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Abstract. Recent advancements in vision-language systems have im-
proved the accuracy of Radiological Visual Question Answering (VQA)
Models. However, some challenges remain across each stage of model
development: limited expert-labeled images hinders data procurement
at scale; the intricate and nuanced patterns of radiological images make
modeling inherently difficult; and the lack of standard evaluation makes it
difficult to identify cases where the model might be ill-conditioned. In this
study, we fine-tune a lightweight 3B parameter vision-language model for
Radiological VQA, demonstrating that small models, when appropriately
tuned with curated data, can achieve robust performance across both
open- and closed-ended questions. We propose a cost-effective training
pipeline from synthetic question-answer pair generation to multi-stage
fine-tuning on specialised radiological domain-targeted datasets (e.g.,
ROCO v2.0, MedPix v2.0). Our results show that despite operating at a
fraction of the scale of state-of-the-art models such as LLaVA-Med, our
model achieves promising performance given its small parameter size and
the limited scale of training data. We introduce a lightweight saliency-
based diagnostic tool that enables domain experts to inspect VQA model
performance and identify ill-conditioned failure modes through saliency
analysis. Project Link: https://github.com/adishourya/MedM
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1 Introduction

Vision-language models (VLMs) have made notable progress in general-domain
tasks, such as crop anomaly detection[30] and intelligent video surveillance[41].
In the medical and healthcare domain, researchers have recently adapted VLMs
to support medical visual question answering (VQA), with promising results
from both academic initiatives [2I], B4] and large-scale efforts [32] [I7]. Alongside
improvements in accuracy, recent VLMs have become increasingly accessible to
small teams and individual researchers and practitioners to adapt off-the-shelf
VLMs to domain-specific tasks through affordable fine-tuning. However, these
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off-the-shelf VLMs still underperform on medical VQA tasks compared to general-
domain VQA due to domain mismatch, limited data availability, and a lack of
systematic evaluation and interpretability tools.

Developing robust medical VQA systems poses unique challenges. VLM
models are trained on open-web datasets (like [B, 29]) that include general-
domain data and struggle with the domain shift introduced by complex, multi-
modality clinical inputs. Medical VQA tasks require not only visual understanding
but also specialized reasoning grounded in clinical knowledge, which general-
purpose VLMs typically lack. Moreover, the scarcity of large-scale, high-quality
image—question—answer datasets in radiology limits the ability to fine-tune or
evaluate these models systematically. In addition, the absence of standardized
training pipelines and interpretability tools hampers both model development
and clinical validation. Together, these challenges call for lightweight approaches
that balance domain adaptation, performance analysis, and interpretability.

We address these challenges by adapting a lightweight VLM - 3B-parameter
PaliGemma-mix-448 [3] for radiological VQA. Our approach combines a two-
stage fine-tuning pipeline with parameter-efficient LoRA [12] adaptation, using
a curated mixture of radiology datasets (SLAKE [20], PMC-VQA [46], ROCO
v2.0 [28], MedPix 2.0 [33]). In the first stage of fine-tuning, we align the model’s
projection head with domain-specific anatomical vocabulary; in stage 2, we
fine-tune the full model using enriched instruction-tuning data generated via a
LLaMA-8B QA generation pipeline and annealing strategies to amplify high-
quality supervision. To evaluate model performance, we introduce a saliency-
based diagnostic tool that visualizes attention from image patches to response
tokens and vice versa, enabling human experts to identify ill-conditioned outputs.
Despite the model’s small size, it achieves competitive accuracy on combined
ROCO+MedPix VQA tasks, approaching the performance of much larger models
like LLaVA-Med [17].

Our key contributions are as follows. First, we reassess model scaling trends
in medical VQA by demonstrating that a compact 3B VLM, when appropriately
fine-tuned, can achieve competitive performance on radiological VQA tasks,
challenging the assumption that only large-scale models are capable of strong
clinical reasoning. Second, we propose an end-to-end framework that spans dataset
curation, synthetic QA pair generation, annealing-based enrichment, and a two-
stage fine-tuning strategy. This pipeline enables medical domain specialization
with minimal compute, serving as a practical guide for low-resource medical VLMs.
Third, we develop a lightweight, attention-based interpretability tool to visualize
cross-modal saliency between image regions and text outputs, supporting expert-
driven auditing of model predictions. Finally, we empirically validate our model
on both open- and closed-ended radiological QA tasks, highlighting that compact,
interpretable models can be viable for domain-specific VQA applications.
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2 Related Work

Our methodology builds upon recent development in medical VQA and text-based
question-answering. Several studies have introduced comprehensive pipelines that
span data collection, model training, and rigorous assessment, highlighting the
evolving capabilities of a radiological VQA system. We now summarize key
contributions from related works that have influenced our approach.

