting implicit time, applying a092

“before” constraint, and applying a “last” constraint.093

The answer to Sub[1] (“2014-06-04”) informs094

Sub[2], which generates entity-time pairs (e.g.,095

“China 2008-02-04, South Korea 2006-06-14”)096

satisfying the “before #1” constraint. Sub[3] then097

selects the entity that meets the “last” constraint,098

producing the final answer, “South Korea”.099

To reduce error propagation in sub-questions, we100

designed a multi-path answer aggregation module101

that combines answers from both sub-questions102

and the original question, selecting the most103

reliable response. As illustrated in Figure 2(a),104

we define IR_answer and child_answer. Atomic105

questions (sub[3], sub[4]) rely on a single answer106

source, while non-atomic questions (sub[1], sub[2],107

Root) aggregate multiple sources. For instance,108

when sub[4] incorrectly outputs “1929,” sub[1]’s109

1#1 is a placeholder for the answer “Soviet Union” to
Sub[1]: “Which country did Stalin lead?”

2#2 is anather placeholder, representing the answer "1929"
to the Sub[2]: "When was Stalin end his leadership in #1?"

IR_answer: 1953
Child_answer: 1929
Answer: 1953

Root: When Stalin end his leadership in his own 
country, what job did Churchill work for?

IR_answer: Chancellor of the Exchequer
Child_answer: the Prime Minister of the United Kingdom
Answer: the Prime Minister of the United Kingdom

Sub[1]: When was Stalin end 
his leadership in his own country?

Sub[2]: When #1,what 
job did Churchill work for?

IR_answer: the Prime Minister 
of the United Kingdom
Answer: the Prime Minister of 
the United Kingdom

Sub[3]: Stalin was the 
leadership of which country?

IR_answer: the Soviet Union
Answer: the Soviet Union

Sub[4]: When was Stalin 
end his leadership in #3?

IR_answer: 1929
Answer: 1929

Sub[1]: Stalin was the 
leadership of which country?

IR_answer: the Soviet Union
Answer: the Soviet Union

Sub[2]: When was Stalin 
end his leadership in #1?

Child_answer: 1929
Answer: 1929

Sub[3]: When #2,what job did 
Churchill work for?

Child_answer: Chancellor of the Exchequer
Answer: Chancellor of the Exchequer

Root: When Stalin end his leadership in his 
own country, what job did Churchill work for?

Child_answer: Chancellor of the Exchequer
Answer: Chancellor of the Exchequer

(a) RTQA (b) Only child

Figure 2: Comparison of RTQA and Only-Child strate-
gies. RTQA mitigates error propagation by integrating
child_answer with IR_answer, while Only-Child relies
solely on child_answer, compounding earlier errors.

IR_answer correctly identifies “1953,” preventing 110

error propagation and ensuring the accurate final 111

answer, “the Prime Minister of the UK” instead of 112

the wrong “Chancellor of the Exchequer.” 113

We conduct extensive experiments on two chal- 114

lenging TKGQA benchmarks. RTQA consistently 115

outperforms state-of-the-art methods, with notable 116

gains in the "Multiple" and "Complex" categories. 117

Our main contributions are summarized as follows: 118

119

• We introduce a framework that recursively 120

decomposes complex temporal questions into 121

sub-questions, reasoning bottom-up to derive 122

accurate answers. 123

• We aggregate answers from multiple sources 124

for each question original, intermediate, 125

atomic, mitigating error propagation and 126

enhancing framework robustness. 127

• Our training-free, plug-and-play approach 128

requires no computational overhead, adapts 129

to various large models, and demonstrates 130

significant performance gains in complex 131

temporal question answering. 132

2 Related Work 133

2.1 TKGQA 134

TKGQA methods can be categorized into semantic 135

parsing-based approaches and embedding-based 136

approaches, with a recent emergence of methods 137

leveraging large language models. 138

Semantic Parsing-based methods Semantic 139

parsing-based methods convert natural language 140

questions into logical expressions to query 141

TKGs, as seen in TEQUILA (Jia et al., 2018), 142

SYGMA (Neelam et al., 2021), SF-TQA (Ding 143

et al., 2022), and Prog-TQA (Chen et al., 144
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2024b). These approaches offer high accuracy145

