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ABSTRACT

Consistency-based methods have emerged as an effective approach to uncertainty
quantification (UQ) in large language models. These methods typically rely on
several generations obtained via multinomial sampling, measuring their agree-
ment level. However, in short-form QA, multinomial sampling is prone to produc-
ing duplicates due to peaked distributions, and its stochasticity introduces consid-
erable variance in uncertainty estimates across runs. We introduce a new family
of methods that employ beam search to generate candidates for consistency-based
UQ, yielding improved performance and reduced variance compared to multino-
mial sampling. We also provide a theoretical lower bound on the beam set prob-
ability mass under which beam search achieves a smaller error than multinomial
sampling. We empirically evaluate our approach on six QA datasets and find that
its consistent improvements over multinomial sampling lead to state-of-the-art UQ

performance.

1 INTRODUCTION

Today, large language models (LLMs) are in-
creasingly being adapted in various safety-
critical domains, including medicine (Busch
et al.l2025), education (Xing et al.l [2025), and
law (Shu et al., 2024). This rapid adoption
has led to a growing body of work focused on
the assessment of the quality and reliability of
LLM outputs. An important research direction
in this field is Uncertainty Quantification (UQ;
Xiao & Wang| (2019); [Baan et al| (2023)); Xia
et al.| (2025))), which measures the LLM’s con-
fidence in their responses.

UQ methods can be separated into several dis-
tinct categories. These include information-
based methods that rely on token likelihoods
produced by the LLM (Fomicheva et al.| |2020);
verbalization approaches that prompt models to
provide a confidence score (Tian et al.| [2023);
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Figure 1: Beam Search vs Multinomial Sam-
pling. Sampling produces multiple identical gen-
erations resulting in noisy confidence estimate,
while beam search covers top answers from LLM
distribution resulting in a better confidence score.

density-based methods that utilize embeddings (Yoo et al.|[2022); and last but not least, consistency-
based measures that evaluate agreement between sampled outputs (Lin et al., 2024)).

Consistency-based UQ methods are of particular interest, due to not only their strong performance
but also their applicability to black-box settings (Vashurin et al.| [2025a). Moreover, in white-box
settings too, it was shown that combining information-based and consistency-based methods yields
state-of-the-art performance for a variety of tasks (Kuhn et al 2023} |Duan et al.| 2024). A key
component of these methods is sampling, which serves as a practical means of approximating the
full probability space of all potential model outputs.



Under review as a conference paper at ICLR 2026

Most existing UQ approaches rely on multinomial sampling from the model’s output distribution.
However, in short-form QA, multinomial sampling is prone to producing similar or even identical
generations, due to its bias towards higher-probability tokens during decoding; see Figure[I} Fur-
thermore, since each run produces a different set of candidate outputs, sample-based uncertainty
estimates exhibit high variance, undermining their robustness. This limits their effectiveness as a
representation of the full output space, especially since, for computational efficiency, studies typi-
cally rely on a small number of samples.

To address this problem, we propose computing output consistency based on samples generated
using beam search. Beam search facilitates the exploration of alternative decoding paths, which in
turn allows one to generate distinct candidate outputs that better capture the model’s output space in
short-form QA. Our approach includes weighting beam search outputs by their probabilities rather
than uniformly, thereby preventing the overrepresentation of low-probability outputs. Particularly,
when beam search is employed for decoding, uncertainty estimates are obtained at essentially no
additional cost. We show that replacing multinomial sampled outputs with those generated via
beam search improves the robustness and accuracy of existing consistency-based methods, as well
as hybrid methods relying on both output consistency and token likelihoods.

Our main contributions are as follows.

* We identify key limitations of existing consistency-based uncertainty quantification meth-
ods based on multinomial sampling; see Section 2]

* We propose a new family of UQ methods that employ an importance-weighted estimator
of consistency-based uncertainty with beam search output candidates; see Section

* We provide a distribution-free sufficient condition ensuring that the beam-weighted es-
timator achieves a lower error than the expected error of the multinomial sampler; see
Section 3.2

* We show that applying a beam search-based estimator to existing consistency-based UQ
approaches improves their performance on short-form QA tasks, achieving state-of-the-art
results; see Section 4]

2 BACKGROUND AND MOTIVATION

2.1 LANGUAGE MODEL DECODING

Autoregressive LLMs produce text sequentially, generating one token at a time. At each step ¢, the
model samples a token y; ~ p(- | y<;,x), where y; denotes the sequence of previously generated
tokens. The probability of generating an output sequence y is:

[y

p(y | x) = [ pwi | y<ir ). (1)
i=1

At each step, the model outputs a probability distribution over the entire vocabulary V conditioned
on the prompt x and the partial sequence y ;.

Decoding Strategies. Since the model defines a probability distribution, a concrete output must be
obtained at inference time by applying a decoding strategy. Common decoding strategies include:
(1) greedy decoding that selects maximum probability tokens at each step; (ii) multinomial sampling
where tokens are drawn according to p(y; | y<i,X); and (iii) beam search, which maintains the
top-k most likely partial sequences at each step. Several other variants of decoding approaches
have been proposed, such as top-p nucleus sampling or temperature scaling (Holtzman et al.| 2020;
Vijayakumar et al.}2018). Each decoding strategy offers different trade-offs between output quality
and diversity.

2.2 CONSISTENCY-BASED UQ METHODS AND THEIR CHALLENGES

The objective of uncertainty quantification for LLMs is to measure the level of uncertainty in a
particular generation y, conditioned on the input sequence x, which we denote as U (y. | x).
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Let us consider the most straightforward consistency—based method for predictive uncertainty quan-
tification: measuring how semantically different alternative generations are from the produced an-
swer y.. We refer to this score as Dissimilarity and formalize it as the expected semantic dissimi-
larity between the produced answer y . and all potential alternatives drawn from the model:

Up(y+ | %) = Eyp( o [1 = 5(v,54)]- (2)

Here, s(y’,y"”) € [0, 1] is a function that measures semantic similarity between two generations y’
and y”. A higher value of Up(y. | x) indicates lower consistency between the chosen answer and
alternative candidate outputs, and thus reflects greater predictive uncertainty.

The corresponding Monte Carlo estimator introduced by (Lin et al., [2024)) draws M i.i.d. samples

y O,y < p(- | x) and computes uncertainty in the following way:
M
FMC _ _ Q]
Up“(y« | x) = i ;:1 (1 s(y ,y*)). 3)

Challenges of consistency-based UQ
methods. A natural intuition is that, for Sample Redundancy by Length

consistency-based methods, samples should _ o0
be generated in a distinct, high-probability, &
and stable manner. Most existing methods use é
multinomial sampling, which, especially for &
shorter generations and small sample sizes, 52
does not satisfy these criteria. 3
Figure [2] shows the effect of multinomial sam- 3
pling on the percentage of duplicates depend-

ing on the length of generations. The result-
ing samples contain many duplicates, with the
issue being particularly pronounced for shorter
generations, where 30-50% of the outputs are
duplicates. This not only contributes to wasted
computation, but also leads to high variance es-
timates. Moreover, drawing M full generations
solely for uncertainty estimation can be costly.

Length of Output Tokens

Figure 2: Mean percentage of redundant samples
(i.e., outputs already seen among earlier genera-
tions) as a function of greedy output length. Re-
sults were obtained from 2,000 questions from
the TriviaQA dataset using the Gemma 3 4B base
model and 10 candidate generations. Redundancy
Thus, while multinomial sampling is widely 18 especially high for short answers, leading to
used, it does not best serve the goals of Wasted computation.

consistency-based uncertainty estimation.

3  UNCERTAINTY QUANTIFICATION BASED ON CONSISTENCY OF BEAM
SEARCH CANDIDATES

To address the problems outlined in Section [2.2] we propose to utilize an alternative decoding strat-
egy for generating candidate outputs: beam search. Beam search (i) guarantees distinct candidate
outputs, (ii) reduces variance (see Section @) and (iii) provides uncertainty estimates essentially
“for free” as the beam already provides a distribution over candidate outputs.

3.1 REPLACING MULTINOMIAL SAMPLING

A simple way to approximate dissimilarity from beam-generated candidates would be to reuse equa-
tion (3), treating the beam outputs as if they were drawn uniformly. While this offers a plausible
alternative, treating the candidates produced by beam search in a uniform manner would overem-
phasize lower-probability outputs. To better reflect the model distribution while avoiding repeated
multinomial draws, we form a probability-weighted estimator over the beam set.

