

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DON'T THROW AWAY YOUR BEAMS: IMPROVING CONSISTENCY-BASED UNCERTAINTIES IN LLMs VIA BEAM SEARCH

Anonymous authors

Paper under double-blind review

ABSTRACT

Consistency-based methods have emerged as an effective approach to uncertainty quantification (UQ) in large language models. These methods typically rely on several generations obtained via multinomial sampling, measuring their agreement level. However, in short-form QA, multinomial sampling is prone to producing duplicates due to peaked distributions, and its stochasticity introduces considerable variance in uncertainty estimates across runs. We introduce a new family of methods that employ beam search to generate candidates for consistency-based UQ, yielding improved performance and reduced variance compared to multinomial sampling. We also provide a theoretical lower bound on the beam set probability mass under which beam search achieves a smaller error than multinomial sampling. We empirically evaluate our approach on six QA datasets and find that its consistent improvements over multinomial sampling lead to state-of-the-art UQ performance.

1 INTRODUCTION

Today, large language models (LLMs) are increasingly being adapted in various safety-critical domains, including medicine (Busch et al., 2025), education (Xing et al., 2025), and law (Shu et al., 2024). This rapid adoption has led to a growing body of work focused on the assessment of the quality and reliability of LLM outputs. An important research direction in this field is Uncertainty Quantification (UQ; Xiao & Wang (2019); Baan et al. (2023); Xia et al. (2025)), which measures the LLM’s confidence in their responses.

UQ methods can be separated into several distinct categories. These include information-based methods that rely on token likelihoods produced by the LLM (Fomicheva et al., 2020); verbalization approaches that prompt models to provide a confidence score (Tian et al., 2023); density-based methods that utilize embeddings (Yoo et al., 2022); and last but not least, consistency-based measures that evaluate agreement between sampled outputs (Lin et al., 2024a).

Consistency-based UQ methods are of particular interest, due to not only their strong performance but also their applicability to black-box settings (Vashurin et al., 2025a). Moreover, in white-box settings too, it was shown that combining information-based and consistency-based methods yields state-of-the-art performance for a variety of tasks (Kuhn et al., 2023; Duan et al., 2024). A key component of these methods is sampling, which serves as a practical means of approximating the full probability space of all potential model outputs.

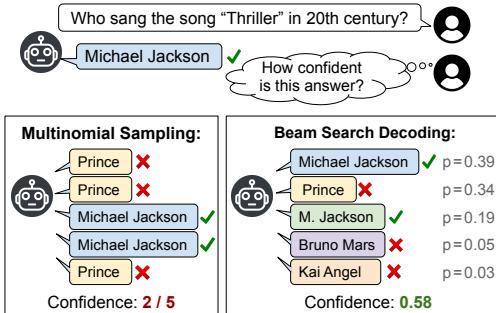


Figure 1: Beam Search vs Multinomial Sampling. Sampling produces multiple identical generations resulting in noisy confidence estimate, while beam search covers top answers from LLM distribution resulting in a better confidence score.

054 Most existing UQ approaches rely on multinomial sampling from the model’s output distribution.
 055 However, in short-form QA, multinomial sampling is prone to producing similar or even identical
 056 generations, due to its bias towards higher-probability tokens during decoding; see Figure 1. Fur-
 057 thermore, since each run produces a different set of candidate outputs, sample-based uncertainty
 058 estimates exhibit high variance, undermining their robustness. This limits their effectiveness as a
 059 representation of the full output space, especially since, for computational efficiency, studies typi-
 060 cally rely on a small number of samples.

061 To address this problem, we propose computing output consistency based on samples generated
 062 using beam search. Beam search facilitates the exploration of alternative decoding paths, which in
 063 turn allows one to generate distinct candidate outputs that better capture the model’s output space in
 064 short-form QA. Our approach includes weighting beam search outputs by their probabilities rather
 065 than uniformly, thereby preventing the overrepresentation of low-probability outputs. Particularly,
 066 when beam search is employed for decoding, uncertainty estimates are obtained at essentially no
 067 additional cost. We show that replacing multinomial sampled outputs with those generated via
 068 beam search improves the robustness and accuracy of existing consistency-based methods, as well
 069 as hybrid methods relying on both output consistency and token likelihoods.

070 Our main **contributions** are as follows.

- 071 • We identify key limitations of existing consistency-based uncertainty quantification meth-
 072 ods based on multinomial sampling; see Section 2.
- 073 • We propose a new family of UQ methods that employ an importance-weighted estimator
 074 of consistency-based uncertainty with beam search output candidates; see Section 3.
- 075 • We provide a distribution-free sufficient condition ensuring that the beam-weighted es-
 076 timator achieves a lower error than the expected error of the multinomial sampler; see
 077 Section 3.2.
- 078 • We show that applying a beam search-based estimator to existing consistency-based UQ
 079 approaches improves their performance on short-form QA tasks, achieving state-of-the-art
 080 results; see Section 4.

083 2 BACKGROUND AND MOTIVATION

085 2.1 LANGUAGE MODEL DECODING

087 Autoregressive LLMs produce text sequentially, generating one token at a time. At each step i , the
 088 model samples a token $y_i \sim p(\cdot | \mathbf{y}_{<i}, \mathbf{x})$, where $\mathbf{y}_{<i}$ denotes the sequence of previously generated
 089 tokens. The probability of generating an output sequence \mathbf{y} is:

$$090 p(\mathbf{y} | \mathbf{x}) = \prod_{i=1}^{|\mathbf{y}|} p(y_i | \mathbf{y}_{<i}, \mathbf{x}). \quad (1)$$

093 At each step, the model outputs a probability distribution over the entire vocabulary \mathcal{V} conditioned
 094 on the prompt \mathbf{x} and the partial sequence $\mathbf{y}_{<i}$.

095 **Decoding Strategies.** Since the model defines a probability distribution, a concrete output must be
 096 obtained at inference time by applying a decoding strategy. Common decoding strategies include:
 097 (i) greedy decoding that selects maximum probability tokens at each step; (ii) multinomial sampling
 098 where tokens are drawn according to $p(y_i | \mathbf{y}_{<i}, \mathbf{x})$; and (iii) beam search, which maintains the
 099 top- k most likely partial sequences at each step. Several other variants of decoding approaches
 100 have been proposed, such as top- p nucleus sampling or temperature scaling (Holtzman et al., 2020;
 101 Vijayakumar et al., 2018). Each decoding strategy offers different trade-offs between output quality
 102 and diversity.

104 2.2 UNCERTAINTY QUANTIFICATION FOR LLMs

106 The objective of uncertainty quantification is to measure the level of uncertainty introduced by LLM
 107 when generating output sequence \mathbf{y}_* conditioned on input sequence \mathbf{x} , denoted by $U(\mathbf{y}_* | \mathbf{x})$.
 Existing approaches to UQ can be broadly categorized into three main groups.

108 *Information-based* methods rely on a single forward pass of the model and compute statistics over
 109 the token-level probability distributions to quantify uncertainty. Examples include Sequence Probability,
 110 Mean Token Entropy, Perplexity (Fomicheva et al., 2020), and CCP (Fadeeva et al., 2024).

111 *Reflexive* methods query the model directly about its confidence in a generated answer using spe-
 112 cially designed prompts. A representative example is $P(\text{True})$ (Kadavath et al., 2022), which mea-
 113 sures the probability that the model outputs “True” when asked whether its generated answer \mathbf{y}_* is
 114 correct.

115 *Sampling-based* methods draw multiple samples from the model’s output distribution and evaluate
 116 their semantic or lexical similarity to assess uncertainty. Lexical Similarity (Fomicheva et al., 2020)
 117 computes mean pairwise similarity between generated texts; other examples include Semantic En-
 118 tropy (Kuhn et al., 2023), SAR (Duan et al., 2024), and black-box uncertainty measures from (Lin
 119 et al., 2024b).

121 **Consistency-Based UQ Methods** A notable subset of sampling-based methods is *consistency-
 122 based UQ* (Vashurin et al., 2025b). These methods estimate uncertainty *with respect to a particular
 123 generated output* $\mathbf{y}_* \sim p(\cdot | \mathbf{x})$, rather than the overall uncertainty of the model’s predictive distri-
 124 bution for the input \mathbf{x} . This distinction makes consistency-based UQ particularly suited for evaluating
 125 confidence in a specific prediction rather than overall model uncertainty, and Vashurin et al. (2025b)
 126 empirically demonstrate that such methods outperform other sampling-based approaches in practice.

127 Let us consider the most straightforward consistency-based method for predictive uncertainty quanti-
 128 fication: measuring how semantically different alternative generations are from the produced an-
 129 swer \mathbf{y}_* . We refer to this score as *Dissimilarity* and formalize it as the expected semantic dissimi-
 130 larity between the produced answer \mathbf{y}_* and *all* potential alternatives drawn from the model:

$$U_D(\mathbf{y}_* | \mathbf{x}) = \mathbb{E}_{\mathbf{y} \sim p(\cdot | \mathbf{x})} [1 - s(\mathbf{y}, \mathbf{y}_*)]. \quad (2)$$

133 Here, $s(\mathbf{y}', \mathbf{y}'') \in [0, 1]$ is a function that measures semantic similarity between two generations \mathbf{y}'
 134 and \mathbf{y}'' . A higher value of $U_D(\mathbf{y}_* | \mathbf{x})$ indicates lower consistency between the chosen answer and
 135 alternative candidate outputs, and thus reflects greater predictive uncertainty.

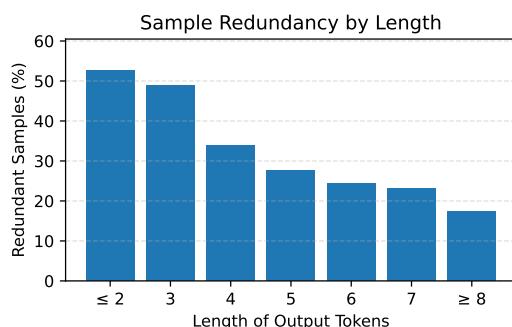
136 The corresponding Monte Carlo estimator introduced by (Lin et al., 2024a) draws M i.i.d. samples
 137 $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(M)} \sim p(\cdot | \mathbf{x})$ and computes uncertainty in the following way:

$$\widehat{U}_D^{MC}(\mathbf{y}_* | \mathbf{x}) = \frac{1}{M} \sum_{i=1}^M (1 - s(\mathbf{y}^{(i)}, \mathbf{y}_*)). \quad (3)$$

142 **Challenges of consistency-based UQ
 143 methods.** A natural intuition is that, for
 144 consistency-based methods, samples should
 145 be generated in a distinct, high-probability,
 146 and stable manner. Most existing methods use
 147 multinomial sampling, which, especially for
 148 shorter generations and small sample sizes,
 149 does not satisfy these criteria.

150 Figure 2 shows the effect of multinomial sam-
 151 pling on the percentage of duplicates depend-
 152 ing on the length of generations. The result-
 153 ing samples contain many duplicates, with the
 154 issue being particularly pronounced for shorter
 155 generations, where 30–50% of the outputs are
 156 duplicates. This not only contributes to wasted
 157 computation, but also leads to high variance es-
 158 timates. Moreover, drawing M full genera-
 159 tions solely for uncertainty estimation can be costly.

160 Thus, while multinomial sampling is widely
 161 used, it does not best serve the goals of
 consistency-based uncertainty estimation.



162 Figure 2: Mean percentage of redundant samples
 163 (i.e., outputs already seen among earlier genera-
 164 tions) as a function of greedy output length. Re-
 165 sults were obtained from 2,000 questions from
 166 the TriviaQA dataset using the Gemma 3 4B base
 167 model and 10 candidate generations. Redundancy
 168 is especially high for short answers, leading to
 169 wasted computation.

162 **3 UNCERTAINTY QUANTIFICATION BASED ON CONSISTENCY OF BEAM**
 163 **SEARCH CANDIDATES**
 164

165 To address the problems outlined in Section 2.2, we propose to utilize an alternative decoding strat-
 166 egy for generating candidate outputs: beam search. Beam search (i) guarantees distinct candidate
 167 outputs, (ii) reduces variance (see Section 3.2) and (iii) provides uncertainty estimates essentially
 168 “for free” as the beam already provides a distribution over candidate outputs.
 169

170 **3.1 REPLACING MULTINOMIAL SAMPLING**
 171

172 A simple way to approximate dissimilarity from beam-generated candidates would be to reuse equa-
 173 tion (3), treating the beam outputs as if they were drawn uniformly. While this offers a plausible
 174 alternative, treating the candidates produced by beam search in a uniform manner would overem-
 175 phasize lower-probability outputs. To better reflect the model distribution while avoiding repeated
 176 multinomial draws, we form a probability-weighted estimator over the beam set.
 177

178 For this purpose, we use beam search with width M to obtain distinct candidates $\mathcal{B}_M(\mathbf{x}) =$
 179 $\{\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(M)}\}$ and their sequence probabilities $\{p(\mathbf{b}^{(i)} \mid \mathbf{x})\}_{i=1}^M$. To perform an estimation
 180 of $U_D(\mathbf{y}_* \mid \mathbf{x})$ in equation (2) with the help of samples $\mathbf{b}^{(i)}$, one needs to perform importance
 181 weighting. Thus, we define the restricted (top- M) normalized masses w_i as:
 182

$$w_i = \frac{p(\mathbf{b}^{(i)} \mid \mathbf{x})}{\sum_{j=1}^M p(\mathbf{b}^{(j)} \mid \mathbf{x})}, \quad i = 1, \dots, M. \quad (4)$$

185 The resulting importance-weighted estimator of equation (2) is
 186

$$\widehat{U}_D^b(\mathbf{y}_* \mid \mathbf{x}) = \sum_{i=1}^M w_i (1 - s(\mathbf{b}^{(i)}, \mathbf{y}_*)). \quad (5)$$

190 This top- M truncation introduces a small bias relative to full multinomial sampling but typically
 191 reduces variance and duplication on peaked distributions, yielding more stable estimates per unit
 192 budget. In the next section we are going to explore the benefits of beam search-based estimator
 193 $\widehat{U}_D^b(\mathbf{y}_* \mid \mathbf{x})$ from a theoretical perspective.
 194

195 **3.2 THEORETICAL ANALYSIS**
 196

197 We compare the multinomial Monte Carlo estimator \widehat{U}_D^{MC} (3) with the beam-weighted estimator
 198 \widehat{U}_D^b (5) for the dissimilarity U_D defined in equation (2).
 199

200 **Theorem 1** (Comparison condition for beam-weighted and Monte Carlo estimators).

201 Let $\mathcal{B}_M(\mathbf{x}) = \{\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(M)}\}$ be the beam set, $m_{\mathcal{B}} = \sum_{i=1}^M p(\mathbf{b}^{(i)} \mid \mathbf{x})$ be its total probability
 202 mass, and define $\mu_{\mathcal{B}}$ and $\mu_{\overline{\mathcal{B}}}$ as dissimilarity inside and outside the beam set \mathcal{B}_M correspondingly:

$$203 \mu_{\mathcal{B}} = \mathbb{E}_{\mathbf{y} \sim p(\cdot \mid \mathbf{x})} [1 - s(\mathbf{y}, \mathbf{y}_*) \mid \mathbf{y} \in \mathcal{B}_M(\mathbf{x})], \quad \mu_{\overline{\mathcal{B}}} = \mathbb{E}_{\mathbf{y} \sim p(\cdot \mid \mathbf{x})} [1 - s(\mathbf{y}, \mathbf{y}_*) \mid \mathbf{y} \notin \mathcal{B}_M(\mathbf{x})].$$

205 Then the beam-weighted estimator \widehat{U}_D^b achieves smaller mean-squared error than the Monte Carlo
 206 estimator \widehat{U}_D^{MC} whenever
 207

$$208 (1 - m_{\mathcal{B}}) |\mu_{\mathcal{B}} - \mu_{\overline{\mathcal{B}}} | < \sigma / \sqrt{M}, \quad (6)$$

209 where $\sigma^2 = \text{Var}_{\mathbf{y} \sim p(\cdot \mid \mathbf{x})} (1 - s(\mathbf{y}, \mathbf{y}_*))$. The corresponding distribution-free sufficient condition is
 210

$$211 m_{\mathcal{B}} > 1 - \frac{1}{2\sqrt{M}}. \quad (7)$$

213 *Proof.* The Monte Carlo estimator averages M i.i.d. samples $\mathbf{y}^{(i)} \sim p(\cdot \mid \mathbf{x})$, so it is unbiased with
 214 $\mathbb{E}[\widehat{U}_D^{MC}] = U_D(\mathbf{y}_* \mid \mathbf{x})$ and $\text{MSE}(\widehat{U}_D^{MC}) = \text{Var}(\widehat{U}_D^{MC}) = \sigma^2/M$. By Popoviciu’s inequality, any
 215 random variable supported on $[0, 1]$ has variance at most $1/4$, hence $\sigma^2 \leq 1/4$.

