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Abstract

Finding Nash equilibria in two-player differentiable games is a classical problem in game
theory with important relevance in machine learning. We propose double Follow-the-Ridge
(double-FTR), an algorithm that locally converges to and only to differential Nash equilibria
in general-sum two-player differentiable games. To our knowledge, double-FTR is the first
algorithm with such guarantees for general-sum games. Furthermore, we show that by
varying its preconditioner, double-FTR leads to a broader family of algorithms with the same
convergence guarantee. In addition, double-FTR avoids oscillation near equilibria due to the
real-eigenvalues of its Jacobian at fixed points. Empirically, we validate the double-FTR
algorithm on a range of simple zero-sum and general sum games, as well as simple Generative
Adversarial Network (GAN) tasks.

1 Introduction

Much of the recent success in deep learning can be attributed to the effectiveness of gradient-based optimization.
It is well-known that for a minimization problem, with appropriate choice of learning rates, gradient descent
enjoys convergence guarantee to local minima (Lee et al., 2016; 2019). Based on this foundational result,
an array of accelerated and higher-order methods have since been proposed and widely applied in training
neural networks (Duchi et al., 2011; Kingma & Ba, 2014; Reddi et al., 2018; Zhang et al., 2019b).

However, once we leave the realm of minimization problems and consider the multi-agent setting, the
optimization landscape becomes much more complicated. Multi-agent optimization problems arise in diverse
fields such as robotics, economics and machine learning (Foerster et al., 2016; Von Neumann & Morgenstern,
2007; Goodfellow et al., 2014; Ben-Tal & Nemirovski, 2002; Gemp et al., 2020; Anil et al., 2021).

A classical abstraction that is especially relevant for machine learning is two-player differentiable games,
where the objective is to find global or local Nash equilibria. The equivalent of gradient descent in such a
game would be each agent applying gradient descent to minimize their own objective function. However, in
stark contrast with gradient descent in solving minimization problems, this gradient-descent-style algorithm
may converge to spurious critical points that are not Nash equilibria, and in the general-sum game case, Nash
equilibria might not even be stable critical points for this algorithm (Mazumdar et al., 2020b)!

These negative results have driven a surge of recent interest in developing other gradient-based algorithms for
finding Nash equilibria in differentiable games. Among them is Mazumdar et al. (2019), who proposed an
update algorithm whose attracting critical points are only local Nash equilibria in the special case of zero-sum
games. However, to the best of our knowledge, such guarantees have not been extended to general-sum games.
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We propose double Follow-the-Ridge (double-FTR), a gradient-based algorithm for general-sum differentiable
games that locally converges to and only to differential Nash equilibria.1 Double-FTR is closely related to
the Follow-the-Ridge (FTR) algorithm for Stackelberg games (Wang et al., 2019), which converges to and
only to local Stackelberg equilibria (Fiez et al., 2019). Double-FTR can be viewed as its counterpart for
simultaneous games, where each player adopts the “follower” strategy in FTR.

The rest of this paper is organized as follows. In Section 2, we give background on two-player differentiable
games and equilibrium concepts. We also explain the issues with using gradient-descent-style algorithms
on such games. In Section 3, we present the double-FTR algorithm and prove its local convergence to and
only to differential Nash equilibria. We also identify a more general class of algorithms that share these
properties. We discuss recent works directly relevant to double-FTR in Section 4 and other related work in
Section 5. In Section 6, we show empirical evidence of double-FTR’s convergence to and only to differential
Nash equilibria.

2 Background

2.1 Two-player differentiable games and equilibrium concepts

In a general-sum two-player differentiable game, player 1 aims to minimize f : Rn+m → R with respect
to x ∈ Rn, whereas player 2 aims to maximize g : Rn+m → R with respect to y ∈ Rm. Following the
notation in Mazumdar et al. (2019), we denote such a game as {(f,−g),Rn+m}. We also make the following
assumption on the twice-differentiability of f and g.
Assumption 1. ∀ x ∈ Rn,y ∈ Rm, f and g are twice-differentiable, and the second derivatives are continuous.
Also, ∇2

xxf and ∇2
yyg are invertible.