For this purpose, we use beam search with width M to obtain distinct candidates Bys(x) =

{bM ... b)Y} and their sequence probabilities {p(b(") | x)}M,. To perform an estimation
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of Up(y. | x) in equation (2) with the help of samples b, one needs to perform importance
weighting. Thus, we define the restricted (top-M) normalized masses w; as:

(i)
w; = —POUIX) i=1,...,M. 4)

>t p(b@) | x)’

The resulting importance-weighted estimator of equation (2)) is

M
Uh(y. | x) =Y wi(1—s(b?,y.)). 5)
=1

This top-M truncation introduces a small bias relative to full multinomial sampling but typically
reduces variance and duplication on peaked distributions, yielding more stable estimates per unit
budget. In the next section we are going to explore the benefits of beam search-based estimator

U % (y. | x) from a theoretical perspective.

3.2 THEORETICAL ANALYSIS

We compare the multinomial Monte Carlo estimator (3) with the beam-weighted estimator (3)) for
the dissimilarity Up (y. | x) defined in equation (). Let Bys(x) = {b(!), ... b(*)} be the beam
setand mp = Y1, p(b(® | x) its total probability mass. Define

BB = IEl‘yfvp(‘lx) [1—s(y,y«) |y € Bu(x)], kg = IEy’\‘;l?('|x) 1—s(y,y«) |y ¢ Bu(x)].

Proposition 1 (Monte Carlo). Let U M © be the average of M i.i.d. multinomial samples. Then
E[US“)=Up(y« |x),  MSE(UY) = Var(U}') = o*/M,
where 0% = Vary, (. 1x) (1 — s(y,ys)) < 1 since s(y,y.) € [0,1].

Proposition 2 (Beam-weighted). Let (71% be the beam-weighted estimator using By (x). Then

)
Up(y | x) = mpus + (1 —mp)ug,  Up = s,
so the estimator is deterministic with squared error

SE(UD) = (Uh — Up)* = (1—ms)(us — p15)"

Theorem 1 (Comparison condition). The squared error of the beam-weighted estimator is smaller
than the mean-squared error of the Monte Carlo estimator whenever

(1 —mp)|us — pg| < o/VM.

A distribution-free sufficient condition follows from |u3 — :“E’ <lando? < i:

_ 1
mp > 1 T

Discussion. For M = 10, the sufficient con- Probability mass covered by beam-search = 0.842
dition becomes mpg > 0.842. Short-form QA 40.9%

often concentrates most probability mass on the
top few beams, so the condition is frequently
met. Figure E| shows, on the TriviaQA dataset,
that the percentage of texts satisfying this con-
dition is 22.7% and especially high for short
generations (30 — 40% for < 3 output tokens).

N w &
o o o

Percentage of texts

=
5]

Number of Output Tokens

The bound is conservative: when the inside-

. Fi 3: P t f text ti th
outside gap & = |55 — #E| < 1. the break-even igure ercentage of texts meeting the

distribution-free condition (Theorem [T)). Results
requirement relaxes to (1 — mp)d < 0/V'M, are based on 2,000 TriviaQA questions, Gemma 3
allowing the beam-weighted estimator to out- 4B base and M = 10. The green “All” bar shows
perform Monte Carlo even when mp < 0.842.  the overall percentage across all lengths.

In practice, i3 is not directly computable due

to the combinatorial output space, so § cannot be measured on real data; nevertheless, our exper-
iments consistently show beam search outperforming multinomial sampling, suggesting that ¢ is
modest in practice and thus further loosens the conservative threshold.
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3.3 ADAPTING OTHER UQ METHODS TO BEAM SEARCH

In a similar manner, other consistency-based methods can be adapted to utilize beam search-based
samples in their formulation.

Eccentricity. Eccentricity is a method introduced by [Lin et al.[(2024). Unlike dissimilarity, which
uses only the similarities between the produced answer y . and each alternative sample, Eccentricity
aggregates the joint pairwise relationships among all samples.

In this method, we first construct a similarity matrix of size (M + 1) x (M + 1) for the M samples
and the produced answer y(M+1) =y -

Wij:s(y(i),y(j)), 1<i,j<M+1. (6)

Then we compute the degree matrix D:

M1
Wi 9 1= '7
D;; = kzzzl * J )
0, i # 7,

and obtain the eigendecomposition of the Graph Laplacian L = I — D~'/2WD~1/2, yielding
eigenpairs {\;, u; } f‘ifl Smaller eigenvalues (close to zero) capture meaningful semantic structure,
whereas larger eigenvalues tend to reflect noise. We therefore retain the eigenvectors whose eigen-
values satisfy \; < a, yielding K vectors in total; K is thus determined by the threshold o > 0.

Semantic embeddings are formed as v; = [ulj, ug;, ... ,qu]. For1 < j < M, v; represents
the embedding of y(j ), and v, = vjs41 corresponds to y,.. The confidence score is the distance
between the embedding of the produced answer and the mean embedding of the samples:

V**%sz'

2

ﬁEcc(y* i X) = ) (8)

where higher values indicate higher uncertainty.

With beam-generated candidates, we weight embeddings by the normalized masses w; from equa-
tion (@) to better reflect the model distribution while avoiding duplicate generations:

V—sz

CoCoA. A white-box approach CoCoA (Vashurin et al., | 2025b) combines a model probabilities-
based uncertainty with the sample-consistency signal:

UEcc (Y* = (9)

Ucocon(ys | %) = uly. | %) - U (y. | x) = uly. | x MZ sy, ya), - (10)

where u(y | x) is a model-based uncertainty measure for the sequence (e.g., — log p(y | x)).

For a beam-weighted estimator, we utilize (3)) as sample-consistency signal:
Ug'aCoA(y* | x) =u(y:[x)- Ui))(Y* | x) (11)

Eigenvectors Dissimilarity. Both Dissimilarity and Eccentricity produce confidence scores for the
generated answer y .. Dissimilarity compares y. to each sample using the base similarity function s,
while Eccentricity measures the distance from y. to the centroid in the Laplacian embedding space;
see equation (8)). To bridge these views, we measure dissimilarity within the embedding space itself,
averaging the distances from the embedding of y. to the embeddings of individual samples. This
retains the joint-pairwise smoothing of Eccentricity and also reflects the variance among samples,
rather than only the centroid. The sampling-based estimate is

UEngecD(y* | X ZHV* v1||2’ (12)
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Table 1: Test dataset settings and statistics.

Closed-Book QA Open-Book QA Multiple Choice
. Web Common ARC-
TriviaQA Questions CoQA HotpotQA senceQA  Challenge
# Questions 2000 1490 2000 2000 1221 447
# few-shot examples 5 5 all preceding 0 2 2
Max new tokens 20 20 20 20 10 20

and the beam-guided, probability-weighted version is

M
UgigVecD(Y* | X) = Zw'LHv: - Vf‘ 27 (13)
i=1

where the embeddings v; (and v?) are obtained from the Graph Laplacian as in Eccentricity, and
w; are the normalized masses from equation @) This estimator increases both when y, moves
away from the bulk and when the samples themselves are more dispersed; by contrast, Eccentricity
focuses on the single distance to the weighted centroid.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on six QA datasets in total. Those include two closed-book
datasets: TriviaQA (Joshi et al., [2017) and Web Questions (Berant et al.l 2013), two open-book
datasets: CoQA (Reddy et al., 2019) and HotpotQA (Yang et al., 2018) and two multiple-choice
datasets: CommonsenceQA (Talmor et al.,|2019) and ARC-Challenge (Clark et al.,[2018)). For each
dataset, we randomly sampled several questions from the test set. The statistics for those datasets
are available in Table[I] Prompt details and examples of questions are provided in Appendix [C}

Models. We use base and instruct versions of 3 models: Gemma 3 4B (Team, 2025a)), Llama 3.1
8B (Dubey et al., [2024), and Qwen 3 8B (Team, [2025b).