216 By the law of total expectation, the true dissimilarity U_D decomposes as:
 217

$$218 \quad U_D(\mathbf{y}_* | \mathbf{x}) = m_{\mathcal{B}}\mu_{\mathcal{B}} + (1 - m_{\mathcal{B}})\mu_{\bar{\mathcal{B}}}, \quad \hat{U}_D^b = \mu_{\mathcal{B}},$$

219 so squared error of the beam-weighted estimator \hat{U}_D^b is deterministic:
 220

$$221 \quad \text{SE}(\hat{U}_D^b) = (\hat{U}_D^b - U_D)^2 = (1 - m_{\mathcal{B}})^2(\mu_{\mathcal{B}} - \mu_{\bar{\mathcal{B}}})^2.$$

223 Beam-weighted estimation is therefore more accurate whenever

$$224 \quad (1 - m_{\mathcal{B}})^2(\mu_{\mathcal{B}} - \mu_{\bar{\mathcal{B}}})^2 < \sigma^2/M,$$

226 which yields the stated condition 6. A distribution-free bound 7 follows from $|\mu_{\mathcal{B}} - \mu_{\bar{\mathcal{B}}}| \leq 1$ and
 227 $\sigma^2 \leq 1/4$. \square
 228

229 From Theorem 1, beam-weighted estimator
 230 is more accurate than Monte Carlo estimator
 231 whenever total beam probability mass $m_{\mathcal{B}}$ ex-
 232 ceeds $1 - \frac{1}{2\sqrt{M}}$. For $M = 10$, the thresh-
 233 old is $m_{\mathcal{B}} > 0.842$. Thus, **when the top-10**
 234 **beam hypotheses capture at least $\sim 84\%$ of**
 235 **the model’s probability mass, beam search**
 236 **provides a lower-error estimator than multi-**
 237 **nomial sampling with the same sample bud-**
 238 **get.**

239 **In practice, this condition is frequently satisfied.** On the TriviaQA dataset, Figure 3 shows
 240 that 22.7% of examples meet the sufficient con-
 241 dition overall, and up to 30-40% for very short
 242 generations (≤ 3 output tokens), where probability mass is highly concentrated on the top beams.
 243 When the inside-outside gap $\delta = |\mu_{\mathcal{B}} - \mu_{\bar{\mathcal{B}}}| < 1$, the break-even requirement 6 relaxes to
 244 $(1 - m_{\mathcal{B}})\delta < \sigma/\sqrt{M}$, allowing beam search to outperform even when $m_{\mathcal{B}} < 0.842$. Although
 245 $\mu_{\bar{\mathcal{B}}}$ is not directly computable due to the combinatorial output space, our experiments consistently
 246 show beam search outperforming multinomial sampling, suggesting that δ is modest in practice and
 247 that the effective threshold is often lower than 0.842.
 248

249 3.3 ADAPTING OTHER UQ METHODS TO BEAM SEARCH

251 In a similar manner, other consistency-based methods can be adapted to utilize beam search-based
 252 samples in their formulation.
 253

254 **Eccentricity.** Eccentricity is a method introduced by Lin et al. (2024a). Unlike dissimilarity, which
 255 uses only the similarities between the produced answer \mathbf{y}_* and each alternative sample, Eccentricity
 256 aggregates the *joint* pairwise relationships among all samples.

257 In this method, we first construct a similarity matrix of size $(M + 1) \times (M + 1)$ for the M samples
 258 and the produced answer $\mathbf{y}^{(M+1)} = \mathbf{y}_*$:

$$260 \quad W_{ij} = s(\mathbf{y}^{(i)}, \mathbf{y}^{(j)}), \quad 1 \leq i, j \leq M + 1. \quad (8)$$

261 Then we compute the degree matrix D :

$$263 \quad D_{ij} = \begin{cases} \sum_{k=1}^{M+1} W_{ik}, & i = j, \\ 0, & i \neq j, \end{cases} \quad (9)$$

267 and obtain the eigendecomposition of the Graph Laplacian $L = I - D^{-1/2}WD^{-1/2}$, yielding
 268 eigenpairs $\{\lambda_i, \mathbf{u}_i\}_{i=1}^{M+1}$. Smaller eigenvalues (close to zero) capture meaningful semantic structure,
 269 whereas larger eigenvalues tend to reflect noise. We therefore retain the eigenvectors whose eigen-
 270 values satisfy $\lambda_i < \alpha$, yielding K vectors in total; K is thus determined by the threshold $\alpha > 0$.

Semantic embeddings are formed as $\mathbf{v}_j = [\mathbf{u}_{1j}, \mathbf{u}_{2j}, \dots, \mathbf{u}_{Kj}]$. For $1 \leq j \leq M$, \mathbf{v}_j represents the embedding of $\mathbf{y}^{(j)}$, and $\mathbf{v}_* = \mathbf{v}_{M+1}$ corresponds to \mathbf{y}_* . The confidence score is the distance between the embedding of the produced answer and the mean embedding of the samples:

$$\hat{U}_{Ecc}(\mathbf{y}_* | \mathbf{x}) = \left\| \mathbf{v}_* - \frac{1}{M} \sum_{i=1}^M \mathbf{v}_i \right\|_2^2, \quad (10)$$

where higher values indicate higher uncertainty.

With beam-generated candidates, we weight embeddings by the normalized masses w_i from equation (4) to better reflect the model distribution while avoiding duplicate generations:

$$\hat{U}_{Ecc}^b(\mathbf{y}_* | \mathbf{x}) = \left\| \mathbf{v}_*^b - \sum_{i=1}^M w_i \mathbf{v}_i^b \right\|_2^2. \quad (11)$$

CoCoA. A white-box approach CoCoA (Vashurin et al., 2025b) combines a model probabilities-based uncertainty with the sample-consistency signal:

$$\hat{U}_{CoCoA}(\mathbf{y}_* | \mathbf{x}) = u(\mathbf{y}_* | \mathbf{x}) \cdot \hat{U}_D^{MC}(\mathbf{y}_* | \mathbf{x}) = u(\mathbf{y}_* | \mathbf{x}) \cdot \frac{1}{M} \sum_{i=1}^M (1 - s(\mathbf{y}^{(i)}, \mathbf{y}_*)), \quad (12)$$

where $u(\mathbf{y} | \mathbf{x})$ is a model-based uncertainty measure for the sequence (e.g., $-\log p(\mathbf{y} | \mathbf{x})$).

For a beam-weighted estimator, we utilize (5) as sample-consistency signal:

$$\hat{U}_{CoCoA}^b(\mathbf{y}_* | \mathbf{x}) = u(\mathbf{y}_* | \mathbf{x}) \cdot \hat{U}_D^b(\mathbf{y}_* | \mathbf{x}) \quad (13)$$

Eigenvectors Dissimilarity. Both Dissimilarity and Eccentricity produce confidence scores for the generated answer \mathbf{y}_* . Dissimilarity compares \mathbf{y}_* to each sample using the base similarity function s , while Eccentricity measures the distance from \mathbf{y}_* to the centroid in the Laplacian embedding space; see equation (10). To bridge these views, we measure dissimilarity within the embedding space itself, averaging the distances from the embedding of \mathbf{y}_* to the embeddings of individual samples. This retains the joint-pairwise smoothing of Eccentricity and also reflects the variance among samples, rather than only the centroid. The sampling-based estimate is

$$\hat{U}_{EigVecD}(\mathbf{y}_* | \mathbf{x}) = \frac{1}{M} \sum_{i=1}^M \|\mathbf{v}_* - \mathbf{v}_i\|_2^2, \quad (14)$$

and the beam-guided, probability-weighted version is

$$\hat{U}_{EigVecD}^b(\mathbf{y}_* | \mathbf{x}) = \sum_{i=1}^M w_i \|\mathbf{v}_*^b - \mathbf{v}_i^b\|_2^2, \quad (15)$$

where the embeddings \mathbf{v}_i (and \mathbf{v}_i^b) are obtained from the Graph Laplacian as in Eccentricity, and w_i are the normalized masses from equation (4). This estimator increases both when \mathbf{y}_* moves away from the bulk and when the samples themselves are more dispersed; by contrast, Eccentricity focuses on the single distance to the weighted centroid.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on six QA datasets in total. Those include two closed-book datasets: *TriviaQA* (Joshi et al., 2017) and *Web Questions* (Berant et al., 2013), two open-book datasets: *CoQA* (Reddy et al., 2019) and *HotpotQA* (Yang et al., 2018) and two multiple-choice datasets: *CommonsenseQA* (Talmor et al., 2019) and *ARC-Challenge* (Clark et al., 2018). For each dataset, we randomly sampled several questions from the test set. The statistics for those datasets are available in Table 1. Prompt details and examples of questions are provided in Appendix C.

Models. We use base and instruct versions of 3 models: Gemma 3 4B (Team, 2025a), Llama 3.1 8B (Dubey et al., 2024), and Qwen 3 8B (Team, 2025b).

324

325

Table 1: Test dataset settings and statistics.

	Closed-Book QA		Open-Book QA		Multiple Choice	
	TriviaQA	Web Questions	CoQA	HotpotQA	Common-senseQA	ARC-Challenge
# Questions	2000	1490	2000	2000	1221	447
# few-shot examples	5	5	all preceding	0	2	2
Max new tokens	20	20	20	20	10	20

333

334

Metrics. Following best uncertainty benchmarking practices (Vashurin et al., 2025a), we adopt the Prediction–Rejection Ratio (PRR) as our primary evaluation metric. Consider a test dataset $\mathcal{D} = \{(\mathbf{x}_j, \mathbf{y}_j^*)\}$, where \mathbf{y}_j denotes the output generated by an LLM for input \mathbf{x}_j , and $u_j = U(\mathbf{x}_j)$ is the associated uncertainty score. The rejection curve captures how the average quality $Q(\mathbf{y}_j, \mathbf{y}_j^*)$ of predictions with uncertainty $u_j < a$ varies with the rejection parameter a . PRR is then defined as the normalized area under the rejection curve, computed as the ratio of the excess AUC over a random baseline to that of the oracle uncertainty score (which ranks instances perfectly by quality):

$$PRR = \frac{AUC_{unc} - AUC_{rnd}}{AUC_{oracle} - AUC_{rnd}}. \quad (16)$$

351

A higher PRR indicates a more effective uncertainty score. Following Vashurin et al. (2025a), we use AlignScore (Zha et al., 2023) as the quality metric Q . While PRR serves as our main evaluation measure, we additionally report ROC-AUC and PR-AUC in Appendix D.2.

355

356

Baselines. We evaluate four main methods, Dissimilarity, Eccentricity, Eigenvectors Dissimilarity, and CoCoA, under multinomial sampling and their beam-guided, probability-weighted variants. For CoCoA, we consider both the log-probability form $u(\mathbf{y}_* | \mathbf{x}) = -\log p(\mathbf{y}_* | \mathbf{x})$ (*CocoamSP*) and the perplexity form $u(\mathbf{y}_* | \mathbf{x}) = -\frac{1}{|\mathbf{y}_*|} \log p(\mathbf{y}_* | \mathbf{x})$ (*CocoapPL*).

360

In addition, we compare against several state-of-the-art UQ baselines summarized in Table 2, using implementations from LM-Polygraph (Fadeeva et al., 2023). The simplest baseline, *Sequence Probability*, calculates $-\log p(\mathbf{y}_* | \mathbf{x})$. For detailed descriptions of other methods see Appendix E.

364

All experiments use $M = 10$ candidates for both multinomial sampling and beam search. We adopt the entailment probability from the DeBERTa-large model fine-tuned on the MNLI task (He et al., 2021) for similarity function s , following Lin et al. (2024a).

367

368

4.2 RESULTS AND DISCUSSION

370

371

Table 3 presents PRR results for six models, averaged over six datasets. Across all models, incorporating beam search consistently improves the performance of consistency-based uncertainty scores. Moreover, in almost every case, beam search-based methods achieve either the best or second-best PRR compared to both baselines and the original consistency-based approaches. In particular, Dissimilarity + Beam Search achieves the best PRR scores for all base models and the second-best scores for Llama 3.1 8B instruct and Qwen 3 8B instruct. Similarly, CocoamSP + Beam Search achieves the best results for Llama 3.1 8B instruct and Gemma 3 4B instruct, while CocoapPL + Beam Search ranks second-best for Llama 3.1 8B base, Gemma 3 4B base, and Gemma 3 4B instruct. We further provide separate results for each dataset in Appendix D.3.

Table 2: Summary of baseline UQ methods.

Category	Uncertainty Quantification Method
Information -based	Sequence Probability (Prob)
	Mean Token Entropy (MTE)
	Perplexity
Reflexive	CCP (Fadeeva et al., 2024)
	P(True) (Kadavath et al., 2022)
Sampling -based	Semantic Entropy (Kuhn et al., 2023)
	Shifting Attention to Relevance (SAR) (Duan et al., 2024)
Sampling -based	Lexical Similarity (Fomicheva et al., 2020)
	Sum of Eigenvalues of Laplacian (EigValLaplacian) (Lin et al., 2024a)
Sampling -based	Number of Semantic Sets (NumSemSets) (Lin et al., 2024a)

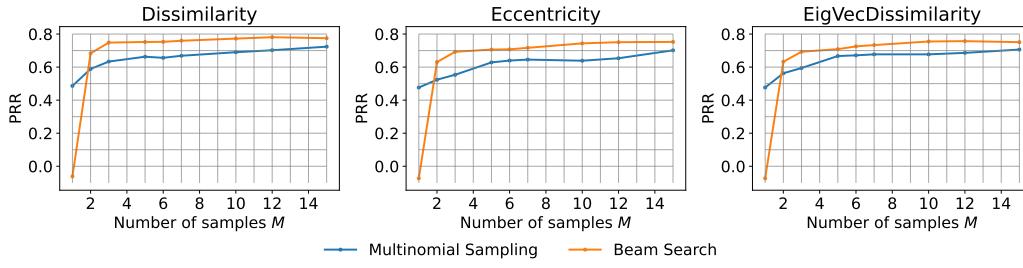
378

379
380
381
Table 3: PRR (\uparrow is better) averaged over 6 datasets. For each model, the top-1 method is **bold** and
the second-best is underlined. For beam-guided variants, we mark \uparrow when the variant improves over
its original multinomial-sampling counterpart.