For two rational, non-cooperative players, their optimal outcome is to achieve a local Nash equilibrium (Ratliff
et al., 2013).2

Definition 2.1 (Local Nash equilibrium). A point (x∗,y∗) is a local Nash equilibrium of {(f,−g),Rn+m} if
there exists open sets Sx ⊂ Rn, Sy ⊂ Rm such that x∗ ∈ Sx, y∗ ∈ Sy, and

f(x∗,y∗) ≤ f(x,y∗), g(x∗,y∗) ≥ g(x∗,y), ∀x ∈ Sx, ∀y ∈ Sy.

For twice-differentiable f and g, a local Nash equilibrium at (x∗,y∗) implies (Ratliff et al., 2013, Proposition 2):

(First-order condition) ∇xf(x∗,y∗) = 0 and ∇yg(x∗,y∗) = 0,
(Second-order necessary condition) ∇2

xxf(x∗,y∗) � 0 and ∇2
yyg(x∗,y∗) � 0.

A closely related notion of equilibrium is the differential Nash equilibrium (DNE) (Ratliff et al., 2013), which
satisfies a second-order sufficient condition for local Nash equilibrium.
Definition 2.2 (Differential Nash equilibrium). (x∗,y∗) is a differential Nash equilibrium of {(f,−g),Rn+m}
if the following two conditions hold:

• ∇xf(x∗,y∗) = 0 and ∇yg(x∗,y∗) = 0,

• ∇2
xxf(x∗,y∗) � 0 and ∇2

yyg(x∗,y∗) ≺ 0.

The conditions of DNE are slightly stronger than that of local Nash equilibria in that the second-order
conditions are definite instead of semi-definite. In this paper, we focus on DNE, as they make up almost
all local Nash equilibria in the mathematical sense, and are well-suited for the analysis of second-order
algorithms.

1Slightly stronger than the local Nash equilibria, discussed in Section 2.1
2Note that local Nash equilibrium is not guaranteed to exist in nonconvex-nonconcave games ((Jin et al., 2020), Proposition

6), although the (non-)existence of local NE is out of the scope of this paper.
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Discussion on Assumption 1 We assume twice-differentiability of f and g since we are concerned with
finding DNE. As for the assumption that ∇2

xxf and ∇2
yyg are invertible, we need it for deriving our main

algorithm in its original form. However, as discussed in Section 3.2, with a practical implementation of our
main algorithm, the assumption on invertibility can be relaxed.

2.2 Issues with gradient-based algorithms

A natural strategy for agents to search for DNE in a differentiable game is to use gradient-based algorithms.
The simplest gradient-based algorithm is the gradient descent-ascent (GDA) (Ryu & Boyd, 2016; Zhang
et al., 2021b) (Algorithm 1) or its variants (Zhang et al., 2021a; Korpelevich, 1976; Mokhtari et al., 2020).

Algorithm 1 Gradient descent-ascent (GDA)
Require: Number of iterations T , learning rate γ

1: for t = 1, . . . , T do
2: xt+1 = xt − γ∇xf(xt,yt)
3: yt+1 = yt + γ∇yg(xt,yt)
4: end for

Let z =
[
x
y

]
and γ > 0 be the learning rate, a gradient-based update algorithm can be written as:

zt+1 = zt − γω(zt). (1)

The Jacobian of ω(z) is defined as J(z) := ∂ω(z)
∂z . In the case of GDA, we have:

ωGDA(z) =
[
∇xf(x,y)
−∇yg(x,y)

]
, JGDA =

[
∇2

xxf ∇2
xyf

−∇2
yxg −∇2

yyg

]
.

Using the Jacobian matrix, we characterize the stability around fixed points of equation 1.
Definition 2.3 ((Strictly) stable fixed point). z∗ is a stable fixed point of the discrete-time dynamical
system in equation 1 if

ω(z∗) = 0 and ρ(I − γJ(z∗)) ≤ 1,

where ρ(·) denotes the spectral radius of a matrix. If we additionally have ρ(I − γJ(z∗)) < 1, then z∗ is a
strictly stable fixed point.

Strictly stable fixed points are important for analysis, as they are locally asymptotically convergent (Galor,
2007), i.e. there exists an open set Sz such that z∗ ∈ Sz and limt→∞ zt = z∗ ∀z0 ∈ Sz.

