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ABSTRACT

Consistency-based methods have emerged as an effective approach to uncertainty
quantification (UQ) in large language models. These methods typically rely on
several generations obtained via multinomial sampling, measuring their agree-
ment level. However, in short-form QA, multinomial sampling is prone to produc-
ing duplicates due to peaked distributions, and its stochasticity introduces consid-
erable variance in uncertainty estimates across runs. We introduce a new family
of methods that employ beam search to generate candidates for consistency-based
UQ, yielding improved performance and reduced variance compared to multino-
mial sampling. We also provide a theoretical lower bound on the beam set prob-
ability mass under which beam search achieves a smaller error than multinomial
sampling. We empirically evaluate our approach on six QA datasets and find that
its consistent improvements over multinomial sampling lead to state-of-the-art UQ
performance.

1 INTRODUCTION

Multinomial Sampling:Multinomial Sampling: Beam Search Decoding:

Who sang the song “Thriller” in 20th century?

Prince

Michael Jackson

Prince

Michael Jackson

Prince

Prince

Bruno Mars

Michael Jackson

M. Jackson

Kai Angel

p = 0.39

p = 0.34

p = 0.19

p = 0.05

p = 0.03

Michael Jackson
How confident 
is this answer?

Confidence: 2 / 5 Confidence: 0.58

Beam Search Decoding:

What is the capital of Australia 
Victoria state?

Canberra

Canberra

Canberra

Canberra

Canberra

Melbourne

Hobart

Canberra

Sydney

Shepp

p = 0.90

p = 0.07

p = 0.01

p = 0.01

p = 0.01

Canberra How confident 
is this answer?

Confidence: 5 / 5 Confidence: 0.9

Figure 1: Beam Search vs Multinomial Sam-
pling. Sampling produces multiple identical gen-
erations resulting in noisy confidence estimate,
while beam search covers top answers from LLM
distribution resulting in a better confidence score.

Today, large language models (LLMs) are in-
creasingly being adapted in various safety-
critical domains, including medicine (Busch
et al., 2025), education (Xing et al., 2025), and
law (Shu et al., 2024). This rapid adoption
has led to a growing body of work focused on
the assessment of the quality and reliability of
LLM outputs. An important research direction
in this field is Uncertainty Quantification (UQ;
Xiao & Wang (2019); Baan et al. (2023); Xia
et al. (2025)), which measures the LLM’s con-
fidence in their responses.

UQ methods can be separated into several dis-
tinct categories. These include information-
based methods that rely on token likelihoods
produced by the LLM (Fomicheva et al., 2020);
verbalization approaches that prompt models to
provide a confidence score (Tian et al., 2023);
density-based methods that utilize embeddings (Yoo et al., 2022); and last but not least, consistency-
based measures that evaluate agreement between sampled outputs (Lin et al., 2024a).

Consistency-based UQ methods are of particular interest, due to not only their strong performance
but also their applicability to black-box settings (Vashurin et al., 2025a). Moreover, in white-box
settings too, it was shown that combining information-based and consistency-based methods yields
state-of-the-art performance for a variety of tasks (Kuhn et al., 2023; Duan et al., 2024). A key
component of these methods is sampling, which serves as a practical means of approximating the
full probability space of all potential model outputs.
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Most existing UQ approaches rely on multinomial sampling from the model’s output distribution.
However, in short-form QA, multinomial sampling is prone to producing similar or even identical
generations, due to its bias towards higher-probability tokens during decoding; see Figure 1. Fur-
thermore, since each run produces a different set of candidate outputs, sample-based uncertainty
estimates exhibit high variance, undermining their robustness. This limits their effectiveness as a
representation of the full output space, especially since, for computational efficiency, studies typi-
cally rely on a small number of samples.

To address this problem, we propose computing output consistency based on samples generated
using beam search. Beam search facilitates the exploration of alternative decoding paths, which in
turn allows one to generate distinct candidate outputs that better capture the model’s output space in
short-form QA. Our approach includes weighting beam search outputs by their probabilities rather
than uniformly, thereby preventing the overrepresentation of low-probability outputs. Particularly,
when beam search is employed for decoding, uncertainty estimates are obtained at essentially no
additional cost. We show that replacing multinomial sampled outputs with those generated via
beam search improves the robustness and accuracy of existing consistency-based methods, as well
as hybrid methods relying on both output consistency and token likelihoods.

Our main contributions are as follows.

• We identify key limitations of existing consistency-based uncertainty quantification meth-
ods based on multinomial sampling; see Section 2.

• We propose a new family of UQ methods that employ an importance-weighted estimator
of consistency-based uncertainty with beam search output candidates; see Section 3.

• We provide a distribution-free sufficient condition ensuring that the beam-weighted es-
timator achieves a lower error than the expected error of the multinomial sampler; see
Section 3.2.

• We show that applying a beam search-based estimator to existing consistency-based UQ
approaches improves their performance on short-form QA tasks, achieving state-of-the-art
results; see Section 4.

2 BACKGROUND AND MOTIVATION

2.1 LANGUAGE MODEL DECODING

Autoregressive LLMs produce text sequentially, generating one token at a time. At each step i, the
model samples a token yi ∼ p(· | y<i,x), where y<i denotes the sequence of previously generated
tokens. The probability of generating an output sequence y is:

p(y | x) =
|y|∏
i=1

p(yi | y<i,x). (1)

At each step, the model outputs a probability distribution over the entire vocabulary V conditioned
on the prompt x and the partial sequence y<i.

Decoding Strategies. Since the model defines a probability distribution, a concrete output must be
obtained at inference time by applying a decoding strategy. Common decoding strategies include:
(i) greedy decoding that selects maximum probability tokens at each step; (ii) multinomial sampling
where tokens are drawn according to p(yi | y<i,x); and (iii) beam search, which maintains the
top-k most likely partial sequences at each step. Several other variants of decoding approaches
have been proposed, such as top-p nucleus sampling or temperature scaling (Holtzman et al., 2020;
Vijayakumar et al., 2018). Each decoding strategy offers different trade-offs between output quality
and diversity.

2.2 UNCERTAINTY QUANTIFICATION FOR LLMS

The objective of uncertainty quantification is to measure the level of uncertainty introduced by LLM
when generating output sequence y∗ conditioned on input sequence x, denoted by U(y∗ | x).
Existing approaches to UQ can be broadly categorized into three main groups.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Information-based methods rely on a single forward pass of the model and compute statistics over
the token-level probability distributions to quantify uncertainty. Examples include Sequence Proba-
bility, Mean Token Entropy, Perplexity (Fomicheva et al., 2020), and CCP (Fadeeva et al., 2024).

Reflexive methods query the model directly about its confidence in a generated answer using spe-
cially designed prompts. A representative example is P(True) (Kadavath et al., 2022), which mea-
sures the probability that the model outputs “True” when asked whether its generated answer y∗ is
correct.

Sampling-based methods draw multiple samples from the model’s output distribution and evaluate
their semantic or lexical similarity to assess uncertainty. Lexical Similarity (Fomicheva et al., 2020)
computes mean pairwise similarity between generated texts; other examples include Semantic En-
tropy (Kuhn et al., 2023), SAR (Duan et al., 2024), and black-box uncertainty measures from (Lin
et al., 2024b).

Consistency-Based UQ Methods A notable subset of sampling-based methods is consistency-
based UQ (Vashurin et al., 2025b). These methods estimate uncertainty with respect to a particular
generated output y∗ ∼ p(· | x), rather than the overall uncertainty of the model’s predictive distribu-
tion for the input x. This distinction makes consistency-based UQ particularly suited for evaluating
confidence in a specific prediction rather than overall model uncertainty, and Vashurin et al. (2025b)
empirically demonstrate that such methods outperform other sampling-based approaches in practice.

Let us consider the most straightforward consistency–based method for predictive uncertainty quan-
tification: measuring how semantically different alternative generations are from the produced an-
swer y∗. We refer to this score as Dissimilarity and formalize it as the expected semantic dissimi-
larity between the produced answer y∗ and all potential alternatives drawn from the model:

UD(y∗ | x) = Ey∼p(·|x)
[
1− s(y,y∗)

]
. (2)

Here, s(y′,y′′) ∈ [0, 1] is a function that measures semantic similarity between two generations y′

and y′′. A higher value of UD(y∗ | x) indicates lower consistency between the chosen answer and
alternative candidate outputs, and thus reflects greater predictive uncertainty.

The corresponding Monte Carlo estimator introduced by (Lin et al., 2024a) draws M i.i.d. samples
y(1), . . . ,y(M) ∼ p(· | x) and computes uncertainty in the following way:

ÛMC
D (y∗ | x) = 1

M

M∑
i=1

(
1− s(y(i),y∗)

)
. (3)

 2 3 4 5 6 7  8
Length of Output Tokens

0

10

20

30

40

50

60

Re
du

nd
an

t S
am

pl
es

 (%
)

Sample Redundancy by Length

Figure 2: Mean percentage of redundant samples
(i.e., outputs already seen among earlier genera-
tions) as a function of greedy output length. Re-
sults were obtained from 2,000 questions from
the TriviaQA dataset using the Gemma 3 4B base
model and 10 candidate generations. Redundancy
is especially high for short answers, leading to
wasted computation.

Challenges of consistency-based UQ
methods. A natural intuition is that, for
consistency-based methods, samples should
be generated in a distinct, high-probability,
and stable manner. Most existing methods use
multinomial sampling, which, especially for
shorter generations and small sample sizes,
does not satisfy these criteria.

Figure 2 shows the effect of multinomial sam-
pling on the percentage of duplicates depend-
ing on the length of generations. The result-
ing samples contain many duplicates, with the
issue being particularly pronounced for shorter
generations, where 30–50% of the outputs are
duplicates. This not only contributes to wasted
computation, but also leads to high variance es-
timates. Moreover, drawing M full generations
solely for uncertainty estimation can be costly.

Thus, while multinomial sampling is widely
used, it does not best serve the goals of
consistency-based uncertainty estimation.

3
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3 UNCERTAINTY QUANTIFICATION BASED ON CONSISTENCY OF BEAM
SEARCH CANDIDATES

To address the problems outlined in Section 2.2, we propose to utilize an alternative decoding strat-
egy for generating candidate outputs: beam search. Beam search (i) guarantees distinct candidate
outputs, (ii) reduces variance (see Section 3.2) and (iii) provides uncertainty estimates essentially
“for free” as the beam already provides a distribution over candidate outputs.

3.1 REPLACING MULTINOMIAL SAMPLING

A simple way to approximate dissimilarity from beam-generated candidates would be to reuse equa-
tion (3), treating the beam outputs as if they were drawn uniformly. While this offers a plausible
alternative, treating the candidates produced by beam search in a uniform manner would overem-
phasize lower-probability outputs. To better reflect the model distribution while avoiding repeated
multinomial draws, we form a probability-weighted estimator over the beam set.

For this purpose, we use beam search with width M to obtain distinct candidates BM (x) =
{b(1), . . . ,b(M)} and their sequence probabilities {p(b(i) | x)}Mi=1. To perform an estimation
of UD(y∗ | x) in equation (2) with the help of samples b(i), one needs to perform importance
weighting. Thus, we define the restricted (top-M ) normalized masses wi as:

wi =
p(b(i) | x)∑M
j=1 p(b

(j) | x)
, i = 1, . . . ,M. (4)

The resulting importance-weighted estimator of equation (2) is

Û b
D(y∗ | x) =

M∑
i=1

wi

(
1− s(b(i),y∗)

)
. (5)

This top-M truncation introduces a small bias relative to full multinomial sampling but typically
reduces variance and duplication on peaked distributions, yielding more stable estimates per unit
budget. In the next section we are going to explore the benefits of beam search-based estimator
Û b
D(y∗ | x) from a theoretical perspective.