Metrics. Following best uncertainty benchmark-

ing practices (Vashurin et al., 2025a), we adopt the

Prediction—Rejection Ratio (PRR) as our primary Table 2: Summary of baseline UQ methods.
evaluation metric. Consider a test dataset D = Category  Uncertainty Quantification Method
{(xj,¥7)}, , where y; denotes the output generated Sequence Probability (Prob)

by an LLM for input x;, and u; = U(Xj) is the as-  Information ~Mean Token Entropy (MTE)

sociated uncertainty score. The rejection curve cap- -based Perplexity ‘

tures how the average quality Q(y;,y7) of predic- CCP (Fadeeva et al.|2024)

tions with uncertainty u; < a varies with the rejec- Reflexive  P(True) (Kadavath et al.|[2022)

tion parameter a. PRR is then defined as the nor- Semantic Entropy (Kuhn et al.|[2023}

malized area under the rejection curve, computed as Shlsfifi{g ASCHUOH H]) Rzeolgzance

the ratio of the excess AUC over a random baseline (SAR) (Duan et al.{2024)

. . Samoli Lexical Similarity

to that of the oracle uncertainty score (which ranks ‘_‘t'gzégg (Fomicheva et al.| 2020}

instances perfectly by quality): Sum of Eigenvalues of Laplacian
(EigValLaplacian) (Lin et al.|[2024)

AUC e — AUC g Number of Semantic Sets
PRR = une o (14) (NumSemSets) (Lin et al.|[2024)

AUCoracle - AUCrnd )

A higher PRR indicates a more effective uncertainty
score. Following [Vashurin et al.| (2025a), we use AlignScore (Zha et al.,[2023)) as the quality metric
(. While PRR serves as our main evaluation measure, we additionally report ROC-AUC and PR-

AUC in Appendix
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Table 3: PRR (1 is better) averaged over 6 datasets. For each model, the top-1 method is bold and
the second-best is underlined. For beam-guided variants, we mark 1 when the variant improves over
its original multinomial-sampling counterpart.

Llama 3.1 8B Gemma 3 4B Qwen 3 8B
UQ Method base  instruct | base instruct | base instruct
Baseline UQ methods
Prob 410 344 471 292 .376 .289
MTE 422 364 476 317 407 297
Perplexity 452 323 525 288 372 276
CCP 401 364 492 331 .355 291
SAR 352 .385 .386 .239 .363 292
P(True) .015 .072 .093 -.096 110 -.114
Semantic Entropy 414 376 401 293 319 299
Lexical Similarity 411 .366 426 247 425 237
EigValLaplacian 426 371 437 .233 406 .265
NumSemSets .396 319 418 238 .365 253
Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .505 .379 .630 .206 477 327
Dissimilarity + beamsearch 5431 417 6501 2521 4781 3551
Eccentricity 453 .368 .563 231 .396 251
Eccentricity + beamsearch 5051 3971 .6031 2851 4101 3451
EigVecDissimilarity 463 .370 561 .236 425 256
EigVecDissimilarity + beamsearch | .5107 41471 59871 30171 4501 37671
CocoaMSP .505 404 .587 314 461 334
CocoaMSP + beamsearch 52117 4261 6151 3457 4731 3471
CocoaPPL 523 .397 .628 312 461 327
CocoaPPL + beamsearch 5361 4121 | 6497 3391 4611 3371

Baselines. We evaluate four main methods, Dissimilarity, Eccentricity, Eigenvectors Dissimilarity,

and CoCoA, under multinomial sampling and their beam-guided, probability-weighted variants. For

CoCoA, we consider both the log-probability form u(y. | x) = —logp(y« | x) (CocoaMSP) and
1

the perplexity form u(y. | x) = —yo1108 p(¥« | x) (CocoaPPL).

In addition, we compare against several state-of-the-art UQ baselines summarized in Table 2] us-
ing implementations from LM-Polygraph (Fadeeva et al.,|2023). The simpliest baseline, Sequence
Probability, calculates — log p(y. | x). For detailed descriptions of other methods see Appendix [E]

All experiments use M = 10 candidates for both multinomial sampling and beam search. We adopt
the entailment probability from the DeBERTa-large model fine-tuned on the MNLI task (He et al.,
2021)) for similarity function s, following [Lin et al.[(2024).

4.2 RESULTS AND DISCUSSION

Table 3] presents PRR results for six models, averaged over six datasets. Across all models, incorpo-
rating beam search consistently improves the performance of consistency-based uncertainty scores.
Moreover, in almost every case, beam search—based methods achieve either the best or second-best
PRR compared to both baselines and the original consistency-based approaches. In particular, Dis-
similarity + Beam Search achieves the best PRR scores for all base models and the second-best
scores for Llama 3.1 8B instruct and Qwen 3 8B instruct. Similarly, CocoaMSP + Beam Search
achieves the best results for Llama 3.1 8B instruct and Gemma 3 4B instruct, while CocoaPPL
+ Beam Search ranks second-best for Llama 3.1 8B base, Gemma 3 4B base, and Gemma 3 4B
instruct. We further provide separate results for each dataset in Appendix [D.3]

4.3 ABLATIONS

In this section, we study sensitivity to (i) the number of candidates M, (ii) output length, and (iii)
PRR curves.
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Figure 4: PRR (7 is better) as a function of the number of candidates M on TriviaQA with Gemma 3
4B base. Each panel reports one estimator (Dissimilarity, Eccentricity, EigVecDissimilarity). Curves
compare multinomial sampling and beam search (with probability weights from equation ({@)).

TriviaQA CoQA
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Figure 5: PRR (7 is better) for Dissimilarity under beam search (with probability weights) vs. multi-
nomial sampling, for different output lengths. Each dataset (TriviaQA, CoQA) with Gemma 3 4B
base is partitioned into five approximately equal-size bins token length of greedy output.

4.3.1 EFFECT OF SAMPLE COUNT

To assess sensitivity to the sample count, we vary M € {1,...,15} for Dissimilarity, Eccentricity,
and EigVecDissimilarity under multinomial sampling and beam search. Results in Figure [ show
that beam search attains higher PRR at small budgets (notably M = 2-4) and saturates quickly,
while multinomial sampling improves more gradually yet remains below beam across the range, the
gap narrows only mildly at larger M.

4.3.2 EFFECT OF OUTPUT LENGTH

Beam-guided estimators outperform sampling-based ones most clearly when generations are short.
As shown earlier in Figure 2] duplicate rates under multinomial sampling are high for 2-4 tokens
(~ 30-50%) and drop to ~ 17% for outputs of 8+ tokens. To quantify the impact, we compute PRR
for Dissimilarity using beam search (with weights from equation (@) and multinomial sampling (no
weights) across five length bins of approximately equal size on TriviaQA and CoQA with Gemma
3 4B base; see Figure[5] Within each bin, beam search consistently beats multinomial sampling
for short outputs; the gap narrows and becomes negligible for lengths of about 7 tokens and above,
where duplication is less pronounced.

4.3.3 PREDICTION-REJECTION CURVES

Figure [6] compares full Prediction-Rejection curves for Dissimilarity, Eccentricity, and EigVecDis-
similarity on TriviaQA with Llama 3.1 8B base. Across all estimators, beam search consistently
dominates multinomial sampling for nearly the entire rejection range. The improvement becomes
increasingly pronounced as the rejection rate grows, where beam-guided estimates remain stable
while multinomial ones flatten or even degrade. This indicates that beam search is especially bene-
ficial in the high-rejection regime, where distinguishing between stronger and weaker candidates is
the most critical.
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-
=)
-
=]
-
o
L

.
©
o
©

I
©
o
©

Mean AlignScore

e
9

Mean AlignScore
Mean AlignScore

o
N

A Y
0.6 T T T T t 0.6 T T T T T 0.6 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rejection rate Rejection rate Rejection rate
—— Oracle —-- Random —— multinom. sampling beamsearch

Figure 6: Prediction-Rejection curves for Dissimilarity, Eccentricity, and EigVecDissimilarity on
TriviaQA with Llama 3.1 8B base, comparing multinomial sampling (blue) and beam search with
weights (orange). Oracle (black) and random (gray dashed) baselines are shown. The vertical dashed
line marks the maximum rejection rate used in AUC calculations.

4.3.4 ADDITIONAL ABLATIONS

Additional ablations are deferred to the appendix: Appendix compares candidate—generation
strategies including Diverse Beam Search, temperature sampling, and a hybrid multinomial-beam
sampling. Appendix [A.2] investigates restricted-mass normalization and shows that introducing a
small probability floor € can stabilize the weighting of low-mass beams. Appendix evaluates
other sampling-based objectives (Semantic Entropy, Degree Matrix) under beam generation with
probability-weighted formulations. Appendix [D.I] examines using the top-1 beam decode as the
produced answer y, (instead of greedy), a natural choice when beam search is already run to obtain
a higher-quality output.