382

Method	Llama 3.1 8B base	Llama 3.1 8B instruct	Gemma 3 4B base	Gemma 3 4B instruct	Qwen 3 8B base	Qwen 3 8B instruct
MSP	.410 \pm .019	.344 \pm .031	.471 \pm .023	.292 \pm .022	.376 \pm .03	.289 \pm .067
MTE	.422 \pm .016	.364 \pm .026	.476 \pm .022	.317 \pm .028	.407 \pm .032	.297 \pm .064
Perplexity	.452 \pm .02	.323 \pm .027	.525 \pm .024	.288 \pm .025	.372 \pm .03	.276 \pm .058
CCP	.401 \pm .02	.364 \pm .029	.492 \pm .022	.331 \pm .026	.355 \pm .034	.291 \pm .06
SAR	.352 \pm .02	.385 \pm .029	.386 \pm .026	.239 \pm .024	.363 \pm .033	.292 \pm .052
P(True)	.015 \pm .023	.072 \pm .03	.093 \pm .026	.096 \pm .024	.110 \pm .03	.114 \pm .055
SemanticEntropy	.414 \pm .019	.376 \pm .025	.401 \pm .023	.293 \pm .024	.319 \pm .031	.299 \pm .058
Lexical Similarity	.411 \pm .02	.366 \pm .029	.426 \pm .025	.247 \pm .023	.425 \pm .034	.237 \pm .055
EigValLaplacian	.426 \pm .016	.371 \pm .028	.437 \pm .03	.233 \pm .025	.406 \pm .03	.265 \pm .056
NumSemSets	.396 \pm .018	.319 \pm .031	.418 \pm .024	.238 \pm .023	.365 \pm .033	.253 \pm .052
Dissimilarity	.505 \pm .018	.379 \pm .028	.630 \pm .021	.206 \pm .019	.477 \pm .037	.327 \pm .066
Dissimilarity + beamsearch	.543 \uparrow .019	.417 \uparrow .026	.650 \uparrow .022	.252 \uparrow .022	.478 \uparrow .031	.355 \uparrow .062
Eccentricity	.453 \pm .016	.368 \pm .029	.563 \pm .021	.231 \pm .025	.396 \pm .03	.251 \pm .058
Eccentricity + beamsearch	.505 \uparrow .017	.397 \uparrow .029	.603 \pm .023	.285 \uparrow .024	.410 \uparrow .03	.345 \uparrow .061
EigVecDissimilarity	.463 \pm .019	.370 \pm .028	.561 \pm .026	.236 \pm .025	.425 \pm .035	.256 \pm .051
EigVecDissimilarity + beamsearch	.510 \uparrow .021	.414 \uparrow .028	.598 \uparrow .022	.301 \uparrow .019	.450 \uparrow .033	.376 \uparrow .057
CocoaMSP	.505 \pm .018	.404 \pm .025	.587 \pm .023	.314 \pm .024	.461 \pm .031	.334 \pm .054
CocoaMSP + beamsearch	.521 \uparrow .019	.426 \uparrow .024	.615 \uparrow .021	.345 \uparrow .026	.473 \uparrow .03	.347 \uparrow .061
CocoaPPL	.523 \pm .017	.397 \pm .026	.628 \pm .024	.312 \pm .023	.461 \pm .034	.327 \pm .055
CocoaPPL + beamsearch	.536 \uparrow .02	.412 \uparrow .027	.649 \uparrow .02	.339 \uparrow .021	.461 \uparrow .035	.337 \uparrow .057

382



397

400
401
402
403
404
Figure 4: PRR (\uparrow is better) as a function of the number of candidates M on TriviaQA with Gemma 3
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302

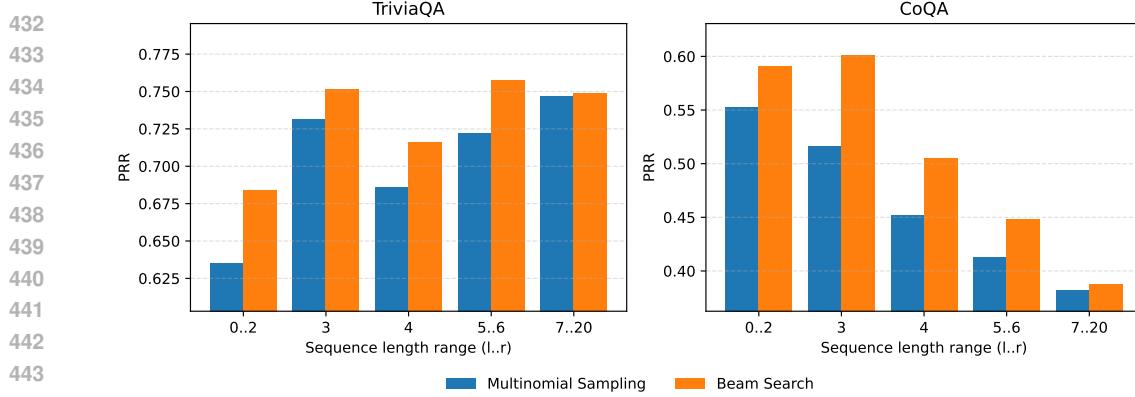


Figure 5: PRR (\uparrow is better) for Dissimilarity under beam search (with probability weights) vs. multinomial sampling, for different output lengths. Each dataset (TriviaQA, CoQA) with Gemma 3 4B base is partitioned into five approximately equal-size bins token length of greedy output.

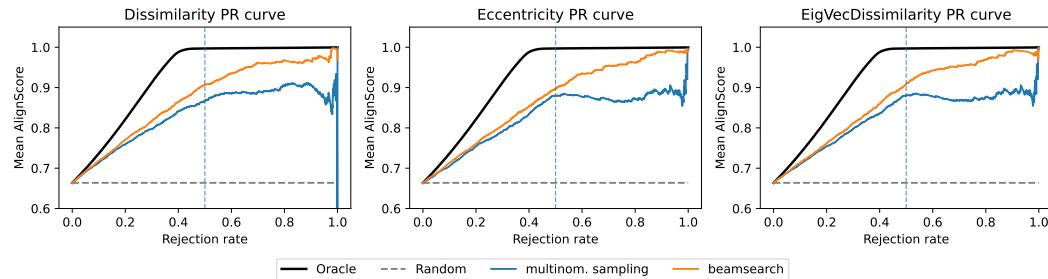


Figure 6: Prediction-Rejection curves for *Dissimilarity*, *Eccentricity*, and *EigVecDissimilarity* on TriviaQA with Llama 3.1 8B base, comparing multinomial sampling (blue) and beam search with weights (orange). Oracle (black) and random (gray dashed) baselines are shown. The vertical dashed line marks the maximum rejection rate used in AUC calculations.

for short outputs; the gap narrows and becomes negligible for lengths of about 7 tokens and above, where duplication is less pronounced.

4.3.3 PREDICTION-REJECTION CURVES

Figure 6 compares full Prediction-Rejection curves for Dissimilarity, Eccentricity, and EigVecDissimilarity on TriviaQA with Llama 3.1 8B base. Across all estimators, beam search consistently dominates multinomial sampling for nearly the entire rejection range. The improvement becomes increasingly pronounced as the rejection rate grows, where beam-guided estimates remain stable while multinomial ones flatten or even degrade. This indicates that beam search is especially beneficial in the high-rejection regime, where distinguishing between stronger and weaker candidates is the most critical.

4.3.4 ADDITIONAL ABLATIONS

Additional ablations are deferred to the appendix: Appendix A.1 compares candidate-generation strategies including Diverse Beam Search, temperature sampling, and a hybrid multinomial-beam sampling. Appendix A.2 investigates restricted-mass normalization and shows that introducing a small probability floor ϵ can stabilize the weighting of low-mass beams. Appendix A.3 evaluates other sampling-based objectives (Semantic Entropy, Degree Matrix) under beam generation with probability-weighted formulations. Appendix D.1 examines using the top-1 beam decode as the produced answer y_* (instead of greedy), a natural choice when beam search is already run to obtain a higher-quality output.

486 5 RELATED WORK

488 **Consistency-based Uncertainty Estimation.** In a black-box setting, consistency-based methods
 489 are especially relevant, as they do not require access to the model internals. Lin et al. (2024a) in-
 490 troduce several methods that estimate confidence based on a similarity matrix, where each entry
 491 represents the similarity between a pair of sampled generations. Fomicheva et al. (2020) present
 492 Lexical Similarity, a metric that evaluates the average similarity of words or phrases between each
 493 pair of responses. In a white-box setting, consistency signals can be combined with model token-
 494 probabilities-based confidence. These hybrid methods, such as Semantic Entropy (Kuhn et al.,
 495 2023), CoCoA (Vashurin et al., 2025b) and SAR (Duan et al., 2024) explore different ways of com-
 496 bining these signals and achieve state-of-the-art performance. However, these works are primarily
 497 concerned with the introduction of new methods for uncertainty quantification and use multinomial
 498 sampling as a way to approximate a variety of consistency-based measures.

499 **Uncertainty and Decoding.** There were some efforts focused on examining the interaction between
 500 decoding strategies and uncertainty quantification. In particular, Hashimoto et al. (2025) explores
 501 the impact of decoding strategies on the performance of token probabilities-based UQ methods,
 502 namely Sequence Probability and Mean Token Entropy. The authors find that these scores pro-
 503 duced with beam search can sometimes under perform compared to greedy or contrastive search.
 504 While this work offers interesting insights, no experiments with stochastic decoding strategies or
 505 non-likelihood based methods were conducted. Conversely, other research focused on making the
 506 decoding itself uncertainty-aware. For example, Daheim et al. (2025) propose Minimum Bayes Risk
 507 (MBR) decoding, which incorporates model uncertainty into the MBR objective for improved gener-
 508 ation quality. Garces Arias et al. (2024) and Lee et al. (2025) incorporate uncertainty into contrastive
 509 search decoding. Lastly, Ding et al. (2025) combines global entropy trends and local deviations to
 510 guide a self-adaptive decoding. These works integrate uncertainty into the decoding process to im-
 511 prove the quality of the generation, rather than improving the performance of the uncertainty itself.
 512 Although some uncertainty-aware decoding methods have also demonstrated improved uncertainty
 513 quantification performance, they are generally not evaluated with consistency-based metrics.

514 6 CONCLUSION

515 We present a new family of uncertainty quantification methods for LLMs that employ a beam-
 516 weighted estimator of consistency-based uncertainty. Compared to multinomial sampling, com-
 517 monly used in existing approaches, our method yields lower variance in dissimilarity and greater
 518 diversity of candidate answers. We also derive a theoretical lower bound on the beam set probability
 519 mass under which the error of the multinomial Monte Carlo estimator is guaranteed to be larger.
 520 Finally, we evaluate our approach on six QA datasets and six different models, demonstrating state-
 521 of-the-art performance.

523 524 LIMITATIONS

525 Although our method provides an improvement over existing consistency-based estimators, several
 526 important considerations remain.

527 First, we evaluated our methods in white-box settings, as they require access to the model’s proba-
 528 bility distributions. Nonetheless, we argue that developing methods tailored for white-box settings
 529 continues to be of great importance given their continued relevance and usage. Moreover, the meth-
 530 ods could be extended to the black-box settings using empirical probability estimates.

531 Second, our experiments are limited to short-form QA datasets, and the generalizability of our find-
 532 ings to longer-form generation remains an open question.

533 Lastly, our implementation and evaluation relies on existing neural metrics: AlignScore is used to
 534 score the quality of the generation, and pre-trained NLI model is utilized as a measure of consis-
 535 tency. Although widely used in previous work, certain more specialized tasks might require different
 536 sample similarity measures and quality metrics.

537

540 REFERENCES
541

542 Joris Baan, Nico Daheim, Evgenia Ilia, Dennis Ulmer, Haau-Sing Li, R. Fernández, Barbara
543 Plank, Rico Sennrich, Chrysoula Zerva, and Wilker Aziz. Uncertainty in natural language gen-
544 eration: From theory to applications. *ArXiv*, abs/2307.15703, 2023. URL <https://api.semanticscholar.org/CorpusID:260316110>.

545

546 Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
547 question-answer pairs. In *Proceedings of the 2013 Conference on Empirical Methods in Natural
548 Language Processing*, pp. 1533–1544. Association for Computational Linguistics, 2013. URL
549 <https://www.aclweb.org/anthology/D13-1160>.

550

551 Felix Busch, Lena Hoffmann, Christopher Rueger, Elon HC van Dijk, Rawen Kader, Esteban
552 Ortiz-Prado, Marcus R. Makowski, Luca Saba, Martin Hadamitzky, Jakob Nikolas Kather,
553 Daniel Truhn, Renato Cuocolo, Lisa C. Adams, and Keno K. Bressem. Current applications
554 and challenges in large language models for patient care: a systematic review. *Communications
555 Medicine*, 5(1), 2025. ISSN 2730-664X. doi: 10.1038/s43856-024-00717-2. URL
556 <http://dx.doi.org/10.1038/s43856-024-00717-2>.

557

558 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
559 Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning chal-
560 lenge. *arXiv preprint arXiv:1803.05457*, 2018. URL <https://arxiv.org/abs/1803.05457>.

561

562 Nico Daheim, Clara Meister, Thomas Möllenhoff, and Iryna Gurevych. Uncertainty-aware decoding
563 with minimum bayes risk. In *The Thirteenth International Conference on Learning Representa-
564 tions*, 2025. URL <https://openreview.net/forum?id=hPpyUv1XyQ>.

565

566 Yuanhao Ding, Esteban Garces Arias, Meimingwei Li, Julian Rodemann, Matthias Aßenmacher,
567 Danlu Chen, Gaojuan Fan, Christian Heumann, and Chongsheng Zhang. GUARD: Glocal
568 uncertainty-aware robust decoding for effective and efficient open-ended text generation. In
569 Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Find-
570 ings of the Association for Computational Linguistics: EMNLP 2025*, pp. 7202–7226, Suzhou,
571 China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-335-7.
572 doi: 10.18653/v1/2025.findings-emnlp.380. URL <https://aclanthology.org/2025.findings-emnlp.380/>.

573

574 Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,
575 and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantifi-
576 cation of free-form large language models. In *Proceedings of the 62nd Annual Meeting of
577 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5050–5063. As-
578 sociation for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.276. URL
579 <https://aclanthology.org/2024.acl-long.276/>.

580

581 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
582 Letman, Akhil Mathur, Alan Schelten, Amy Yang, and Angela Fan. The Llama 3 herd of mod-
583 els. *CoRR*, abs/2407.21783, 2024. URL <https://doi.org/10.48550/arXiv.2407.21783>.

584

585 Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun, Artem Vazhentsev, Sergey Petrakov, Kirill
586 Fedyanin, Daniil Vasilev, Elizaveta Goncharova, Alexander Panchenko, Maxim Panov, Tim-
587 othy Baldwin, and Artem Shelmanov. LM-Polygraph: Uncertainty estimation for language
588 models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
589 Processing: System Demonstrations*, pp. 446–461. Association for Computational Linguistics,
2023. doi: 10.18653/v1/2023.emnlp-demo.41. URL <https://aclanthology.org/2023.emnlp-demo.41/>.

590

591 Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem Shelmanov, Sergey Petrakov, Haonan Li,
592 Hamdy Mubarak, Evgenii Tsymbalov, Gleb Kuzmin, Alexander Panchenko, Timothy Baldwin,
593 Preslav Nakov, and Maxim Panov. Fact-checking the output of large language models via token-
level uncertainty quantification. In *Findings of the Association for Computational Linguistics:
ACL 2024*, pp. 9367–9385. Association for Computational Linguistics, 2024. doi: 10.18653/

594 v1/2024.findings-acl.558. URL [https://aclanthology.org/2024.findings-acl.](https://aclanthology.org/2024.findings-acl.558/)
 595 558/.

596

597 Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel,
 598 Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised quality estimation for
 599 neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:
 600 539–555, 2020. doi: 10.1162/tacl_a_00330. URL <https://aclanthology.org/2020.tacl-1.35/>.

601

602 Esteban Garces Arias, Julian Rodemann, Meimingwei Li, Christian Heumann, and Matthias Aßen-
 603 macher. Adaptive contrastive search: Uncertainty-guided decoding for open-ended text genera-
 604 tion. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association*
 605 *for Computational Linguistics: EMNLP 2024*, pp. 15060–15080, Miami, Florida, USA, Novem-
 606 ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.885.
 607 URL <https://aclanthology.org/2024.findings-emnlp.885/>.

608

609 Wataru Hashimoto, Hidetaka Kamigaito, and Taro Watanabe. Decoding uncertainty: The impact
 610 of decoding strategies for uncertainty estimation in large language models, 2025. URL <https://arxiv.org/abs/2509.16696>.

611

612 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-enhanced
 613 BERT with disentangled attention. In *International Conference on Learning Representations*,
 614 2021. URL <https://openreview.net/forum?id=XPZIaotutsD>.

615

616 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 617 degeneration. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rygGQyrFvH>.

618

619 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale dis-
 620 tantly supervised challenge dataset for reading comprehension. In *Proceedings of the 55th An-
 621 nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 622 1601–1611. Association for Computational Linguistics, 2017. doi: 10.18653/v1/P17-1147. URL
 623 <https://aclanthology.org/P17-1147/>.