A closely related concept is the locally asymptotically stable equilibrium (LASE) for the continuous-time
system ż = −ω(z). (Ratliff et al., 2013).
Definition 2.4 (Locally asymptotically stable equilibrium (LASE)). z∗ is a locally asymptotically stable
equilibrium of the continuous-time dynamics ż = −ω(z) if

ω(z∗) = 0 and Re(λ) > 0 for ∀λ ∈ spec(J(z∗)),

where Re(·) denotes the real part of a complex number, and spec(·) returns the spectrum (i.e. the set of
eigenvalues) of a matrix.

Note that in the limit γ → 0, strictly stable fixed points of GDA are equivalent to LASE of ż = −ωGDA(z).
In this paper, we prove convergence results in discrete-time (using Definition 2.3), but we often provide
intuition using continuous-time concepts such as LASE.

Unfortunately, GDA is not guaranteed to converge to DNE, nor are DNE necessarily (strictly) stable fixed
points of the GDA dynamics. The relationship between the LASE of ż = −ωGDA(z) and DNE is shown in
the Venn diagrams in Figure 1. Below, we give a few examples to help build intuition.
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(a) General-sum (b) Zero-sum

Figure 1: Venn diagrams showing the relationship between the set of locally asymptotically stable equilibria (LASE)
of the GDA flow and the set of differential Nash equilibria (DNE) in two-player differentiable games. Note that for
general-sum games, there exist DNE that are unstable for GDA flow.

Zero-sum games Even in the special case of zero-sum games (g = f), GDA dynamics can still have stable
fixed points that are not DNE (Daskalakis & Panageas, 2018; Mazumdar et al., 2020b). In Figure 2, we
demonstrate the failure modes of GDA in zero-sum games. In Figure 2a, GDA converges to a spurious
strictly stable fixed point which is not DNE (corresponding to the pink areas in Figure 1). In 2b, GDA fails
to converge to the unique DNE (Hsieh et al., 2020). Instead, it goes into a limit cycle, due to the strong
rotation introduced by large complex parts in its Jacobian eigenvalues. We stress that these pathologies are
not limited to GDA, but common for many other first-order algorithms (Wang et al., 2019).
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(a) f(x, y) = g(x, y) = 2x2 + 5xy + y2
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(b) f(x, y) = g(x, y) = xy + ε(x2 − y4)

Figure 2: Two examples of GDA failure modes in finding DNE in zero-sum games. (a) GDA converges to the spurious
strictly stable fixed point (0, 0), which is not a DNE. Other first-order methods such as the optimistic GDA (OGDA)
and extragradient (EG) converge to the spurious fixed point as well. (b) Instead of the unique DNE at (0, 0), GDA
converges to a limit cycle both when initialized “inside” (green) and “outside” (blue). We use ε = 0.0001, γ = 0.01.

General-sum games In general-sum games, apart from non-DNE spurious fixed points for GDA, a DNE
might not even be a stable fixed point of GDA (the cyan area in Figure 1). For example, let n = m = 1,
f(x, y) = x2 + 2xy and g(x, y) = −3xy − 0.5y2. It is easy to confirm that (0, 0) is a DNE. However,

JGDA =
[
2 2
3 1

]
, spec(JGDA) = {4,−1}.

This means that for the GDA dynamics, (0, 0) is a saddle point rather than a LASE.
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3 Double Follow-the-Ridge

We propose double Follow-the-Ridge (double-FTR), an update rule for general-sum differential games that
locally converges to and only to differential Nash equilibria. The double-FTR update is shown in Algorithm 2
(the arguments xt, yt of f and g are dropped to avoid notational clutter).

Algorithm 2 Double Follow-the-Ridge
Require: Learning rate ηx and ηy; number of iterations T .