when queries are well-formed but struggle with146

complex questions due to syntax errors in logical147

expressions, leading to query failures.148

Embedding-based Methods TKG Embedding-149

based methods encode questions and TKG quadru-150

ples as low-dimensional vectors, ranking answers151

by vector semantic similarity. CronKGQA (Saxena152

et al., 2021) introduces learnable reasoning,153

TempoQR (Mavromatis et al., 2022) enhances154

embeddings with contextual and temporal modules,155

and MultiQA (Chen et al., 2023) aggregates156

multi-granular time information. Other approaches157

incorporate graph neural networks (Jia et al., 2024;158

Liu et al., 2023; Sharma et al., 2023). These159

methods ensure high execution rates but can only160

handle simple questions and perform poorly on161

complex temporal questions.162

LLM-based Methods Recent LLM-based ap-163

proaches, such as ARI (Chen et al., 2024c),164

GenTKGQA (Gao et al., 2024), FAITH (Jia et al.,165

2024), and TimeR4 (Qian et al., 2024), leverage166

LLMs for TKGQA. Unlike these methods, which167

often require retraining, our RTQA framework is168

training-free and plug-and-play, handling complex169

queries with multiple entities, multi-hop reasoning,170

and compound temporal constraints while main-171

taining compatibility with various LLMs.172

2.2 Question decomposing173

Question decomposition emulates human problem-174

solving by breaking complex queries into simpler175

sub-questions, a strategy effective for multi-hop176

reasoning in KGQA (Cao et al., 2022; Khot177

et al., 2023; Trivedi et al., 2022; Cao et al.,178

2023). However, existing approaches inadequately179

address temporal questions, necessitating advanced180

frameworks like RTQA.181

3 Preliminary182

Temporal constraint defines a condition related to183

a specific time point or interval that must be met by184

both the answer and its supporting evidence. This185

includes 13 Allen temporal relations (Allen, 1984),186

3 temporal set relations, duration comparisons, and187

sorting mechanisms (Sun et al., 2025).188

TKG A temporal knowledge graph G =189

{E ,P, T ,F} is a directed graph where vertices190

are a set of entities E . The edges are a set of191

predicates P with timestamps T . The quadruple192

set F = {(s, p, o, t) | E × P × E × T } represents 193

the temporal facts, where s and o are subject and 194

object, respectively, and p is the predicate between 195

s and o at timestamp t. 196

TKGQA is a task to infer the correct answer to a 197

natural language question q ∈ Q based on relevant 198

quadruples f = (s, p, o, t) in the TKG, where the 199

answer can be either an entity name or a timestamp. 200

4 Method 201

4.1 Method Overview 202

Inspired by the divide-and-conquer principle, 203

RTQA enables efficient handling of complex 204

temporal dependencies. As shown in Figure 3, 205

Temporal Question Decomposer (Section 4.2) 206

firstly transforms complex temporal questions into 207

a series of simpler sub-questions by identifying 208

implicit temporal constraints (e.g., "before", 209

"last") and converting them into explicit temporal 210

expressions. It also extracts relevant multi-hop 211

facts and temporal granularity information. For 212

example, the question “Before Kuwait, which 213

country received the Government Delegation of 214

North Korea’s visit last?” is decomposed into 215

three sub-questions: (1) When did Kuwait receive 216

the visit? (2) Which countries received the visit 217

before #1? (3) Which was the latest among them? 218

Next, Recursive Solver (Section 4.3) leverages 219

the reasoning ability of LLMs and the factual 220

knowledge from the TKG to recursively solve 221

sub-questions in a bottom-up manner. The resulting 222

answers are used to replace placeholders in 223

parent questions, forming a progressive reasoning 224

chain. For instance, the answer “2014-06-04” to 225

sub-question (1) serves as the temporal reference 226

for sub-question (2), which then filters out earlier 227

visits, and sub-question (3) selects the latest one 228

from the filtered list. This recursive approach 229

effectively handles both implicit and compound 230

temporal constraints. Finally, Answer Aggregator 231

(Section 4.4) consolidates results, evaluating 232

candidates (e.g., "South Korea" vs. "Vietnam") to 233

ensure accuracy and robust fault tolerance. 234

4.2 Temporal Question Decomposer 235

The goal of this stage is to decompose a complex 236

temporal question Q into a series of sub-questions 237

T , where Q is the root node in T . Basically, as 238

shown in Figure 3, the query tree is generated by 239

LLMs with few-shot prompting. 240

The question decomposition process can be 241

3



Before Kuwait, which 
country received the 

Government 
Delegation of North 
Korea's visit last? 

Q1: When did Kuwait 
receive the Government 

Delegation of North 
Korea's visit?

Q2: Before #1, which 
country received the 

Government Delegation 
of North Korea's visit?

Q3: Which country was 
the last one among them?

Q1: When did Kuwait receive the Government Delegation of 
North Korea's visit?
Facts:  (Kuwait, Host a visit, Government Delegation (North 
Korea), 2014-06-04)…
IR_Answer: 2014-06-04.

Q2: Before 2014-06-04, which country received the 
Government Delegation of North Korea's visit?
Facts: (China, Host a visit, Government Delegation (North 
Korea), 2006-02-04)…
IR_Answer: China 2006-02-04, South Korea 2006-06-14.

Q3: Which country was the last one among them?
Facts: China 2006-02-04, South Korea 2006-06-14.
IR_Answer: South Korea.

Root question: 
Before Kuwait, which 
country received the 
Government 
Delegation of North 
Korea's visit last? 
Facts: (Kuwait, 
Host a visit, 
Government 
Delegation (North 
Korea), 2014-06-04)… 
IR_Answer: Vietnam 
2014-08-02. 
Child_answer: Sourth
Korea

Input
TKG

Retriever
You are an expert in 

question decomposition.

Temporal Question Decomposer Recursive Solver Answer Aggregator

Output

Recursive forward reasoning                    Recursive backtracking

Figure 3: An illustration of the RTQA framework applied to a complex temporal question. The framework consists
of three stages: (I) Temporal Question Decomposer, which breaks down the original query into sub-questions
with explicit temporal constraints; (II) Recursive Solver, where each sub-question is solved using an LLM and
retrieved TKG facts; and (III) Answer Aggregator, which integrates the sub-answers to produce the final answer.
The reasoning process follows a bottom-up recursive traversal from the root of the decomposition tree, enabling
robust aggregation of intermediate results.

formalized as a sequence of transformations242

applied to an input question Q. Let the instruction243

template be denoted as I, and the question type244

as τ = Type(Q), where Type(·) is the type245

identification function. The prompt is constructed246

and the LLM response is obtained as follows:247

p← BulidPrompt(Q, τ, I), (1)248

rllm ← LLMCaller(Q, p), (2)249

where BuildPrompt(·) denotes the prompt con-250

struction function, and LLMCaller(·) represents251

the LLM call function. The structured response is252

then parsed, and the temporal decomposition tree253

is constructed:254

S ← ParseStruct(rllm), (3)255

T ← BuildTree(S), (4)256

where ParseStruct(·) extracts structured elements257

from the LLM output, and BuildTree(·) organizes258

them into a hierarchical decomposition tree T .259

Each node qi ∈ T contains: (i) a node index260

idx, (ii) the question text question_text, (iii)261

a list of child nodes sons, (iv) the parent node262

index fa, (v) metadata including the question263

type label qlable, and (vi) the gold_answer.264

This structure maintains hierarchical and semantic265

fidelity throughout the reasoning process.266

The construction of the prompts is tailored267

to various types of temporal questions. For each268

type, 5–10 question examples are carefully selected269

from the validation set, with their sub-question 270

decompositions manually crafted. The specific 271

prompts constructed for each category, along 272

with their corresponding decompositions, are 273

illustrated in the Figure 6, 7, 8, 9, provided in the 274

Appendix C.1 for more details. 275

4.3 Recursive Solver 276

Recursive solving process. We adopt a recursive 277

post-order traversal to solve the query decompo- 278

sition tree, starting from the root and proceeding 279

in a bottom-up manner. The solver is formalized 280

as a unified recursive function Solve(qi, T ,R, θ), 281

whereR denotes the retriever for TKG grounding, 282

and θ denotes the reasoning LLM. 283

For a leaf node qi ∈ T , the solver first retrieves 284

relevant facts from the TKG and then invokes the 285

LLM to generate an answer, as defined below: 286

F i ← Retrieve(qi,R), (5) 287

ai ← Reason(qi,F i, θ). (6) 288

For a non-leaf node qi, the solver recursively 289

processes each child qcj ∈ sons(qi), where j = 290

1, . . . , n and n is the number of sub-questions. For 291

the first child, the answer is computed directly: 292

qc1updated ← qc1 , (7) 293

ac1 ← Solve(qc1updated, T ,R, θ). (8) 294

Subsequent questions are updated by replacing 295
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placeholders (e.g., #k) with prior answer ak:296

qc2updated ← Replace(qc2 , {ac1}), (9)297

ac2 ← Solve(qc2updated, T ,R, θ), (10)298

... (11)299

qcnupdated ← Replace(qcn , {ac1 , . . . , acn−1}), (12)300

acn ← Solve(qcnupdated, T ,R, θ), (13)301

where {ac1 , . . . , acj−1} denotes answers from prior302

sub-questions used for reference replacement.303

After solving all sub-questions, the final answer304

of this non-leaf node qi is aggregated via a305

summary function:306

aichild = Summarize(qi, {ac1 , . . . , acn}). (14)307

This recursive procedure ensures consistent resolu-308

tion of complex temporal queries across all levels309

of the tree.310

Relevant Facts Retriever. The quadruples311

or quintuples in TKG are converted into natural312

language statements in the following two forms:313

{subject} {predicate} {object} in {time}
{subject} {predicate} {object} from {start} to {end}