624

625 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 626 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
 627 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022. URL <https://arxiv.org/abs/2207.05221>.

628

629 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
 630 for uncertainty estimation in natural language generation. In *The Eleventh International Confer-
 631 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=VD-AYtP0dve>.

632

633 Hakyung Lee, Subeen Park, Joowang Kim, Sungjun Lim, and Kyungwoo Song. Uncertainty-
 634 aware contrastive decoding. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
 635 hammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL*
 636 2025, pp. 26376–26391, Vienna, Austria, July 2025. Association for Computational Linguis-
 637 tics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1352. URL <https://aclanthology.org/2025.findings-acl.1352/>.

638

639 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
 640 cation for black-box large language models. *Transactions on Machine Learning Research*, 2024a.
 ISSN 2835-8856. URL <https://openreview.net/forum?id=DWkJCSxKU5>.

641

642 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quanti-
 643 fication for black-box large language models, 2024b. URL [https://openreview.net/foru
 644 m?id=XJiN1VkgA0](https://openreview.net/foru

 644 m?id=XJiN1VkgA0).

645

646 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 647 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pre-
 648 training approach. *arXiv preprint arXiv:1907.11692*, 2019. URL <https://arxiv.org/abs/1907.11692>.

648 Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A conversational question answering
 649 challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266, 2019. doi:
 650 10.1162/tacl_a_00266. URL <https://aclanthology.org/Q19-1016>.

651

652 Dong Shu, Haoran Zhao, Xukun Liu, David Demeter, Mengnan Du, and Yongfeng Zhang.
 653 LawLLM: Law large language model for the US legal system. In *Proceedings of the 33rd*
 654 *ACM International Conference on Information and Knowledge Management*, pp. 4882–4889.
 655 Association for Computing Machinery, 2024. doi: 10.1145/3627673.3680020. URL <https://doi.org/10.1145/3627673.3680020>.

656

657 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
 658 tion answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Con-
 659 ference of the North American Chapter of the Association for Computational Linguistics: Human
 660 Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158. Association for Com-
 661 putational Linguistics, 2019. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421>.

662

663 Gemma Team. Gemma 3 technical report, 2025a. URL <https://arxiv.org/abs/2503.19786>.

664

665 Qwen Team. Qwen3 technical report, 2025b. URL <https://arxiv.org/abs/2505.09388>.

666

667 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
 668 Finn, and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated con-
 669 fidence scores from language models fine-tuned with human feedback. In *Proceedings of the*
 670 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 5433–5442. As-
 671 *sociation for Computational Linguistics*, 2023. doi: 10.18653/v1/2023.emnlp-main.330. URL
 672 <https://aclanthology.org/2023.emnlp-main.330>.

673

674 Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Lyudmila Rvanova, Daniil Vasilev, Akim
 675 Tsvigun, Sergey Petrakov, Rui Xing, Abdelrahman Sadallah, Kirill Grishchenkov, Alexander
 676 Panchenko, Timothy Baldwin, Preslav Nakov, Maxim Panov, and Artem Shelmanov. Benchmark-
 677 ing uncertainty quantification methods for large language models with LM-Polygraph. *Trans-
 678 actions of the Association for Computational Linguistics*, 13:220–248, 2025a. doi: 10.1162/
 679 tacl_a_00737. URL <https://aclanthology.org/2025.tacl-1.11>.

680

681 Roman Vashurin, Maiya Goloburda, Albina Ilina, Aleksandr Rubashevskii, Preslav Nakov, Artem
 682 Shelmanov, and Maxim Panov. Uncertainty quantification for LLMs through Minimum Bayes
 683 Risk: Bridging confidence and consistency. *arXiv preprint arXiv:2502.04964*, 2025b. URL
 684 <https://arxiv.org/abs/2502.04964>.

685

686 Ashwin Vijayakumar, Michael Cogswell, Ramprasaath Selvaraju, Qing Sun, Stefan Lee, David
 687 Crandall, and Dhruv Batra. Diverse beam search for improved description of complex scenes.
 688 *Proceedings of the AAAI Conference on Artificial Intelligence*, 32(1), 2018. doi: 10.1609/aaai.
 689 v32i1.12340. URL <http://dx.doi.org/10.1609/aaai.v32i1.12340>.

690

691 Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
 692 Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural se-
 693 quence models. *arXiv preprint arXiv:1610.02424*, 2016. URL <https://arxiv.org/abs/1610.02424>.

694

695 Zhiqiu Xia, Jinxuan Xu, Yuqian Zhang, and Hang Liu. A survey of uncertainty estimation methods
 696 on large language models. In *Findings of the Association for Computational Linguistics: ACL*
 697 2025, pp. 21381–21396. Association for Computational Linguistics, 2025. doi: 10.18653/v1/
 698 2025.findings-acl.1101. URL <https://aclanthology.org/2025.findings-acl.1101>.

699

700 Yijun Xiao and William Yang Wang. Quantifying uncertainties in natural language processing tasks.
 701 *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):7322–7329, 2019. ISSN
 702 2159-5399. doi: 10.1609/aaai.v33i01.33017322. URL <http://dx.doi.org/10.1609/aaai.v33i01.33017322>.

702 Wanli Xing, Nia Nixon, Scott Crossley, Paul Denny, Andrew Lan, John Stamper, and Zhou Yu.
703 The use of large language models in education. *International Journal of Artificial Intelligence in*
704 *Education*, 35(2):439–443, February 2025. ISSN 1560-4306. doi: 10.1007/s40593-025-00457-x.
705 URL <http://dx.doi.org/10.1007/s40593-025-00457-x>.

706 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
707 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
708 answering. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
709 2018. URL <https://aclanthology.org/D18-1259/>.

710 KiYoon Yoo, Jangho Kim, Jiho Jang, and Nojun Kwak. Detection of adversarial examples in text
711 classification: Benchmark and baseline via robust density estimation. In *Findings of the Association*
712 *for Computational Linguistics: ACL 2022*, pp. 3656–3672. Association for Computational
713 Linguistics, 2022. doi: 10.18653/v1/2022.findings-acl.289. URL <https://aclanthology.org/2022.findings-acl.289/>.

714 Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu. AlignScore: Evaluating factual consistency
715 with a unified alignment function. In *Proceedings of the 61st Annual Meeting of the Association*
716 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 11328–11348. Association for Computational
717 Linguistics, 2023. doi: 10.18653/v1/2023.acl-long.634. URL <https://aclanthology.org/2023.acl-long.634>.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A ABLATION STUDIES

757

A.1 DIFFERENT SAMPLING STRATEGIES

760 This section studies how the proposed estimators behave under different sample generation strate-
 761 gies. In addition to multinomial sampling and beam search settings, we evaluate three additional
 762 families.

764 **Diverse beam search.** We generate $M = 10$ candidates using a diverse beam search (Vijayaku-
 765 mar et al., 2016) with group penalties $\lambda \in \{0.5, 1.0, 1.5, 2.0\}$ and group counts that split the ten
 766 candidates into $G \in \{2, 5\}$ groups. As in the main beam setup, we apply the same self-normalized
 767 probability weights w_i from equation (4).

768 **Temperature sampling with importance weights.** For different temperatures T , we draw $M =$
 769 10 samples with temperature sampling $\{\mathbf{y}_T^{(i)}\}_{i=1}^M$ and re-weight them via self-normalized importance
 770 weights

$$772 \quad w_i^T = \frac{p(\mathbf{y}_T^{(i)} | \mathbf{x})^{1-1/T}}{\sum_{j=1}^M p(\mathbf{y}_T^{(j)} | \mathbf{x})^{1-1/T}}. \quad (17)$$

777 **Hybrid multinomial-beam search.** We also consider a joint strategy: first draw B beam candi-
 778 dates, then draw the remaining $M - B$ candidates via multinomial sampling while excluding the
 779 beam results. Beam candidates use autoregressive probability weights, and the residual probability
 780 mass is distributed uniformly over the multinomial samples. Let $\{\mathbf{b}^{(i)}\}_{i=1}^B$ be the beam outputs and
 781 $\{\mathbf{y}^{(j)}\}_{j=B+1}^M$ the multinomial samples (with beam sequences masked out). We assign weights

$$782 \quad w_i^H = p(\mathbf{b}^{(i)} | \mathbf{x}), \quad i = 1, \dots, B, \quad w_j^H = \frac{1 - \sum_{i=1}^B p(\mathbf{b}^{(i)} | \mathbf{x})}{M - B}, \quad j = B + 1, \dots, M, \quad (18)$$

785 so that $\sum_{i=1}^M w_i^H = 1$. We test $B \in \{1, \dots, 9\}$.

789 Table 4: PRR (\uparrow is better) under different sampling strategies. Columns list methods (Dissimilarity,
 790 Eccentricity, EigVecDissimilarity) and four different model-dataset pairs; rows list strategies with
 791 their hyperparameters. Per column, top-1 is **bold**, second-best is underlined.

		Gemma 3.4B base						Llama 3.1.8B base					
		TriviaQA			CoQA			TriviaQA			CoQA		
		Dissim	Ecc	EigVec	Dissim	Ecc	EigVec	Dissim	Ecc	EigVec	Dissim	Ecc	EigVec
Beam search		.771	.732	.751	<u>.561</u>	.483	.488	.623	.581	.598	.502	.438	<u>.454</u>
Multinomial Sampling	$T = 0.7$.703	.619	.687	.455	.368	.397	.561	.521	.538	.451	.371	.382
	$T = 0.9$.734	.664	.710	.468	.417	.425	.588	.521	.533	.418	.407	.410
	$T = 1.0$.742	.689	.715	.465	.424	.432	.599	.516	.537	.431	.416	.424
	$T = 1.2$.733	.679	.717	.435	.424	.437	.610	.517	.535	.391	.427	.433
	$T = 1.5$.718	.685	.717	.406	.426	.436	.555	.515	.532	.397	.431	.440
	$T = 1.7$.680	.690	.717	.372	.426	.433	.569	.514	.530	.304	.432	<u>.441</u>
Diverse Beam Search	$G = 2, \lambda = 0.5$.753	.528	.693	.498	.405	.452	.623	-.123	.546	.458	.310	.363
	$G = 2, \lambda = 1.0$.753	.566	.705	.518	.384	.432	.594	-.138	.539	.466	.285	.355
	$G = 2, \lambda = 1.5$.763	.522	.714	.537	.420	.441	.618	-.101	.542	.462	.245	.317
	$G = 2, \lambda = 2.0$.759	.515	.702	.547	.377	.391	.630	-.130	.546	.452	.215	.287
	$G = 5, \lambda = 0.5$.758	.546	.736	.493	.401	.453	.591	-.026	.569	.395	.262	.353
	$G = 5, \lambda = 1.0$.768	.523	.746	.515	.369	.423	.615	-.086	.563	.447	.274	.376
	$G = 5, \lambda = 1.5$.761	.453	.723	.513	.391	.427	.623	-.153	.533	.461	.199	.324
	$G = 5, \lambda = 2.0$.770	.476	.690	.513	.355	.415	.631	-.093	.548	.453	.132	.254
Hybrid Multinomial-Beam	$B = 1$.759	.715	.746	.512	.451	.433	.597	.519	.549	.386	.314	.325
	$B = 2$.765	.731	.745	.519	.470	.435	.617	.564	.586	.445	.338	.345
	$B = 3$.781	.736	.754	.503	.461	.439	.620	.553	.598	.519	<u>.436</u>	.424
	$B = 4$.784	<u>.750</u>	.769	.516	.467	.428	.622	.572	<u>.617</u>	.436	.388	.382
	$B = 5$.757	.733	.749	.538	.500	.466	<u>.655</u>	.578	.609	.470	.412	.419
	$B = 6$.773	.733	.756	.528	.512	.488	.635	.586	.613	.486	.421	.415
	$B = 7$.771	.737	.754	.543	.468	.471	.640	.596	.617	.483	.399	.427
	$B = 8$.764	.733	.755	.548	.504	.507	.648	.597	.610	.491	.434	.425
	$B = 9$.772	<u>.747</u>	<u>.765</u>	<u>.551</u>	<u>.509</u>	<u>.497</u>	.646	<u>.597</u>	.618	.501	.427	.439

Evaluations use a subset of 500 examples from TriviaQA and CoQA with two base models, Gemma 3 4B base and Llama 3.1 8B base. Results are summarized in Table 4.

No single strategy dominates across datasets, models, or estimators. Temperature sampling (with importance weights) and diverse beam search systematically yield to beam search and hybrid multinomial-beam. Hybrid multinomial-beam strategy can reach top-1 for specific hyperparameter B), but gains are not systematic and are sensitive to tuning. Given this variability and tuning cost, plain beam search with probability weighting is a reasonable default.

A.2 RESTRICTED-MASS NORMALIZATION

Equation (4) normalizes autoregressive sequence probabilities over the M beam candidates. This choice can be sensitive to tail candidates whose probabilities are tiny and length-dependent. To test robustness, we introduce a floor ϵ on the per-candidate mass:

$$w_i^\epsilon = \frac{\max(\epsilon, p(\mathbf{b}^{(i)} | \mathbf{x}))}{\sum_{j=1}^M \max(\epsilon, p(\mathbf{b}^{(j)} | \mathbf{x}))}. \quad (19)$$

The setting $\epsilon = 0$ recovers equation (4); $\epsilon = 1$ yields uniform weights $w_i^1 = 1/M$. Intermediate ϵ values trade off fidelity to the model distribution against robustness to noisy, length-biased tails.

We evaluate beam-guided probability-weighted methods for different ϵ on a subset of 500 examples from TriviaQA and CoQA with two base models, Gemma 3 4B base and Llama 3.1 8B base. Results are summarized in Table 5.

The results do not indicate a clear best choice of method and corresponding ϵ parameter. Determining the optimal ϵ is a case-dependent task.

Table 5: PRR (\uparrow is better) under restricted-mass normalization ablation. Columns group dataset–model pairs with methods (Dissim, Ecc, EigVecDissim). Rows vary the mass floor ϵ in equation (19): $\epsilon = 0$ recovers equation (4); $\epsilon = 1$ yields uniform weights $w_i = 1/M$. For each dataset–method, the top-1 score is **bold** and the second-best is underlined.

	Gemma 3 4B base						Llama 3.1 8B base					
	TriviaQA			CoQA			TriviaQA			CoQA		
	Dissim	Ecc	EigVec Dissim	Dissim	Ecc	EigVec Dissim	Dissim	Ecc	EigVec Dissim	Dissim	Ecc	EigVec Dissim
$\epsilon = 1.0$.765	.741	.744	.536	.487	.461	.668	.596	.607	.470	.428	.410
$\epsilon = 0.1$.765	.727	.745	.556	.497	.483	.667	.612	.627	.502	.447	.446
$\epsilon = 0.05$.764	.720	.744	.561	<u>.490</u>	.487	.657	.606	.626	.509	.435	.451
$\epsilon = 0.01$.766	.718	.749	.559	.478	.489	.630	.584	.602	.496	.437	.452
$\epsilon = 0.001$	<u>.771</u>	.731	.751	.562	.484	<u>.488</u>	.624	.581	.598	.501	<u>.438</u>	.453
$\epsilon = 0.00001$.771	.732	<u>.751</u>	.561	.483	.488	.623	.581	.598	.502	.438	.454
$\epsilon = 0$.771	<u>.732</u>	<u>.751</u>	<u>.561</u>	.483	.488	.623	.581	.598	.502	.438	<u>.454</u>

A.3 OTHER SAMPLING-BASED METHODS UNDER BEAM SEARCH

Beyond Dissimilarity, Eccentricity, and EigVecDissimilarity, this ablation evaluates two other sampling-based methods under beam-generated candidates: *Degree Matrix* (Lin et al., 2024a) and *Semantic Entropy* (Kuhn et al., 2023). We also provide probability-weighted beam formulations using the weights w_i from equation (4).