1: for t = 1, . . . , T do
2: xt+1 ← xt − ηx∇xf − ηy(∇2

xxf)−1∇2
xyg∇yg

3: yt+1 ← yt + ηy∇yg + ηx(∇2
yyg)−1∇2

yxf∇xf
4: end for

Let z =
[
x
y

]
, γ = ηx and c = ηy

ηx
, we can express Algorithm 2 in vectorized form (equation 2). To simplify

the notation, we drop the subscript t for f and g.

zt+1 = zt − γωFTR(zt), ωFTR(zt) =
[

I −(∇2
xxf)−1∇2

xyg
−(∇2

yyg)−1∇2
yxf I

] [
∇xf
−c∇yg

]
. (2)

3.1 Local convergence of double-FTR

In this section, we give our main theoretical result. First, we introduce an additional assumption.
Assumption 2. At fixed points of equation 2, JGDA(z) has full rank.

Assumption 2 ensures that in double-FTR, the additional terms in the update do not exactly cancel out the
GDA terms, which in turn ensures that fixed points with double-FTR are also fixed points with double-GDA.
Note a similar assumption is introduced in Mazumdar et al. (2019) Theorem 4.

Our main theoretical result is stated below.
Theorem 1. Under Assumptions 1 and 2 and with an appropriate choice of learning rate γ, z∗ is a strictly
stable fixed point of the double-FTR update (equation 2) if and only if it is a differential Nash equilibrium
of the game {(f,−g),Rn+m}. Furthermore, at fixed points of equation 2, all eigenvalues of the Jacobian
JFTR := ∂ωFTR

∂z are real.

Intuitively, the first part of the theorem classifies the strictly stable fixed points of double-FTR, which leads
to local convergence to and only to DNE (Corollary 1). The second part ensures that there is no rotation
caused by complex eigenvalues in the neighbourhood of the DNEs. This is beneficial, as eigenvalues with
large imaginary parts can often cause instability (such as the oscillation when training GANs) (Mescheder
et al., 2017; Balduzzi et al., 2018). We defer the proof of Theorem 1 to Appendix A.
Corollary 1 (Local convergence). Let z∗ be a DNE of the game {(f,−g),Rn+m}. Under Assumptions 1
and 2 and with an appropriate choice of learning rate γ, there exists an open set Sz ⊂ Rn+m where z∗ ∈ Sz,
such that when following equation 2, ∀ z0 ∈ Sz, limt→∞ zt → z∗.

Proof. The proof follows naturally by combining Theorem 1 with the local convergence of strictly stable fixed
points (Galor (2007), Proposition 1.9).

To the best of our knowledge, double FTR is the first algorithm with such local convergence result for
general-sum games.

3.2 General preconditioners

In the following remark, we show that double-FTR can be generalized to include a whole family of algorithms.
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Remark 1. Theorem 1 applies to a more general version of the double FTR algorithm. In particular, we
can generalize equation 2 to allow a broader class of “preconditioners”:

zt+1 = zt − γω̃FTR(zt), ω̃FTR(z) =
[
Px 0
0 −Py

]
J>GDA(zt)

[
∇xf
−c∇yg

]
, (3)

where Px, Py are continuous functions of x,y respectively, which satisfy Px � 0 ⇐⇒ ∇2
xxf � 0 and

Py ≺ 0⇐⇒ ∇2
yyg ≺ 0.

Equation 2 corresponds to the special case of Px = (∇2
xxf)−1, Py = (∇2

yyg)−1. The proof for Theorem 1
directly applies to the case of general preconditioners in Remark 1.

Remark 1 provides intuition on the convergence properties of double-FTR. Without the preconditioner Px

and Py, double-FTR reduces to Hamiltonian gradient descent (Mescheder et al., 2017; Balduzzi et al., 2018;
Loizou et al., 2020; Abernethy et al., 2021), which has spurious non-Nash equilibria. It is the introduction of
the preconditioner that enables strictly stable fixed points to satisfy the second-order condition of DNE.

Remark 1 also sheds light on how to derive a more practical algorithm. Naively implementing Algorithm 2
might cause instability when ∇2

xxf and ∇2
yyg are near singular. In practice, we use (∇2

xxf∇2
xxf+λI)−1∇2

xxf
instead of (∇2

xxf)−1 in Algorithm 2 (where a small λ > 0 is the damping parameter). Note that this also
allows us to drop the assumption on the invertibility of ∇2

xxf and ∇2
yyg in Assumption 1.