314

The statements are then embedded using a dense315

encoder along with input question. The top-K most316

relevant facts are retrieved based on similarity.317

Explainable reasoning with LLM. The RTQA318

framework employs a post-processing module319

to distill concise, standardized answers from320

LLM outputs. Step-by-step reasoning, guided321

by precise instructions, ensures transparency by322

preserving the full inference chain, a hallmark323

of RTQA’s interpretability. The LLM concludes324

with a structured summary, So the answer is:,325

enabling reliable extraction of the final entity or326

timestamp while retaining the reasoning for clarity.327

The prompts driving this process are detailed in328

Appendix C.2 Figure 10, 11.329

Time Expression Standardization. Before330

invoking the recursive solver, all time expressions331

are standardized to the ISO 86013 format332

(yyyy-mm-dd). This preprocessing step ensures333

consistent handling of temporal references across334

different granularities (year, month, day), address-335

ing the variability in natural language expressions336

and improving the accuracy of temporal reasoning.337

3https://www.iso.org/
iso-8601-date-and-time-format.html

4.4 Answer Aggregator 338

The aggregator selects the most plausible final 339

answer by fusing two candidates: aiIR and aichild. 340

Specifically, aiIR is produced by retrieving relevant 341

TKG facts and applying LLM reasoning. aichild 342

aggregates answers from the child nodes of the 343

query tree. In cases of ambiguity, the aggregator 344

leverages the original query context to choose the 345

most appropriate answer, ensuring alignment with 346

user intent. The detailed prompt design for this 347

aggregation process is provided in Appendix C.3 348

Figure 12. This process is formalized as: 349

aifinal = Aggregator(aiIR, a
i
child). (15) 350

In conclusion, the answer aggregator serves as a 351

critical module to prevent errors from propagating 352

upstream by selecting one of three answer sources 353

as the final answer. 354

5 Experiment 355

5.1 Experimental Setup 356

Datasets We evaluate RTQA on two challenging 357

TKGQA benchmarks: MULTITQ (Chen et al., 358

2023) and TIMELINEKGQA (Sun et al., 2025). 359

MULTITQ offers large-scale QA pairs with diverse 360

temporal granularities, while TIMELINEKGQA 361

covers questions with varying complexity and time 362

formats. The test sets contain 54,584 and 8,344 363

questions, respectively. Detailed statistics and 364

category distributions are provided in Appendix A. 365

Baselines We compare RTQA against three 366

types of baselines on MULTITQ: (1) Pre-trained 367

LMs, including BERT (Devlin et al., 2019), 368

DistillBERT (Sanh et al., 2019), ALBERT (Lan 369

et al., 2020), LLaMA2 (Touvron et al., 2023), 370

and ChatGPT; (2) TKG embedding-based meth- 371

ods, including EmbedKGQA (Saxena et al., 372

2020), CronKGQA (Saxena et al., 2021), and 373

MultiQA (Chen et al., 2023); (3) LLM-based 374

methods, including ARI (Chen et al., 2024c) and 375

TimeR4 (Qian et al., 2024). For TIMELINEKGQA, 376

due to its complexity, existing embedding-based 377

models are not directly applicable. Following (Sun 378

et al., 2025), we adopt a Retrieval-Augmented 379

Generation (RAG) baseline. 380

Implementation Details We used the OPENAI 381

API (gpt-4o-mini4) for temporal question decom- 382

4https://platform.openai.com/docs/models/
gpt-4o-mini
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Table 1: Performance comparison of baselines and RTQA on Hits@1 and Hits@10 across various question types and
answer types on MultiTQ testset. The best and second best results are marked in bold and underlined, respectively.

Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type

Multiple Single Entity Time Multiple Single Entity Time

BERT 0.083 0.061 0.092 0.101 0.040 0.441 0.392 0.461 0.531 0.222
DistillBERT 0.083 0.074 0.087 0.102 0.037 0.482 0.426 0.505 0.591 0.216
ALBERT 0.108 0.086 0.116 0.139 0.032 0.484 0.415 0.512 0.589 0.228
LLaMA2 0.185 0.101 0.220 0.239 0.055 - - - - -
ChatGPT 0.102 0.077 0.147 0.137 0.020 - - - - -

EmbedKGQA 0.206 0.134 0.235 0.290 0.001 0.459 0.439 0.467 0.648 0.001
CronKGQA 0.279 0.134 0.337 0.328 0.156 0.608 0.453 0.671 0.696 0.392
MultiQA 0.293 0.159 0.347 0.349 0.157 0.635 0.519 0.682 0.733 0.396

ARI 0.380 0.210 0.680 0.394 0.344 - - - - -
TimeR4 0.728 0.335 0.887 0.639 0.945 - - - - -

RTQA 0.765 0.424 0.902 0.692 0.942 0.768 0.427 0.907 0.697 0.942

Table 2: Performance(Hits@1) comparison of RAG
baseline and RTQA across Simple, Medium, Complex
on TimelineKGQA test dataset.

Model Hits@1

Overall Simple Medium Complex

RAG baseline 0.235 0.704 0.092 0.009
RTQA 0.298 0.608 0.218 0.135

position, and the DEEPSEEK API (deepseek-v3-383

250324) for answer reasoning on the MultiTQ384

dataset. For TimelineKGQA, all stages used385

OPENAI (gpt-4o-mini). The temperature was set386

to 0 for deterministic outputs. We employed the387

BGE-M35 (Chen et al., 2024a) model via Hugging388

Face to generate dense embeddings of TKG triples389

and questions, though hybrid retrieval was not used.390

Dense retrieval and clustering were performed391

using FAISS (Douze et al., 2024), following (Qian392

et al., 2024). To avoid excessive context, we limited393

reasoning inputs to the top 50 retrieved facts.394

5.2 Main Results395

We present the experimental results in comparisons396

between our model and existing state-of-the-art397

baseline models on the MultiTQ and Time-398

lineKGQA datasets in Table 1 and Table 2.399

Performance Comparison on MultiTQ We400

evaluate performance using Hits@1 and Hits@10,401

with breakdowns by question type (multiple, single)402

and answer type (entity, time).6 As shown in403

Table 1, RTQA outperforms all baselines across404

nearly all metrics. It achieves a Hits@1 of405

5https://huggingface.co/BAAI/bge-m3
6Baseline results are from (Qian et al., 2024).

Table 3: Ablation studies of RTQA on MultiTQ.

Model Overall Question Type Answer Type

Multiple Single Entity Time

RTQA 0.765 0.424 0.902 0.692 0.942
w/o decomposer 0.709 0.214 0.890 0.596 0.958
w/o multi-answer 0.752 0.341 0.904 0.667 0.942
w/o fact retrieval 0.070 0.015 0.090 0.096 0.013

0.765, surpassing the second-best model TimeR4 406

(0.728). For question types, RTQA scores 0.424 407

on multiple and 0.902 on single, demonstrating 408

strong adaptability to varying complexities. On 409

Hits@10, RTQA maintains the lead with 0.768 410

overall, and excels on time answers with a score 411

of 0.942, highlighting its effectiveness in handling 412

temporal reasoning in TKGQA. 413

Pre-trained language models such as BERT, 414

DistillBERT, and ALBERT perform poorly, with 415

Hits@1 below 0.11, indicating that generic 416

pre-trained models are insufficient for temporal 417

reasoning. While models like EmbedKGQA, 418

CronKGQA, and MultiQA perform reasonably on 419

single-choice and entity questions, they struggle 420

with multiple and time answers. TimeR4, 421

which integrates LLMs for TKGQA, shows better 422

performance but still falls short of RTQA. 423

Performance Comparison on TimelineKGQA 424

To evaluate the generalization of RTQA, we 425

compare it with the RAG baseline on the 426

TimelineKGQA dataset, focusing on questions 427

of varying complexity: Simple, Medium, and 428

Complex (see Table 2). RTQA achieves an 429

overall Hits@1 of 0.298, outperforming RAG 430

(0.235) by 27%. Its advantage becomes more 431

pronounced as question complexity increases. 432
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Table 4: Experiment results of multi-granular time on Hits@1.