3.2 THEORETICAL ANALYSIS

We compare the multinomial Monte Carlo estimator ÛMC
D (3) with the beam-weighted estimator

Û b
D (5) for the dissimilarity UD defined in equation (2).

Theorem 1 (Comparison condition for beam-weighted and Monte Carlo estimators).
Let BM (x) = {b(1), . . . ,b(M)} be the beam set, mB =

∑M
i=1 p(b

(i) | x) be its total probability
mass, and define µB and µB as dissimilarity inside and outside the beam set BM correspondingly:

µB = Ey∼p(·|x) [1− s(y,y∗) | y ∈ BM (x)] , µB = Ey∼p(·|x) [1− s(y,y∗) | y /∈ BM (x)] .

Then the beam-weighted estimator Û b
D achieves smaller mean-squared error than the Monte Carlo

estimator ÛMC
D whenever

(1−mB)
∣∣µB − µB

∣∣ < σ/
√
M, (6)

where σ2 = Vary∼p(·|x)(1− s(y,y∗)). The corresponding distribution-free sufficient condition is

mB > 1− 1
2
√
M
. (7)

Proof. The Monte Carlo estimator averages M i.i.d. samples y(i) ∼ p(· | x), so it is unbiased with
E[ÛMC

D ] = UD(y∗ | x) and MSE(ÛMC
D ) = Var(ÛMC

D ) = σ2/M . By Popoviciu’s inequality, any
random variable supported on [0, 1] has variance at most 1/4, hence σ2 ≤ 1/4.

4
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By the law of total expectation, the true dissimilarity UD decomposes as:

UD(y∗ | x) = mBµB + (1−mB)µB, Û b
D = µB,

so squared error of the beam-weighted estimator Û b
D is deterministic:

SE(Û b
D) =

(
Û b
D − UD

)2
= (1−mB)

2
(
µB − µB

)2
.

Beam-weighted estimation is therefore more accurate whenever

(1−mB)
2
(
µB − µB

)2
< σ2/M,

which yields the stated condition 6. A distribution-free bound 7 follows from
∣∣µB − µB

∣∣ ≤ 1 and
σ2 ≤ 1/4.
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Figure 3: Percentage of texts meeting the suffi-
cient condition (Theorem 1). Results are based on
2,000 TriviaQA questions, Gemma 3 4B base and
M = 10. The green “All” bar shows the overall
percentage across all lengths.

From Theorem 1, beam-weighted estimator
is more accurate than Monte Carlo estimator
whenever total beam probability mass mB ex-
ceeds 1 − 1

2
√
M

. For M = 10, the thresh-
old is mB > 0.842. Thus, when the top-10
beam hypotheses capture at least ∼ 84% of
the model’s probability mass, beam search
provides a lower-error estimator than multi-
nomial sampling with the same sample bud-
get.

In practice, this condition is frequently satis-
fied. On the TriviaQA dataset, Figure 3 shows
that 22.7% of examples meet the sufficient con-
dition overall, and up to 30-40% for very short
generations (≤ 3 output tokens), where probability mass is highly concentrated on the top beams.
When the inside-outside gap δ = |µB − µB| < 1, the break-even requirement 6 relaxes to
(1 − mB)δ < σ/

√
M , allowing beam search to outperform even when mB < 0.842. Although

µB is not directly computable due to the combinatorial output space, our experiments consistently
show beam search outperforming multinomial sampling, suggesting that δ is modest in practice and
that the effective threshold is often lower than 0.842.

3.3 ADAPTING OTHER UQ METHODS TO BEAM SEARCH

In a similar manner, other consistency-based methods can be adapted to utilize beam search-based
samples in their formulation.

Eccentricity. Eccentricity is a method introduced by Lin et al. (2024a). Unlike dissimilarity, which
uses only the similarities between the produced answer y∗ and each alternative sample, Eccentricity
aggregates the joint pairwise relationships among all samples.

In this method, we first construct a similarity matrix of size (M + 1)× (M + 1) for the M samples
and the produced answer y(M+1) = y∗:

Wij = s
(
y(i),y(j)

)
, 1 ≤ i, j ≤ M + 1. (8)

Then we compute the degree matrix D:

Dij =


M+1∑
k=1

Wik, i = j,

0, i ̸= j,

(9)

and obtain the eigendecomposition of the Graph Laplacian L = I − D−1/2WD−1/2, yielding
eigenpairs {λi,ui}M+1

i=1 . Smaller eigenvalues (close to zero) capture meaningful semantic structure,
whereas larger eigenvalues tend to reflect noise. We therefore retain the eigenvectors whose eigen-
values satisfy λi < α, yielding K vectors in total; K is thus determined by the threshold α > 0.

5
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Semantic embeddings are formed as vj = [u1j ,u2j , . . . ,uKj ]. For 1 ≤ j ≤ M , vj represents
the embedding of y(j), and v∗ = vM+1 corresponds to y∗. The confidence score is the distance
between the embedding of the produced answer and the mean embedding of the samples:

ÛEcc(y∗ | x) =
∥∥∥∥v∗ −

1

M

M∑
i=1

vi

∥∥∥∥2
2

, (10)

where higher values indicate higher uncertainty.

With beam-generated candidates, we weight embeddings by the normalized masses wi from equa-
tion (4) to better reflect the model distribution while avoiding duplicate generations:

Û b
Ecc(y∗ | x) =

∥∥∥∥vb
∗ −

M∑
i=1

wiv
b
i

∥∥∥∥2
2

. (11)

CoCoA. A white-box approach CoCoA (Vashurin et al., 2025b) combines a model probabilities-
based uncertainty with the sample-consistency signal:

ÛCoCoA(y∗ | x) = u(y∗ | x) · ÛMC
D (y∗ | x) = u(y∗ | x) · 1

M

M∑
i=1

(
1− s(y(i),y∗)

)
, (12)

where u(y | x) is a model-based uncertainty measure for the sequence (e.g., − log p(y | x)).
For a beam-weighted estimator, we utilize (5) as sample-consistency signal:

Û b
CoCoA(y∗ | x) = u(y∗ | x) · Û b

D(y∗ | x) (13)

Eigenvectors Dissimilarity. Both Dissimilarity and Eccentricity produce confidence scores for the
generated answer y∗. Dissimilarity compares y∗ to each sample using the base similarity function
s, while Eccentricity measures the distance from y∗ to the centroid in the Laplacian embedding
space; see equation (10). To bridge these views, we measure dissimilarity within the embedding
space itself, averaging the distances from the embedding of y∗ to the embeddings of individual
samples. This retains the joint-pairwise smoothing of Eccentricity and also reflects the variance
among samples, rather than only the centroid. The sampling-based estimate is

ÛEigV ecD(y∗ | x) = 1

M

M∑
i=1

∥∥v∗ − vi

∥∥2
2
, (14)

and the beam-guided, probability-weighted version is

Û b
EigV ecD(y∗ | x) =

M∑
i=1

wi

∥∥vb
∗ − vb

i

∥∥2
2
, (15)

where the embeddings vi (and vb
i ) are obtained from the Graph Laplacian as in Eccentricity, and

wi are the normalized masses from equation (4). This estimator increases both when y∗ moves
away from the bulk and when the samples themselves are more dispersed; by contrast, Eccentricity
focuses on the single distance to the weighted centroid.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on six QA datasets in total. Those include two closed-book
datasets: TriviaQA (Joshi et al., 2017) and Web Questions (Berant et al., 2013), two open-book
datasets: CoQA (Reddy et al., 2019) and HotpotQA (Yang et al., 2018) and two multiple-choice
datasets: CommonsenceQA (Talmor et al., 2019) and ARC-Challenge (Clark et al., 2018). For each
dataset, we randomly sampled several questions from the test set. The statistics for those datasets
are available in Table 1. Prompt details and examples of questions are provided in Appendix C.

Models. We use base and instruct versions of 3 models: Gemma 3 4B (Team, 2025a), Llama 3.1
8B (Dubey et al., 2024), and Qwen 3 8B (Team, 2025b).

6
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Table 1: Test dataset settings and statistics.
Closed-Book QA Open-Book QA Multiple Choice

TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

# Questions 2000 1490 2000 2000 1221 447

# few-shot examples 5 5 all preceding 0 2 2

Max new tokens 20 20 20 20 10 20

Table 2: Summary of baseline UQ methods.
Category Uncertainty Quantification Method

Information
-based

Sequence Probability (Prob)
Mean Token Entropy (MTE)
Perplexity
CCP (Fadeeva et al., 2024)

Reflexive P(True) (Kadavath et al., 2022)

Sampling
-based

Semantic Entropy (Kuhn et al., 2023)
Shifting Attention to Relevance

(SAR) (Duan et al., 2024)
Lexical Similarity

(Fomicheva et al., 2020)
Sum of Eigenvalues of Laplacian

(EigValLaplacian) (Lin et al., 2024a)
Number of Semantic Sets

(NumSemSets) (Lin et al., 2024a)

Metrics. Following best uncertainty benchmark-
ing practices (Vashurin et al., 2025a), we adopt the
Prediction–Rejection Ratio (PRR) as our primary
evaluation metric. Consider a test dataset D =
{(xj ,y

∗
j )}, , where yj denotes the output generated

by an LLM for input xj , and uj = U(xj) is the as-
sociated uncertainty score. The rejection curve cap-
tures how the average quality Q(yj ,y

∗
j ) of predic-

tions with uncertainty uj < a varies with the rejec-
tion parameter a. PRR is then defined as the nor-
malized area under the rejection curve, computed as
the ratio of the excess AUC over a random baseline
to that of the oracle uncertainty score (which ranks
instances perfectly by quality):

PRR =
AUCunc − AUCrnd

AUCoracle − AUCrnd
. (16)

A higher PRR indicates a more effective uncertainty score. Following Vashurin et al. (2025a), we
use AlignScore (Zha et al., 2023) as the quality metric Q. While PRR serves as our main evaluation
measure, we additionally report ROC-AUC and PR-AUC in Appendix D.2.

Baselines. We evaluate four main methods, Dissimilarity, Eccentricity, Eigenvectors Dissimilarity,
and CoCoA, under multinomial sampling and their beam-guided, probability-weighted variants. For
CoCoA, we consider both the log-probability form u(y∗ | x) = − log p(y∗ | x) (CocoaMSP) and
the perplexity form u(y∗ | x) = − 1

|y∗| log p(y∗ | x) (CocoaPPL).

In addition, we compare against several state-of-the-art UQ baselines summarized in Table 2, us-
ing implementations from LM-Polygraph (Fadeeva et al., 2023). The simpliest baseline, Sequence
Probability, calculates − log p(y∗ | x). For detailed descriptions of other methods see Appendix E.

All experiments use M = 10 candidates for both multinomial sampling and beam search. We adopt
the entailment probability from the DeBERTa-large model fine-tuned on the MNLI task (He et al.,
2021) for similarity function s, following Lin et al. (2024a).