Degree Matrix. Given M multinomial samples $\{\mathbf{y}^{(i)}\}_{i=1}^M$, Degree Matrix estimates the average pairwise dissimilarity:

$$\widehat{U}_{\text{DegMat}}(\mathbf{x}) = \frac{1}{M^2} \sum_{i=1}^M \sum_{j=1}^M (1 - s(\mathbf{y}^{(i)}, \mathbf{y}^{(j)})). \quad (20)$$

For beam candidates $\{\mathbf{b}^{(i)}\}_{i=1}^M$, our mass-aware variant averages with weights:

$$\widehat{U}_{\text{DegMat}}^b(\mathbf{x}) = \sum_{i=1}^M w_i \sum_{j=1}^M w_j (1 - s(\mathbf{b}^{(i)}, \mathbf{b}^{(j)})). \quad (21)$$

864 **Semantic Entropy.** Multinomial samples are clustered into semantic equivalence classes C . For
 865 each class, we calculate its probability
 866

$$867 \quad \hat{p}(c) = \frac{1}{M} \sum_{i=1}^M \mathbf{1}\{\mathbf{y}^{(i)} \in c\} \quad \text{for } c \in C. \quad (22)$$

869 Then Semantic Entropy calculates
 870

$$871 \quad \widehat{U}_{SemEnt}(\mathbf{x}) = -\frac{1}{|C|} \sum_{c \in C} \log \hat{p}(c). \quad (23)$$

873 For beam candidates, use cluster masses aggregated by w_i :
 874

$$875 \quad \hat{p}^b(c) = \sum_{i=1}^M w_i \mathbf{1}\{\mathbf{b}^{(i)} \in c\}, \quad \widehat{U}_{SemEnt}^b(\mathbf{x}) = -\sum_{c \in C} \hat{p}^b(c) \log \hat{p}^b(c). \quad (24)$$

877 Note that these objectives score LLM uncertainty about the *input* \mathbf{x} as they are independent of a
 878 particular \mathbf{y}_* .

879 The results are summarized in Table 6. Beam search yields significant gains for Semantic Entropy
 880 and little to no improvement for Degree Matrix. Even with the beam-adapted formulations above,
 881 both objectives show worse results in terms of absolute PR-AUC compared to other methods. The
 882 primary reason is the target mismatch: as noted, these scores quantify uncertainty of the input \mathbf{x} and
 883 are independent of the produced answer \mathbf{y}_* , whereas our main methods, Dissimilarity, Eccentricity
 884 and EigVecDissimilarity, focuses on ranking the correctness of \mathbf{y}_* itself.

886 Table 6: PR-AUC (\uparrow is better) on 6 datasets with Gemma 3 4B base. Each method is shown as a pair:
 887 its multinomial-sampling variant and its beam-search variant; \uparrow denotes an improvement of the beam
 888 variant over its multinomial counterpart. Along main methods, the table includes input-uncertainty
 889 methods (Semantic Entropy, Lexical Similarity). For each dataset, the top-1 score is **bold** and the
 890 second-best is underlined. The rightmost column reports the mean PR-AUC across datasets.

891 UQ Method	892 TriviaQA	893 Web 894 Questions	895 CoQA	896 HotpotQA	897 Common 898 senseQA	899 ARC- 900 Challenge	901 Mean
Semantic Entropy	.622	.505	.301	.140	.407	.431	.401
Semantic Entropy + beamsearch	.685 \uparrow	.614 \uparrow	.365 \uparrow	.278 \uparrow	.436 \uparrow	.454 \uparrow	.472 \uparrow
Degree Matrix	.682	.605	.385	.311	.409	.419	.469
Degree Matrix + beamsearch	.673	.642 \uparrow	.328	.244	.444 \uparrow	.473 \uparrow	.467
SAR	.656	.571	.347	.296	.183	.264	.386
SAR + beamsearch	.671 \uparrow	.589 \uparrow	.329	.266	.209 \uparrow	.269 \uparrow	.372
Dissimilarity	.755	.715	.578	.626	.561	.545	.630
Dissimilarity + beamsearch	.766 \uparrow	.722 \uparrow	.600 \uparrow	.611	.595 \uparrow	.604 \uparrow	.650 \uparrow
Eccentricity	.714	.653	.459	.453	.549	.549	.563
Eccentricity + beamsearch	.739 \uparrow	.633	.505 \uparrow	.514 \uparrow	.590 \uparrow	.636 \uparrow	.603 \uparrow
EigVecDissimilarity	.738	.661	.443	.448	.512	.562	.561
EigVecDissimilarity + beamsearch	.753 \uparrow	.668 \uparrow	.497 \uparrow	.487 \uparrow	.562 \uparrow	.621 \uparrow	.598 \uparrow
CocoaMSP	.738	.666	.509	.430	.583	.595	.587
CocoaMSP + beamsearch	.747 \uparrow	.679 \uparrow	.548 \uparrow	.523 \uparrow	.586 \uparrow	.606 \uparrow	.615 \uparrow
CocoaPPL	.739	.678	.548	.625	.580	.595	.628
CocoaPPL + beamsearch	.748 \uparrow	.694 \uparrow	.577 \uparrow	.681 \uparrow	.582 \uparrow	.610 \uparrow	.649 \uparrow

902 To further assess performance under different numbers of samples M used for UQ, we plot PRR
 903 as a function of M for one selected baseline, Semantic Entropy, as well as for Dissimilarity (both
 904 sampling and beam-search variants) for reference. Figure 7 presents the results, showing that for
 905 all $M > 1$, Semantic Entropy underperforms both Dissimilarity variants. This occurs because
 906 Dissimilarity measures the targeted uncertainty of the specific generation \mathbf{y}^* rather than the overall
 907 uncertainty associated with \mathbf{x} , measured by Semantic Entropy.

914 A.4 GRAPH LAPLACIAN EMBEDDING PARAMETERS

915 Both multinomial and beam-guided versions of Eccentricity and EigVecDissimilarity depend on the
 916 threshold parameter α , which selects eigenvectors of the Graph Laplacian $L = I - D^{-1/2}WD^{-1/2}$

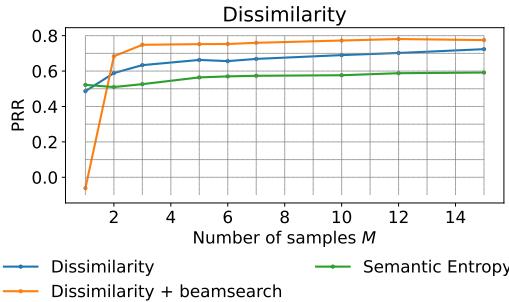


Figure 7: PRR (\uparrow is better) as a function of the number of candidates M on TriviaQA with Gemma 3 4B base for 3 UQ methods: Semantic Entropy, and sampling and beam search versions of Dissimilarity.

Table 7: PRR (\uparrow is better) for Eccentricity and EigVecDissimilarity under different Graph Laplacian embedding choices on four dataset–model pairs. Top block varies the eigenvalue threshold α (retaining all $\lambda_i < \alpha$); bottom block fixes the embedding dimension K . For each pair, the best score is **bold** and the second-best is underlined.

	Gemma 3 4B base				Llama 3.1 8B base			
	TriviaQA		CoQA		TriviaQA		CoQA	
	Ecc	EigVec Dissim	Ecc	EigVec Dissim	Ecc	EigVec Dissim	Ecc	EigVec Dissim
$\alpha = 0.3$.717	.710	.434	.355	.601	.599	.408	.364
$\alpha = 0.5$.752	.740	.497	.460	.627	.626	.431	.420
$\alpha = 0.7$.750	.749	.539	.498	<u>.622</u>	.643	.438	.441
$\alpha = 0.8$	<u>.751</u>	.757	<u>.508</u>	.475	.616	<u>.630</u>	.444	<u>.450</u>
$\alpha = 0.9$.732	.751	.483	<u>.488</u>	.581	.598	<u>.438</u>	.454
$\alpha = 0.99$.725	.755	.432	.454	.535	.561	.397	.409
$K = 1$.454	.358	.346	.332	.444	.357	.304	.280
$K = 2$.510	.532	.383	.361	.474	.469	.318	.338
$K = 3$.619	.639	.434	.429	.538	.534	.351	.348
$K = 4$.645	.643	.418	.412	.519	.514	.359	.352
$K = 5$.638	.655	.366	.352	.487	.492	.314	.316
$K = 6$.529	.545	.244	.236	.363	.368	.210	.211
$K = 7$.210	.242	-.101	-.076	.050	.062	-.208	-.211
$K = 8$	-.265	-.209	-.210	-.171	-.358	-.349	-.327	-.308
$K = 9$	-.566	-.414	-.268	-.186	-.462	-.410	-.339	-.317
$K = 10$	-.659	-.484	-.283	-.189	-.467	-.397	-.330	-.249

used to form semantic embeddings. Specifically, after computing the eigenpairs $\{\lambda_i, \mathbf{u}_i\}_{i=1}^{M+1}$, we retain those with $\lambda_i < \alpha$, yielding K eigenvectors in total and embeddings $\mathbf{v}_j = [\mathbf{u}_{1j}, \mathbf{u}_{2j}, \dots, \mathbf{u}_{Kj}]$ of dimension K . All eigenvalues lie in $[0, 1]$; smaller values capture stronger semantic structure, whereas values closer to 1 tend to reflect noise (Lin et al., 2024a). In the main experiments we follow the original Eccentricity setting and use $\alpha = 0.9$.

Here we vary α and also test a fixed- K strategy (i.e., keeping exactly K leading low-spectrum eigenvectors irrespective of the threshold).

Table 7 reports the performance for Eccentricity and EigVecDissimilarity across α and K on four dataset–model pairs. A fixed embedding size performs poorly: the optimal number of informative directions varies between candidate sets, so fixing K either underfits or includes noisy directions. Thresholding is more robust: $\alpha \in [0.7, 0.9]$ consistently yields strong results across methods and pairs, supporting our default choice $\alpha = 0.9$.

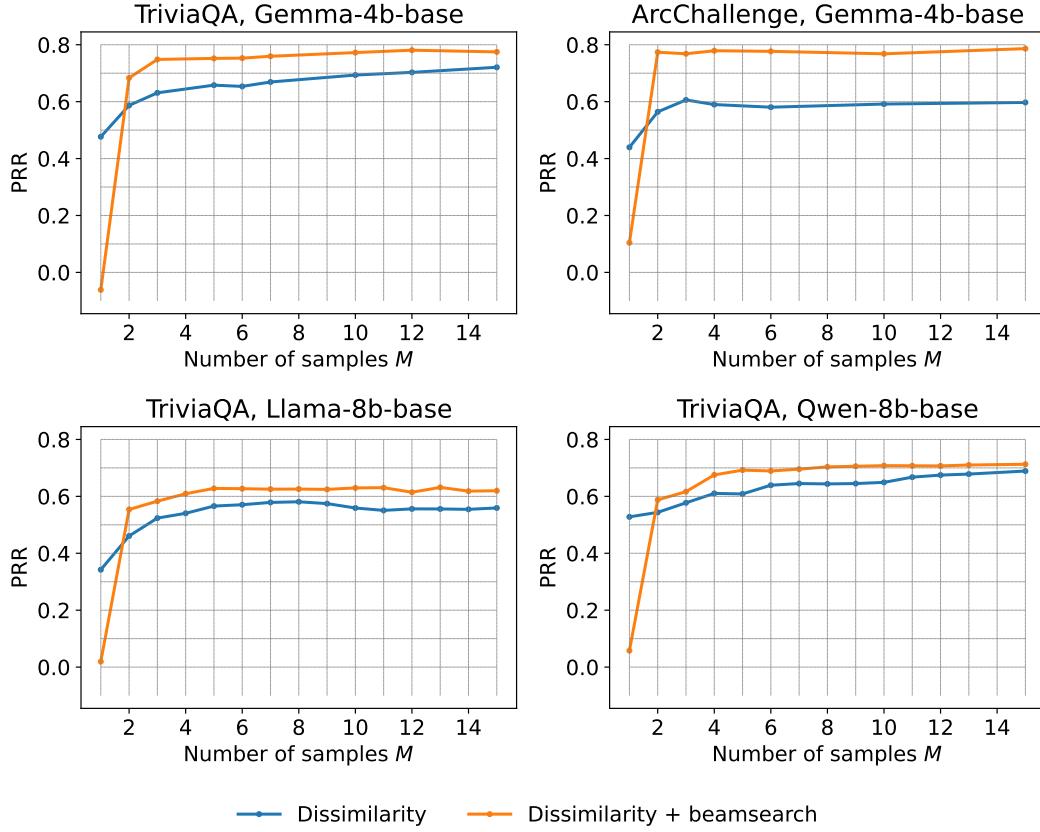
A.5 CROSS-ENCODER SIMILARITY

In the main text, we instantiate the similarity function s using an NLI score: the entailment probability from a DeBERTa model. CoCoA, however, originally used a RoBERTa-large *cross-encoder* fine-tuned on the Semantic Textual Similarity benchmark (Liu et al., 2019). Table 8 reports PRR for Gemma 3 4B base when replacing the NLI-based s with this cross-encoder; all other settings are unchanged.

972
 973 Table 8: PRR (\uparrow is better) on 6 datasets with Gemma 3 4B base using a RoBERTa-large cross-
 974 encoder (STS) as the similarity function s in place of NLI. For each dataset, the top-1 is **bold**
 975 and the second-best is underlined; \uparrow marks an improvement of a beam variant over its multinomial
 976 counterpart.

977 UQ Method	978 TriviaQA	979 Web Questions	980 CoQA	981 HotpotQA	982 CommonsenseQA	983 ARC-Challenge	984 Mean
Dissimilarity	.725	<u>.683</u>	.497	.597	.481	.421	.567
Dissimilarity + beamsearch	.746 \uparrow	<u>.693</u> \uparrow	<u>.513</u> \uparrow	.654 \uparrow	.505 \uparrow	.479 \uparrow	<u>.598</u> \uparrow
Eccentricity	.722	.647	.489	.544	.455	.500	.560
Eccentricity + beamsearch	.734 \uparrow	.647 \uparrow	.483	.604 \uparrow	.362	.421	.542
EigVecDissimilarity	.737	.649	.453	.523	.489	.529	.563
EigVecDissimilarity + beamsearch	<u>.744</u> \uparrow	.675 \uparrow	.484 \uparrow	.582 \uparrow	.439	.496	.570 \uparrow
CocoaMSP	.731	.642	.438	.397	<u>.553</u>	.577	.556
CocoaMSP + beamsearch	.740 \uparrow	.648 \uparrow	.462 \uparrow	.479 \uparrow	<u>.558</u> \uparrow	.593 \uparrow	.580 \uparrow
CocoaPPL	.728	.653	.488	.607	.546	.567	.598
CocoaPPL + beamsearch	.737 \uparrow	.658 \uparrow	.498 \uparrow	.650 \uparrow	.548 \uparrow	.586 \uparrow	.613 \uparrow

988 989 A.6 NUMBER OF SAMPLES ACROSS DIFFERENT TASKS



1018 Figure 8: PRR (\uparrow is better) as a function of the number of candidates M across different datasets
 1019 and models.

1020
 1021 To evaluate the performance of the proposed beam-search variations under different numbers of
 1022 samples M across models, we computed PRR for both the sampling and beam-search versions of
 1023 Dissimilarity on 200 random subsamples of TriviaQA for three LLMs: Gemma 3 4B base, Llama
 1024 3.1 8B base, and Qwen 3 8B base. To further assess performance across datasets, we additionally
 1025 evaluated PRR for Gemma 3 4B base on the 200 subsamples of ARC-Challenge dataset. All four
 resulting plots are shown in Figure 8.

1026 The results show that for all budgets $M > 1$, beam search consistently outperforms sampling,
1027 yielding higher PRR. On the open-ended TriviaQA dataset, PRR increases steadily with M , with
1028 beam search reaching a plateau around $M = 5$ for all 3 models tested. On the multiple-choice
1029 ARC-Challenge dataset, PRR plateaus at a considerably smaller budget ($M = 2$), likely due to the
1030 small output space (i.e., a limited set of answer choices).

1031 Overall, these results indicate that the beam-search variant of Dissimilarity remains effective even at
1032 relatively small sample budgets: $M \approx 5$ **for open-ended short-form generation tasks, and $M = 2$**
1033 **for multiple-choice settings**, where the constrained output space enables faster saturation.