3.3 N-player games

Algorithm 2 naturally extends to n-player games. The algorithm and theoretical results for n-player games
are exactly analogous to the two-player setting. The n-player Follow-the-Ridge algorithm and its convergence
properties are shown in Appendix B.

4 Connection with other algorithms

Mazumdar et al. (2019) proposed local symplectic surgery (LSS) – a gradient-based algorithm whose LASE are
exactly DNE in two-player zero-sum games. LSS avoids oscillatory behaviour at DNE, similar to double-FTR.
Compared to LSS, double-FTR appears to have a simpler form and enables a broader family of algorithms
with such local convergence result in general-sum games.

The Follow-the-Ridge (FTR) algorithm (Wang et al., 2019) is closely related to our proposed double-FTR.
FTR was proposed for two-player sequential games and is guaranteed to converge to and only to local minimax
for zero-sum and Stackelberg equilibria for general-sum sequential games. FTR applies a gradient correction
term on the follower in a sequential game, so that the agents approximately follow a ridge in the landscape of
the objective function. The double-FTR can be viewed as a counterpart of FTR for simultaneous games.
The update rule of double-FTR resembles that of FTR, with the gradient modification term applied on both
players.

Another related algorithm is the Hamiltonian gradient descent (HGD) (Mescheder et al., 2017; Balduzzi et al.,
2018; Loizou et al., 2020; Abernethy et al., 2021). HGD performs gradient-descent on the Hamiltonian, or
the squared norm of the gradient. HGD is guaranteed to converge, as it is essentially a minimization problem.
However, in general it may have spurious non-Nash equilibria points. Interestingly, our double-FTR can be
viewed as a preconditioned HGD.

5 Related work

Mazumdar et al. (2020b) introduced a general framework for competitive gradient-based learning. They
characterized DNE in terms of the critical points of the gradient algorithms. They showed the lack of
convergence of the gradient algorithm in games, which motivated the development of the double-FTR
algorithm.
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Much work has focused on improving the dynamics in finding stable fixed points, which is crucial in applications
such as GANs, where oscillation caused by eigenvalues with zero real parts and large imaginary parts in the
gradient Jacobian can lead to training instability. Mescheder et al. (2017) proposes Consensus Optimization,
which encourages agreement between the two players by introducing a regularization term in the objectives of
both players. The regularization term results in a more negative real-part for the eigenvalues of the gradient
Jacobian, therefore reduces oscillation and allows larger learning rates. Balduzzi et al. (2018); Gemp &
Mahadevan (2018) proposes Symplectic Gradient Adjustment (SGA), which decomposes the gradient Jacobian
into symmetric (potential) and asymmetric (Hamiltonian) parts and adds a gradient adjustment term for
rapid convergence to stable fixed points. Schäfer & Anandkumar (2019) proposes Competitive Gradient
Descent (CGD), whose update is given by the Nash equilibrium of a regularized bilinear approximation
of the original game. Compared to other methods, CGD has the advantage of not needing to adapt step
size when the interaction strength changes between players. Many other methods have been proposed with
different strategies for predicting other agents’ moves, such as Learning with Opponent Learning Awareness
(LOLA) (Foerster et al., 2016) and optimistic gradient descent-ascent (OGDA) (Popov, 1980; Rakhlin &
Sridharan, 2013; Daskalakis et al., 2018; Mertikopoulos et al., 2018). However, none of these existing methods
address the problem of spurious (i.e. non-Nash) stable fixed points.

A separate but related line of research is on bilevel optimization. Bilevel optimization involves nested
objectives: the upper-level objective depends on the solution of the lower-level problem. It has wide
applications such as hyperparameter optimization and GAN training (Franceschi et al., 2018; Goodfellow
et al., 2014). One approach to bilevel optimization is based on implicit differentiation (Ochs et al., 2015;
Pedregosa, 2016; Lorraine et al., 2020). Implicit differentiation is closely related to the original Follow-the-
Ridge algorithm (Wang et al., 2019), which tackles bilevel optimization from a game-theoretic perspective.
Compared to simultaneous games (this paper), bilevel optimization has different notions of equilibrium, such
as the local minimax (Jin et al., 2020) and Stackelberg equilibrium (Von Stackelberg, 2010).