MedVInT-T(D,E) [45] presents a complete training and evaluation frame-
work for medical VQA. Their approach involves fine-tuning a VLM model on
an in-house curated synthetic dataset [46] using GPT-4 [26], which contains
multiple choice questions to cover a variety of radiological images, and short fill-
in-the-blanks style questions with the expectation that the resulting model also
develops the capability of answering open-ended queries. The model, fine-tuned
on public benchmarks, performs on par with existing radiological VQA systems.
Additionally, they manually verify a sample of test set results to make the models
robust against the current limitations of popular evaluation frameworks.

MedPaLM [32], introduces a comprehensive training and evaluation frame-
work from scratch. They compile HealthSearchQA dataset [I4] for answering
both consumer- and professional-level text-based medical questions by sampling
from existing medical QA datasets. They then fine-tune Flan-PaLM [7] on this
dataset, achieving a new state-of-the-art model which is then evaluated by both
professionals and laypersons on an extensive set of evaluation axes. Notably, their
work exemplifies the design of human evaluation, incorporating assessments from
both professionals and laypersons across a broad set of criteria.

LLaVA-Med [I7] curates PMC-15M dataset by sampling from PubMed
Central [25] and prepares synthetically generated multi-turn instruction training
data using GPT-4 [26]. The study trains the model for only 16 hours on 8xA100
GPUs [9], achieving state-of-the-art results in radiological visual question an-
swering with a modest 8B LLM [39]. Their work demonstrates that individual
researchers can achieve state-of-the-art performance even with a cost-effective
training approach. E|

3 Architecture

3.1 Model Design

Our vision-language model (VLM) builds on prior work [3| [I] and follows a
multi-stage training pipeline (Figure . The training begins with the selection of
an off-the-shelf vision-tower and an LLM, each demonstrating strong performance
on their respective unimodal tasks, such as large-scale image classification for the
vision-tower and natural language understanding and generation for the LLM.
These components are then integrated and subjected to multimodal pretraining
on a diverse set of tasks such as image captioning [42] and referring expression
segmentation [15] to develop a broad understanding of visual concepts in the

3 PMC-15M [I7] remains unavailable to the public at the time of writing.
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general domain. During the multimodal pretraining stage of the model, no weights
are frozen in time, allowing all parameters to learn during backpropagation.

For domain adaptation such as radiological VQA, we conduct multi-stage
fine-tuning on the selected off-the-shelf model using smaller but domain-specific
datasets to adapt to specific tasks, mirroring methodologies in [32], 17, 45]. In
our study, we employ PaliGemma-miz-448 [3] as our base VLM. This choice is
motivated by its transparent pretraining on a diverse and well-curated collection
of open-web datasets [5, 29, B1l [35], in contrast to models with undisclosed
training data [26]. This transparency enables a clearer understanding of the
model’s zero-shot (base) performance and would make it easier to compare after
the base model is fine-tuned. The details about the main components of proposed
VLM architecture are described below.
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Fig. 1: Our and PaliGemma [3] Vision Language Model Architecture

Vision Tower: We employ a decoder-only SigLIP transformer [43] as the
vision tower in our framework, which contains approximately 400M parameters.
pretrained with a sigmoid contrastive loss and comprising 400M parameters.
SigLIP is pretrained using a contrastive learning objective with a sigmoid loss,
specifically to handle classification tasks involving a large number of labels
where traditional cross-entropy loss becomes less effective [43]. The vision tower
processes one or multiple input images by applying self-attention across image
patches in a non-causal manner, generating image features that are independent
of any accompanying text instruction.

Projection Head: A single linear layer aligns the output dimensionality of the
vision tower with the token dimension of the language model’s vocabulary, which
is required for concatenation. While the projection can be implemented using
multiple linear layers, the prior ablation study [3] found no significant advantage
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to have more than one layer. Therefore, we use a single-layer projection in our
VLM architecture.

Concatenation: The text prefix associated with the image is tokenized [16])
and concatenated with the projected image features from the vision tower. A
special separator token is inserted between the image features and the tokenized
text to delineate the two modalities. The resulting sequence is then padded or
truncated as needed to match the input length of the language model.

LLM: The concatenated image and text features are passed to 2B-GEMMA
LLM [38] as a single input. The model generates the first output token by jointly
attending to both the visual features and the tokenized text prefix. Subsequent
tokens are produced autoregressively, conditioned on the previously generated
tokens along with the original multimodal input.

3.2 Diagnostic Design

To enhance interpretability and validate the clinical relevance of the proposed
VQA, we analyze the model’s attention mechanisms, which govern cross-modal
interactions between image features and text tokens, inspired by [22]. We develop
a diagnostic tool for saliency analysis aimed at aiding practicing radiologists
during expert evaluation [37]. The interactions between text prefix, image features,
and response tokens, which occur exclusively within the attention heads of the
LLM, were analyzed with visualizations. Prior to the concatenation layer, there
is no interaction between the text prefix and image features. Therefore, the
attention heads of the LLM learn to selectively filter and attend to the relevant
signals from both modalities to guide the generation process.