5 RELATED WORK

Consistency-based Uncertainty Estimation. In a black-box setting, consistency-based methods
are especially relevant, as they do not require access to the model internals. Lin et al.| (2024) in-
troduce several methods that estimate confidence based on a similarity matrix, where each entry
represents the similarity between a pair of sampled generations. [Fomicheva et al.| (2020) present
Lexical Similarity, a metric that evaluates the average similarity of words or phrases between each
pair of responses. In a white-box setting, consistency signals can be combined with model token-
probabilities-based confidence. These hybrid methods, such as Semantic Entropy (Kuhn et al.|
2023)), CoCoA (Vashurin et al.l [2025b) and SAR (Duan et al., [2024) explore different ways of
combining these signals and achieve state-of-the-art performance.

Uncertainty and Decoding. There were some efforts focused on examining the interaction between
decoding strategies and uncertainty quantification. In particular, Hashimoto et al.|(2025) explores
the impact of decoding strategies on the performance of token probabilities-based UQ methods.
Conversely, other research focused on making the decoding itself uncertainty-aware (Daheim et al.,
2025;|Garces Arias et al.L[2024)). However, these works do not explore consistency-based uncertainty
quantification, and more broadly, the interplay between decoding and uncertainty is a relatively
underexplored direction.

6 CONCLUSION

We present a new family of uncertainty quantification methods for LLMs that employ a beam-
weighted estimator of consistency-based uncertainty. Compared to multinomial sampling, com-
monly used in existing approaches, our method yields lower variance in dissimilarity and greater
diversity of candidate answers. We also derive a theoretical lower bound on the beam set probability
mass under which the error of the multinomial Monte Carlo estimator is guaranteed to be larger.
Finally, we evaluate our approach on six QA datasets and six different models, demonstrating state-
of-the-art performance.
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A ABLATION STUDIES

A.1 DIFFERENT SAMPLING STRATEGIES

This section studies how the proposed estimators behave under different sample generation strate-
gies. In addition to multinomial sampling and beam search settings, we evaluate three additional
families.

Diverse beam search. We generate M/ = 10 candidates using a diverse beam search (Vijayaku-
mar et al., 2016) with group penalties A € {0.5,1.0,1.5,2.0} and group counts that split the ten
candidates into G € {2,5} groups. As in the main beam setup, we apply the same self-normalized
probability weights w; from equation (@).

Temperature sampling with importance weights. For different temperatures 7', we draw M =
10 samples with temperature sampling {ygf ) }M | and re-weight them via self-normalized importance
weights
) 1-1/T
p (y T ‘ X)
= —. (15)

Sp (v 1)

Hybrid multinomial-beam search. We also consider a joint strategy: first draw B beam candi-
dates, then draw the remaining M — B candidates via multinomial sampling while excluding the
beam results. Beam candidates use autoregressive probability weights, and the residual probability
mass is distributed uniformly over the multinomial samples. Let {b(*) B | be the beam outputs and
{y@ ;Vi p41 the multinomial samples (with beam sequences masked out). We assign weights

| 1-S 8 b®

j=B+1,...,M,

(16)
so that Zf\il wH =1. Wetest B € {1,...,9}.

Table 4: PRR (1 is better) under different sampling strategies. Columns list methods (Dissimilarity,
Eccentricity, EigVecDissimilarity) and four different model-dataset pairs; rows list strategies with
their hyperparameters. Per column, top-1 is bold, second-best is underlined.

Gemma 3 4B base Llama 3.1 8B base
TriviaQA CoQA TriviaQA CoQA
Dissim  Ecc E{g\{ec Dissim  Ecc E{g\{ec Dissim  Ecc E{g\{ec Dissim  Ecc El.g\{ec
Dissim Dissim Dissim Dissim
Beam search | a1 132 51 | 561 483 488 | .623 581 598 | 502 438 454
T=07 703 619 .687 455 368 397 561 521 .538 451 371 382
T=09 734 664 710 468 417 425 .588 521 .533 418 407 410
Multinomial T=10 742 .689 715 465 424 432 599 516 537 431 416 424
Sampling T=12 733 679 117 435 424 437 .610 517 535 391 427 433
T=15 718 .685 117 406 426 436 555 515 532 397 431 440
T=17 .680 .690 117 372 426 433 569 514 530 304 432 441
G=2,A=05 753 528 693 498 405 452 .623 -.123 546 458 310 363
G=2,A=10 753 .566 705 518 384 432 594 -.138 539 466 285 355
Diverse G=2,A=15 763 522 714 537 420 441 618 -.101 542 462 245 317
Beam G=2,A=20 759 515 702 547 377 391 .630 -.130 546 452 215 287
Search G=5X=05 758 .546 736 493 401 453 591 -.026 569 .395 262 353
G=5X=10 768 523 746 515 369 423 615 -.086 563 A47 274 376
G=5X=15 761 453 723 513 391 427 623 -.153 533 461 199 324
G=5X=20 770 476 .690 513 355 415 .631 -.093 .548 453 132 254
B=1 759 715 746 S12 451 433 .597 519 549 .386 314 325
B=2 765 731 745 519 470 435 617 564 586 445 338 345
B=3 781 736 154 .503 461 439 .620 553 .598 519 436 424
Hybrid B=4 784 750 769 516 467 428 622 572 .617 436 .388 382
Multinomial- B=5 757 733 749 538 .500 466 .655 578 609 470 412 419
Beam B=6 773 733 756 528 512 488 .635 .586 613 486 421 415
B=T7 771 737 154 543 468 471 .640 .596 617 483 .399 427
B =8 764 733 155 .548 .504 507 .648 597 610 491 A34 425
B=9 172 747 765 .S51 509 497 .646 597 618 .501 A27 439
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Evaluations use a subset of 500 examples from TriviaQA and CoQA with two base models, Gemma
3 4B base and Llama 3.1 8B base. Results are summarized in Table A

No single strategy dominates across datasets, models, or estimators. Temperature sampling (with
importance weights) and diverse beam search systematically yield to beam search and hybrid
multinomial-beam. Hybrid multinomial-beam strategy can reach top-1 for specific hyperparam-
eter BB), but gains are not systematic and are sensitive to tuning. Given this variability and tuning
cost, plain beam search with probability weighting is a reasonable default.

A.2 RESTRICTED-MASS NORMALIZATION

Equation (4) normalizes autoregressive sequence probabilities over the M beam candidates. This
choice can be sensitive to tail candidates whose probabilities are tiny and length-dependent. To test
robustness, we introduce a floor € on the per-candidate mass:

e = max (e, p(b® | x))

i M X .

Zj:l max(g p(b(J) | X))
The setting € = 0 recovers equation ({@); e = 1 yields uniform weights w} = 1/M. Intermediate €
values trade off fidelity to the model distribution against robustness to noisy, length-biased tails.

amn

We evaluate beam-guided probability-weighted methods for different € on a subset of 500 examples
from TriviaQA and CoQA with two base models, Gemma 3 4B base and Llama 3.1 8B base. Results
are summarized in Table[3

The results do not indicate a clear best choice of method and corresponding € parameter. Determin-
ing the optimal € is a case-dependent task.

Table 5: PRR (1 is better) under restricted-mass normalization ablation. Columns group
dataset—-model pairs with methods (Dissim, Ecc, EigVecDissim). Rows vary the mass floor € in
equation (I7): € = 0 recovers equation (@); ¢ = 1 yields uniform weights w; = 1/M. For each
dataset—method, the top-1 score is bold and the second-best is underlined.

Gemma 3 4B base Llama 3.1 8B base
TriviaQA CoQA TriviaQA CoQA
Dissim  Ecc El.g\{ec Dissim  Ecc E{g\{ec Dissim  Ecc Ellg\{ec Dissim  Ecc El.gYeC
Dissim Dissim Dissim Dissim
e=1.0 765 741 744 .536 487 461 .668 .596 .607 470 428 410
e=0.1 765 127 745 .556 497 483 .667 612 627 .502 447 446
e =0.05 764 720 744 561 490 487 .657 .606 .626 .509 435 451
e =0.01 166 718 749 559 478 489 .630 584 .602 496 437 452
e =0.001 71 731 751 562 484 488 .624 581 .598 .501 1438 453
e = 0.00001 771 732 51 .561 483 488 .623 581 .598 .502 438 454
e=0 771 132 151 561 483 488 .623 581 598 502 438 454

A.3 OTHER SAMPLING-BASED METHODS UNDER BEAM SEARCH

Beyond Dissimilarity, Eccentricity, and EigVecDissimilarity, this ablation evaluates two other
sampling-based methods under beam-generated candidates: Degree Matrix (Lin et al., [2024) and
Semantic Entropy (Kuhn et al., [2023). We also provide probability-weighted beam formulations
using the weights w; from equation ().