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

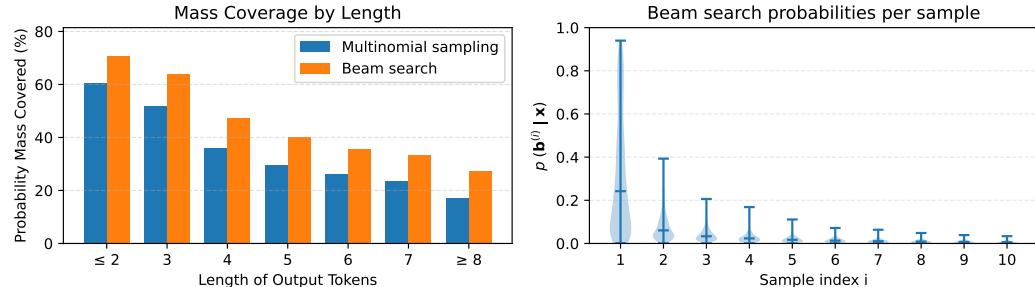
1075

1076

1077

1078

1079

1080 **B ANALYSIS AND EXAMPLES**
10811082 **B.1 PROBABILITY MASS COVERAGE**
1083

1093 Figure 9: *Left*: average probability mass covered by the candidate set ($M=10$) across output-length
1094 bins (averaged over examples in the bin) on TriviaQA with Gemma 3 4B base. *Right*: for beam
1095 search, distribution of sequence probabilities $p(\mathbf{b}^{(i)} | \mathbf{x})$ by beam rank i (1 = highest-probability
1096 text).

1098 Figure 9 summarizes two observations. First (left), beam search covers a larger share of the model’s
1099 probability mass than multinomial sampling across length bins. Second (right), beam probabilities
1100 decay sharply with rank: the first few beams capture most of the mass, while lower-ranked beams
1101 contribute little. This motivates mass-aware weighting w_i (equation (4)) and helps explain why
1102 probability-weighted beam variants are effective, especially at small candidate budgets.

1103 **B.2 EXAMPLES**
1104

1105 We include qualitative examples for Gemma 3 4B base: two from TriviaQA, two from WebQuestions,
1106 and one from CoQA. Each panel shows the question, the greedy answer, ten multinomial
1107 samples, and ten beam-search samples with autoregressive probabilities, together with the corre-
1108 sponding uncertainty scores (e.g., Dissimilarity and its beam-guided variant). The cases illustrate
1109 how beam search reduces duplication and enhances uncertainty.

1111

1112 **Question:** What claimed the life of singer
1113 Kathleen Ferrier?
1114 **Greedy:** breasts cancer

1115 **Multinomial samples** | **Beam-search samples**

1116

cancer	cancer	$p=0.228$
breast cancer	tuberculosis	$p=0.154$
pulmonary	breast cancer	$p=0.089$
breast cancer	lung cancer	$p=0.041$
cancer	pneumonia	$p=0.039$
breast cancer	leukaemia	$p=0.034$
myx	myel	$p=0.023$
cancer	leuk	$p=0.011$
cancer	pulmonary	$p=0.011$
pneumonia	lymphoma	$p=0.010$

1117 **Dissimilarity:** 0.330
1118 **Dissimilarity + beamsearch:** 0.533

1119 **Question:** Which number Beethoven sym-
1120 phony is known as ‘The Pastoral’?
1121 **Greedy:** 6

1122 **Multinomial samples** | **Beam-search samples**

1123

six	sixth	$p=0.314$
seventh	6	$p=0.169$
sixth	6th	$p=0.104$
sixth	ninth	$p=0.061$
sixth	seventh	$p=0.037$
6	9	$p=0.027$
seventh	six	$p=0.023$
no	9th	$p=0.021$
sixteenth	no.	$p=0.013$
n6	7	$p=0.008$

1124 **Dissimilarity:** 0.634
1125 **Dissimilarity + beamsearch:** 0.561

1126 Figure 10: Two examples from Gemma 3 4B base on TriviaQA. Each panel shows the question,
1127 greedy answer, multinomial and beam-search samples with autoregressive probabilities, plus dis-
1128 similarity and beamsearch-guided dissimilarity.

1129

1134
1135
1136
1137
1138
1139

Question: what currency does cyprus use?
Greedy: Cyprus pound

Multinomial samples	Beam-search samples	
Euro	Euro	p=0.439
Euro	euro	p=0.201
Euro	Cyprus pound	p=0.091
Euro	Cypriot	p=0.072
euro	Cyprus Pound	p=0.016
euro	Euros	p=0.014
euro	EURO	p=0.007
euros	euros	p=0.007
Euro	cyprus	p=0.007
Euro	Cyprus	p=0.006

Dissimilarity: 0.976

Dissimilarity + beamsearch: 0.800

Question: who plays charlie in the santa clause movies?

Greedy: Tim Allen

Multinomial samples	Beam-search samples	
Tim Allen	Tim Allen	p=0.318
Tim Allen	Jeff Daniels	p=0.017
Scott Calvin	Timothy Oly	p=0.012
Tim Allen	Ed Asner	p=0.010
Tim Allen	Scott Calvin	p=0.008
Edward Arnold	Edward Asner	p=0.008
Tim Allen	Tony Cox	p=0.007
Jeremy nault	Tim Allen	p=0.007
Tim Allen	Tim allen	p=0.005
Tim Allen	Eric Lloyd	p=0.004

Dissimilarity: 0.427

Dissimilarity + beamsearch: 0.313

1154
1155 Figure 11: Two examples from Gemma 3 4B base on WebQ. Each panel shows the question, greedy
1156 answers, multinomial and beam-search samples with autoregressive probabilities, plus dissimilarity
1157 and beamsearch-guided dissimilarity.

1158
1159
1160
1161

1162 **Story:** A couple of weeks ago, my 12-year-old daughter, Ella threatened to take my phone and break
1163 it. "At night you'll always have your phone out and break you'll just type," Ella says. "I'm ready to go
1164 to bed, and try to get you to read stories for me and you're just standing there reading your texts and
1165 texting other people," she adds. I came to realize that I was ignoring her as a father...

1166 **Question:** She mentions a lot of grown ups don't make what in their lifetime?

1167 **Greedy:** Limits.

Multinomial samples	Beam-search samples	
Boundaries.	Boundaries.	p=0.185
Set limits.	Limits.	p=0.079
Boundaries.	They don't	p=0.040
limits.	Rules.	p=0.032
Boundaries in their	Boundaries.	p=0.029
Charging station.	Boundaries.	p=0.028
Similar limitations.	A charging station.	p=0.016
Boundaries.	Boundaries that protect	p=0.010
Boundaries.	Limits in their own	p=0.007
Set up similar limits	Boundaries	p=0.007

1180 **Dissimilarity:** 0.310

1181 **Dissimilarity + beamsearch:** 0.190

1182

1183

1184

1185

1186

1187

1184 Figure 12: One example from Gemma 3 4B base on CoQA. Shown are the question, greedy an-
1185 swers, multinomial and beam-search samples with autoregressive probabilities, plus dissimilarity
1186 and beamsearch-guided dissimilarity.

1188 **C DATASETS**

1190 Table 9 lists the prompts used to form inputs for each dataset (separately for base and instruct
1191 models). Table 10 reports mean accuracy for each model-dataset pair. We measure accuracy as the
1192 fraction of predictions whose AlignScore with the gold answer exceeds 0.5.

1194 Table 9: Prompt templates used for each dataset and model type. Few-shot exemplars are shown as
1195 placeholders (e.g., <5 few-shot QA pairs>); run-time inputs are denoted by <question>,
1196 <context>, <title 1>, etc.

Dataset	Base Prompt	Instruct Prompt
TriviaQA	<5 few-shot QA pairs> Question: <question> Answer:	Answer the following question as briefly as possible. <5 few-shot QA pairs> Now answer the following question: Question: <question> Answer:
Web Questions	<5 few-shot QA pairs> Question: <question> Answer:	Below are questions with short factual answers. Return only the short answer (a name, phrase, number, or year). <5 few-shot QA pairs> Now answer this. Q: <question> A:
CoQA	Story: <context> <all preceding QA pairs> Question: <question> Answer:	Story: <context> <all preceding QA pairs> Answer the following question as briefly as possible. Question: <question> Answer:
HotpotQA	Title: <title 1> <paragraph 1> Title: <title 2> <paragraph 2> Question: <question> Short answer:	Instruction: Read the context and answer with a short factual span (a few words) copied from the context. Reply with the short answer only. Title: <title 1> <paragraph 1> Title: <title 2> <paragraph 2> Question: <question> Short answer:
Common senseQA	<2 few-shot QA pairs> Question: <question> Options: <(A) - (D) options> Answer:	Instruction: Choose the single best answer from the options. Answer with the option text only (not the letter). <2 few-shot QA pairs> Now answer this. Question: <question> Options: <(A) - (D) options> Answer:
ARC-Challenge	<2 few-shot QA pairs> Question: <question> Options: <(A) - (D) options> Answer:	Instruction: Choose the single best answer from the options. Answer with the option text only (not the letter). <2 few-shot QA pairs> Now answer this. Question: <question> Options: <(A) - (D) options> Answer:

1232 Table 10: Mean accuracy (%): proportion of predictions with AlignScore to the gold answer > 0.5.

	Closed-Book QA		Open-Book QA		Multiple Choice	
	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge
Llama 3.1 8B base	63%	47%	74%	53%	74%	72%
Llama 3.1 8B instruct	69%	40%	80%	72%	77%	76%
Gemma 3 4B base	47%	33%	69%	41%	65%	70%
Gemma 3 4B instruct	51%	35%	76%	66%	76%	77%
Qwen 3 8B base	52%	48%	81%	47%	89%	91%
Qwen 3 8B instruct	54%	42%	76%	76%	84%	88%

1242 **D ADDITIONAL RESULTS**
12431244 **D.1 SCORING TOP-BEAM OUTPUT**
12451246 In the main text we score the greedy decode as the produced answer y_* . Table 11 complements
1247 these results by scoring the *top-1 beam* as y_* , a natural choice when beam search is already used to
1248 obtain a higher-quality decode. The beam-weighted family of approaches achieves higher PRR than
1249 the original methods and baselines in the majority of cases.
12501251 Table 11: PRR (\uparrow is better) averaged over 6 datasets, when scoring the top-1 beam produced answer
1252 (instead of greedy). For each dataset, the top-1 score is **bold** and the second-best is underlined. For
1253 beam-guided variants, we mark \uparrow when the variant improves over its original multinomial-sampling
1254 counterpart.

UQ Method	Llama 3.1 8B		Gemma 3 4B		Qwen 3 8B	
	base	instruct	base	instruct	base	instruct
<i>Baseline UQ methods</i>						
Prob	.399	.174	.400	.213	.390	.090
MTE	.320	.164	.317	.228	.334	.255
Perplexity	.376	.121	.359	.185	.318	.009
CCP	.395	.155	.369	.243	.352	.226
SAR	.333	.221	.336	.348	.342	.246
P(True)	.019	-.075	.031	.090	.012	-.080
SemanticEntropy	.345	.286	.397	.320	.299	.250
LexicalSimilarity	.377	.221	.384	.291	.404	.210
EigValLaplacian	.366	.209	.402	.307	.384	.223
NumSemSets	.349	.215	.365	.262	.344	.208
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>						
Dissimilarity	.437	.229	.424	.333	.446	.272
Dissimilarity + beamsearch	<u>.455</u> \uparrow	.266 \uparrow	<u>.466</u> \uparrow	.390 \uparrow	.440	.346 \uparrow
Eccentricity	.405	.238	.395	.310	.375	.208
Eccentricity + beamsearch	<u>.444</u> \uparrow	<u>.301</u> \uparrow	<u>.450</u> \uparrow	<u>.348</u> \uparrow	.380 \uparrow	.308 \uparrow
EigVecDissimilarity	.402	.243	.412	.316	.403	.213
EigVecDissimilarity + beamsearch	<u>.446</u> \uparrow	.316 \uparrow	<u>.457</u> \uparrow	<u>.366</u> \uparrow	<u>.415</u> \uparrow	.334 \uparrow
CocoaMSP	.447	.284	.450	.347	<u>.454</u>	.272
CocoaMSP + beamsearch	.471 \uparrow	.290 \uparrow	.478 \uparrow	.407 \uparrow	<u>.459</u> \uparrow	<u>.345</u> \uparrow
CocoaPPL	.440	.251	.433	.340	.422	.261
CocoaPPL + beamsearch	.450 \uparrow	.273 \uparrow	.444 \uparrow	<u>.395</u> \uparrow	.410	.318 \uparrow

1278 **D.2 ROC-AUC AND PR-AUC**
12791280 In the main text we report PRR. Tables 12 and 13 complements these results with ROC-AUC and
1281 PR-AUC on Gemma 3 4B base. We binarize by marking an answer as correct if its AlignScore to
1282 the gold answer exceeds 0.5, and incorrect otherwise (the positive class for PR-AUC is the incorrect
1283 label). The pattern mirrors PRR: beam-guided variants generally match or outperform multinomial
1284 sampling.
12851286 **D.3 DETAILED RESULTS FOR EACH DATASET**
12871288 Complementing the main-table results in Table 3, Tables 14–19 report PRR for six datasets sep-
1289 arately for Gemma 3 4B base, Gemma 3 4B instruct, Llama 3.1 8B base, Llama 3.1 8B instruct,
1290 Qwen 3 8B base, and Qwen 3 8B instruct.
12911292
1293
1294
1295

1296

1297

Table 12: ROC-AUC↑ for 6 datasets with Gemma 3 4B base. For each dataset, the top-1 method is **bold** and the second-best is underlined. Beam-guided and probability-weighted variants are marked with ↑ when they improve over their multinomial-sampling baseline. The two rightmost columns report the mean ROC-AUC across datasets.

UQ Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge	Mean
<i>Baseline UQ methods</i>							
Prob	.863	.768	.698	.632	.796	.821	.763
MTE	.867	.793	.710	.721	.737	.753	.763
Perplexity	.863	.785	.729	.735	.796	.820	.788
CCP	.881	.781	.698	.660	.775	.793	.764
SAR	.867	.776	.701	.713	.653	.696	.748
P(True)	.642	.473	.524	.513	.571	.545	.545
SemanticEntropy	.849	.758	.690	.591	.755	.774	.736
LexicalSimilarity	.842	.766	.713	.656	.739	.756	.745
EigValLaplacian	.867	.766	.701	.633	.739	.775	.747
NumSemSets	.856	.754	.653	.639	.702	.757	.727
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>							
Dissimilarity	.916	.836	.822	.809	.817	.818	.836
Dissimilarity + beamsearch	<u>.923</u> ↑	<u>.852</u> ↑	<u>.826</u> ↑	<u>.814</u> ↑	<u>.831</u> ↑	.841↑	<u>.848</u> ↑
Eccentricity	.897	.808	.768	.737	.809	.821	.806
Eccentricity + beamsearch	.911↑	.816↑	.790↑	.771↑	<u>.833</u> ↑	<u>.859</u> ↑	.830↑
EigVecDissimilarity	.902	.813	.761	.728	.798	.825	.805
EigVecDissimilarity + beamsearch	.920↑	.827↑	.787↑	.763↑	.820↑	<u>.856</u> ↑	.829↑
CocoaMSP	.904	.823	.791	.726	.826	.839	.818
CocoaMSP + beamsearch	.910↑	.836↑	.811↑	.779↑	.827↑	.847↑	.835↑
CocoaPPL	.907	.832	.810	.799	.825	.837	.835
CocoaPPL + beamsearch	.912↑	<u>.845</u> ↑	<u>.823</u> ↑	<u>.828</u> ↑	.825↑	.844↑	<u>.846</u> ↑

1323

1324

Table 13: PR-AUC↑ for 6 datasets with Gemma 3 4B base. For each dataset, the top-1 method is **bold** and the second-best is underlined. Beam-guided and probability-weighted variants are marked with ↑ when they improve over their multinomial-sampling baseline. The two rightmost columns report the mean PR-AUC across datasets.