4.2 RESULTS AND DISCUSSION

Table 3 presents PRR results for six models, averaged over six datasets. Across all models, incorpo-
rating beam search consistently improves the performance of consistency-based uncertainty scores.
Moreover, in almost every case, beam search–based methods achieve either the best or second-best
PRR compared to both baselines and the original consistency-based approaches. In particular, Dis-
similarity + Beam Search achieves the best PRR scores for all base models and the second-best
scores for Llama 3.1 8B instruct and Qwen 3 8B instruct. Similarly, CocoaMSP + Beam Search
achieves the best results for Llama 3.1 8B instruct and Gemma 3 4B instruct, while CocoaPPL
+ Beam Search ranks second-best for Llama 3.1 8B base, Gemma 3 4B base, and Gemma 3 4B
instruct. We further provide separate results for each dataset in Appendix D.3.

7
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Table 3: PRR (↑ is better) averaged over 6 datasets. For each model, the top-1 method is bold and
the second-best is underlined. For beam-guided variants, we mark ↑ when the variant improves over
its original multinomial-sampling counterpart.

Method Llama 3.1 8B
base

Llama 3.1 8B
instruct

Gemma 3 4B
base

Gemma 3 4B
instruct

Qwen 3 8B
base

Qwen 3 8B
instruct

MSP .410 ± .019 .344 ± .031 .471 ± .023 .292 ± .022 .376 ± .03 .289 ± .067

MTE .422 ± .016 .364 ± .026 .476 ± .022 .317 ± .028 .407 ± .032 .297 ± .064

Perplexity .452 ± .02 .323 ± .027 .525 ± .024 .288 ± .025 .372 ± .03 .276 ± .058

CCP .401 ± .02 .364 ± .029 .492 ± .022 .331 ± .026 .355 ± .034 .291 ± .06

SAR .352 ± .02 .385 ± .029 .386 ± .026 .239 ± .024 .363 ± .033 .292 ± .052

P(True) .015 ± .023 .072 ± .03 .093 ± .026 -.096 ± .024 .110 ± .03 -.114 ± .055

SemanticEntropy .414 ± .019 .376 ± .025 .401 ± .023 .293 ± .024 .319 ± .031 .299 ± .058

Lexical Similarity .411 ± .02 .366 ± .029 .426 ± .025 .247 ± .023 .425 ± .034 .237 ± .055

EigValLaplacian .426 ± .016 .371 ± .028 .437 ± .03 .233 ± .025 .406 ± .03 .265 ± .056

NumSemSets .396 ± .018 .319 ± .031 .418 ± .024 .238 ± .023 .365 ± .033 .253 ± .052

Dissimilarity .505 ± .018 .379 ± .028 .630 ± .021 .206 ± .019 .477 ± .037 .327 ± .066

Dissimilarity + beamsearch .543 ↑± .019 .417 ↑± .026 .650 ↑± .022 .252 ↑± .022 .478 ↑± .031 .355 ↑± .062

Eccentricity .453 ± .016 .368 ± .029 .563 ± .021 .231 ± .025 .396 ± .035 .251 ± .058

Eccentricity + beamsearch .505 ↑± .017 .397 ↑± .029 .603 ↑± .023 .285 ↑± .024 .410 ↑± .03 .345 ↑± .061

EigVecDissimilarity .463 ± .019 .370 ± .028 .561 ± .026 .236 ± .025 .425 ± .035 .256 ± .051

EigVecDissimilarity + beamsearch .510 ↑± .021 .414 ↑± .028 .598 ↑± .022 .301 ↑± .019 .450 ↑± .033 .376 ↑± .057

CocoaMSP .505 ± .018 .404 ± .025 .587 ± .023 .314 ± .024 .461 ± .031 .334 ± .054

CocoaMSP + beamsearch .521 ↑± .019 .426 ↑± .024 .615 ↑± .021 .345 ↑± .026 .473 ↑± .03 .347 ↑± .061

CocoaPPL .523 ± .017 .397 ± .026 .628 ± .024 .312 ± .023 .461 ± .034 .327 ± .055

CocoaPPL + beamsearch .536 ↑± .02 .412 ↑± .027 .649 ↑± .026 .339 ↑± .021 .461 ↑± .035 .337 ↑± .057
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Figure 4: PRR (↑ is better) as a function of the number of candidates M on TriviaQA with Gemma 3
4B base. Each panel reports one estimator (Dissimilarity, Eccentricity, EigVecDissimilarity). Curves
compare multinomial sampling and beam search (with probability weights from equation (4)).

4.3 ABLATIONS

In this section, we study sensitivity to (i) the number of candidates M , (ii) output length, and (iii)
rejection rate in PRR curves.

4.3.1 EFFECT OF SAMPLE COUNT

We vary the sample count M ∈ {1, . . . , 15} for Dissimilarity, Eccentricity, and EigVecDissimilarity
under multinomial sampling and beam search. Figure 4 shows that beam search generally achieves
higher PRR across all budgets M ≥ 2. Notably, beam search reaches high PRR at small budgets (3-
5 samples) and saturates quickly, while multinomial sampling improves more gradually and remains
below beam search throughout.

For M = 1, beam search reduces to greedy decoding, causing Dissimilarity to be nearly zero
because it compares two identical greedy outputs. In contrast, the sampling variant compares greedy
decoding to a stochastic sample, yielding a more informative value.

4.3.2 EFFECT OF OUTPUT LENGTH

Beam-guided estimators outperform sampling-based ones most clearly when generations are short.
As shown earlier in Figure 2, duplicate rates under multinomial sampling are high for 2-4 tokens
(∼ 30–50%) and drop to ∼ 17% for outputs of 8+ tokens. To quantify the impact, we compute PRR
for Dissimilarity using beam search (with weights from equation (4)) and multinomial sampling (no
weights) across five length bins of approximately equal size on TriviaQA and CoQA with Gemma
3 4B base; see Figure 5. Within each bin, beam search consistently beats multinomial sampling
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Figure 5: PRR (↑ is better) for Dissimilarity under beam search (with probability weights) vs. multi-
nomial sampling, for different output lengths. Each dataset (TriviaQA, CoQA) with Gemma 3 4B
base is partitioned into five approximately equal-size bins token length of greedy output.
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Figure 6: Prediction-Rejection curves for Dissimilarity, Eccentricity, and EigVecDissimilarity on
TriviaQA with Llama 3.1 8B base, comparing multinomial sampling (blue) and beam search with
weights (orange). Oracle (black) and random (gray dashed) baselines are shown. The vertical dashed
line marks the maximum rejection rate used in AUC calculations.

for short outputs; the gap narrows and becomes negligible for lengths of about 7 tokens and above,
where duplication is less pronounced.

4.3.3 PREDICTION-REJECTION CURVES

Figure 6 compares full Prediction-Rejection curves for Dissimilarity, Eccentricity, and EigVecDis-
similarity on TriviaQA with Llama 3.1 8B base. Across all estimators, beam search consistently
dominates multinomial sampling for nearly the entire rejection range. The improvement becomes
increasingly pronounced as the rejection rate grows, where beam-guided estimates remain stable
while multinomial ones flatten or even degrade. This indicates that beam search is especially bene-
ficial in the high-rejection regime, where distinguishing between stronger and weaker candidates is
the most critical.

4.3.4 ADDITIONAL ABLATIONS

Additional ablations are deferred to the appendix: Appendix A.1 compares candidate–generation
strategies including Diverse Beam Search, temperature sampling, and a hybrid multinomial–beam
sampling. Appendix A.2 investigates restricted-mass normalization and shows that introducing a
small probability floor ϵ can stabilize the weighting of low-mass beams. Appendix A.3 evaluates
other sampling-based objectives (Semantic Entropy, Degree Matrix) under beam generation with
probability-weighted formulations. Appendix D.1 examines using the top-1 beam decode as the
produced answer y∗ (instead of greedy), a natural choice when beam search is already run to obtain
a higher-quality output.
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5 RELATED WORK

Consistency-based Uncertainty Estimation. In a black-box setting, consistency-based methods
are especially relevant, as they do not require access to the model internals. Lin et al. (2024a) in-
troduce several methods that estimate confidence based on a similarity matrix, where each entry
represents the similarity between a pair of sampled generations. Fomicheva et al. (2020) present
Lexical Similarity, a metric that evaluates the average similarity of words or phrases between each
pair of responses. In a white-box setting, consistency signals can be combined with model token-
probabilities-based confidence. These hybrid methods, such as Semantic Entropy (Kuhn et al.,
2023), CoCoA (Vashurin et al., 2025b) and SAR (Duan et al., 2024) explore different ways of com-
bining these signals and achieve state-of-the-art performance. However, these works are primarily
concerned with the introduction of new methods for uncertainty quantification and use multinational
sampling as a way to approximate a variety of consistency-based measures.

Uncertainty and Decoding. There were some efforts focused on examining the interaction between
decoding strategies and uncertainty quantification. In particular, Hashimoto et al. (2025) explores
the impact of decoding strategies on the performance of token probabilities-based UQ methods,
namely Sequence Probability and Mean Token Entropy. The authors find that these scores pro-
duced with beam search can sometimes under perform compared to greedy or contrastive search.
While this work offers interesting insights, no experiments with stochastic decoding strategies or
non-likelihood based methods were conducted. Conversely, other research focused on making the
decoding itself uncertainty-aware. For example, Daheim et al. (2025) propose Minimum Bayes Risk
(MBR) decoding, which incorporates model uncertainty into the MBR objective for improved gener-
ation quality. Garces Arias et al. (2024) and Lee et al. (2025) incorporate uncertainty into contrastive
search decoding. Lastly, Ding et al. (2025) combines global entropy trends and local deviations to
guide a self-adaptive decoding. These works integrate uncertainty into the decoding process to im-
prove the quality of the generation, rather than improving the performance of the uncertainty itself.
Although some uncertainty-aware decoding methods have also demonstrated improved uncertainty
quantification performance, they are generally not evaluated with consistency-based metrics.

6 CONCLUSION

We present a new family of uncertainty quantification methods for LLMs that employ a beam-
weighted estimator of consistency-based uncertainty. Compared to multinomial sampling, com-
monly used in existing approaches, our method yields lower variance in dissimilarity and greater
diversity of candidate answers. We also derive a theoretical lower bound on the beam set probability
mass under which the error of the multinomial Monte Carlo estimator is guaranteed to be larger.
Finally, we evaluate our approach on six QA datasets and six different models, demonstrating state-
of-the-art performance.

LIMITATIONS

Although our method provides an improvement over existing consistency-based estimators, several
important considerations remain.

First, we evaluated our methods in white-box settings, as they require access to the model’s proba-
bility distributions. Nonetheless, we argue that developing methods tailored for white-box settings
continues to be of great importance given their continued relevance and usage. Moreover, the meth-
ods could be extended to the black-box settings using empirical probability estimates.

Second, our experiments are limited to short-form QA datasets, and the generalizability of our find-
ings to longer-form generation remains an open question.

Lastly, our implementation and evaluation relies on existing neural metrics: AlignScore is used to
score the quality of the generation, and pre-trained NLI model is utilized as a measure of consis-
tency. Although widely used in previous work, certain more specialized tasks might require different
sample similarity measures and quality metrics.
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A ABLATION STUDIES

A.1 DIFFERENT SAMPLING STRATEGIES

This section studies how the proposed estimators behave under different sample generation strate-
gies. In addition to multinomial sampling and beam search settings, we evaluate three additional
families.