Degree Matrix. Given M multinomial samples {y")}M, Degree Matrix estimates the average
pairwise dissimilarity:

M M
Ubegnat(x) = WZZ@_S(Y@’Y@))- (18)
i=1 j=1

For beam candidates {b(")} . our mass-aware variant averages with weights:

M M
Ubegnrar(¥) = Y _w; ¥ _w;(1—s(b® b)), (19)
i=1  j=1
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Semantic Entropy. Multinomial samples are clustered into semantic equivalence classes C'. For
each class, we calculate its probability

M
1 ,
ple) = 7 ; 1{y® ec} forceC. (20)
Then Semantic Entropy calculates
USemEnt - |C| Z lng (2])

ceC

For beam candidates, use cluster masses aggregated by w;:

M
5 (c) = Zwi 1{b® € ¢}, USemEnt Zp )log p°(c). (22)

ceC

Note that these objectives score LLM uncertainty about the input x as they are independent of a
particular y.,.

The results are summarized in Table[6] Beam search yields significant gains for Semantic Entropy
and little to no improvement for Degree Matrix. Even with the beam-adapted formulations above,
both objectives show worse results in terms of absolute PR-AUC compared to other methods. The
primary reason is the target mismatch: as noted, these scores quantify uncertainty of the input x and
are independent of the produced answer y., whereas our main methods, Dissimilarity, Eccentricity
and EigVecDissimilarity, focuses on ranking the correctness of y, itself.

Table 6: PR-AUC (1 is better) on 6 datasets with Gemma 3 4B base. Each method is shown as a pair:
its multinomial-sampling variant and its beam-search variant; 1 denotes an improvement of the beam
variant over its multinomial counterpart. Along main methods, the table includes input-uncertainty
methods (Semantic Entropy, Lexical Similarity). For each dataset, the top-1 score is bold and the
second-best is underlined. The rightmost column reports the mean PR-AUC across datasets.

‘Web CoQA  HotpotQA Common ARC-

UQ Method TriviaQA Mean

Questions senceQA  Challenge
Semantic Entropy .622 .505 301 .140 407 431 401
Semantic Entropy + beamsearch 6851 6141 3651 2781 4361 4541 4721
Degree Matrix .682 .605 .385 311 409 419 469
Degree Matrix + beamsearch .673 6427 328 244 4441 A737 467
Dissimilarity 755 715 578 .626 .561 .545 .630
Dissimilarity + beamsearch 7661 7221 6007 611 59571 .6041 6507
Eccentricity 714 .653 459 453 .549 .549 .563
Eccentricity + beamsearch 7391 .633 5051 S141 5901 6367 6031
EigVecDissimilarity 738 .661 443 448 S12 562 561
EigVecDissimilarity + beamsearch 7531 6681 4971 4871 5621 6211 5981
CocoaMSP 738 .666 .509 430 .583 .595 587
CocoaMSP + beamsearch 7471 6797 5481 5231 5861 6067 6157
CocoaPPL 739 678 .548 .625 .580 .595 628
CocoaPPL + beamsearch 7481 .6941 ST11 6817 5821 6101 .6491

A.4 GRAPH LAPLACIAN EMBEDDING PARAMETERS

Both multinomial and beam-guided versions of Eccentricity and EigVecDissimilarity depend on the
threshold parameter o, which selects eigenvectors of the Graph Laplacian L = I — D~/21/ D~1/2
used to form semantic embeddings. Specifically, after computing the eigenpairs {\;, u; f\ifl, we
retain those with \; < ¢, yielding K eigenvectors in total and embeddings v; = [uy;, ugj, ..., uk;]
of dimension K. All eigenvalues lie in [0, 1]; smaller values capture stronger semantic structure,
whereas values closer to 1 tend to reflect noise (Lin et al.,[2024)). In the main experiments we follow

the original Eccentricity setting and use o = 0.9.
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Table 7: PRR (1 is better) for Eccentricity and EigVecDissimilarity under different Graph Laplacian
embedding choices on four dataset-model pairs. Top block varies the eigenvalue threshold « (re-
taining all \; < «); bottom block fixes the embedding dimension K. For each pair, the best score is
bold and the second-best is underlined.

Gemma 3 4B base Llama 3.1 8B base
TriviaQA CoQA TriviaQA CoQA
EigVec EigVec EigVec EigVec
Ece Dissim Ecc Dissim Ecc Dissim Ece Dissim
a=0.3 17 710 434 355 .601 599 408 364
a=0.5 752 740 497 460 627 .626 431 420
a=0.7 7150 7149 539 498 .622 .643 438 441
a=0.8 51 757 .508 475 616 .630 444 450

a=09 732 751 483 488 581 598 438 454
a=099 | 725 755 432 454 535 .561 397 409

=1 454 358 .346 332 444 357 304 .280
=2 510 532 .383 .361 474 469 318 338
.619 .639 434 429 538 534 351 348
.645 .643 418 412 519 514 359 352
.638 .655 .366 352 487 492 314 316
529 .545 244 .236 .363 .368 210 211
210 242 -.101 -.076 .050 .062 =208  -211
-265  -209 -210  -171 -358  -349 | -327  -308
-566  -414 | -268  -.186 | -462 -410 | -339  -317
0 -.659  -484 | -283  -.189 | -467 -397 | -330 -.249

= © 00~ O Utk

FRRRRRRARR

Here we vary « and also test a fixed-K strategy (i.e., keeping exactly K leading low-spectrum
eigenvectors irrespective of the threshold).

Table [/| reports the performance for Eccentricity and EigVecDissimilarity across o and K on four
dataset—model pairs. A fixed embedding size performs poorly: the optimal number of informative
directions varies between candidate sets, so fixing K either underfits or includes noisy directions.
Thresholding is more robust: « € [0.7,0.9] consistently yields strong results across methods and
pairs, supporting our default choice o = 0.9.

A.5 CROSS-ENCODER SIMILARITY

In the main text, we instantiate the similarity function s using an NLI score: the entailment proba-
bility from a DeBERTa model. CoCoA, however, originally used a RoBERTa-large cross-encoder
fine-tuned on the Semantic Textual Similarity benchmark (Liu et al.l |2019). Table E] reports PRR
for Gemma 3 4B base when replacing the NLI-based s with this cross-encoder; all other settings are
unchanged.

Table 8: PRR (1 is better) on 6 datasets with Gemma 3 4B base using a RoBERTa-large cross-
encoder (STS) as the similarity function s in place of NLI. For each dataset, the top-1 is bold
and the second-best is underlined; 1 marks an improvement of a beam variant over its multinomial
counterpart.

.. Web Common ARC-
UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge Mean
Dissimilarity 725 .683 497 597 481 421 567
Dissimilarity + beamsearch 74671 6931 S131 6541 5051 4797 59871
Eccentricity 722 .647 489 544 455 .500 .560
Eccentricity + beamsearch 7341 6471 483 6041 362 421 542
EigVecDissimilarity 737 .649 453 523 489 529 .563
EigVecDissimilarity + beamsearch 7447 6757 48471 5821 439 496 5701
CocoaMSP 731 .642 438 .397 .553 577 556
CocoaMSP + beamsearch 7401 6481 4621 4791 5581 5931 5801
CocoaPPL 728 .653 488 .607 .546 567 .598
CocoaPPL + beamsearch 7371 6581 4981 L6501 5481 58671 6131
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B ANALYSIS AND EXAMPLES

B.1 PROBABILITY MASS COVERAGE

Mass Coverage by Length Beam search probabilities per sample
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Figure 7: Left: average probability mass covered by the candidate set (A/=10) across output-length
bins (averaged over examples in the bin) on TriviaQA with Gemma 3 4B base. Right: for beam
search, distribution of sequence probabilities p(b(*) | x) by beam rank i (1 = highest-probability
text).

Figure[7]summarizes two observations. First (left), beam search covers a larger share of the model’s
probability mass than multinomial sampling across length bins. Second (right), beam probabilities
decay sharply with rank: the first few beams capture most of the mass, while lower-ranked beams
contribute little. This motivates mass-aware weighting w; (equation (@) and helps explain why
probability-weighted beam variants are effective, especially at small candidate budgets.

B.2 EXAMPLES

We include qualitative examples for Gemma 3 4B base: two from TriviaQA, two from WebQues-
tions, and one from CoQA. Each panel shows the question, the greedy answer, ten multinomial
samples, and ten beam-search samples with autoregressive probabilities, together with the corre-
sponding uncertainty scores (e.g., Dissimilarity and its beam-guided variant). The cases illustrate
how beam search reduces duplication and enhances uncertainty.