Model Equal Before/After Equal Multi

Day Month Year Day Month Year Day Month Year

BERT 0.049 0.103 0.136 0.150 0.164 0.175 0.064 0.102 0.090
DistillBERT 0.041 0.087 0.113 0.160 0.150 0.186 0.096 0.127 0.089
ALBERT 0.069 0.082 0.132 0.221 0.277 0.308 0.103 0.144 0.144
EmbedKGQA 0.200 0.336 0.218 0.392 0.518 0.511 0.145 0.321 0.263
CronKGQA 0.425 0.389 0.331 0.375 0.474 0.450 0.295 0.333 0.251
MultiQA 0.445 0.393 0.350 0.379 0.548 0.525 0.308 0.321 0.283

RTQA 0.916 0.959 0.967 0.842 0.898 0.787 0.729 0.758 0.578
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0.5

H
it@

1 Multiple

0.8
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0.95 Single
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H
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1
Time

gpt-4o-mini gpt-4o deepsk-v3 deepsk-r1

Figure 4: Hits@1 results with different LLMs.

On medium-complexity questions, RTQA scores433

0.218 v.s. RAG’s 0.092 (137% improvement); for434

complex questions, it reaches 0.135 vs. RAG’s435

0.009, marking a 1400% gain. These results436

highlight RTQA’s strong capability in complex437

temporal reasoning, especially on multi-hop438

questions and those involving intricate time439

constraints, where traditional methods struggle.440

5.3 Ablation Studies441

To validate the effectiveness of different compo-442

nents in our proposed RTQA model, we conducted443

a series of ablation studies on the MultiTQ dataset.444

Table 3 presents the performance of various ablated445

versions of RTQA, where "w/o" indicates the446

removal of specific modules.447

Impact of Question Decomposition We remove448

the temporal question decomposer module, process-449

ing questions directly without decomposition. As450

shown in Table 3, the result drops significantly,451

with the overall Hits@1 decreasing from 0.765452

to 0.709. The impact is particularly pronounced453

for Multiple questions, where performance drops454

dramatically from 0.424 to 0.214 (a 49.5%455

reduction). This substantial decrease confirms that456

recursive decomposition is crucial for handling457

complex temporal reasoning that involves multiple458

hops or combined temporal constraints.459

Impact of Multi-Answer Strategy We elimi-460

nated the answer aggregator module and evaluated461

Table 5: Characteristics of T and API effitiency.

MultiTQ TimelineKGQA

Avg Depth 1.37 1.57
Avg Branch 1.60 1.81
Avg API Call 3.96 5.38

the variant w/o multi-answer, which relies solely 462

on answers derived from sub-questions without 463

incorporating alternative sources. The results 464

show an overall performance drop of 1.7%, with 465

more pronounced declines for Multiple questions, 466

which decreased by 19.6%, and Entity answers, 467

which dropped by 3.6%. These findings highlight 468

the effectiveness of the multi-answer module in 469

reducing error propagation by offering alternative 470

reasoning paths when sub-question inference fails 471

or yields inaccurate results. 472

Impact of Fact Retrieval We examined the 473

variant "w/o fact retrieval" that removes external 474

knowledge from TKG, The results reveal a 475

catastrophic performance degradation, with overall 476

Hits@1 plummeting from 0.765 to a mere 477

0.070. The magnitude of this performance 478

collapse underscores the fundamental importance 479

of accurate fact retrieval in TKGQA. Without 480

access to reliable factual information, even the 481

most sophisticated reasoning frameworks cannot 482

produce accurate answers, as they lack the 483

necessary evidence base for their inferences. 484

5.4 Further Experimental Analysis 485

Multi-Granular Time Analysis To verify the 486

effectiveness of the model on multi-granularity 487

temporal reasoning, we compared RTQA’s per- 488

formance across different time granularities (day, 489

month, year) and temporal question type (Equal, 490

Before/After, Equal Multi).7 Table 4 demonstrates 491

that RTQA consistently outperforms all baseline 492

models across all temporal granularities and 493

7Baseline results are sourced from (Chen et al., 2023).
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reasoning types. The consistent superior perfor-494

mance demonstrates that our recursive question495

decomposition approach and multi-answer strategy496

work effectively regardless of temporal scale,497

making RTQA a robust solution for diverse498

temporal reasoning applications.499

Generalizability across different LLMs To500

evaluate the adaptability of RTQA across dif-501

ferent LLMs, we conducted experiments us-502

ing gpt-4o-mini, gpt-4o, deepseek-v3, and503

deepseek-r1. Given the large size of the test504

set, we randomly sampled 1,000 questions for this505

study. To ensure consistent input across models,506

we fixed the question decomposition outputs by507

using gpt-4o-mini for all decomposition steps,508

and applied different LLMs only in the Recursive509

Solver stage. As shown in Figure 4, models510

with stronger inherent reasoning abilities achieve511

significantly better results, particularly on complex512

temporal questions. These results demonstrate513

the strong generalizability of RTQA, which can514

effectively integrate with various LLMs in a515

plug-and-play manner, consistently outperforming516

baseline models across multiple dimensions.517

Efficiency Analysis We evaluate RTQA effi-518

ciency using test questions from MultiTQ and519

TimelineKGQA, measuring Avg Depth, Avg520

Branch, and Avg API Call. As shown in521

Table 5, MultiTQ questions are simpler (depth:522

1.37, branch: 1.60) than those in TimelineKGQA523

(depth: 1.57, branch: 1.81). MultiTQ requires524

3.96 API calls on average, while TimelineKGQA525

requires 5.38 due to more extensive answer526

aggregation. These results show that RTQA527

operates efficiently with low overhead across528

different question complexities.529

5.5 Case Study530

Figure 5 compares two reasoning strategies of531

RTQA on the same question: solving via direct532

reasoning and solving via recursive sub-question533

decomposition. The comparison highlights the534

critical role of the question decomposition module535

in helping the model understand complex temporal536

constraints and generate reliable reasoning paths.537

On the right side of Figure 5, RTQA fails to handle538

temporal constraints such as “before” and “last”,539

resulting in hallucinated answers (highlighted with540

red boxes). In contrast, the left side demonstrates541

how RTQA decomposes the question into three542

Sub[1]:

Question: Before Georgios Papandreou, who was the last to visit China?
Gold answer: Wen Jiabao

When did Georgios Papandreou visit China? 

2009-05-12

Who visited China before 2009-05-12? 