UQ Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge	Mean
<i>Baseline UQ methods</i>							
Prob	.855	.838	.477	.678	.623	.628	.683
MTE	.875	.874	.545	.799	.558	.540	.699
Perplexity	.860	.861	.539	.814	.629	.632	.722
CCP	.866	.853	.475	.715	.676	.641	.704
SAR	.865	.861	.484	.753	.437	.422	.646
P(True)	.657	.662	.326	.634	.410	.355	.507
SemanticEntropy	.838	.823	.456	.649	.572	.511	.642
LexicalSimilarity	.833	.848	.514	.711	.545	.509	.660
EigValLaplacian	.865	.855	.481	.682	.565	.532	.663
NumSemSets	.841	.825	.427	.685	.508	.497	.631
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>							
Dissimilarity	.911	.904	.715	.838	.722	.648	.789
Dissimilarity + beamsearch	<u>.919</u> ↑	<u>.915</u> ↑	.660	.822	<u>.754</u> ↑	.693↑	<u>.794</u> ↑
Eccentricity	.888	.887	.561	.758	.685	.625	.734
Eccentricity + beamsearch	.906↑	.884	.576↑	.789↑	<u>.744</u> ↑	<u>.717</u> ↑	.769↑
EigVecDissimilarity	.902	.889	.573	.766	.677	.651	.743
EigVecDissimilarity + beamsearch	.916↑	.900↑	.588↑	.784↑	.717↑	.689↑	.766↑
CocoaMSP	.897	.894	.605	.761	.711	.680	.758
CocoaMSP + beamsearch	.907↑	.904↑	.632↑	.801↑	.715↑	.691↑	.775↑
CocoaPPL	.902	.902	.672	<u>.861</u>	.712	.686	.789
CocoaPPL + beamsearch	.909↑	.910↑	.690↑	<u>.881</u> ↑	.718↑	<u>.695</u> ↑	<u>.801</u> ↑

1350
13511352 Table 14: PRR (\uparrow is better) for 6 datasets with Gemma 3 4B base. For each dataset, the top-1
1353 method is **bold** and the second-best is underlined. Beam-guided and probability-weighted variants
1354 are marked with \uparrow when they improve over their multinomial-sampling baseline.

Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge
<i>Baseline UQ methods</i>						
Prob	.659 \pm 0.018	.521 \pm 0.031	.312 \pm 0.024	.274 \pm 0.014	.511 \pm 0.025	.548 \pm 0.077
MTE	.670 \pm 0.013	.583 \pm 0.029	.363 \pm 0.02	.494 \pm 0.034	.364 \pm 0.031	.381 \pm 0.052
Perplexity	.647 \pm 0.024	.553 \pm 0.022	.369 \pm 0.02	.527 \pm 0.023	.503 \pm 0.022	.547 \pm 0.062
CCP	.686 \pm 0.021	.569 \pm 0.031	.326 \pm 0.022	.337 \pm 0.025	.506 \pm 0.034	.527 \pm 0.062
SAR	.656 \pm 0.02	.571 \pm 0.028	.347 \pm 0.023	.296 \pm 0.018	.183 \pm 0.037	.264 \pm 0.055
P(True)	.272 \pm 0.026	<u>.004</u> \pm 0.034	.031 \pm 0.026	.075 \pm 0.025	.090 \pm 0.028	.090 \pm 0.048
SemanticEntropy	.622 \pm 0.021	<u>.505</u> \pm 0.022	.301 \pm 0.019	.140 \pm 0.022	.407 \pm 0.028	.431 \pm 0.051
Lexical Similarity	.602 \pm 0.017	.540 \pm 0.032	.349 \pm 0.025	.286 \pm 0.016	.386 \pm 0.032	.392 \pm 0.054
EigValLaplacian	.666 \pm 0.014	.555 \pm 0.028	.320 \pm 0.036	.246 \pm 0.024	.386 \pm 0.027	.452 \pm 0.046
NumSemSets	.656 \pm 0.017	.538 \pm 0.028	.257 \pm 0.027	.268 \pm 0.019	.338 \pm 0.03	.454 \pm 0.042
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>						
Dissimilarity	<u>.755</u> \pm 0.019	<u>.715</u> \pm 0.03	<u>.578</u> \pm 0.022	<u>.626</u> \pm 0.016	.561 \pm 0.04	.545 \pm 0.062
Dissimilarity + beamsearch	<u>.766</u> \pm 0.023	<u>.722</u> \pm 0.028	<u>.600</u> \pm 0.016	.611 \pm 0.021	<u>.595</u> \pm 0.028	.604 \pm 0.052
Eccentricity	.714 \pm 0.012	.653 \pm 0.029	.459 \pm 0.02	.453 \pm 0.026	.549 \pm 0.034	.549 \pm 0.054
Eccentricity + beamsearch	.739 \pm 0.019	.633 \pm 0.035	<u>.505</u> \pm 0.025	<u>.514</u> \pm 0.027	<u>.590</u> \pm 0.024	<u>.636</u> \pm 0.066
EigVecDissimilarity	.738 \pm 0.021	.661 \pm 0.027	.443 \pm 0.031	.448 \pm 0.02	.512 \pm 0.032	.562 \pm 0.035
EigVecDissimilarity + beamsearch	.753 \pm 0.028	<u>.668</u> \pm 0.032	<u>.497</u> \pm 0.021	<u>.487</u> \pm 0.016	<u>.562</u> \pm 0.028	<u>.621</u> \pm 0.06
CocoaMSP	.738 \pm 0.023	.666 \pm 0.028	.509 \pm 0.021	.430 \pm 0.028	.583 \pm 0.03	.595 \pm 0.052
CocoaMSP + beamsearch	.747 \pm 0.02	<u>.679</u> \pm 0.02	<u>.548</u> \pm 0.02	<u>.523</u> \pm 0.027	<u>.586</u> \pm 0.029	<u>.606</u> \pm 0.072
CocoaPPL	.739 \pm 0.015	.678 \pm 0.025	.548 \pm 0.019	.625 \pm 0.023	.580 \pm 0.031	.595 \pm 0.039
CocoaPPL + beamsearch	.748 \pm 0.024	<u>.694</u> \pm 0.024	<u>.577</u> \pm 0.024	<u>.681</u> \pm 0.019	<u>.582</u> \pm 0.035	<u>.610</u> \pm 0.048

1375

1376

1377

1378

1379

1380 Table 15: PRR (\uparrow is better) for 6 datasets with Gemma 3 4B instruct. For each dataset, the top-1
1381 method is **bold** and the second-best is underlined. Beam-guided and probability-weighted variants
1382 are marked with \uparrow when they improve over their multinomial-sampling baseline.

UQ Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge
<i>Baseline UQ methods</i>						
Prob	.442 \pm 0.018	.425 \pm 0.031	.162 \pm 0.024	.220 \pm 0.014	.254 \pm 0.025	.252 \pm 0.077
MTE	.534 \pm 0.013	<u>.465</u> \pm 0.029	.161 \pm 0.02	.232 \pm 0.034	.253 \pm 0.031	.256 \pm 0.052
Perplexity	.422 \pm 0.024	.419 \pm 0.022	.157 \pm 0.02	.223 \pm 0.023	.252 \pm 0.022	.256 \pm 0.062
CCP	.533 \pm 0.021	<u>.478</u> \pm 0.031	.117 \pm 0.022	.303 \pm 0.025	.264 \pm 0.034	<u>.290</u> \pm 0.062
SAR	.533 \pm 0.02	.426 \pm 0.028	.176 \pm 0.023	.214 \pm 0.018	.033 \pm 0.037	.050 \pm 0.055
P(True)	-.076 \pm 0.026	<u>-.155</u> \pm 0.034	<u>-.161</u> \pm 0.026	<u>-.090</u> \pm 0.025	<u>-.046</u> \pm 0.028	<u>-.047</u> \pm 0.048
SemanticEntropy	.449 \pm 0.021	<u>.415</u> \pm 0.022	.166 \pm 0.019	.223 \pm 0.022	.254 \pm 0.028	.252 \pm 0.051
Lexical Similarity	.527 \pm 0.017	.427 \pm 0.032	.176 \pm 0.025	.127 \pm 0.016	.052 \pm 0.032	.172 \pm 0.054
EigValLaplacian	<u>.578</u> \pm 0.014	.472 \pm 0.028	.190 \pm 0.036	.134 \pm 0.024	.014 \pm 0.027	.010 \pm 0.046
NumSemSets	.556 \pm 0.017	.442 \pm 0.028	.123 \pm 0.027	.106 \pm 0.019	.046 \pm 0.03	.153 \pm 0.042
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>						
Dissimilarity	.549 \pm 0.019	.415 \pm 0.03	.111 \pm 0.022	.068 \pm 0.016	.024 \pm 0.04	.070 \pm 0.062
Dissimilarity + beamsearch	.413 \pm 0.023	.321 \pm 0.028	<u>.204</u> \pm 0.016	<u>.273</u> \pm 0.021	<u>.218</u> \pm 0.028	<u>.085</u> \pm 0.052
Eccentricity	.540 \pm 0.012	.429 \pm 0.029	.167 \pm 0.02	.175 \pm 0.026	<u>-.020</u> \pm 0.034	.094 \pm 0.054
Eccentricity + beamsearch	.441 \pm 0.019	.367 \pm 0.035	<u>.235</u> \pm 0.025	<u>.314</u> \pm 0.027	<u>.246</u> \pm 0.024	<u>.108</u> \pm 0.066
EigVecDissimilarity	<u>.561</u> \pm 0.021	.437 \pm 0.027	.169 \pm 0.031	.173 \pm 0.02	<u>-.017</u> \pm 0.032	.095 \pm 0.035
EigVecDissimilarity + beamsearch	.478 \pm 0.028	.416 \pm 0.032	<u>.240</u> \pm 0.021	<u>.308</u> \pm 0.016	<u>.253</u> \pm 0.028	<u>.113</u> \pm 0.06
CocoaMSP	.531 \pm 0.023	.456 \pm 0.028	.183 \pm 0.021	.198 \pm 0.028	.252 \pm 0.03	.266 \pm 0.052
CocoaMSP + beamsearch	.535 \pm 0.02	<u>.473</u> \pm 0.02	<u>.237</u> \pm 0.02	<u>.287</u> \pm 0.027	<u>.282</u> \pm 0.029	<u>.258</u> \pm 0.072
CocoaPPL	.523 \pm 0.015	.454 \pm 0.025	.174 \pm 0.019	.201 \pm 0.023	.247 \pm 0.031	<u>.271</u> \pm 0.039
CocoaPPL + beamsearch	.522 \pm 0.024	.467 \pm 0.024	.222 \pm 0.024	.285 \pm 0.019	<u>.277</u> \pm 0.035	.264 \pm 0.048

1403

1404

1405

1406 Table 16: PRR (\uparrow is better) for 6 datasets with Llama 3.1 8B base. For each dataset, the top-1
1407 method is **bold** and the second-best is underlined. Beam-guided and probability-weighted variants
1408 are marked with \uparrow when they improve over their multinomial-sampling baseline.

UQ Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge
<i>Baseline UQ methods</i>						
Prob	.517 \pm .019	.414 \pm .029	.310 \pm .022	.213 \pm .024	.504 \pm .029	.505 \pm .043
MTE	.544 \pm .018	.420 \pm .015	.286 \pm .022	.327 \pm .02	.448 \pm .029	.511 \pm .055
Perplexity	.507 \pm .015	.441 \pm .027	.316 \pm .031	.375 \pm .018	.501 \pm .027	.570 \pm .047
CCP	.575 \pm .016	.420 \pm .026	.276 \pm .024	.247 \pm .029	.442 \pm .023	.446 \pm .031
SAR	.548 \pm .017	.452 \pm .028	.331 \pm .03	.263 \pm .031	.189 \pm .021	.330 \pm .044
P(True)	-.055 \pm .021	.059 \pm .023	-.020 \pm .018	-.223 \pm .026	.034 \pm .024	.292 \pm .044
SemanticEntropy	.538 \pm .019	.409 \pm .023	.330 \pm .021	.199 \pm .024	.492 \pm .023	.514 \pm .05
Lexical Similarity	.467 \pm .018	.396 \pm .03	.366 \pm .024	.289 \pm .026	.437 \pm .028	.511 \pm .041
EigValLaplacian	.569 \pm .019	.418 \pm .022	.377 \pm .023	.247 \pm .025	.449 \pm .035	.499 \pm .047
NumSemSets	.550 \pm .014	.409 \pm .033	.319 \pm .019	.241 \pm .028	.378 \pm .025	.477 \pm .044
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>						
Dissimilarity	.576 \pm .02	.445 \pm .024	.473 \pm .023	.446 \pm .02	.449 \pm .028	.640 \pm .056
Dissimilarity + beamsearch	<u>.654</u> \uparrow .017	<u>.504</u> \uparrow .023	<u>.485</u> \uparrow .019	.424 \pm .024	.510 \uparrow .023	<u>.683</u> \uparrow .044
Eccentricity	.555 \pm .016	.404 \pm .025	.405 \pm .023	.297 \pm .021	.464 \pm .028	.591 \pm .038
Eccentricity + beamsearch	.613 \uparrow .021	.458 \uparrow .019	.429 \uparrow .017	.361 \uparrow .023	.512 \uparrow .025	.657 \uparrow .031
EigVecDissimilarity	.570 \pm .015	.452 \pm .022	.409 \pm .019	.289 \pm .02	.469 \pm .04	.587 \pm .038
EigVecDissimilarity + beamsearch	.630 \uparrow .019	.492 \uparrow .022	.427 \uparrow .019	.357 \uparrow .02	.506 \uparrow .035	.650 \uparrow .032
CocoaMSP	.595 \pm .013	.458 \pm .021	.463 \pm .023	.366 \pm .021	.510 \pm .028	.641 \pm .038
CocoaMSP + beamsearch	<u>.631</u> \uparrow .019	.487 \uparrow .023	<u>.465</u> \uparrow .027	.372 \uparrow .027	<u>.532</u> \uparrow .022	.639 \pm .041
CocoaPPL	.587 \pm .017	.464 \pm .024	.464 \pm .023	<u>.465</u> \pm .02	.501 \pm .031	.660 \pm .034
CocoaPPL + beamsearch	.616 \uparrow .016	.498 \uparrow .029	.459 \pm .024	.456 \pm .018	.525 \uparrow .028	<u>.661</u> \uparrow .046

1430

1431

1432

1433

1434 Table 17: PRR (\uparrow is better) for 6 datasets with Llama 3.1 8B instruct. For each dataset, the top-1
1435 method is **bold** and the second-best is underlined. Beam-guided and probability-weighted variants
1436 are marked with \uparrow when they improve over their multinomial-sampling baseline.