6 Experiments

We conduct simple experiments to demonstrate the implications of our theoretical results. First, through a
2-D toy example, we show that double-FTR converges to DNE and successfully avoids spurious non-DNE
fixed points, as predicted by Theorem 1. Then, we demonstrate that in a general-sum linear quadratic game,
double-FTR is able to converge to DNE that naive policy gradient avoids. Lastly, we show that double-FTR
can be scaled up and applied to train Generative Adversarial Networks (Goodfellow et al., 2014). Unlike
GDA which suffers from severe mode collapse, double-FTR recovers all the modes and learns a distribution
that closely matches the target.

6.1 2-D toy example

We consider the zero-sum game {f,−f},R2 with the following 2-D function (same as in Mazumdar et al.
(2019)):

f(x, y) = e−0.01(x2+y2)((0.3x2 + y)2 + (0.5y2 + x)2).
This function has several strictly stable fixed points for the GDA dynamics, among which some are DNE and
some are not. As shown in Figure 3, while GDA may converge to fixed points that are not DNE, double-FTR
avoids such spurious fixed points. Also, in the neighbourhood of the DNE, GDA exhibits oscillatory behaviour
due to complex eigenvalues of the Jacobian matrix. In contrast, the double-FTR does not have oscillatory
behaviour near the DNE. For reference, we also show the trajectories of the Local Symplectic Surgery (LSS).
In this experiment, LSS has similar convergence properties – it avoids spurious fixed points and does not
have oscillatory behaviour near the DNE.

Observing the optimization trajectory, we note that double-FTR can approach a non-Nash spurious fixed
point, then steer away without converging to it. In this paper, we do not discuss the convergence rate
of double-FTR, because the dynamics of a multi-player game is much more complicated than that of a
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Figure 3: Left: evolution of GDA and double-FTR in the 2-D toy example from multiple initial points. Middle:
zoom-in near a differential DNE point. Right: zoom-in near a non-Nash LASE for the GDA algorithm.

minimization problem, making the convergence rate a less meaningful metric. Instead, we focus on the local
convergence itself and the characterization of the fixed points.

6.2 General-sum linear quadratic game

The linear quadratic (LQ) game is a classic problem in multi-agent learning. It is an extension of the famous
linear quadratic regulator (LQR) problem of optimal control to the multi-agent setting. Just as LQR being a
simple yet important benchmark problem for studying properties of reinforcement learning algorithms, the
LQ game provides valuable insights to multi-agent RL algorithms (Fazel et al., 2018; Zhang et al., 2019a).

Consider the discrete-time linear dynamical system, where z ∈ Rdz is the state, and two players provide
control inputs u ∈ Rdu and v ∈ Rdv respectively.

zt+1 = Azt + Buut + Bvvt, z0 ∼ p(z0)

Each player adopts a linear state-feedback policy: ut = −Kuzt, vt = −Kvzt, where the parameters
Ku ∈ Rdu×dz , Kv ∈ Rdv×dz are to be determined by optimization. In a general-sum LQ game, each player
aims to find their corresponding policy parameters K that minimizes their individual quadratic loss function
f (shown in equation 4, fv(Ku,Kv) defined analogously using Qv and Rv).

fu(Ku,Kv) = Ez0∼p(z0)

[ ∞∑
t=0

z>t Quzt + u>t Ruut

]
(Qu � 0, Ru � 0) (4)

Despite their simplicity, LQ games are challenging to optimize, because even though the loss functions are
quadratic in the states and actions, they are not convex with respect to the player parameters Ku and Kv.
One straightforward algorithm choice is GDA, which we refer to as the naive policy gradient method, as the
gradients are computed using the policy gradient algorithm (Williams, 1992). Importantly, Mazumdar et al.
(2020a) show that in general sum LQ games, naive policy gradient almost surely avoids some Nash equilibria.

We demonstrate in general-sum LQ games, double-FTR is able to find DNE that are avoided by naive
policy gradient. We use a setting mentioned in Mazumdar et al. (2020a), where dz = 2, du = dv = 1,
Ru = Rv = 0.01, and

A =
[
0.511 0.064
0.533 0.993

]
,Bu =

[
1
1

]
,Bv =

[
0
1

]
,Qu =

[
0.01 0

0 1

]
,Qv =

[
1 0
0 0.147

]
.