[Stephen W. Bosworth 2009-05-08]
[Wen Jiabao 2009-05-08]
[France 2009-05-07]
[Stephen W. Bosworth 2009-03-11] 

Who was the last one among them? 

Sub[2]:

Sub[3]:

[Stephen W. Bosworth 2009-05-08]
[Wen Jiabao 2009-05-08]

Before Georgios Papandreou, 
who was the last to visit China?

Question:

[Aristovoulos Spiliotopoulos 
2008-04-01]

RTQAchild_answer IR_answer

Figure 5: Case study of RTQA.

sub-questions and recursively solves them step by 543

step, ultimately arriving at the correct answer. 544

Error Analysis Our error analysis highlights five 545

key issues affecting performance: (1) Evaluation 546

errors, where predictions using aliases of the gold 547

answer are incorrectly marked as wrong despite 548

normalization; (2) Annotation errors, caused 549

by gold answers annotated as None, rendering 550

evaluations invalid; (3) Retrieval errors, due to 551

irrelevant or missing facts, leading to reasoning 552

failures; (4) Temporal reasoning failures, where 553

complex constraints cause LLM hallucinations; 554

and (5) Decomposition errors, resulting from 555

illogical or unexecutable sub-question formats. 556

These issues underscore the need to improve 557

evaluation protocols, annotation quality, retrieval 558

precision, temporal reasoning, and question 559

decomposition. 560

6 Conclusion 561

We present RTQA, a training-free TKGQA 562

framework that tackles complex temporal queries 563

by recursively decomposing questions into sub- 564

questions and reasoning bottom-up with TKG 565

knowledge. Its multi-path answer aggregation 566

mitigates error propagation, ensuring robust 567

performance. Experiments on MultiTQ and Time- 568

lineKGQA benchmarks demonstrate significant 569

Hits@1 improvements in "Multiple" and "Com- 570

plex" categories, outperforming state-of-the-art 571

methods. RTQA’s plug-and-play design enhances 572

compatibility with various LLMs, offering broad 573

applicability. Future work will explore optimized 574

decomposition and extensions to other knowledge 575

graph domains, advancing efficient temporal 576

question answering. 577

Limitations 578

Despite the strong performance of RTQA, several 579

limitations remain that warrant further improve- 580

ment. Firstly, the effectiveness of question 581
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decomposition heavily depends on the capabilities582

of the underlying LLM. Smaller models may583

struggle to generate high-quality sub-questions,584

thereby constraining the performance of the585

recursive solving process. Secondly, RTQA relies586

on a robust retriever to gather relevant TKG facts.587

Failure to retrieve key information can significantly588

reduce the reasoning accuracy of the LLM. Lastly,589

our method is primarily tailored for complex590

temporal knowledge graph question answering, and591

its applicability to other QA domains has yet to be592

thoroughly validated. Future work should focus593

on enhancing model adaptability across different594

LLMs and question domains, improving retrieval595

performance, and extending the framework to596

broader QA tasks.597

Ethics Statement598

In this paper, we investigate temporal knowledge599

graph question answering (TKGQA), focusing600

on complex reasoning over structured temporal601

data. Our method is developed and evaluated602

using publicly available and widely used datasets,603

including MultiTQ and TimelineKGQA. These604

datasets are constructed from open sources and do605

not contain any sensitive or personally identifiable606

information. Therefore, we believe that our work607

does not pose any ethical concerns.608
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A Dataset Details 757

MULTITQ is the largest known TKGQA dataset, 758

constructed from the ICEWS05-15 dataset (García- 759

Durán et al., 2018), and contains 500K unique 760

question-answer pairs. In addition, MULTITQ 761

features multiple temporal granularities, including 762

years, months, and days, with questions spanning 763

over 3,600 days. The distribution of questions 764

across categories is shown in Table 6. 765

TIMELINEKGQA is an open-source automated 766

QA pair generator for temporal knowledge graphs. 767

Using TimelineKGQA, (Sun et al., 2025) creates 768

two benchmark datasets from the ICEWS Coded 769

Event Data (Boschee et al., 2015)(Time Range) 770

and CronQuestion knowledge graph(Time Point) 771

for demonstrating the question difficulty aligns 772

with complexity categorization. The distribution of 773

questions across categories is shown in Table 7.

Table 6: Statistics of question categories in MULTITQ.

Category Train Dev Test

Single
Equal 135,890 18,983 17,311

Before/After 75,340 11,655 11,073
First/Last 72,252 11,097 10,480

Multiple
Equal Multi 16,893 3,213 3,207
After First 43,305 6,499 6,266
Before Last 43,107 6,532 6,247

Total 386,787 587,979 54,584

774

B Case Study Details 775

To illustrate how RTQA decomposes a complex 776

temporal question and recursively solves it to 777

obtain the correct answer, we analyze the 778

question: "Before Georgios Papandreou, who was 779
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Table 7: Statistics of question categories in Time-
lineKGQA.

Source KG Train Val Test

CronQuestionKG

Simple 7,200 2,400 2,400
Medium 8,252 2,751 2,751
Complex 9,580 3,193 3,193

Total 25,032 8,344 8,344

the last to visit China?" The process involves780

breaking the question into sub-questions, solving781

each recursively, and aggregating the results.782

Tables 8, 9, 10, 11 detail the reasoning process783

for each sub-question and the root node.784

C Prompts785

C.1 Prompts for Temporal Question786

Decomposor787

In the MultiTQ dataset, temporal questions are788

divided into simple and multiple categories based789

on complexity. The simple category includes790

equal, first_last, and before_after, while multiple791

comprises equal multi, before_last, and after_first.792

We designed category-specific prompts to guide the793

LLM in effective question decomposition. Figure 6794

presents the prompts for equal and first_last,795

including instructions and examples. Figure 7796

shows the prompt for before_after. Figure 8 details797

the decomposition strategy for equal multi, and798

Figure 9 illustrates the approach for after_first, with799

before_last following a similar strategy. Following800

the decomposition guidelines in (Cao et al., 2023),801

we adapted prompts for temporal scenarios, using802

manually crafted question-answer pairs from the803

validation set.804

C.2 Prompts for Recursive Solver805

Figure 10 shows the prompt used in the initial806

step of the recursive solving process. The prompt807

provides the large language model (LLM) with the808

original complex temporal question and historical809

facts retrieved from the temporal knowledge graph810

(TKG). The LLM is tasked with reasoning over811

these facts to either decompose the question into812

sub-questions or directly provide an answer if the813

question is simple enough. For example, for the814

question "Who was the president of the United815

States when Barack Obama became a senator?",816

the prompt includes historical facts such as Barack817

Obama’s timeline (e.g., "Barack Obama became818

a senator in 2005") and U.S. presidential terms819

(e.g., "George W. Bush was president from 2001 820

to 2009"), enabling the LLM to perform temporal 821

reasoning. 822

Figure 11 depicts the prompt used in a 823

subsequent step of the recursive solving process. 824

The prompt supplies the LLM with the original 825

question (or a sub-question) and relevant facts 826

determined from the previous sub-question’s 827

answer, asking the LLM to make the most accurate 828

choice for the current step. This builds on 829

the recursive decomposition by leveraging prior 830

answers to resolve temporal dependencies. For 831

instance, for the question "Which country was the 832

last one among them?", if the previous sub-question 833

"List the countries and their independence dates: 834

[France: 1789, Germany: 1871, Japan: 1945]" 835

yields these facts, the prompt provides this data, 836

and the LLM returns "Japan" as the country with 837

the latest independence date (1945). 838

C.3 Prompt for Answer Aggregator 839

Figure 12 shows the instruction and examples for 840

answer aggregation. 841
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Table 8: Reasoning process for sub-question idx 0.