Question: What claimed the life of singer Question: Which number Beethoven sym-
Kathleen Ferrier? phony is known as ‘The Pastoral’?
Greedy: breasts cancer Greedy: 6

Multinomial Beam-search Multinomial Beam-search

samples samples samples samples

cancer cancer p=0.228 Six sixth p=0.314
breast cancer tuberculosis p=0.154 seventh 6 p=0.169
pulmonary breast cancer p=0.089 sixth 6th p=0.104
breast cancer lung cancer p=0.041 sixth ninth p=0.061
cancer pneumonia p=0.039 sixth seventh p=0.037
breast cancer leukaemia p=0.034 6 9 p=0.027
myx myel p=0.023 seventh six p=0.023
cancer leuk p=0.011 no 9th p=0.021
cancer pulmonary p=0.011 sixteenth no. p=0.013
pneumonia lymphoma p=0.010 n6 7 p=0.008

Dissimilarity: 0.330

Dissimilarity: 0.634

Dissimilarity + beamsearch: 0.533 Dissimilarity + beamsearch: 0.561

Figure 8: Two examples from Gemma 3 4B base on TriviaQA. Each panel shows the question,
greedy answer, multinomial and beam-search samples with autoregressive probabilities, plus dis-
similarity and beamsearch-guided dissimilarity.
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Question: who plays charlie in the santa clause
movies?
Greedy: Tim Allen

Question: what currency does cyprus use?
Greedy: Cyprus pound

Multinomial Beam-search Multinomial Beam-search
samples samples samples samples
Euro Euro p=0.439 Tim Allen Tim Allen p=0.318
Euro euro p=0.201 Tim Allen Jeff Daniels p=0.017
Euro Cyprus pound p=0.091 Scott Calvin Timothy Oly p=0.012
Euro Cypriot p=0.072 Tim Allen Ed Asner p=0.010
euro Cyprus Pound p=0.016 Tim Allen Scott Calvin p=0.008
euro Euros p=0.014 Edward Arnold Edward Asner p=0.008
euro EURO p=0.007 Tim Allen Tony Cox p=0.007
euros euros p=0.007 Jeremy nault Tim Allen p=0.007
Euro cyprus p=0.007 Tim Allen Tim allen p=0.005
Euro Cyprus p=0.006 Tim Allen Eric Lloyd p=0.004

Dissimilarity: 0.976
Dissimilarity + beamsearch: 0.800

Dissimilarity: 0.427
Dissimilarity + beamsearch: 0.313

Figure 9: Two examples from Gemma 3 4B base on WebQ. Each panel shows the question, greedy
answer, multinomial and beam-search samples with autoregressive probabilities, plus dissimilarity
and beamsearch-guided dissimilarity.

Story: A couple of weeks ago, my 12-year-old daughter, Ella threatened to take my phone and break
it. ”At night you’ll always have your phone out and break you’ll just type,” Ella says. ”I'm ready to go
to bed, and try to get you to read stories for me and you’re just standing there reading your texts and
texting other people,” she adds. I came to realize that I was ignoring her as a father...

Question: She mentions a lot of grown ups don’t make what in their lifetime?
Greedy: Limits.

Multinomial Beam-search
samples samples
Boundaries. Boundaries. p=0.185
Set limits. Limits. p=0.079
Boundaries. They don’t p=0.040
limits. Rules. p=0.032
Boundaries in their Boundaries. p=0.029
Charging station. Boundaries. p=0.028
Similar limitations. A charging station. p=0.016
Boundaries. Boundaries that protect p=0.010
Boundaries. Limits in their own p=0.007
Set up similar limits Boundaries p=0.007

Dissimilarity: 0.310
Dissimilarity + beamsearch: 0.190

Figure 10: One example from Gemma 3 4B base on CoQA. Shown are the question, greedy an-
swer, multinomial and beam-search samples with autoregressive probabilities, plus dissimilarity
and beamsearch-guided dissimilarity.
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C DATASETS

Table [9] lists the prompts used to form inputs for each dataset (separately for base and instruct
models). Table[I0|reports mean accuracy for each model-dataset pair. We measure accuracy as the
fraction of predictions whose AlignScore with the gold answer exceeds 0.5.

Table 9: Prompt templates used for each dataset and model type. Few-shot exemplars are shown as
placeholders (e.g., <5 few-shot QA pairs>); run-time inputs are denoted by <question>,

<context>, <title 1>,etc.

Dataset | Base Prompt | Instruct Prompt
TThdaCLA <5 few-shot QA pairs> Answer the following question as briefly as possible.
Question: <question> <5 few-shot QA pairs>
Answer: Now answer the following question:
Question: <question>
Answer:
‘Web <5 few-shot QA pairs> Below are questions with short factual answers.
(Quesﬁons Question: <question> Return only the short answer (a name, phrase, number,
Answer: or year) .
<5 few-shot QA pairs>
Now answer this.
Q: <guestion>
A
CO(}A Story: <context> Story: <context>
<all preceding QA pairs> <all preceding QA pairs>
Question: <question> Answer the following question as briefly as possible.
Answer: Question: <question>
Answer:
}lotpoﬂQ/\ Title: <title 1> Instruction: Read the context and answer with a
<paragraph 1> short factual span (a few words) copied from the
Title: <title 2> context. Reply with the short answer only.
<paragraph 2> Title: <title 1>
Question: <question> <Paraqraphll>
Short answer: Title: <title 2>
<paragraph 2>
Question: <question>
Short answer:
Common <2 few-shot QA pairs> Instruction: Choose the single best answer from the
sence(LA Question: <question> options. Answer with the option text only (not the
Options: <(A) - (D) letter) .
options> <2 few-shot QA pairs>
Answer: Now answer this.
Question: <question>
Options:
<(A) - (D) options>
Answer:
ARC- <2 few-shot QA pairs> Instruction: Choose the single best answer from the
Chaﬂenge Question: <question> options. Answer with the option text only (not the
Options: letter) .
<(A) - (D) options> <2 few-shot QA pairs>
Answer: Now answer this.
Question: <question>
Options:
<(A) - (D) options>
Answer:

Table 10: Mean accuracy (%): proportion of predictions with AlignScore to the gold answer > 0.5.

Closed-Book QA Open-Book QA Multiple Choice
.. ‘Web Common ARC-
TriviaQA Questions CoQA  HotpotQA senceQA  Challenge

Llama 3.1 8B base 63% 47% 74% 53% 74% 72%
Llama 3.1 8B instruct 69% 40% 80% 72% 77% 76%
Gemma 3 4B base 47% 33% 69% 41% 65% 70%
Gemma 3 4B instruct 51% 35% 76% 66% 76% 77%
Qwen 3 8B base 52% 48% 81% 47% 89% 91%
Qwen 3 8B instruct 54% 42% 76% 76% 84% 88%
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D ADDITIONAL RESULTS

D.1 ScCORING TOP-BEAM OUTPUT

In the main text we score the greedy decode as the produced answer y.. Table [IT] complements
these results by scoring the top-1 beam as y ., a natural choice when beam search is already used to
obtain a higher-quality decode. The beam-weighted family of approaches achieves higher PRR than
the original methods and baselines in the majority of cases.

Table 11: PRR (1 is better) averaged over 6 datasets, when scoring the top-1 beam produced answer
(instead of greedy). For each dataset, the top-1 score is bold and the second-best is underlined. For
beam-guided variants, we mark 1 when the variant improves over its original multinomial-sampling
counterpart.

Llama 3.1 8B Gemma 3 4B Qwen 3 8B
UQ Method base  instruct | base instruct | base instruct
Baseline UQ methods
Prob .399 174 400 213 .390 .090
MTE .320 .164 317 228 334 255
Perplexity .376 121 .359 185 318 .009
CCP .395 155 .369 243 .352 226
SAR 333 221 336 .348 342 .246
P(True) .019 -.075 .031 .090 .012 -.080
SemanticEntropy 345 .286 397 .320 299 .250
LexicalSimilarity 377 221 .384 291 404 210
EigValLaplacian .366 209 402 .307 384 223
NumSemSets 349 215 365 262 344 208
Consistency-based UQ: multinomial vs. beamsearch versions
Dissimilarity 437 .229 424 333 446 272
Dissimilarity + beamsearch 4551 2661 | 4667 .3901 440 3467
Eccentricity 405 238 395 310 375 .208
Eccentricity + beamsearch 4441 3011 4501 3481 .3801 3081
EigVecDissimilarity 402 243 412 316 403 213
EigVecDissimilarity + beamsearch | .4467  .3167 4571 3667 4151 3341
CocoaMSP 447 284 450 .347 454 272
CocoaMSP + beamsearch A717 2901 4781 4071 4591 3451
CocoaPPL 440 251 433 .340 422 261
CocoaPPL + beamsearch 4501 2731 4441 3951 410 3181

D.2 ROC-AUC AND PR-AUC

In the main text we report PRR. Tables [I2] and [I3] complements these results with ROC-AUC and
PR-AUC on Gemma 3 4B base. We binarize by marking an answer as correct if its AlignScore to
the gold answer exceeds 0.5, and incorrect otherwise (the positive class for PR-AUC is the incorrect
label). The pattern mirrors PRR: beam-guided variants generally match or outperform multinomial
sampling.