Diverse beam search. We generate M = 10 candidates using a diverse beam search (Vijayaku-
mar et al., 2016) with group penalties λ ∈ {0.5, 1.0, 1.5, 2.0} and group counts that split the ten
candidates into G ∈ {2, 5} groups. As in the main beam setup, we apply the same self-normalized
probability weights wi from equation (4).

Temperature sampling with importance weights. For different temperatures T , we draw M =

10 samples with temperature sampling {y(i)
T }Mi=1 and re-weight them via self-normalized importance

weights

wT
i =

p
(
y
(i)
T | x

)1−1/T

∑M
j=1 p

(
y
(j)
T | x

)1−1/T
. (17)

Hybrid multinomial–beam search. We also consider a joint strategy: first draw B beam candi-
dates, then draw the remaining M − B candidates via multinomial sampling while excluding the
beam results. Beam candidates use autoregressive probability weights, and the residual probability
mass is distributed uniformly over the multinomial samples. Let {b(i)}Bi=1 be the beam outputs and
{y(j)}Mj=B+1 the multinomial samples (with beam sequences masked out). We assign weights

wH
i = p

(
b(i) | x

)
, i = 1, . . . , B, wH

j =
1−

∑B
i=1 p

(
b(i) | x

)
M −B

, j = B + 1, . . . ,M,

(18)
so that

∑M
i=1 w

H
i = 1. We test B ∈ {1, . . . , 9}.

Table 4: PRR (↑ is better) under different sampling strategies. Columns list methods (Dissimilarity,
Eccentricity, EigVecDissimilarity) and four different model-dataset pairs; rows list strategies with
their hyperparameters. Per column, top-1 is bold, second-best is underlined.

Gemma 3 4B base Llama 3.1 8B base
TriviaQA CoQA TriviaQA CoQA

Dissim Ecc EigVec
Dissim Dissim Ecc EigVec

Dissim Dissim Ecc EigVec
Dissim Dissim Ecc EigVec

Dissim

Beam search .771 .732 .751 .561 .483 .488 .623 .581 .598 .502 .438 .454

Multinomial
Sampling

T = 0.7 .703 .619 .687 .455 .368 .397 .561 .521 .538 .451 .371 .382
T = 0.9 .734 .664 .710 .468 .417 .425 .588 .521 .533 .418 .407 .410
T = 1.0 .742 .689 .715 .465 .424 .432 .599 .516 .537 .431 .416 .424
T = 1.2 .733 .679 .717 .435 .424 .437 .610 .517 .535 .391 .427 .433
T = 1.5 .718 .685 .717 .406 .426 .436 .555 .515 .532 .397 .431 .440
T = 1.7 .680 .690 .717 .372 .426 .433 .569 .514 .530 .304 .432 .441

Diverse
Beam
Search

G = 2, λ = 0.5 .753 .528 .693 .498 .405 .452 .623 -.123 .546 .458 .310 .363
G = 2, λ = 1.0 .753 .566 .705 .518 .384 .432 .594 -.138 .539 .466 .285 .355
G = 2, λ = 1.5 .763 .522 .714 .537 .420 .441 .618 -.101 .542 .462 .245 .317
G = 2, λ = 2.0 .759 .515 .702 .547 .377 .391 .630 -.130 .546 .452 .215 .287
G = 5, λ = 0.5 .758 .546 .736 .493 .401 .453 .591 -.026 .569 .395 .262 .353
G = 5, λ = 1.0 .768 .523 .746 .515 .369 .423 .615 -.086 .563 .447 .274 .376
G = 5, λ = 1.5 .761 .453 .723 .513 .391 .427 .623 -.153 .533 .461 .199 .324
G = 5, λ = 2.0 .770 .476 .690 .513 .355 .415 .631 -.093 .548 .453 .132 .254

Hybrid
Multinomial-

Beam

B = 1 .759 .715 .746 .512 .451 .433 .597 .519 .549 .386 .314 .325
B = 2 .765 .731 .745 .519 .470 .435 .617 .564 .586 .445 .338 .345
B = 3 .781 .736 .754 .503 .461 .439 .620 .553 .598 .519 .436 .424
B = 4 .784 .750 .769 .516 .467 .428 .622 .572 .617 .436 .388 .382
B = 5 .757 .733 .749 .538 .500 .466 .655 .578 .609 .470 .412 .419
B = 6 .773 .733 .756 .528 .512 .488 .635 .586 .613 .486 .421 .415
B = 7 .771 .737 .754 .543 .468 .471 .640 .596 .617 .483 .399 .427
B = 8 .764 .733 .755 .548 .504 .507 .648 .597 .610 .491 .434 .425
B = 9 .772 .747 .765 .551 .509 .497 .646 .597 .618 .501 .427 .439
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Evaluations use a subset of 500 examples from TriviaQA and CoQA with two base models, Gemma
3 4B base and Llama 3.1 8B base. Results are summarized in Table 4.

No single strategy dominates across datasets, models, or estimators. Temperature sampling (with
importance weights) and diverse beam search systematically yield to beam search and hybrid
multinomial-beam. Hybrid multinomial–beam strategy can reach top-1 for specific hyperparam-
eter B), but gains are not systematic and are sensitive to tuning. Given this variability and tuning
cost, plain beam search with probability weighting is a reasonable default.

A.2 RESTRICTED-MASS NORMALIZATION

Equation (4) normalizes autoregressive sequence probabilities over the M beam candidates. This
choice can be sensitive to tail candidates whose probabilities are tiny and length-dependent. To test
robustness, we introduce a floor ϵ on the per-candidate mass:

wϵ
i =

max
(
ϵ, p(b(i) | x)

)∑M
j=1 max

(
ϵ, p(b(j) | x)

) . (19)

The setting ϵ = 0 recovers equation (4); ϵ = 1 yields uniform weights w1
i = 1/M . Intermediate ϵ

values trade off fidelity to the model distribution against robustness to noisy, length-biased tails.

We evaluate beam-guided probability-weighted methods for different ϵ on a subset of 500 examples
from TriviaQA and CoQA with two base models, Gemma 3 4B base and Llama 3.1 8B base. Results
are summarized in Table 5.

The results do not indicate a clear best choice of method and corresponding ϵ parameter. Determin-
ing the optimal ϵ is a case-dependent task.

Table 5: PRR (↑ is better) under restricted-mass normalization ablation. Columns group
dataset–model pairs with methods (Dissim, Ecc, EigVecDissim). Rows vary the mass floor ϵ in
equation (19): ϵ = 0 recovers equation (4); ϵ = 1 yields uniform weights wi = 1/M . For each
dataset–method, the top-1 score is bold and the second-best is underlined.

Gemma 3 4B base Llama 3.1 8B base
TriviaQA CoQA TriviaQA CoQA

Dissim Ecc EigVec
Dissim Dissim Ecc EigVec

Dissim Dissim Ecc EigVec
Dissim Dissim Ecc EigVec

Dissim

ϵ = 1.0 .765 .741 .744 .536 .487 .461 .668 .596 .607 .470 .428 .410
ϵ = 0.1 .765 .727 .745 .556 .497 .483 .667 .612 .627 .502 .447 .446
ϵ = 0.05 .764 .720 .744 .561 .490 .487 .657 .606 .626 .509 .435 .451
ϵ = 0.01 .766 .718 .749 .559 .478 .489 .630 .584 .602 .496 .437 .452
ϵ = 0.001 .771 .731 .751 .562 .484 .488 .624 .581 .598 .501 .438 .453
ϵ = 0.00001 .771 .732 .751 .561 .483 .488 .623 .581 .598 .502 .438 .454
ϵ = 0 .771 .732 .751 .561 .483 .488 .623 .581 .598 .502 .438 .454

A.3 OTHER SAMPLING-BASED METHODS UNDER BEAM SEARCH

Beyond Dissimilarity, Eccentricity, and EigVecDissimilarity, this ablation evaluates two other
sampling-based methods under beam-generated candidates: Degree Matrix (Lin et al., 2024a) and
Semantic Entropy (Kuhn et al., 2023). We also provide probability-weighted beam formulations
using the weights wi from equation (4).

Degree Matrix. Given M multinomial samples {y(i)}Mi=1, Degree Matrix estimates the average
pairwise dissimilarity:

ÛDegMat(x) =
1

M2

M∑
i=1

M∑
j=1

(
1− s(y(i),y(j))

)
. (20)

For beam candidates {b(i)}Mi=1, our mass-aware variant averages with weights:

Û b
DegMat(x) =

M∑
i=1

wi

M∑
j=1

wj

(
1− s(b(i),b(j))

)
. (21)
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Semantic Entropy. Multinomial samples are clustered into semantic equivalence classes C. For
each class, we calculate its probability

p̂(c) =
1

M

M∑
i=1

1{y(i) ∈ c} for c ∈ C. (22)

Then Semantic Entropy calculates

ÛSemEnt(x) = − 1

|C|
∑
c∈C

log p̂(c). (23)

For beam candidates, use cluster masses aggregated by wi:

p̂b(c) =

M∑
i=1

wi 1{b(i) ∈ c}, Û b
SemEnt(x) = −

∑
c∈C

p̂b(c) log p̂b(c). (24)

Note that these objectives score LLM uncertainty about the input x as they are independent of a
particular y∗.

The results are summarized in Table 6. Beam search yields significant gains for Semantic Entropy
and little to no improvement for Degree Matrix. Even with the beam-adapted formulations above,
both objectives show worse results in terms of absolute PR-AUC compared to other methods. The
primary reason is the target mismatch: as noted, these scores quantify uncertainty of the input x and
are independent of the produced answer y∗, whereas our main methods, Dissimilarity, Eccentricity
and EigVecDissimilarity, focuses on ranking the correctness of y∗ itself.

Table 6: PR-AUC (↑ is better) on 6 datasets with Gemma 3 4B base. Each method is shown as a pair:
its multinomial-sampling variant and its beam-search variant; ↑ denotes an improvement of the beam
variant over its multinomial counterpart. Along main methods, the table includes input-uncertainty
methods (Semantic Entropy, Lexical Similarity). For each dataset, the top-1 score is bold and the
second-best is underlined. The rightmost column reports the mean PR-AUC across datasets.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge Mean

Semantic Entropy .622 .505 .301 .140 .407 .431 .401
Semantic Entropy + beamsearch .685↑ .614↑ .365↑ .278↑ .436↑ .454↑ .472↑
Degree Matrix .682 .605 .385 .311 .409 .419 .469
Degree Matrix + beamsearch .673 .642↑ .328 .244 .444↑ .473↑ .467

SAR .656 .571 .347 .296 .183 .264 .386
SAR + beamsearch .671↑ .589↑ .329 .266 .209↑ .269↑ .372

Dissimilarity .755 .715 .578 .626 .561 .545 .630
Dissimilarity + beamsearch .766↑ .722↑ .600↑ .611 .595↑ .604↑ .650↑
Eccentricity .714 .653 .459 .453 .549 .549 .563
Eccentricity + beamsearch .739↑ .633 .505↑ .514↑ .590↑ .636↑ .603↑
EigVecDissimilarity .738 .661 .443 .448 .512 .562 .561
EigVecDissimilarity + beamsearch .753↑ .668↑ .497↑ .487↑ .562↑ .621↑ .598↑
CocoaMSP .738 .666 .509 .430 .583 .595 .587
CocoaMSP + beamsearch .747↑ .679↑ .548↑ .523↑ .586↑ .606↑ .615↑
CocoaPPL .739 .678 .548 .625 .580 .595 .628
CocoaPPL + beamsearch .748↑ .694↑ .577↑ .681↑ .582↑ .610↑ .649↑

To further assess performance under different numbers of samples M used for UQ, we plot PRR
as a function of M for one selected baseline, Semantic Entropy, as well as for Dissimilarity (both
sampling and beam-search variants) for reference. Figure 7 presents the results, showing that for
all M > 1, Semantic Entropy underperforms both Dissimilarity variants. This occurs because
Dissimilarity measures the targeted uncertainty of the specific generation y∗ rather than the overall
uncertainty associated with x, measured by Semantic Entropy.