Field Content

idx 0
question_text When did Georgios Papandreou visit China?
fa 3
question When did Georgios Papandreou visit China?
IR_answer 2009-05-12

Historical Facts Georgios Papandreou made a visit to China on 2009-05-12.
China hosted a visit from Georgios Papandreou on 2009-05-12.
Georgios Papandreou expressed intent to meet or negotiate with China on 2009-05-12.
Georgios Papandreou made a visit to France on 2005-02-11.
Georgios Papandreou made a visit to France on 2010-03-05.
Georgios Papandreou made a visit to France on 2011-05-28.
Georgios Papandreou made a visit to France on 2011-03-19.
Georgios Papandreou made a visit to France on 2010-02-10.

answer 2009-05-12

Table 9: Reasoning process for sub-question idx 1.

Field Content

idx 1
question_text Who visited China before #1?
fa 3
question Who visited China before 2009-05-12?
IR_answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08], [France 2009-05-07], [Stephen

W. Bosworth 2009-03-11]

Historical Facts South Korea hosted a visit from China on 2009-05-12.
Stephen W. Bosworth made a visit to China on 2009-05-13.
Lawrence Cannon made a visit to China on 2009-05-12.
China made a visit to South Korea on 2009-05-12.
Abdullah Gül hosted a visit from China on 2009-05-12.
Stephen W. Bosworth made a visit to China on 2009-05-08.
Kuomintang made a visit to China on 2009-05-27.
Lawrence Cannon made a visit to China on 2009-05-13.
Stephen W. Bosworth made a visit to China on 2009-05-15.
Wen Jiabao made a visit to China on 2009-05-09.
Kuomintang made a visit to China on 2009-05-26.
China hosted a visit from Iran on 2009-10-15.
Wen Jiabao made a visit to China on 2009-05-08.
China hosted a visit from France on 2009-05-07.
Ma Biao made a visit to China on 2009-07-05.
Georgios Papandreou made a visit to China on 2009-05-12.
China made a visit to Kazakhstan on 2009-06-12.
Abhisit Vejjajiva made a visit to China on 2009-06-15.
Wen Jiabao made a visit to China on 2009-05-28.
Wu Po-hsiung made a visit to China on 2009-05-25.
Eric Chu made a visit to China on 2009-05-17.
Barack Obama made a visit to China on 2009-10-12.
Abhisit Vejjajiva made a visit to China on 2009-06-25.
Xi Jinping made a visit to China on 2009-06-22.
China hosted a visit from the Russian military on 2009-07-11.

answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08], [France 2009-05-07], [Stephen
W. Bosworth 2009-03-11]
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Table 10: Reasoning process for sub-question idx 2.

Field Content

idx 2
question_text Who was the last one among them?
fa 3
question Who was the last one among them?
IR_answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]

Relevant Facts [Stephen W. Bosworth 2009-05-08]
[Wen Jiabao 2009-05-08]
[France 2009-05-07]
[Stephen W. Bosworth 2009-03-11]

answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]

Table 11: Reasoning process for the root node (original question).

Field Content

idx 3
question_text Before Georgios Papandreou, who was the last to visit China?
sons 0,1,2
gold_answer Wen Jiabao
question Before Georgios Papandreou, who was the last to visit China?
IR_answer [Aristovoulos Spiliotopoulos 2008-04-01]
child_answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]

Historical Facts Georgios Papandreou made a visit to China on 2009-05-12.
China hosted a visit from Georgios Papandreou on 2009-05-12.
Georgios Papandreou expressed intent to meet or negotiate with China on 2009-05-12.
Wen Jiabao made a visit to Georgios Papandreou on 2010-10-10.
Georgios Papandreou hosted a visit from Wen Jiabao on 2010-10-10.
Georgios Papandreou made a visit to France on 2010-03-05.
Georgios Papandreou made a visit to France on 2005-02-11.
Georgios Papandreou made a visit to France on 2011-05-28.
Georgios Papandreou made a visit to France on 2011-03-19.
Georgios Papandreou made a visit to France on 2010-03-04.
Georgios Papandreou made a visit to France on 2010-02-10.
France hosted a visit from Georgios Papandreou on 2005-02-11.
Georgios Papandreou made a visit to France on 2010-03-07.
Georgios Papandreou made a visit to France on 2010-03-06.
Georgios Papandreou made a visit to France on 2006-11-26.
Georgios Papandreou made a visit to France on 2009-04-24.
Georgios Papandreou made a visit to France on 2011-11-01.
Middle East made a visit to Georgios Papandreou on 2008-07-01.
France hosted a visit from Georgios Papandreou on 2010-03-05.
France hosted a visit from Georgios Papandreou on 2010-02-10.
Antanas Valionis made a visit to China on 2006-04-20.
Georgios Papandreou made a visit to Iran on 2006-06-30.
Aristovoulos Spiliotopoulos made a visit to China on 2008-04-01.
Nicos Anastasiades made a visit to China on 2015-10-19.
Nicos Anastasiades made a visit to China on 2015-10-18.

answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]
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Instruction:
Convert the following question into a JSON object where the question is the key and the value is an empty
list. Do not include any explanation or extra text. Just return the JSON. Just return the modified question
in JSON format with an empty list as its value.

Here are a few examples:

Q: Who visited France in 2009-05?
A: {“Who visited France in 2009-05?”: []}

Q: When did Qatar pay a visit to Barack Obama?
A: {“When did Qatar pay a visit to Barack Obama?”: []}

Q: Who applied for Iran in January 2010?
A: {“Who applied for Iran in 2010-01?”: []}

Q: Which country negotiated with Japan on 19 April 2005?
A: {“Which country negotiated with Japan on 2002-04-19?”: []}

Q: Who visited Japan in April 2012?
A: {“Who visited Japan in 2012-04?”: []}

Q: In May 2009, who signed an agreement with Iran?
A: {“In 2009-05, who signed an agreement with Iran?”: []}

Q: Who accused Iran in 2015?
A: {“Who accused Iran in 2015?”: []}

Q: On 19 March 2006, who threatened Iran?
A: {“On 2006-03-19, who threatened Iran?”: []}

Q: Who visited Guatemala on 7 July 2007?
A: {“Who visited Guatemala on 2007-07-07?”: []}

Remaining examples ...