D.3 DETAILED RESULTS FOR EACH DATASET
Complementing the main-table results in Table [3] Tables [I4HI9] report PRR for six datasets sep-

arately for Gemma 3 4B base, Gemma 3 4B instruct, Llama 3.1 8B base, Llama 3.1 8B instruct,
Qwen 3 8B base, and Qwen 3 8B instruct.
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Table 12: ROC-AUCT for 6 datasets with Gemma 3 4B base. For each dataset, the top-1 method is
bold and the second-best is underlined. Beam-guided and probability-weighted variants are marked
with 1T when they improve over their multinomial-sampling baseline. The two rightmost columns
report the mean ROC-AUC across datasets.

Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge Mean
Baseline UQ methods
Prob .863 768 .698 .632 796 821 763
MTE .867 793 710 721 737 753 763
Perplexity .863 785 729 735 796 .820 788
CCp .881 181 .698 .660 775 793 164
SAR .867 776 701 713 .653 .696 748
P(True) .642 473 524 513 571 .545 .545
SemanticEntropy .849 758 .690 591 755 774 736
LexicalSimilarity .842 766 713 .656 739 756 745
EigValLaplacian .867 766 701 .633 739 775 147
NumSemSets .856 754 .653 .639 702 157 127
Consistency-based UQ: multinomial vs. beamsearch versions
Dissimilarity 916 .836 .822 .809 817 818 .836
Dissimilarity + beamsearch 9231 8521 8261 8141 8311 8411 8481
Eccentricity .897 .808 768 737 .809 .821 .806
Eccentricity + beamsearch 9117 8167 7907 711 8331 8591 8307
EigVecDissimilarity 902 813 761 728 798 825 .805
EigVecDissimilarity + beamsearch 9207 8271 87T 7631 8201 .8567 82971
CocoaMSP 904 .823 791 726 .826 .839 818
CocoaMSP + beamsearch 9101 8367 8111 7791 8271 8471 8351
CocoaPPL 907 .832 .810 799 .825 .837 .835
CocoaPPL + beamsearch 9121 .8451 .8231 8281 8251 .8441 .8461

Table 13: PR-AUCT for 6 datasets with Gemma 3 4B base. For each dataset, the top-1 method is
bold and the second-best is underlined. Beam-guided and probability-weighted variants are marked
with 1 when they improve over their multinomial-sampling baseline. The two rightmost columns
report the mean PR-AUC across datasets.

Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge Mean
Baseline UQ methods
Prob .855 .838 AT .678 .623 .628 .683
MTE .875 .874 .545 799 .558 .540 .699
Perplexity .860 .861 .539 814 .629 .632 122
CCP .866 .853 AT5 715 .676 .641 704
SAR .865 .861 484 753 437 422 .646
P(True) 657 .662 326 .634 410 355 .507
SemanticEntropy .838 .823 456 .649 572 S11 .642
LexicalSimilarity .833 .848 514 11 .545 .509 .660
EigValLaplacian .865 .855 481 .682 .565 532 .663
NumSemSets .841 .825 427 .685 .508 497 .631
Consistency-based UQ: multinomial vs. beamsearch versions
Dissimilarity 911 904 715 .838 722 .648 789
Dissimilarity + beamsearch 9191 9151 .660 .822 T547 .6931 79471
Eccentricity .888 .887 561 758 .685 .625 734
Eccentricity + beamsearch 9061 .884 5761 7891 7441 TJ171 7691
EigVecDissimilarity 902 .889 573 766 677 .651 743
EigVecDissimilarity + beamsearch 9167 9007 58871 78471 NAVAN .6891 7667
CocoaMSP .897 .894 .605 761 11 .680 758
CocoaMSP + beamsearch 9071 9041 .6321 8017 7157 6911 7751
CocoaPPL 902 902 672 .861 712 .686 789
CocoaPPL + beamsearch 9097 9107 .6907 8811 7181 6957 8011
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Table 14: PRR (1 is better) for 6 datasets with Gemma 3 4B base. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with T when they improve over their multinomial-sampling baseline.

.. Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge
Baseline UQ methods
Prob .659 521 312 274 S11 .548
MTE .670 .583 363 494 364 .381
Perplexity .647 .553 369 527 .503 547
CCp .686 .569 .326 337 .506 527
SAR .656 571 347 296 183 264
P(True) 272 -.004 .031 075 .090 .090
SemanticEntropy .622 .505 301 .140 407 431
Lexical Similarity .602 .540 .349 .286 .386 392
EigValLaplacian .666 .555 .320 246 .386 452
NumSemSets .656 .538 257 268 .338 A54
Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity 755 715 .578 .626 561 .545
Dissimilarity + beamsearch 7661 7221 6007 611 5951 .6041
Eccentricity 714 .653 459 453 549 .549
Eccentricity + beamsearch 7391 .633 5051 51471 5901 6367
EigVecDissimilarity 7138 .661 443 448 512 .562
EigVecDissimilarity + beamsearch 71531 6687 4971 4871 5621 6217
CocoaMSP 738 .666 .509 430 .583 .595
CocoaMSP + beamsearch 1471 6797 5481 5231 58671 .6067
CocoaPPL 739 .678 .548 .625 .580 .595
CocoaPPL + beamsearch 1481 .6941 ST71 6811 5821 6101

Table 15: PRR (1 is better) for 6 datasets with Gemma 3 4B instruct. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with 1 when they improve over their multinomial-sampling baseline.

.. Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge
Baseline UQ methods
Prob 442 425 162 220 254 252
MTE 534 465 161 232 253 256
Perplexity 422 419 157 223 252 .256
CCp 533 478 117 303 264 290
SAR 533 426 176 214 .033 .050
P(True) -.076 -.155 -.161 -.090 -.046 -.047
SemanticEntropy 449 415 .166 223 254 252
Lexical Similarity 527 427 176 127 .052 172
EigValLaplacian 578 472 190 134 .014 .010
NumSemSets .556 442 123 .106 .046 153
Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .549 415 11 .068 .024 .070
Dissimilarity + beamsearch 413 321 2041 2731 2181 0857
Eccentricity .540 429 167 175 -.020 .094
Eccentricity + beamsearch 441 .367 2351 3141 2461 1081
EigVecDissimilarity 561 437 .169 173 -.017 .095
EigVecDissimilarity + beamsearch 478 416 24071 3081 2531 1137
CocoaMSP 531 456 183 .198 252 266
CocoaMSP + beamsearch 5351 4731 2371 2871 28271 258
CocoaPPL 523 454 174 201 247 271
CocoaPPL + beamsearch 522 4671 2229 2857 2771 264
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Table 16: PRR (1 is better) for 6 datasets with Llama 3.1 8B base. For each dataset, the top-1

method is bold and the second-best is underlined. Beam-guided and probability-weighted variants

are marked with T when they improve over their multinomial-sampling baseline.

.. Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge
Baseline UQ methods
Prob 517 414 310 213 .504 .505
MTE 544 420 .286 327 448 S11
Perplexity .507 441 316 375 .501 .570
CCP 575 420 276 247 442 446
SAR .548 452 331 263 .189 .330
P(True) -.055 .059 -.020 -.223 .034 292
SemanticEntropy .538 409 .330 199 492 514
Lexical Similarity 467 .396 .366 .289 437 S11
EigValLaplacian .569 418 377 247 .449 499
NumSemSets .550 409 319 241 378 A7
Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .576 445 473 446 449 .640
Dissimilarity + beamsearch 6541 5041 4851 424 5107 6831
Eccentricity .555 404 405 297 464 591
Eccentricity + beamsearch 6137 4581 4291 3617 S121 6571
EigVecDissimilarity 570 452 409 .289 469 .587
EigVecDissimilarity + beamsearch 63071 4921 4271 3571 5067 .6507
CocoaMSP 595 458 463 .366 510 .641
CocoaMSP + beamsearch 6311 4871 4651 3721 5321 .639
CocoaPPL 587 464 464 465 501 .660
CocoaPPL + beamsearch 6167 4981 459 456 5251 6611

Table 17: PRR (7 is better) for 6 datasets with Llama 3.1 8B instruct. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with 1 when they improve over their multinomial-sampling baseline.

.. Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge
Baseline UQ methods
Prob 524 357 327 213 283 363
MTE .604 424 .307 253 .260 .339
Perplexity 498 367 262 221 255 332
CCP 576 406 291 265 .248 402
SAR .599 420 338 236 301 418
P(True) 236 .012 .018 .045 -.011 135
SemanticEntropy .591 .381 335 231 .301 418
Lexical Similarity .566 .395 .347 232 275 .380
EigValLaplacian .615 .389 .355 .238 252 377
NumSemSets .569 .363 228 180 .208 .368
Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .616 .382 .349 270 277 .378
Dissimilarity + beamsearch 6621 A111 3581 3491 2881 4341
Eccentricity .598 .379 319 248 273 .389
Eccentricity + beamsearch .6207 3967 3301 28171 3067 A517
EigVecDissimilarity 611 378 325 249 264 .390
EigVecDissimilarity + beamsearch 6401 4251 3471 2011 3187 4611
CocoaMSP .629 409 .366 278 314 426
CocoaMSP + beamsearch 6657 42871 3781 34471 302 4391
CocoaPPL .626 410 354 278 .299 413
CocoaPPL + beamsearch 6531 4271 3561 33471 285 4191
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Table 18: PRR (7 is better) for 6 datasets with Qwen 3 8B base. For each dataset, the top-1 method is
bold and the second-best is underlined. Beam-guided and probability-weighted variants are marked
with 7 when they improve over their multinomial-sampling baseline.

Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge
Baseline UQ methods
Prob .617 449 267 11 337 475
MTE .602 409 267 279 443 444
Perplexity 597 426 278 256 294 381
CCP .640 406 213 153 .296 421
SAR 617 457 323 243 220 317
P(True) 322 282 .005 .168 -.043 -.074
Semantic Entropy .549 411 247 173 230 .305
Lexical Similarity 595 430 338 310 .367 .508
EigValLaplacian .602 423 301 284 349 475
NumSemSets 593 403 268 250 311 367
Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .668 462 406 531 315 476
Dissimilarity + beamsearch 6801 48471 4091 .504 3351 457
Eccentricity 615 416 .320 319 266 440
Eccentricity + beamsearch 6407 4371 3681 4071 243 .366
EigVecDissimilarity .628 454 325 314 373 456
EigVecDissimilarity + beamsearch .6607 4607 3807 3941 353 453
CocoaMSP .667 492 .385 .320 378 523
CocoaMSP + beamsearch 6781 4981 3911 3781 3851 510
CocoaPPL .665 478 .388 397 353 A84
CocoaPPL + beamsearch 6671 48671 .387 4371 .339 450

Table 19: PRR (7 is better) for 6 datasets with Qwen 3 8B instruct. For each dataset, the top-1
method is bold and the second-best is underlined. Beam-guided and probability-weighted variants
are marked with 1 when they improve over their multinomial-sampling baseline.

Web Common ARC-

UQ Method TriviaQA Questions CoQA  HotpotQA senceQA  Challenge
Baseline UQ methods
Prob 564 353 215 250 174 181
MTE 564 345 .164 251 183 272
Perplexity 491 341 169 .250 175 229
CCp .563 383 .169 258 173 202
SAR .590 425 146 159 201 233
P(True) -.105 =222 -.126 .018 -.083 -.164
Semantic Entropy .597 404 214 231 174 176
Lexical Similarity .530 425 193 .101 121 .053
EigValLaplacian .626 417 .196 .083 134 134
NumSemSets .608 437 .110 .096 113 154
Consistency-based UQ: multinomial vs. beamsearch versions

Dissimilarity .588 382 .165 187 246 394
Dissimilarity + beamsearch 6371 3867 2697 2641 213 362
Eccentricity .565 .367 167 125 150 132
Eccentricity + beamsearch .6007 3921 2881 29171 21171 2857
EigVecDissimilarity .590 .385 .169 121 .143 131
EigVecDissimilarity + beamsearch 6451 4391 3281 2971 2421 3061
CocoaMSP .607 394 204 272 .230 298
CocoaMSP + beamsearch 6357 4041 2631 28271 206 .290
CocoaPPL 581 .389 179 272 232 .309
CocoaPPL + beamsearch 6091 3951 2331 28271 207 299
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E DETAILED DESCRIPTION OF UNCERTAINTY QUANTIFICATION METHODS

In this section, we describe the uncertainty quantification methods used in our experiments.

Sequence Probability (Prob) is the most straightforward approach to uncertainty quantification.
We define it formally as the negative log-probability of the generating sequence:

Usp(y | x) = —log P(y | x). (23)

Mean Token Entropy (MTE) measures an average entropy of tokens in a sequence:

L

1
UMTE(Y | X) = i3 ZH(yz | Y<17X)> 24
=1

where H(y | y<i,x) ==, Plu=v|y<;,x)log P(y; = v | y<i,%).

Perplexity computes negative average log-likelihood of tokens in a sequence:

1
UppL(y | x) = 7 log P(y | %), (25)

Claim Conditioned Probability (CCP), introduced in |Fadeeva et al.| (2024), measures uncertainty
on a claim level by perturbing claim’s tokens with alternative generations:

Uccr(C' | x) = 1= [ ] CCP(y; | y<;, %) 26)
jeC
2k NLI(y% g )= e’ P(y¥ly<;x)
Where CCP(y; | y<;,x) = > NUGE e (el ey P(yFly<; %)

Shifting Attention to Relevance (SAR) is a method combining TokenSAR and SentenceSAR, as
introduced by Duan et al.| (2024). SentenceSAR is defined as follows:

. 1 .
USentSAR = 35 Z log( @ | X) + ;RS (y(T)a X)) ’ (27)

Here, Rs(y"),x) = 32, s(y"),y®)p(y™ | x). To obtain SAR score, the generative proba-

bility p(y | x) is replaced with relevance-reweighted probability on a sequence level. TokenSAR is
defined as:

UtokensAR (X (Y, y,x)log P(y1 | y<i,%), (28)

th

where Rr(-) denotes some token relevance function and relevance weight for token y; is given by

M
RT(yk7y3 ) Zl 1 Br(yi,y,x) -~

P(True), introduced in | Kadavath et al.| (2022), evaluates the confidence in a generation by asking
the model the original question and answer, then asking if it is true or false. We then use the negative
log-probability of the token “True” as an uncertainty score.

Semantic Entropy, introduced in Kuhn et al.| (2023), clusters M sampled generations into K clus-
ters of semantically equivalent responses. The entropy is then computed over these meaning clusters:

K
Use) = = St iog pu ). (29)
k=1
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Lexical Similarity, introduced in [Fomicheva et al.| (2020), measures average pairwise similarity
between M sampled generations using some similarity function s(y, y’):

9 L
ULSRL(X) =1- m Z S(y(l),y(J)). 30)

1<J

Number of Semantic Sets, introduced in Lin et al.|(2024), estimates how many distinct meanings
the model produces by clustering its outputs with an NLI model. Two answers are placed in the
same cluster if they mutually entail each other more than they contradict and the final number of
distinct clusters serves as an uncertainty score UnumsemSets-

Sum of Eigenvalues of Laplacian, introduced in |Lin et al.| (2024), constructs a similarity matrix
among the sampled outputs and computes a uncertainty score from the eigenvalues of the Laplacian
of that similarity matrix:

M
Ugigv (x) = Z:max(()7 1—X(x)). 31)
i=1
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F COMPUTATIONAL BUDGET

All experiments were run on 2xNVIDIA A100 (80 GB). Evaluating a single model across all six
datasets took approximately 2 wall-clock days on this setup (4 GPU-days); with six models, this
amounts to 12 wall-clock days (24 GPU-days). Additional ablations (sampling strategies, top-1
beam scoring, and other objectives) required a further 5 wall-clock days on the same hardware (10
GPU-days). In total, the study used about 34 GPU-days.

G THE USAGE OF LLMS

In this study, large language models are examined primarily as the focus of analysis. For practical
tasks such as programming and writing, we also make limited use of LLM-based assistants (e.g.,
ChatGPT) to support grammar correction and code debugging, with all usage carefully monitored
by humans.
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