A.4 GRAPH LAPLACIAN EMBEDDING PARAMETERS

Both multinomial and beam-guided versions of Eccentricity and EigVecDissimilarity depend on the
threshold parameter α, which selects eigenvectors of the Graph Laplacian L = I −D−1/2WD−1/2
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Dissimilarity + beamsearch

Semantic Entropy

Figure 7: PRR (↑ is better) as a function of the number of candidates M on TriviaQA with Gemma
3 4B base for 3 UQ methods: Semantic Entropy, and sampling and beam search versions of Dissim-
ilarity.

Table 7: PRR (↑ is better) for Eccentricity and EigVecDissimilarity under different Graph Laplacian
embedding choices on four dataset–model pairs. Top block varies the eigenvalue threshold α (re-
taining all λi < α); bottom block fixes the embedding dimension K. For each pair, the best score is
bold and the second-best is underlined.

Gemma 3 4B base Llama 3.1 8B base
TriviaQA CoQA TriviaQA CoQA

Ecc EigVec
Dissim Ecc EigVec

Dissim Ecc EigVec
Dissim Ecc EigVec

Dissim

α = 0.3 .717 .710 .434 .355 .601 .599 .408 .364
α = 0.5 .752 .740 .497 .460 .627 .626 .431 .420
α = 0.7 .750 .749 .539 .498 .622 .643 .438 .441
α = 0.8 .751 .757 .508 .475 .616 .630 .444 .450
α = 0.9 .732 .751 .483 .488 .581 .598 .438 .454
α = 0.99 .725 .755 .432 .454 .535 .561 .397 .409

K = 1 .454 .358 .346 .332 .444 .357 .304 .280
K = 2 .510 .532 .383 .361 .474 .469 .318 .338
K = 3 .619 .639 .434 .429 .538 .534 .351 .348
K = 4 .645 .643 .418 .412 .519 .514 .359 .352
K = 5 .638 .655 .366 .352 .487 .492 .314 .316
K = 6 .529 .545 .244 .236 .363 .368 .210 .211
K = 7 .210 .242 -.101 -.076 .050 .062 -.208 -.211
K = 8 -.265 -.209 -.210 -.171 -.358 -.349 -.327 -.308
K = 9 -.566 -.414 -.268 -.186 -.462 -.410 -.339 -.317
K = 10 -.659 -.484 -.283 -.189 -.467 -.397 -.330 -.249

used to form semantic embeddings. Specifically, after computing the eigenpairs {λi,ui}M+1
i=1 , we

retain those with λi < α, yielding K eigenvectors in total and embeddings vj = [u1j ,u2j , . . . ,uKj ]
of dimension K. All eigenvalues lie in [0, 1]; smaller values capture stronger semantic structure,
whereas values closer to 1 tend to reflect noise (Lin et al., 2024a). In the main experiments we
follow the original Eccentricity setting and use α = 0.9.

Here we vary α and also test a fixed-K strategy (i.e., keeping exactly K leading low-spectrum
eigenvectors irrespective of the threshold).

Table 7 reports the performance for Eccentricity and EigVecDissimilarity across α and K on four
dataset–model pairs. A fixed embedding size performs poorly: the optimal number of informative
directions varies between candidate sets, so fixing K either underfits or includes noisy directions.
Thresholding is more robust: α ∈ [0.7, 0.9] consistently yields strong results across methods and
pairs, supporting our default choice α = 0.9.

A.5 CROSS-ENCODER SIMILARITY

In the main text, we instantiate the similarity function s using an NLI score: the entailment proba-
bility from a DeBERTa model. CoCoA, however, originally used a RoBERTa-large cross-encoder
fine-tuned on the Semantic Textual Similarity benchmark (Liu et al., 2019). Table 8 reports PRR
for Gemma 3 4B base when replacing the NLI-based s with this cross-encoder; all other settings are
unchanged.
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Table 8: PRR (↑ is better) on 6 datasets with Gemma 3 4B base using a RoBERTa-large cross-
encoder (STS) as the similarity function s in place of NLI. For each dataset, the top-1 is bold
and the second-best is underlined; ↑ marks an improvement of a beam variant over its multinomial
counterpart.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge Mean

Dissimilarity .725 .683 .497 .597 .481 .421 .567
Dissimilarity + beamsearch .746↑ .693↑ .513↑ .654↑ .505↑ .479↑ .598↑
Eccentricity .722 .647 .489 .544 .455 .500 .560
Eccentricity + beamsearch .734↑ .647↑ .483 .604↑ .362 .421 .542

EigVecDissimilarity .737 .649 .453 .523 .489 .529 .563
EigVecDissimilarity + beamsearch .744↑ .675↑ .484↑ .582↑ .439 .496 .570↑
CocoaMSP .731 .642 .438 .397 .553 .577 .556
CocoaMSP + beamsearch .740↑ .648↑ .462↑ .479↑ .558↑ .593↑ .580↑
CocoaPPL .728 .653 .488 .607 .546 .567 .598
CocoaPPL + beamsearch .737↑ .658↑ .498↑ .650↑ .548↑ .586↑ .613↑

A.6 NUMBER OF SAMPLES ACROSS DIFFERENT TASKS
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Figure 8: PRR (↑ is better) as a function of the number of candidates M across different datasets
and models.

To evaluate the performance of the proposed beam-search variations under different numbers of
samples M across models, we computed PRR for both the sampling and beam-search versions of
Dissimilarity on 200 random subsamples of TriviaQA for three LLMs: Gemma 3 4B base, Llama
3.1 8B base, and Qwen 3 8B base. To further assess performance across datasets, we additionally
evaluated PRR for Gemma 3 4B base on the 200 subsamples of ARC-Challenge dataset. All four
resulting plots are shown in Figure 8.
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The results show that for all budgets M > 1, beam search consistently outperforms sampling,
yielding higher PRR. On the open-ended TriviaQA dataset, PRR increases steadily with M , with
beam search reaching a plateau around M = 5 for all 3 models tested. On the multiple-choice
ARC-Challenge dataset, PRR plateaus at a considerably smaller budget (M = 2), likely due to the
small output space (i.e., a limited set of answer choices).

Overall, these results indicate that the beam-search variant of Dissimilarity remains effective even at
relatively small sample budgets: M ≈ 5 for open-ended short-form generation tasks, and M = 2
for multiple-choice settings, where the constrained output space enables faster saturation.
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B ANALYSIS AND EXAMPLES

B.1 PROBABILITY MASS COVERAGE

 2 3 4 5 6 7  8
Length of Output Tokens

0

20

40

60

80

Pr
ob

ab
ilit

y 
M

as
s C

ov
er

ed
 (%

)
Mass Coverage by Length

Multinomial sampling
Beam search

1 2 3 4 5 6 7 8 9 10
Sample index i

0.0

0.2

0.4

0.6

0.8

1.0

p
(b

(i)
x)

Beam search probabilities per sample

Figure 9: Left: average probability mass covered by the candidate set (M=10) across output-length
bins (averaged over examples in the bin) on TriviaQA with Gemma 3 4B base. Right: for beam
search, distribution of sequence probabilities p(b(i) | x) by beam rank i (1 = highest-probability
text).

Figure 9 summarizes two observations. First (left), beam search covers a larger share of the model’s
probability mass than multinomial sampling across length bins. Second (right), beam probabilities
decay sharply with rank: the first few beams capture most of the mass, while lower-ranked beams
contribute little. This motivates mass-aware weighting wi (equation (4)) and helps explain why
probability-weighted beam variants are effective, especially at small candidate budgets.

B.2 EXAMPLES

We include qualitative examples for Gemma 3 4B base: two from TriviaQA, two from WebQues-
tions, and one from CoQA. Each panel shows the question, the greedy answer, ten multinomial
samples, and ten beam-search samples with autoregressive probabilities, together with the corre-
sponding uncertainty scores (e.g., Dissimilarity and its beam-guided variant). The cases illustrate
how beam search reduces duplication and enhances uncertainty.

Question: What claimed the life of singer
Kathleen Ferrier?
Greedy: breasts cancer

Multinomial
samples

Beam-search
samples

cancer cancer p=0.228
breast cancer tuberculosis p=0.154
pulmonary breast cancer p=0.089
breast cancer lung cancer p=0.041
cancer pneumonia p=0.039
breast cancer leukaemia p=0.034
myx myel p=0.023
cancer leuk p=0.011
cancer pulmonary p=0.011
pneumonia lymphoma p=0.010

Dissimilarity: 0.330
Dissimilarity + beamsearch: 0.533

Question: Which number Beethoven sym-
phony is known as ‘The Pastoral’?
Greedy: 6

Multinomial
samples

Beam-search
samples

six sixth p=0.314
seventh 6 p=0.169
sixth 6th p=0.104
sixth ninth p=0.061
sixth seventh p=0.037
6 9 p=0.027
seventh six p=0.023
no 9th p=0.021
sixteenth no. p=0.013
n6 7 p=0.008

Dissimilarity: 0.634
Dissimilarity + beamsearch: 0.561

Figure 10: Two examples from Gemma 3 4B base on TriviaQA. Each panel shows the question,
greedy answer, multinomial and beam-search samples with autoregressive probabilities, plus dis-
similarity and beamsearch-guided dissimilarity.
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Question: what currency does cyprus use?
Greedy: Cyprus pound

Multinomial
samples

Beam-search
samples

Euro Euro p=0.439
Euro euro p=0.201
Euro Cyprus pound p=0.091
Euro Cypriot p=0.072
euro Cyprus Pound p=0.016
euro Euros p=0.014
euro EURO p=0.007
euros euros p=0.007
Euro cyprus p=0.007
Euro Cyprus p=0.006

Dissimilarity: 0.976
Dissimilarity + beamsearch: 0.800

Question: who plays charlie in the santa clause
movies?
Greedy: Tim Allen

Multinomial
samples

Beam-search
samples

Tim Allen Tim Allen p=0.318
Tim Allen Jeff Daniels p=0.017
Scott Calvin Timothy Oly p=0.012
Tim Allen Ed Asner p=0.010
Tim Allen Scott Calvin p=0.008
Edward Arnold Edward Asner p=0.008
Tim Allen Tony Cox p=0.007
Jeremy nault Tim Allen p=0.007
Tim Allen Tim allen p=0.005
Tim Allen Eric Lloyd p=0.004

Dissimilarity: 0.427
Dissimilarity + beamsearch: 0.313

Figure 11: Two examples from Gemma 3 4B base on WebQ. Each panel shows the question, greedy
answer, multinomial and beam-search samples with autoregressive probabilities, plus dissimilarity
and beamsearch-guided dissimilarity.