Q:
A:

Figure 6: Prompt example of RTQA for Temporal Question Decomposition, the category is Equal and First/Last
in MultiTQ
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Instruction:
You are an expert specializing in dealing with problems containing the keywords "before/after". You need
to read the question carefully.
1.If the problem involves a situation like "before December 13, 2005" with a "before+ timestamp", there
is no need to decompose the original problem. Just convert the question into a JSON object where the
question is the key and the value is an empty list.
2.If the problem involves the situation of a "before+ entity" like "before Japan", the original problem needs
to be decomposed into sub-problems. First, generate an explicit sub-question to determine the time (e.g.,
"When did Iran. . . ?"). When a sub-question is logically depends on the answer to a previous one, use
placeholders (e.g., #1) to refer to that answer. Return a valid JSON object representing the question tree.
Each key is a parent question, and its value is a list of sub-questions.

Here are a few examples:

Q: Who rejected Iran before the citizens of State Actor did?
A: {“Who rejected Iran before the citizens of State Actor did?”: [“When did the citizens of State Actor reject
Iran?”, “Who rejected Iran before #1?”]}

Q: After Japan, who made South Korea suffer from conventional military forces?
A: {“After Japan, who made South Korea suffer from conventional military forces?”: [“When did Japan make
South Korea suffer from conventional military forces?”, “Who make South Korea suffer from conventional
military forces after #1?”]}

Q: Which country did Qatar appeal to after April 2011?
A: {“Which country did Qatar appeal to after 2011-04?”: []}

Q: Before 14 October 2015, who made Burundi suffer from conventional military forces?
A: {“Before 2015-10-14, who made Burundi suffer from conventional military forces?”: []}

Q: Who had a telephone conversation with Japan after November 2005?
A: {“Who had a telephone conversation with Japan after 2005-11?”: []}

Q: Who negotiated with Colombia before 22 December 2010?
A: {“Who negotiated with Colombia before 2010-12-22?”: []}

Q: With which country did Qatar sign formal agreements before 15 January 2008?
A: {“With which country did Qatar sign formal agreements before 2008-01-15?”: []}

Q: After November 2007, who wanted to engage in diplomatic cooperation with Timor-Leste?
A: {“After 2007-11, who wanted to engage in diplomatic cooperation with Timor-Leste?”: []}

Q: Before 24 January 2005, who wanted to establish diplomatic cooperation with the Kuomintang?
A: {“Before 2005-01-24, who wanted to establish diplomatic cooperation with the Kuomintang?”: []}

Q: Who negotiated with Bolivia after June 2007?
A: {“Who negotiated with Bolivia after 2007-06?”: []}

Remaining examples ...

Q:
A:

Figure 7: Prompt example of RTQA for Temporal Question Decomposition, the category is Before/After in MultiTQ

15



Instruction:
You are an expert in problem decomposition. Every problem needs to be decomposed into sub-problems.
Please generate a hierarchical question decomposition tree (HQDT) with json format for a given question.
In this tree, the root node is the original complex question, and each non-root node is a sub-question of its
parent. Return a valid JSON object representing the question tree. Each key is a parent question, and its
value is a list of sub-questions.
The following is a discussion on different situations.
1.If the problem contains "in the same year/month to xxx", the time "when xxx occurred" should be asked
first, "which year did xxx..." Or "which month did xxx..." Specifically, the granularity of year/month is
determined based on the problem. When a sub-question logically depends on the answer to a previous
one, use placeholders (e.g., 1) to refer to that answer.
2.If the problem contains a situation similar to "first/last in 2005", a sub-problem should be broken down
first to ask which events occurred in 2005, and then the second sub-problem is to ask which one occurred
the earliest and the latest among these events. do not use placeholders : The answer to the previous
sub-question is a set of entities (e.g., multiple people or countries), And these entities cannot be directly
embedded into the next question. In such cases, phrase the next question using expressions like "among
them" or "which of them" to indicate selection.

Here are a few examples:

Q: Who was the first to request a meeting with Togo in 2005?
A: {“Who was the first to request a meeting with Togo in 2005?”: [“Who requested a meeting with Togo in
2005?”, “Who among them made the first request?”]}

Q: Which country last praised Iran in 2009?
A: {“Which country last praised Iran in 2009?”: [“Which country praised Iran in 2009?”, “Which country
among them praised Iran at the latest date?”]}

Q: Who hosted the visit of Abdelkader Messahel to Mauritania in the same year?
A: {“Who hosted the visit of Abdelkader Messahel to Mauritania in the same year?”: [“Which year did
Abdelkader Messahel visit Mauritania?”, “Who hosted the visit of Abdelkader Messahel to Mauritania in
#1?”]}

Q: Who was the first country to sign formal agreements with Iran in 2007?
A: {“Who was the first country to sign formal agreements with Iran in 2007?”: [“Which country signed
formal agreements with Iran in 2007?”, “Who was the first country among them?”]}

Q: Who praised Iran in the same month as Nacer Mehal?
A: {“Who praised Iran in the same month as Nacer Mehal?”: [“Which month did Nacer Mehal praise Iran?”,
“Who praised Iran in #1?”]}

Q: Who did Iran give the criticism of the Muslims of Bahrain in the same month?
A: {“Who did Iran give the criticism of the Muslims of Bahrain in the same month?”: [“Which month did Iran
give the criticism of the Muslims of Bahrain?”, “Who did Iran give criticism of in #1?”]}

Q: Which country did the envoy of Sudan want to meet on the same day of Qatar?
A: {“Which country did the envoy of Sudan want to meet on the same day of Qatar?”: [“When did the envoy
of Sudan meet Qatar?”, “Which country did the envoy of Sudan want to meet on #1?”]}

Q: Which country did Colombia negotiate with in the same year as Japan?
A: {“Which country did Colombia negotiate with in the same year as Japan?”: [“Which year did Colombia
negotiate with Japan?”, “Which country did Colombia negotiate with in #1?”]}

Q: Who made an appeal to Iran on the same day as Xi Jinping?
A: {“Who made an appeal to Iran on the same day as Xi Jinping?”: [“When did Xi Jinping make an appeal
to Iran?”, “Who made an appeal to Iran on #1?”]}

Q: With which country did Guatemala last express its willingness to negotiate in 2006?
A: {“With which country did Guatemala last express its willingness to negotiate in 2006?”: [“With which
country did Guatemala express its willingness to negotiate in 2006?”, “Which country was the last one
among them?”]}

Remaining examples ...

Q:
A:

Figure 8: Prompt example of RTQA for Temporal Question Decomposition, the category is Equal Multi in MultiTQ
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Instruction:
You are an expert in problem decomposition. Every problem needs to be decomposed into three sub-
problems. Please generate a hierarchical question decomposition tree (HQDT) with json format for a
given question. In this tree, the root node is the original complex question, and each non-root node is
a sub-question of its parent. Return a valid JSON object representing the question tree. Each key is a
parent question, and its value is a list of sub-questions.
First, when encountering the situation of the "after + event", it is necessary to extract the implicit time first
and ask clearly "when did xxx..." . It is noted that the original problem also has a time constraint of "first",
which involves the chronological order. The second sub-problem asks for all the events that satisfy the
problem information under the time constraint of after 1.
Then the third sub-question asks "first one" to return among these events.