The initial state z0 is set to
[
1 1

]> or
[
1 1.1

]> with equal probability.
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Figure 4: Evolution of the loss landscape of a general-sum linear quadratic game when optimized by double-FTR. We
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higher value and purple represents lower value. As seen on the top levels of the illustration, the loss landscape is
“bowl-shaped” at convergence, confirming that double-FTR solution satisfies the second-order conditions for DNE.
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(b) Naive policy gradient

Figure 5: For the general-sum linear quadratic game, we visualize how the Jacobian evolves during training. At
each step, we visualize (z − zt)>JGDA,t(z − zt), the quadratic function defined by the current JGDA, centered at the
current weight values zt. Due to the difficulty of directly visualizing a 4D function, we plot different slices of the
quadratic function instead. Each contour plot shows an axis-aligned 2D slice, with the remaining 2 dimensions fixed
at their corresponding values at zt. Yellow represents higher value and purple represents lower value. In both (a) and
(b), the weights are initialized near the same DNE that is an unstable fixed point for GDA (naive policy gradient)
dynamics, which is shown as saddle points in some 2D slices. (a): using double-FTR, the weights converge to the
DNE. At convergence, the saddle points of (z − zt)>JGDA,t(z − zt) still remain. (b): the gradient method avoids this
unstable DNE, and converges to a stable, farther away fixed point instead.

Figure 4 and 5 shows an instance where the double-FTR is able to converge to a DNE, but naive policy
gradient fails to. For both algorithms, we use the same initial policy parameters Ku and Kv. Figure 4
visualizes the loss landscape for fu(Ku,Kv) and fv(Ku,Kv) when optimized by double-FTR. It confirms
that the solution double-FTR converges to is indeed a DNE (the second-order condition in Definition 2.2).
Figure 5a visualizes the local vector field Jacobian (i.e. JGDA) and shows that the Jacobian contains negative
eigenvalues, which makes it a saddle point for the naive policy gradient method. Indeed, naive policy gradient
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(shown in Figure 5b) avoids this DNE. Instead, it eventually finds another DNE that is stable fixed point for
naive policy gradient.

6.3 Generative Adversarial Networks

The Generative Adversarial Network (GAN) (Goodfellow et al., 2014) is a popular deep learning application for
two-player games. The goal is to find the DNE where the generator perfectly matches the target distribution,
and the discriminator is completely fooled by the generator.

In this experiment, we use the GAN framework to learn mixture of Gaussians (MoG). We use the original
saturating loss function. Both the generator and the discriminator are multi-layer perceptrons with 2 hidden
layers and 64 hidden units in each layer. With neural networks, directly implementing the Hessian would be
computationally inefficient or infeasible. Instead, we use conjugate gradient to approximate vector products
with the Hessian inverse. Details of the experiments can be found in Appendix C.

As shown in Figure 6 and 7, we apply GDA and double-FTR to learn MoG in 1D and 2D. In both cases,
GDA gets stuck at a spurious equilibrium and suffers from mode collapse. In contrast, double-FTR recovers
all the modes, and the generated distribution closely matches the target.
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Figure 6: Mixture of Gaussians in 1D. Left: ground-truth. Middle: generator distribution learned by GDA. Right:
generator distribution learned by double-FTR.
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Figure 7: Mixure of Gaussians in 2D. Top: GDA suffers from mode collapse. Bottom: the generator distribution
learned by double-FTR recovers all the modes.

7 Conclusion

We propose double Follow-the-Ridge (double-FTR), a gradient-based algorithm for finding differential Nash
equilibria in differentiable games. We prove that under certain regularity assumptions, double-FTR locally
converges to and only to differential Nash equilibria in the general-sum games, and avoids oscillation in the
neighbourhood of fixed points. Furthermore, we remark that by varying the preconditioner, double-FTR
leads to a broader family of algorithms that share the same convergence guarantee. Finally, we empirically
verify the effectiveness of double-FTR in finding and only finding differential Nash equilibria across a broad
range of problems.
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