UQ Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge
<i>Baseline UQ methods</i>						
Prob	.524 \pm .023	.357 \pm .036	.327 \pm .021	.213 \pm .022	.283 \pm .026	.363 \pm .044
MTE	.604 \pm .015	.424 \pm .028	<u>.307</u> \pm .02	.253 \pm .031	.260 \pm .027	.339 \pm .055
Perplexity	.498 \pm .018	.367 \pm .025	.262 \pm .025	.221 \pm .03	.255 \pm .028	.332 \pm .053
CCP	.576 \pm .023	.406 \pm .028	.291 \pm .018	.265 \pm .022	.248 \pm .034	.402 \pm .048
SAR	.599 \pm .021	.420 \pm .029	.338 \pm .024	.236 \pm .02	.301 \pm .025	.418 \pm .04
P(True)	.236 \pm .023	.012 \pm .031	.018 \pm .035	.045 \pm .024	-.011 \pm .024	.135 \pm .051
SemanticEntropy	.591 \pm .016	.381 \pm .027	.335 \pm .032	.231 \pm .029	.301 \pm .038	.418 \pm .061
Lexical Similarity	.566 \pm .023	.395 \pm .029	.347 \pm .024	.232 \pm .03	.275 \pm .032	.380 \pm .045
EigValLaplacian	.615 \pm .021	.389 \pm .026	.355 \pm .029	.238 \pm .023	.252 \pm .029	.377 \pm .051
NumSemSets	.569 \pm .021	.363 \pm .031	.228 \pm .03	.180 \pm .023	.208 \pm .035	.368 \pm .051
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>						
Dissimilarity	.616 \pm .016	.382 \pm .031	.349 \pm .018	.270 \pm .021	.277 \pm .037	.378 \pm .061
Dissimilarity + beamsearch	<u>.662</u> \uparrow .015	.411 \uparrow .029	.358 \uparrow .029	<u>.349</u> \uparrow .019	.288 \uparrow .032	.434 \uparrow .054
Eccentricity	.598 \pm .021	.379 \pm .032	.319 \pm .016	.248 \pm .031	.273 \pm .035	.389 \pm .058
Eccentricity + beamsearch	.620 \uparrow .016	.396 \uparrow .027	.330 \uparrow .021	.281 \uparrow .021	.306 \uparrow .031	<u>.451</u> \uparrow .047
EigVecDissimilarity	.611 \pm .019	.378 \pm .033	.325 \pm .025	.249 \pm .029	.264 \pm .037	.390 \pm .061
EigVecDissimilarity + beamsearch	.640 \uparrow .017	.425 \uparrow .028	.347 \uparrow .027	.291 \uparrow .022	<u>.318</u> \uparrow .034	<u>.461</u> \uparrow .046
CocoaMSP	.629 \pm .018	.409 \pm .023	<u>.366</u> \pm .03	.278 \pm .02	.314 \pm .029	.426 \pm .051
CocoaMSP + beamsearch	<u>.665</u> \uparrow .016	<u>.428</u> \uparrow .029	<u>.378</u> \uparrow .017	.344 \uparrow .019	.302 \pm .036	.439 \uparrow .041
CocoaPPL	.626 \pm .022	.410 \pm .03	.354 \pm .024	.278 \pm .024	.299 \pm .038	.413 \pm .056
CocoaPPL + beamsearch	.653 \uparrow .018	.427 \uparrow .032	.356 \uparrow .021	.334 \uparrow .018	.285 \pm .04	.419 \uparrow .056

1457

1458
14591460 Table 18: PRR (\uparrow is better) for 6 datasets with Qwen 3 8B base. For each dataset, the top-1 method is
1461 **bold** and the second-best is underlined. Beam-guided and probability-weighted variants are marked
1462 with \uparrow when they improve over their multinomial-sampling baseline.

UQ Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge
<i>Baseline UQ methods</i>						
Prob	.617 \pm .017	.449 \pm .025	.267 \pm .025	.111 \pm .033	.337 \pm .039	.475 \pm .085
MTE	.602 \pm .022	.409 \pm .027	.267 \pm .023	.279 \pm .023	<u>.443</u> \pm .044	.444 \pm .077
Perplexity	.597 \pm .018	.426 \pm .028	.278 \pm .023	.256 \pm .026	.294 \pm .045	.381 \pm .065
CCP	.640 \pm .018	.406 \pm .028	.213 \pm .028	.153 \pm .025	.296 \pm .048	.421 \pm .09
SAR	.617 \pm .023	.457 \pm .023	.323 \pm .03	.243 \pm .028	.220 \pm .042	.317 \pm .066
P(True)	.322 \pm .021	.282 \pm .025	.005 \pm .031	.168 \pm .024	-.043 \pm .045	-.074 \pm .069
Semantic Entropy	.549 \pm .018	.411 \pm .02	.247 \pm .025	.173 \pm .023	.230 \pm .026	.305 \pm .058
Lexical Similarity	.595 \pm .023	.430 \pm .024	.338 \pm .019	.310 \pm .025	.367 \pm .042	.508 \pm .076
EigValLaplacian	.602 \pm .015	.423 \pm .027	.301 \pm .027	.284 \pm .028	.349 \pm .032	.475 \pm .081
NumSemSets	.593 \pm .016	.403 \pm .029	.268 \pm .024	.250 \pm .023	.311 \pm .039	.367 \pm .069
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>						
Dissimilarity	.668 \pm .014	.462 \pm .024	.406 \pm .023	.531 \pm .017	.315 \pm .038	.476 \pm .086
Dissimilarity + beamsearch	<u>.680</u> \uparrow .019	.484 \uparrow .024	<u>.409</u> \uparrow .03	.504 \pm .019	.335 \uparrow .044	.457 \pm .088
Eccentricity	.615 \pm .016	.416 \pm .023	.320 \pm .022	.319 \pm .024	.266 \pm .053	.440 \pm .068
Eccentricity + beamsearch	.640 \uparrow .013	.437 \uparrow .025	.368 \uparrow .02	.407 \uparrow .026	.243 \pm .04	.366 \pm .072
EigVecDissimilarity	.628 \pm .014	.454 \pm .028	.325 \pm .026	.314 \pm .027	.373 \pm .035	.456 \pm .071
EigVecDissimilarity + beamsearch	.660 \uparrow .016	.460 \uparrow .024	.380 \uparrow .025	.394 \uparrow .025	.353 \pm .045	.453 \pm .086
CocoaMSP	.667 \pm .019	<u>.492</u> \pm .019	.385 \pm .025	.320 \pm .025	.378 \pm .028	.523 \pm .071
CocoaMSP + beamsearch	<u>.678</u> \uparrow .018	<u>.498</u> \uparrow .028	.391 \uparrow .02	.378 \uparrow .029	<u>.385</u> \uparrow .037	<u>.510</u> \pm .079
CocoaPPL	.665 \pm .015	.478 \pm .019	.388 \pm .035	.397 \pm .024	.353 \pm .038	.484 \pm .081
CocoaPPL + beamsearch	.667 \uparrow .016	.486 \uparrow .021	.387 \pm .036	.437 \uparrow .026	.339 \pm .044	.450 \pm .06

1484
1485
1486
14871488 Table 19: PRR (\uparrow is better) for 6 datasets with Qwen 3 8B instruct. For each dataset, the top-1
1489 method is **bold** and the second-best is underlined. Beam-guided and probability-weighted variants
1490 are marked with \uparrow when they improve over their multinomial-sampling baseline.

UQ Method	TriviaQA	Web Questions	CoQA	HotpotQA	Common senseQA	ARC-Challenge
<i>Baseline UQ methods</i>						
Prob	.564 \pm .017	.353 \pm .032	.215 \pm .02	.250 \pm .026	.174 \pm .034	.181 \pm .078
MTE	.564 \pm .018	.345 \pm .028	.164 \pm .025	.251 \pm .028	.183 \pm .03	.272 \pm .095
Perplexity	.491 \pm .023	.341 \pm .036	.169 \pm .026	.250 \pm .028	.175 \pm .037	.229 \pm .058
CCP	.563 \pm .02	.383 \pm .029	.169 \pm .018	.258 \pm .029	.173 \pm .034	.202 \pm .068
SAR	.590 \pm .016	.425 \pm .036	.146 \pm .026	.159 \pm .029	.201 \pm .033	.233 \pm .051
P(True)	-.105 \pm .023	-.222 \pm .035	-.126 \pm .017	.018 \pm .021	-.083 \pm .03	-.164 \pm .071
Semantic Entropy	.597 \pm .016	.404 \pm .034	.214 \pm .022	.231 \pm .026	.174 \pm .041	.176 \pm .08
Lexical Similarity	.530 \pm .023	.425 \pm .029	.193 \pm .031	.101 \pm .026	.121 \pm .039	.053 \pm .06
EigValLaplacian	.626 \pm .015	.417 \pm .04	.196 \pm .026	.083 \pm .024	.134 \pm .031	.134 \pm .066
NumSemSets	.608 \pm .021	<u>.437</u> \pm .036	.110 \pm .019	.096 \pm .024	.113 \pm .041	.154 \pm .065
<i>Consistency-based UQ: multinomial vs. beamsearch versions</i>						
Dissimilarity	.588 \pm .017	.382 \pm .03	.165 \pm .02	.187 \pm .025	.246 \pm .038	.394 \pm .072
Dissimilarity + beamsearch	<u>.637</u> \uparrow .018	.386 \uparrow .026	<u>.269</u> \uparrow .019	.264 \uparrow .026	.213 \pm .031	<u>.362</u> \pm .083
Eccentricity	.565 \pm .019	.367 \pm .034	.167 \pm .025	.125 \pm .023	.150 \pm .026	.132 \pm .078
Eccentricity + beamsearch	.600 \uparrow .016	.392 \uparrow .034	<u>.288</u> \uparrow .029	<u>.291</u> \uparrow .022	.211 \uparrow .035	.285 \uparrow .084
EigVecDissimilarity	.590 \pm .024	.385 \pm .031	.169 \pm .026	.121 \pm .032	.143 \pm .033	.131 \pm .066
EigVecDissimilarity + beamsearch	<u>.645</u> \uparrow .016	<u>.439</u> \uparrow .032	<u>.328</u> \uparrow .019	<u>.297</u> \uparrow .017	<u>.242</u> \uparrow .029	.306 \pm .058
CocoaMSP	.607 \pm .015	.394 \pm .03	.204 \pm .016	.272 \pm .023	.230 \pm .042	.298 \pm .061
CocoaMSP + beamsearch	.635 \uparrow .02	.404 \uparrow .024	.263 \uparrow .023	.282 \uparrow .025	.206 \pm .029	.290 \pm .061
CocoaPPL	.581 \pm .02	.389 \pm .032	.179 \pm .024	.272 \pm .022	.232 \pm .032	.309 \pm .082
CocoaPPL + beamsearch	.609 \uparrow .02	.395 \uparrow .031	.233 \uparrow .025	.282 \uparrow .026	.207 \pm .03	.299 \pm .084

1511

1512 E DETAILED DESCRIPTION OF UNCERTAINTY QUANTIFICATION METHODS
15131514 In this section, we describe the uncertainty quantification methods used in our experiments.
15151516 **Sequence Probability (Prob)** is the most straightforward approach to uncertainty quantification.
1517 We define it formally as the negative log-probability of the generating sequence:

1518
1519 $U_{\text{SP}}(\mathbf{y} \mid \mathbf{x}) = -\log P(\mathbf{y} \mid \mathbf{x}).$ (25)
1520

1521 **Mean Token Entropy (MTE)** measures an average entropy of tokens in a sequence:
1522

1523
1524 $U_{\text{MTE}}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{L} \sum_{l=1}^L \mathcal{H}(y_l \mid \mathbf{y}_{<l}, \mathbf{x}),$ (26)
1525

1526 where $\mathcal{H}(y_l \mid \mathbf{y}_{<l}, \mathbf{x}) = -\sum_v P(y_l = v \mid \mathbf{y}_{<l}, \mathbf{x}) \log P(y_l = v \mid \mathbf{y}_{<l}, \mathbf{x}).$
15271528 **Perplexity** computes negative average log-likelihood of tokens in a sequence:
1529

1530
1531 $U_{\text{PPL}}(\mathbf{y} \mid \mathbf{x}) = -\frac{1}{L} \log P(\mathbf{y} \mid \mathbf{x}),$ (27)
1532

1533 **Claim Conditioned Probability (CCP)**, introduced in Fadeeva et al. (2024), measures uncertainty
1534 on a claim level by perturbing claim’s tokens with alternative generations:
1535

1536
1537 $U_{\text{CCP}}(C \mid \mathbf{x}) = 1 - \prod_{j \in C} \text{CCP}(y_j \mid \mathbf{y}_{<j}, \mathbf{x}).$ (28)
1538

1539 Where $\text{CCP}(y_j \mid \mathbf{y}_{<j}, \mathbf{x}) = \frac{\sum_{k: \text{NLI}(y_j^k, y_j) = 'e'} P(y_j^k \mid \mathbf{y}_{<j}, \mathbf{x})}{\sum_{k: \text{NLI}(y_j^k, y_j) \in \{'e', 'c'\}} P(y_j^k \mid \mathbf{y}_{<j}, \mathbf{x})}$
1540

1541 **Shifting Attention to Relevance (SAR)** is a method combining TokenSAR and SentenceSAR, as
1542 introduced by Duan et al. (2024). SentenceSAR is defined as follows:
1543

1544
1545 $U_{\text{SentSAR}}(\mathbf{x}) = -\frac{1}{M} \sum_{i=1}^M \log \left(p(\mathbf{y}^{(i)} \mid \mathbf{x}) + \frac{1}{t} R_S(\mathbf{y}^{(i)}, \mathbf{x}) \right),$ (29)
1546

1547 Here, $R_S(\mathbf{y}^{(j)}, \mathbf{x}) = \sum_{k \neq j} s(\mathbf{y}^{(j)}, \mathbf{y}^{(k)}) p(\mathbf{y}^{(k)} \mid \mathbf{x}).$ To obtain SAR score, the generative proba-
1548 bility $p(\mathbf{y} \mid \mathbf{x})$ is replaced with relevance-reweighted probability on a sequence level. **TokenSAR** is
1549 defined as:
1550

1551
1552 $U_{\text{TokenSAR}}(\mathbf{x}) = -\sum_{l=1}^L \tilde{R}_T(y_l, \mathbf{y}, \mathbf{x}) \log P(y_l \mid \mathbf{y}_{<l}, \mathbf{x}),$ (30)
1553

1554 where $R_T(\cdot)$ denotes some token relevance function and relevance weight for token y_l is given by
1555 $\tilde{R}_T(y_k, \mathbf{y}, \mathbf{x}) = \frac{R_T(y_k, \mathbf{y}, \mathbf{x})}{\sum_{l=1}^L R_T(y_l, \mathbf{y}, \mathbf{x})}.$
15561557 **P(True)**, introduced in Kadavath et al. (2022), evaluates the confidence in a generation by asking
1558 the model the original question and answer, then asking if it is true or false. We then use the negative
1559 log-probability of the token “True” as an uncertainty score.
15601561 **Semantic Entropy**, introduced in Kuhn et al. (2023), clusters M sampled generations into K clus-
1562 ters of semantically equivalent responses. The entropy is then computed over these meaning clusters:
1563

1564
1565 $U_{\text{SE}}(\mathbf{x}) = -\sum_{k=1}^K \frac{|\mathcal{C}_k|}{M} \log \hat{p}_k(\mathbf{x}).$ (31)
1566

1566 **Lexical Similarity**, introduced in Fomicheva et al. (2020), measures average pairwise similarity
 1567 between M sampled generations using some similarity function $s(\mathbf{y}, \mathbf{y}')$:
 1568

$$1569 \quad U_{\text{LSRL}}(\mathbf{x}) = 1 - \frac{2}{M(M-1)} \sum_{i < j} s(\mathbf{y}^{(i)}, \mathbf{y}^{(j)}). \quad (32)$$

1570
 1571

1572 **Number of Semantic Sets**, introduced in Lin et al. (2024a), estimates how many distinct meanings
 1573 the model produces by clustering its outputs with an NLI model. Two answers are placed in the
 1574 same cluster if they mutually entail each other more than they contradict and the final number of
 1575 distinct clusters serves as an uncertainty score $U_{\text{NumSemSets}}$.
 1576

1577 **Sum of Eigenvalues of Laplacian**, introduced in Lin et al. (2024a), constructs a similarity matrix
 1578 among the sampled outputs and computes a uncertainty score from the eigenvalues of the Laplacian
 1579 of that similarity matrix:
 1580

$$1581 \quad U_{\text{EigV}}(\mathbf{x}) = \sum_{i=1}^M \max(0, 1 - \lambda_i(\mathbf{x})). \quad (33)$$

1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 F COMPUTATIONAL BUDGET
1621

1622 All experiments were run on $2 \times$ NVIDIA A100 (80 GB). Evaluating a single model across all six
1623 datasets took approximately 2 wall-clock days on this setup (4 GPU-days); with six models, this
1624 amounts to 12 wall-clock days (24 GPU-days). Additional ablations (sampling strategies, top-1
1625 beam scoring, and other objectives) required a further 5 wall-clock days on the same hardware (10
1626 GPU-days). In total, the study used about 34 GPU-days.

1628 G THE USAGE OF LLMs
1629

1630 In this study, large language models are examined primarily as the focus of analysis. For practical
1631 tasks such as programming and writing, we also make limited use of LLM-based assistants (e.g.,
1632 ChatGPT) to support grammar correction and code debugging, with all usage carefully monitored
1633 by humans.

1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673