Here are a few examples:

Q: After the International Monetary Fund, with which country did Japan first express its intention to
negotiate?
A: {“After the International Monetary Fund, with which country did Japan first express its intention to
negotiate?”: [“When did Japan express its intention to negotiate with the International Monetary Fund?”,
“Which country did Japan express its intention to negotiate with after #1?”, “Which country was the first
one among them?”]}

Q: Who was the first to visit France after the Royal Administration of Wallis and Futuna?
A: {“Who was the first to visit France after the Royal Administration of Wallis and Futuna?”: [“When did the
Royal Administration of Wallis and Futuna visit France?”, “Who visited Iran after #1?”, “Who was the first
one among them?”]}

Q: After the Navy of the United States, which country did Iran accuse first?
A: {“After the Navy of the United States, which country did Iran accuse first?”: [“When did Iran accuse
the Navy of the United States?”, “After #1, which country did Iran accuse?”, “Which country was the first
among them?”]}

Q: Who was the first to visit Japan after the Russian Union of Industrialists and Entrepreneurs?
A: {“Who was the first to visit Japan after the Russian Union of Industrialists and Entrepreneurs?”: [“When
did the Russian Union of Industrialists and Entrepreneurs visit Japan?”, “Who visited Japan after #1?”,
“Who was the first one among them?”]}

Q: Who was the first to investigate France after Sean R. Parnell?
A: {“Who was the first to investigate France after Sean R. Parnell?”: [“When did Sean R. Parnell investigate
France?”, “Who investigated France after #1?”, “Who was the first one among them?”]}

Q: Which country was the first to sign an agreement with South Korea after Eletrobras?
A: {“Which country was the first to sign an agreement with South Korea after Eletrobras?”: [“When did
Eletrobras sign an agreement with South Korea?”, “Which country signed an agreement with South Korea
after #1?”, “Which country was the first one among them?”]}

Remaining examples ...

Q:
A:

Figure 9: Prompt example of RTQA for Temporal Question Decomposition, the category is After_First in MultiTQ
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Instruction:
Based on the historical facts, please answer the given question clearly in the following format: ...So the
answer is: <final concise answer>.
1.If the question asks for a specific year (e.g., "Which year", "In which year", "the exact year", etc.), then
return the answer in "yyyy" format. Just return the most appropriate timestamp as the answer.
2.If the question asks for a specific month (e.g., "Which month", "In what month", "the exact month", etc.),
then return the answer in "yyyy-mm" format, including the year and the month. Just return the most
appropriate timestamp as the answer.
3.If the question asks for a specific date (e.g., contains keywords like "When", "What day", "the exact
date", etc.), return the answer in "yyyy-mm-dd" format. Just return the most appropriate timestamp as the
answer.
4.If the question asks for a set of entities (e.g., contains keywords like "who", "which country", etc.), and
multiple sources in the context offer valid answers, return the union of all correct, non-duplicate entities
and attached timestamp in a list format.

Here are a few examples:

Historical facts: Barack Obama Reject Party Member (United Kingdom) 2008-09-23.
Barack Obama Reject Party Member (United Kingdom) 2008-09-23.
Barack Obama Make statement Party Member (United Kingdom) 2008-11-08.
Barack Obama Make statement Party Member (United Kingdom) 2008-11-08.
Barack Obama Express intent to meet or negotiate Party Member (United Kingdom) 2009-03-10.
Zawahiri Reject Barack Obama 2009-08-04.
Question: In which year did Barack Obama reject the party member of United Kingdom?
Answer: The rejection event occurred on 2008-09-23, so the year is 2008. So the answer is: 2008.

Historical facts: Media Personnel (Somalia) Praise or endorse Cabinet / Council of Ministers / Advisors
(Somalia) 2012-11-27.
Media Personnel (Somalia) Praise or endorse Cabinet / Council of Ministers / Advisors (Somalia)
2015-01-12.
Media Personnel (Somalia) Make statement African Union 2007-10-08.
Media Personnel (Somalia) Make statement African Union 2007-01-17.
Media Personnel (Somalia) Make statement African Union 2012-11-18.
Cabinet / Council of Ministers / Advisors (Somalia) Praise or endorse Media Personnel (Somalia)
2011-11-28.
Media Personnel (Somalia) Make statement African Union 2007-06-15.
Question: When did Somalia’s media personnel first commend Somalia’s council of ministers?
Answer: We are asked to find the first time Somalia’s media personnel commended (i.e., praised or
endorsed) Somalia’s Cabinet / Council of Ministers / Advisors. From the historical facts: Media Personnel
(Somalia) Praise or endorse Cabinet / Council of Ministers / Advisors (Somalia) on: 2012-11-27 and
2015-01-12. Among these, the earliest instance is 2012-11-27. So the answer is: 2012-11-27.

Historical facts: Agence France-Presse Demand China in 2010-05-26.
Agence France-Presse Make an appeal or request China in 2007-01-08.
China Appeal for military aid Agence France-Presse in 2008-03-26.
France Make an appeal or request China in 2012-06-05.
France Demand China in 2008-06-11.
Question: Could you tell me the exact month when Agence France-Presse appealed to China?
Answer: So the answer is: 2007-01

Remaining examples ...

Historical facts:
Question:
Answer:

Figure 10: Prompt example of RTQA for Recursive Solver. This prompt utilizes the triples in the TKG retrieved by
the retriever as external knowledge to assist the LLM in solving the problem.
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Instruction:
Based on the Relevant facts, please answer the given question clearly in the following format: ...So the
answer is: <final concise answer>.
Each question provides a series of relevant facts, including "entity + timestamp" pairs. You need to choose
the earliest or latest entity as the answer based on the order in which the events occurred.

Here are a few examples:

Relevant facts: ["China 2006-01-20", "China 2006-10-30", "Vietnam 2008-04-30"]
Question: Which country was the last one among them?
Answer: The last country among the relevant facts, based on the timestamps, is Vietnam. So the answer
is: Vietnam 2008-04-30.

Remaining examples ...

Relevant facts:
Question:
Answer:

Figure 11: Prompt example of RTQA for Recursive Solver. This prompt is mainly used to solve the problem of
choosing the best first/last solution among multiple candidate answers.

Instruction:
You are given a question and multiple candidate answers from sources A, B, and C.
Follow these strict rules to choose the best answer: If only sources A and B are available, prefer B’s
answer unless it is "Unknown" or "Error", in which case choose A. If all three sources A, B, and C are
available, prefer C’s answer unless it is "Unknown" or "Error", then fall back to B, and if B is also invalid, fall
back to A.

Here are a few examples:

Question: When did the citizens of Africa express their intention to establish diplomatic cooperation with
Vietnam?
Candidate answer:
source A: 2012-09-04
source B: 2012-09-04
Source C: Unknown
Output: So the answer is: 2012-09-04

Question: Who was the first to praise Juan Carlos I after 2006-02-22?
Candidate answer:
source A: Jorge Briz Abularach
source B: Unknown
Source C: House of Representatives (Uruguay)
Output: So the answer is: House of Representatives (Uruguay)

Question: Who rejected the Prime Minister of India after 2012-01-03?
Candidate answer:
source A: Sri Lanka
source B: China
Output: So the answer is: China

Remaining examples ...

Question:
Candidate answer:
Output:

Figure 12: Prompt example of RTQA for Answer Aggregator.
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