Story: A couple of weeks ago, my 12-year-old daughter, Ella threatened to take my phone and break
it. ”At night you’ll always have your phone out and break you’ll just type,” Ella says. ”I’m ready to go
to bed, and try to get you to read stories for me and you’re just standing there reading your texts and
texting other people,” she adds. I came to realize that I was ignoring her as a father...

Question: She mentions a lot of grown ups don’t make what in their lifetime?
Greedy: Limits.

Multinomial
samples

Beam-search
samples

Boundaries. Boundaries. p=0.185
Set limits. Limits. p=0.079
Boundaries. They don’t p=0.040
limits. Rules. p=0.032
Boundaries in their Boundaries. p=0.029
Charging station. Boundaries. p=0.028
Similar limitations. A charging station. p=0.016
Boundaries. Boundaries that protect p=0.010
Boundaries. Limits in their own p=0.007
Set up similar limits Boundaries p=0.007

Dissimilarity: 0.310
Dissimilarity + beamsearch: 0.190

Figure 12: One example from Gemma 3 4B base on CoQA. Shown are the question, greedy an-
swer, multinomial and beam-search samples with autoregressive probabilities, plus dissimilarity
and beamsearch-guided dissimilarity.
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C DATASETS

Table 9 lists the prompts used to form inputs for each dataset (separately for base and instruct
models). Table 10 reports mean accuracy for each model–dataset pair. We measure accuracy as the
fraction of predictions whose AlignScore with the gold answer exceeds 0.5.

Table 9: Prompt templates used for each dataset and model type. Few-shot exemplars are shown as
placeholders (e.g., <5 few-shot QA pairs>); run-time inputs are denoted by <question>,
<context>, <title 1>, etc.
Dataset Base Prompt Instruct Prompt

TriviaQA <5 few-shot QA pairs>
Question: <question>
Answer:

Answer the following question as briefly as possible.
<5 few-shot QA pairs>
Now answer the following question:
Question: <question>
Answer:

Web
Questions

<5 few-shot QA pairs>
Question: <question>
Answer:

Below are questions with short factual answers.
Return only the short answer (a name, phrase, number,
or year).
<5 few-shot QA pairs>
Now answer this.
Q: <question>
A:

CoQA Story: <context>
<all preceding QA pairs>
Question: <question>
Answer:

Story: <context>
<all preceding QA pairs>
Answer the following question as briefly as possible.
Question: <question>
Answer:

HotpotQA Title: <title 1>
<paragraph 1>

Title: <title 2>
<paragraph 2>

Question: <question>
Short answer:

Instruction: Read the context and answer with a
short factual span (a few words) copied from the
context. Reply with the short answer only.
Title: <title 1>
<paragraph 1>
Title: <title 2>
<paragraph 2>
Question: <question>
Short answer:

Common
senceQA

<2 few-shot QA pairs>
Question: <question>
Options: <(A) - (D)
options>
Answer:

Instruction: Choose the single best answer from the
options. Answer with the option text only (not the
letter).
<2 few-shot QA pairs>
Now answer this.
Question: <question>
Options:
<(A) - (D) options>
Answer:

ARC-
Challenge

<2 few-shot QA pairs>
Question: <question>
Options:
<(A) - (D) options>
Answer:

Instruction: Choose the single best answer from the
options. Answer with the option text only (not the
letter).
<2 few-shot QA pairs>
Now answer this.
Question: <question>
Options:
<(A) - (D) options>
Answer:

Table 10: Mean accuracy (%): proportion of predictions with AlignScore to the gold answer > 0.5.
Closed-Book QA Open-Book QA Multiple Choice

TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

Llama 3.1 8B base 63% 47% 74% 53% 74% 72%
Llama 3.1 8B instruct 69% 40% 80% 72% 77% 76%
Gemma 3 4B base 47% 33% 69% 41% 65% 70%
Gemma 3 4B instruct 51% 35% 76% 66% 76% 77%
Qwen 3 8B base 52% 48% 81% 47% 89% 91%
Qwen 3 8B instruct 54% 42% 76% 76% 84% 88%
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D ADDITIONAL RESULTS

D.1 SCORING TOP-BEAM OUTPUT

In the main text we score the greedy decode as the produced answer y∗. Table 11 complements
these results by scoring the top-1 beam as y∗, a natural choice when beam search is already used to
obtain a higher-quality decode. The beam-weighted family of approaches achieves higher PRR than
the original methods and baselines in the majority of cases.

Table 11: PRR (↑ is better) averaged over 6 datasets, when scoring the top-1 beam produced answer
(instead of greedy). For each dataset, the top-1 score is bold and the second-best is underlined. For
beam-guided variants, we mark ↑ when the variant improves over its original multinomial-sampling
counterpart.

UQ Method Llama 3.1 8B Gemma 3 4B Qwen 3 8B
base instruct base instruct base instruct

Baseline UQ methods

Prob .399 .174 .400 .213 .390 .090
MTE .320 .164 .317 .228 .334 .255
Perplexity .376 .121 .359 .185 .318 .009
CCP .395 .155 .369 .243 .352 .226
SAR .333 .221 .336 .348 .342 .246
P(True) .019 -.075 .031 .090 .012 -.080
SemanticEntropy .345 .286 .397 .320 .299 .250
LexicalSimilarity .377 .221 .384 .291 .404 .210
EigValLaplacian .366 .209 .402 .307 .384 .223
NumSemSets .349 .215 .365 .262 .344 .208

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .437 .229 .424 .333 .446 .272
Dissimilarity + beamsearch .455↑ .266↑ .466↑ .390↑ .440 .346↑
Eccentricity .405 .238 .395 .310 .375 .208
Eccentricity + beamsearch .444↑ .301↑ .450↑ .348↑ .380↑ .308↑
EigVecDissimilarity .402 .243 .412 .316 .403 .213
EigVecDissimilarity + beamsearch .446↑ .316↑ .457↑ .366↑ .415↑ .334↑
CocoaMSP .447 .284 .450 .347 .454 .272
CocoaMSP + beamsearch .471↑ .290↑ .478↑ .407↑ .459↑ .345↑
CocoaPPL .440 .251 .433 .340 .422 .261
CocoaPPL + beamsearch .450↑ .273↑ .444↑ .395↑ .410 .318↑

D.2 ROC-AUC AND PR-AUC

In the main text we report PRR. Tables 12 and 13 complements these results with ROC-AUC and
PR-AUC on Gemma 3 4B base. We binarize by marking an answer as correct if its AlignScore to
the gold answer exceeds 0.5, and incorrect otherwise (the positive class for PR-AUC is the incorrect
label). The pattern mirrors PRR: beam-guided variants generally match or outperform multinomial
sampling.

D.3 DETAILED RESULTS FOR EACH DATASET

Complementing the main-table results in Table 3, Tables 14–19 report PRR for six datasets sep-
arately for Gemma 3 4B base, Gemma 3 4B instruct, Llama 3.1 8B base, Llama 3.1 8B instruct,
Qwen 3 8B base, and Qwen 3 8B instruct.
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Table 12: ROC-AUC↑ for 6 datasets with Gemma 3 4B base. For each dataset, the top-1 method is
bold and the second-best is underlined. Beam-guided and probability-weighted variants are marked
with ↑ when they improve over their multinomial-sampling baseline. The two rightmost columns
report the mean ROC-AUC across datasets.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge Mean

Baseline UQ methods

Prob .863 .768 .698 .632 .796 .821 .763
MTE .867 .793 .710 .721 .737 .753 .763
Perplexity .863 .785 .729 .735 .796 .820 .788
CCP .881 .781 .698 .660 .775 .793 .764
SAR .867 .776 .701 .713 .653 .696 .748
P(True) .642 .473 .524 .513 .571 .545 .545
SemanticEntropy .849 .758 .690 .591 .755 .774 .736
LexicalSimilarity .842 .766 .713 .656 .739 .756 .745
EigValLaplacian .867 .766 .701 .633 .739 .775 .747
NumSemSets .856 .754 .653 .639 .702 .757 .727

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .916 .836 .822 .809 .817 .818 .836
Dissimilarity + beamsearch .923↑ .852↑ .826↑ .814↑ .831↑ .841↑ .848↑
Eccentricity .897 .808 .768 .737 .809 .821 .806
Eccentricity + beamsearch .911↑ .816↑ .790↑ .771↑ .833↑ .859↑ .830↑
EigVecDissimilarity .902 .813 .761 .728 .798 .825 .805
EigVecDissimilarity + beamsearch .920↑ .827↑ .787↑ .763↑ .820↑ .856↑ .829↑
CocoaMSP .904 .823 .791 .726 .826 .839 .818
CocoaMSP + beamsearch .910↑ .836↑ .811↑ .779↑ .827↑ .847↑ .835↑
CocoaPPL .907 .832 .810 .799 .825 .837 .835
CocoaPPL + beamsearch .912↑ .845↑ .823↑ .828↑ .825↑ .844↑ .846↑

Table 13: PR-AUC↑ for 6 datasets with Gemma 3 4B base. For each dataset, the top-1 method is
bold and the second-best is underlined. Beam-guided and probability-weighted variants are marked
with ↑ when they improve over their multinomial-sampling baseline. The two rightmost columns
report the mean PR-AUC across datasets.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge Mean

Baseline UQ methods

Prob .855 .838 .477 .678 .623 .628 .683
MTE .875 .874 .545 .799 .558 .540 .699
Perplexity .860 .861 .539 .814 .629 .632 .722
CCP .866 .853 .475 .715 .676 .641 .704
SAR .865 .861 .484 .753 .437 .422 .646
P(True) .657 .662 .326 .634 .410 .355 .507
SemanticEntropy .838 .823 .456 .649 .572 .511 .642
LexicalSimilarity .833 .848 .514 .711 .545 .509 .660
EigValLaplacian .865 .855 .481 .682 .565 .532 .663
NumSemSets .841 .825 .427 .685 .508 .497 .631

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .911 .904 .715 .838 .722 .648 .789
Dissimilarity + beamsearch .919↑ .915↑ .660 .822 .754↑ .693↑ .794↑
Eccentricity .888 .887 .561 .758 .685 .625 .734
Eccentricity + beamsearch .906↑ .884 .576↑ .789↑ .744↑ .717↑ .769↑
EigVecDissimilarity .902 .889 .573 .766 .677 .651 .743
EigVecDissimilarity + beamsearch .916↑ .900↑ .588↑ .784↑ .717↑ .689↑ .766↑
CocoaMSP .897 .894 .605 .761 .711 .680 .758
CocoaMSP + beamsearch .907↑ .904↑ .632↑ .801↑ .715↑ .691↑ .775↑
CocoaPPL .902 .902 .672 .861 .712 .686 .789
CocoaPPL + beamsearch .909↑ .910↑ .690↑ .881↑ .718↑ .695↑ .801↑
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Table 14: PRR (↑ is better) for 6 datasets with Gemma 3 4B base. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with ↑ when they improve over their multinomial-sampling baseline.

Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

Baseline UQ methods

Prob .659 ± 0.018 .521 ± 0.031 .312 ± 0.024 .274 ± 0.014 .511 ± 0.025 .548 ± 0.077

MTE .670 ± 0.013 .583 ± 0.029 .363 ± 0.02 .494 ± 0.034 .364 ± 0.031 .381 ± 0.052

Perplexity .647 ± 0.024 .553 ± 0.022 .369 ± 0.02 .527 ± 0.023 .503 ± 0.022 .547 ± 0.062

CCP .686 ± 0.021 .569 ± 0.031 .326 ± 0.022 .337 ± 0.025 .506 ± 0.034 .527 ± 0.062

SAR .656 ± 0.02 .571 ± 0.028 .347 ± 0.023 .296 ± 0.018 .183 ± 0.037 .264 ± 0.055

P(True) .272 ± 0.026 -.004 ± 0.034 .031 ± 0.026 .075 ± 0.025 .090 ± 0.028 .090 ± 0.048

SemanticEntropy .622 ± 0.021 .505 ± 0.022 .301 ± 0.019 .140 ± 0.022 .407 ± 0.028 .431 ± 0.051

Lexical Similarity .602 ± 0.017 .540 ± 0.032 .349 ± 0.025 .286 ± 0.016 .386 ± 0.032 .392 ± 0.054

EigValLaplacian .666 ± 0.014 .555 ± 0.028 .320 ± 0.036 .246 ± 0.024 .386 ± 0.027 .452 ± 0.046

NumSemSets .656 ± 0.017 .538 ± 0.028 .257 ± 0.027 .268 ± 0.019 .338 ± 0.03 .454 ± 0.042

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .755 ± 0.019 .715 ± 0.03 .578 ± 0.022 .626 ± 0.016 .561 ± 0.04 .545 ± 0.062

Dissimilarity + beamsearch .766 ↑± 0.023 .722 ↑± 0.028 .600 ↑± 0.016 .611 ± 0.021 .595 ↑± 0.028 .604 ↑± 0.052

Eccentricity .714 ± 0.012 .653 ± 0.029 .459 ± 0.02 .453 ± 0.026 .549 ± 0.034 .549 ± 0.054

Eccentricity + beamsearch .739 ↑± 0.019 .633 ± 0.035 .505 ↑± 0.025 .514 ↑± 0.027 .590 ↑± 0.024 .636 ↑± 0.066

EigVecDissimilarity .738 ± 0.021 .661 ± 0.027 .443 ± 0.031 .448 ± 0.02 .512 ± 0.032 .562 ± 0.035

EigVecDissimilarity + beamsearch .753 ↑± 0.028 .668 ↑± 0.032 .497 ↑± 0.021 .487 ↑± 0.016 .562 ↑± 0.028 .621 ↑± 0.06

CocoaMSP .738 ± 0.023 .666 ± 0.028 .509 ± 0.021 .430 ± 0.028 .583 ± 0.03 .595 ± 0.052

CocoaMSP + beamsearch .747 ↑± 0.02 .679 ↑± 0.02 .548 ↑± 0.02 .523 ↑± 0.027 .586 ↑± 0.029 .606 ↑± 0.072

CocoaPPL .739 ± 0.015 .678 ± 0.025 .548 ± 0.019 .625 ± 0.023 .580 ± 0.031 .595 ± 0.039

CocoaPPL + beamsearch .748 ↑± 0.024 .694 ↑± 0.024 .577 ↑± 0.024 .681 ↑± 0.019 .582 ↑± 0.035 .610 ↑± 0.048

Table 15: PRR (↑ is better) for 6 datasets with Gemma 3 4B instruct. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with ↑ when they improve over their multinomial-sampling baseline.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

Baseline UQ methods

Prob .442 ± .018 .425 ± .031 .162 ± .024 .220 ± .014 .254 ± .025 .252 ± .077

MTE .534 ± .013 .465 ± .029 .161 ± .02 .232 ± .034 .253 ± .031 .256 ± .052

Perplexity .422 ± .024 .419 ± .022 .157 ± .02 .223 ± .023 .252 ± .022 .256 ± .062

CCP .533 ± .021 .478 ± .031 .117 ± .022 .303 ± .025 .264 ± .034 .290 ± .062

SAR .533 ± .02 .426 ± .028 .176 ± .023 .214 ± .018 .033 ± .037 .050 ± .055

P(True) -.076 ± .026 -.155 ± .034 -.161 ± .026 -.090 ± .025 -.046 ± .028 -.047 ± .048

SemanticEntropy .449 ± .021 .415 ± .022 .166 ± .019 .223 ± .022 .254 ± .028 .252 ± .051

Lexical Similarity .527 ± .017 .427 ± .032 .176 ± .025 .127 ± .016 .052 ± .032 .172 ± .054

EigValLaplacian .578 ± .014 .472 ± .028 .190 ± .036 .134 ± .024 .014 ± .027 .010 ± .046

NumSemSets .556 ± .017 .442 ± .028 .123 ± .027 .106 ± .019 .046 ± .03 .153 ± .042

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .549 ± .019 .415 ± .03 .111 ± .022 .068 ± .016 .024 ± .04 .070 ± .062

Dissimilarity + beamsearch .413 ± .023 .321 ± .028 .204 ↑± .016 .273 ↑± .021 .218 ↑± .028 .085 ↑± .052

Eccentricity .540 ± .012 .429 ± .029 .167 ± .02 .175 ± .026 -.020 ± .034 .094 ± .054

Eccentricity + beamsearch .441 ± .019 .367 ± .035 .235 ↑± .025 .314 ↑± .027 .246 ↑± .024 .108 ↑± .066

EigVecDissimilarity .561 ± .021 .437 ± .027 .169 ± .031 .173 ± .02 -.017 ± .032 .095 ± .035

EigVecDissimilarity + beamsearch .478 ± .028 .416 ± .032 .240 ↑± .021 .308 ↑± .016 .253 ↑± .028 .113 ↑± .06

CocoaMSP .531 ± .023 .456 ± .028 .183 ± .021 .198 ± .028 .252 ± .03 .266 ± .052

CocoaMSP + beamsearch .535 ↑± .02 .473 ↑± .02 .237 ↑± .02 .287 ↑± .027 .282 ↑± .029 .258 ± .072

CocoaPPL .523 ± .015 .454 ± .025 .174 ± .019 .201 ± .023 .247 ± .031 .271 ± .039

CocoaPPL + beamsearch .522 ± .024 .467 ↑± .024 .222 ↑± .024 .285 ↑± .019 .277 ↑± .035 .264 ± .048
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Table 16: PRR (↑ is better) for 6 datasets with Llama 3.1 8B base. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with ↑ when they improve over their multinomial-sampling baseline.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

Baseline UQ methods

Prob .517 ± .019 .414 ± .029 .310 ± .022 .213 ± .024 .504 ± .029 .505 ± .043

MTE .544 ± .018 .420 ± .015 .286 ± .022 .327 ± .02 .448 ± .029 .511 ± .055

Perplexity .507 ± .015 .441 ± .027 .316 ± .031 .375 ± .018 .501 ± .027 .570 ± .047

CCP .575 ± .016 .420 ± .026 .276 ± .024 .247 ± .029 .442 ± .023 .446 ± .031

SAR .548 ± .017 .452 ± .028 .331 ± .03 .263 ± .031 .189 ± .021 .330 ± .044

P(True) -.055 ± .021 .059 ± .023 -.020 ± .018 -.223 ± .026 .034 ± .024 .292 ± .044

SemanticEntropy .538 ± .019 .409 ± .023 .330 ± .021 .199 ± .024 .492 ± .023 .514 ± .05

Lexical Similarity .467 ± .018 .396 ± .03 .366 ± .024 .289 ± .026 .437 ± .028 .511 ± .041

EigValLaplacian .569 ± .019 .418 ± .022 .377 ± .023 .247 ± .025 .449 ± .035 .499 ± .047

NumSemSets .550 ± .014 .409 ± .033 .319 ± .019 .241 ± .028 .378 ± .025 .477 ± .044

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .576 ± .02 .445 ± .024 .473 ± .023 .446 ± .02 .449 ± .028 .640 ± .056

Dissimilarity + beamsearch .654 ↑± .017 .504 ↑± .023 .485 ↑± .019 .424 ± .024 .510 ↑± .023 .683 ↑± .044

Eccentricity .555 ± .016 .404 ± .025 .405 ± .023 .297 ± .021 .464 ± .028 .591 ± .038

Eccentricity + beamsearch .613 ↑± .021 .458 ↑± .019 .429 ↑± .017 .361 ↑± .023 .512 ↑± .025 .657 ↑± .031

EigVecDissimilarity .570 ± .015 .452 ± .022 .409 ± .019 .289 ± .02 .469 ± .04 .587 ± .038

EigVecDissimilarity + beamsearch .630 ↑± .019 .492 ↑± .022 .427 ↑± .019 .357 ↑± .02 .506 ↑± .035 .650 ↑± .032

CocoaMSP .595 ± .013 .458 ± .021 .463 ± .023 .366 ± .021 .510 ± .028 .641 ± .038

CocoaMSP + beamsearch .631 ↑± .019 .487 ↑± .023 .465 ↑± .027 .372 ↑± .027 .532 ↑± .022 .639 ± .041

CocoaPPL .587 ± .017 .464 ± .024 .464 ± .023 .465 ± .02 .501 ± .031 .660 ± .034

CocoaPPL + beamsearch .616 ↑± .016 .498 ↑± .029 .459 ± .024 .456 ± .018 .525 ↑± .028 .661 ↑± .046

Table 17: PRR (↑ is better) for 6 datasets with Llama 3.1 8B instruct. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with ↑ when they improve over their multinomial-sampling baseline.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

Baseline UQ methods

Prob .524 ± .023 .357 ± .036 .327 ± .021 .213 ± .022 .283 ± .026 .363 ± .044

MTE .604 ± .015 .424 ± .028 .307 ± .02 .253 ± .031 .260 ± .027 .339 ± .055

Perplexity .498 ± .018 .367 ± .025 .262 ± .025 .221 ± .03 .255 ± .028 .332 ± .053

CCP .576 ± .023 .406 ± .028 .291 ± .018 .265 ± .022 .248 ± .034 .402 ± .048

SAR .599 ± .021 .420 ± .029 .338 ± .024 .236 ± .02 .301 ± .025 .418 ± .04

P(True) .236 ± .023 .012 ± .031 .018 ± .035 .045 ± .024 -.011 ± .024 .135 ± .051

SemanticEntropy .591 ± .016 .381 ± .027 .335 ± .032 .231 ± .029 .301 ± .038 .418 ± .061

Lexical Similarity .566 ± .023 .395 ± .029 .347 ± .024 .232 ± .03 .275 ± .032 .380 ± .045

EigValLaplacian .615 ± .021 .389 ± .026 .355 ± .029 .238 ± .023 .252 ± .029 .377 ± .051

NumSemSets .569 ± .021 .363 ± .031 .228 ± .03 .180 ± .023 .208 ± .035 .368 ± .051

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .616 ± .016 .382 ± .031 .349 ± .018 .270 ± .021 .277 ± .037 .378 ± .061

Dissimilarity + beamsearch .662 ↑± .015 .411 ↑± .029 .358 ↑± .029 .349 ↑± .019 .288 ↑± .032 .434 ↑± .054

Eccentricity .598 ± .021 .379 ± .032 .319 ± .016 .248 ± .031 .273 ± .035 .389 ± .058

Eccentricity + beamsearch .620 ↑± .016 .396 ↑± .027 .330 ↑± .021 .281 ↑± .021 .306 ↑± .031 .451 ↑± .047

EigVecDissimilarity .611 ± .019 .378 ± .033 .325 ± .025 .249 ± .029 .264 ± .037 .390 ± .061

EigVecDissimilarity + beamsearch .640 ↑± .017 .425 ↑± .028 .347 ↑± .027 .291 ↑± .022 .318 ↑± .034 .461 ↑± .046

CocoaMSP .629 ± .018 .409 ± .023 .366 ± .03 .278 ± .02 .314 ± .029 .426 ± .051

CocoaMSP + beamsearch .665 ↑± .016 .428 ↑± .029 .378 ↑± .017 .344 ↑± .019 .302 ± .036 .439 ↑± .041

CocoaPPL .626 ± .022 .410 ± .03 .354 ± .024 .278 ± .024 .299 ± .038 .413 ± .056

CocoaPPL + beamsearch .653 ↑± .018 .427 ↑± .032 .356 ↑± .021 .334 ↑± .018 .285 ± .04 .419 ↑± .056
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Table 18: PRR (↑ is better) for 6 datasets with Qwen 3 8B base. For each dataset, the top-1 method is
bold and the second-best is underlined. Beam-guided and probability-weighted variants are marked
with ↑ when they improve over their multinomial-sampling baseline.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

Baseline UQ methods

Prob .617 ± .017 .449 ± .025 .267 ± .025 .111 ± .033 .337 ± .039 .475 ± .085

MTE .602 ± .022 .409 ± .027 .267 ± .023 .279 ± .023 .443 ± .044 .444 ± .077

Perplexity .597 ± .018 .426 ± .028 .278 ± .023 .256 ± .026 .294 ± .045 .381 ± .065

CCP .640 ± .018 .406 ± .028 .213 ± .028 .153 ± .025 .296 ± .048 .421 ± .09

SAR .617 ± .023 .457 ± .023 .323 ± .03 .243 ± .028 .220 ± .042 .317 ± .066

P(True) .322 ± .021 .282 ± .025 .005 ± .031 .168 ± .024 -.043 ± .045 -.074 ± .069

Semantic Entropy .549 ± .018 .411 ± .02 .247 ± .025 .173 ± .023 .230 ± .026 .305 ± .058

Lexical Similarity .595 ± .023 .430 ± .024 .338 ± .019 .310 ± .025 .367 ± .042 .508 ± .076

EigValLaplacian .602 ± .015 .423 ± .027 .301 ± .027 .284 ± .028 .349 ± .032 .475 ± .081

NumSemSets .593 ± .016 .403 ± .029 .268 ± .024 .250 ± .023 .311 ± .039 .367 ± .069

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .668 ± .014 .462 ± .024 .406 ± .023 .531 ± .017 .315 ± .038 .476 ± .086

Dissimilarity + beamsearch .680 ↑± .019 .484 ↑± .024 .409 ↑± .03 .504 ± .019 .335 ↑± .044 .457 ± .088

Eccentricity .615 ± .016 .416 ± .023 .320 ± .022 .319 ± .024 .266 ± .053 .440 ± .068

Eccentricity + beamsearch .640 ↑± .013 .437 ↑± .025 .368 ↑± .02 .407 ↑± .026 .243 ± .04 .366 ± .072

EigVecDissimilarity .628 ± .014 .454 ± .028 .325 ± .026 .314 ± .027 .373 ± .035 .456 ± .071

EigVecDissimilarity + beamsearch .660 ↑± .016 .460 ↑± .024 .380 ↑± .025 .394 ↑± .025 .353 ± .045 .453 ± .086

CocoaMSP .667 ± .019 .492 ± .019 .385 ± .025 .320 ± .025 .378 ± .028 .523 ± .071

CocoaMSP + beamsearch .678 ↑± .018 .498 ↑± .028 .391 ↑± .02 .378 ↑± .029 .385 ↑± .037 .510 ± .079

CocoaPPL .665 ± .015 .478 ± .019 .388 ± .035 .397 ± .024 .353 ± .038 .484 ± .081

CocoaPPL + beamsearch .667 ↑± .016 .486 ↑± .021 .387 ± .036 .437 ↑± .026 .339 ± .044 .450 ± .06

Table 19: PRR (↑ is better) for 6 datasets with Qwen 3 8B instruct. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with ↑ when they improve over their multinomial-sampling baseline.

UQ Method TriviaQA Web
Questions CoQA HotpotQA Common

senceQA
ARC-

Challenge

Baseline UQ methods

Prob .564 ± .017 .353 ± .032 .215 ± .02 .250 ± .026 .174 ± .034 .181 ± .078

MTE .564 ± .018 .345 ± .028 .164 ± .025 .251 ± .028 .183 ± .03 .272 ± .095

Perplexity .491 ± .023 .341 ± .036 .169 ± .026 .250 ± .028 .175 ± .037 .229 ± .058

CCP .563 ± .02 .383 ± .029 .169 ± .018 .258 ± .029 .173 ± .034 .202 ± .068

SAR .590 ± .016 .425 ± .036 .146 ± .026 .159 ± .029 .201 ± .033 .233 ± .051

P(True) -.105 ± .023 -.222 ± .035 -.126 ± .017 .018 ± .021 -.083 ± .03 -.164 ± .071

Semantic Entropy .597 ± .016 .404 ± .034 .214 ± .022 .231 ± .026 .174 ± .041 .176 ± .08

Lexical Similarity .530 ± .023 .425 ± .029 .193 ± .031 .101 ± .026 .121 ± .039 .053 ± .06

EigValLaplacian .626 ± .015 .417 ± .04 .196 ± .026 .083 ± .024 .134 ± .031 .134 ± .066

NumSemSets .608 ± .021 .437 ± .036 .110 ± .019 .096 ± .024 .113 ± .041 .154 ± .065

Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .588 ± .017 .382 ± .03 .165 ± .02 .187 ± .025 .246 ± .038 .394 ± .072

Dissimilarity + beamsearch .637 ↑± .018 .386 ↑± .026 .269 ↑± .019 .264 ↑± .026 .213 ± .031 .362 ± .083

Eccentricity .565 ± .019 .367 ± .034 .167 ± .025 .125 ± .023 .150 ± .026 .132 ± .078

Eccentricity + beamsearch .600 ↑± .016 .392 ↑± .034 .288 ↑± .029 .291 ↑± .022 .211 ↑± .035 .285 ↑± .084

EigVecDissimilarity .590 ± .024 .385 ± .031 .169 ± .026 .121 ± .032 .143 ± .033 .131 ± .066

EigVecDissimilarity + beamsearch .645 ↑± .016 .439 ↑± .032 .328 ↑± .019 .297 ↑± .017 .242 ↑± .029 .306 ↑± .058

CocoaMSP .607 ± .015 .394 ± .03 .204 ± .016 .272 ± .023 .230 ± .042 .298 ± .061

CocoaMSP + beamsearch .635 ↑± .02 .404 ↑± .024 .263 ↑± .023 .282 ↑± .025 .206 ± .029 .290 ± .061

CocoaPPL .581 ± .02 .389 ± .032 .179 ± .024 .272 ± .022 .232 ± .032 .309 ± .082

CocoaPPL + beamsearch .609 ↑± .02 .395 ↑± .031 .233 ↑± .025 .282 ↑± .026 .207 ± .03 .299 ± .084
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E DETAILED DESCRIPTION OF UNCERTAINTY QUANTIFICATION METHODS

In this section, we describe the uncertainty quantification methods used in our experiments.

Sequence Probability (Prob) is the most straightforward approach to uncertainty quantification.
We define it formally as the negative log-probability of the generating sequence:

USP(y | x) = − logP (y | x). (25)

Mean Token Entropy (MTE) measures an average entropy of tokens in a sequence:

UMTE(y | x) = 1

L

L∑
l=1

H(yl | y<l,x), (26)

where H(yl | y<l,x) = −
∑

v P (yl = v | y<l,x) logP (yl = v | y<l,x).

Perplexity computes negative average log-likelihood of tokens in a sequence:

UPPL(y | x) = − 1

L
logP (y | x), (27)

Claim Conditioned Probability (CCP), introduced in Fadeeva et al. (2024), measures uncertainty
on a claim level by perturbing claim’s tokens with alternative generations:

UCCP(C | x) = 1−
∏
j∈C

CCP(yj | y<j ,x). (28)

Where CCP(yj | y<j ,x) =

∑
k:NLI(yk

j
,yj)=

′e′ P (yk
j |y<j ,x)∑

k:NLI(yk
j
,yj)∈{′e′,′c′} P (yk

j |y<j ,x)

Shifting Attention to Relevance (SAR) is a method combining TokenSAR and SentenceSAR, as
introduced by Duan et al. (2024). SentenceSAR is defined as follows:

USentSAR(x) = − 1

M

M∑
i=1

log
(
p(y(i) | x) + 1

t
RS(y

(i),x)
)
, (29)

Here, RS(y
(j),x) =

∑
k ̸=j s

(
y(j),y(k)

)
p
(
y(k) | x

)
. To obtain SAR score, the generative proba-

bility p(y | x) is replaced with relevance-reweighted probability on a sequence level. TokenSAR is
defined as:

UTokenSAR(x) = −
L∑

l=1

R̃T (yl,y,x) logP (yl | y<l,x), (30)

where RT (·) denotes some token relevance function and relevance weight for token yl is given by
R̃T (yk,y,x) =

RT (yk,y,x)∑L
l=1 RT (yl,y,x)

.

P(True), introduced in Kadavath et al. (2022), evaluates the confidence in a generation by asking
the model the original question and answer, then asking if it is true or false. We then use the negative
log-probability of the token “True” as an uncertainty score.

Semantic Entropy, introduced in Kuhn et al. (2023), clusters M sampled generations into K clus-
ters of semantically equivalent responses. The entropy is then computed over these meaning clusters:

USE(x) = −
K∑

k=1

|Ck|
M

log p̂k(x). (31)
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Lexical Similarity, introduced in Fomicheva et al. (2020), measures average pairwise similarity
between M sampled generations using some similarity function s(y,y′):

ULSRL(x) = 1− 2

M(M − 1)

∑
i<j

s(y(i),y(j)). (32)

Number of Semantic Sets, introduced in Lin et al. (2024a), estimates how many distinct meanings
the model produces by clustering its outputs with an NLI model. Two answers are placed in the
same cluster if they mutually entail each other more than they contradict and the final number of
distinct clusters serves as an uncertainty score UNumSemSets.

Sum of Eigenvalues of Laplacian, introduced in Lin et al. (2024a), constructs a similarity matrix
among the sampled outputs and computes a uncertainty score from the eigenvalues of the Laplacian
of that similarity matrix:

UEigV(x) =

M∑
i=1

max(0, 1− λi(x)). (33)
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F COMPUTATIONAL BUDGET

All experiments were run on 2×NVIDIA A100 (80 GB). Evaluating a single model across all six
datasets took approximately 2 wall-clock days on this setup (4 GPU-days); with six models, this
amounts to 12 wall-clock days (24 GPU-days). Additional ablations (sampling strategies, top-1
beam scoring, and other objectives) required a further 5 wall-clock days on the same hardware (10
GPU-days). In total, the study used about 34 GPU-days.

G THE USAGE OF LLMS

In this study, large language models are examined primarily as the focus of analysis. For practical
tasks such as programming and writing, we also make limited use of LLM-based assistants (e.g.,
ChatGPT) to support grammar correction and code debugging, with all usage carefully monitored
by humans.
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