Although saliency is not the same as explainability [2], experts can often
identify diagnostic indicators, as saliency is fundamentally tied to the learned
weights of the model. For a self-attention-based model [40], this relation is easy
to examine as self-attention operates by aggregating similarity scores between
two learned representations for each tokens: queries and keys. These interactions
determine how information is distributed across tokens which ultimately guides
the generation process. We implemented the following two attention techniques.

Saliency via Raw Attention. Raw attention examines the interactions
between queries and keys, which can be interpreted as measuring the affinity or
relevance of a token of interest (query) with the rest of the tokens (keys), either
within or across modalities. We compute attention weights between queries and
keys to localize token-level contributions.

Saliency via Rollout Attention. In self-attention-based models, raw atten-
tion weights do not always provide meaningful insights as information propagates
through multiple layers, embeddings become increasingly mixed. This is because
self-attention does not inherently preserve token identity across layers; rather,
it continuously blends representations from multiple input tokens. As a result
individual token contributions become obscure, and raw attention weights fail
to capture the original token relationship.[6]. We adopt rollout attention [6] [10],
which recursively aggregates attention weights across layers while accounting for
skip connections.



6 A.Shourya, M. Dumontier, C. Sun

4 Datasets and Training Recipe
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Fig. 2: Training Recipe Overview

The overall methodology of our training recipe is outlined in Figure 2] We
begin by collecting publicly available radiological datasets and converting them
into Visual Question-Answer (VQA) pairs [39]. The resulting dataset is then
enriched and processed to ensure suitability for fine-tuning. Our fine-tuning
approach uses a two-stage training strategy: the first stage focuses on learning
foundational visual radiological concepts, while the second stage incorporates
larger datasets to enhance the model’s rigor and generalization capabilities.

To evaluate model performance, we measure classification accuracy on both
open- and closed-ended questions, depending on the dataset composition. For
generative responses from open-ended questions, we assess their factuality using
GPT-4 [26] as an automated judge. We perform ablation studies across different
stages of our data curation and finetuning methodology to quantify performance
gains. In the absence of a medical expert, the authors of the paper conduct a
diagnostic analysis on organ-level cases to identify model limitations.

4.1 Data Collections

Fine-tuning VLM requires not only substantial model capacity but also access
to large, diverse, and semantically rich datasets. In our work, we combined four
datasets that have been de-identified for privacy protection including SLAKE
[20], PMC-VQA [46], ROCOv2 [28], and MedPix 2.0 [24]. The combination of
them spans a wide range of pathology and radiological modalities (Figure [3, and
concepts for open- and closed-ended questions.
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SLAKE contains ~14,000 VQA pairs, annotated by practicing physicians.
The dataset covers a wide range of anatomical regions and provides high-quality
semantic annotations that are well-suited for evaluating radiological reasoning.

PMC-VQA is derived from PMC-CLIP [19] and includes ~ 227,000 QA
pairs. The questions are either multiple-choice or short fill-in-the-blank format.
Its scale and diversity have been effectively leveraged in training models such as
MedVInT-TE and MedVInT-TD. The dataset includes a diverse set of imaging
modalities such as CT, MRI, ultrasound, and X-ray.

ROCOV2 contains ~79,000 image-caption pairs from PubMed Central. Each
caption provides a concise (~ 20 word) description of the radiological images.
Due to its breadth and structural consistency, ROCOv2 supports multiple tasks
including image captioning, multi-label classification, and VLM pretraining.

MedPix 2.0 includes ~ 12,000 curated cases from the MedPix database.
Each case contains diagnostic images, detailed case descriptions, and relevant
treatment information. The dataset is built using a semi-automated pipeline with
manual validation to reduce label noise.

4.2 QA-Pairs Data Generation

Among our selected datasets, SLAKE and PMC-VQA natively provide im-
age—QA pairs, while ROCO v2.0 and MedPiz v2.0 contain image—caption pairs.
Fine-tuning on image—QA triplets has been shown to be more effective than
image—caption pairs for training VLMs on visual reasoning tasks [47]. Therefore,
inspired by previous work [4, 47, [45] [I7], we synthesize both open- and closed-
ended QA pairs from image-caption pairs using LLaMA-8B [39]. LLaMA-8B was
applied for its accessibility, inference efficiency, and reproducibility for other indi-
vidual researchers. Importantly, its pretraining corpus contains limited medical
content, allowing us to isolate and evaluate the performance of general-domain
LLMs when applied to specialized medical tasks.

Medical VQA tasks demand not only visual understanding but also clinical
reasoning, which general-purpose VLMs often lack. To address this, we prioritize
datasets where questions are grounded in patient context and, where possible,
linked to supporting medical literature. Figure [§and [0]in the Appendix show
the prompt templates to generate patient case-based and literature-based QA
pairs from image-caption pairs. Synthetic QA generation introduces risks such
as hallucinations or clinically irrelevant content. To ensure quality, we manually
filter out noisy outputs and apply a form of dataset annealing to incrementally
refine the corpus toward higher semantic and clinical relevance.

4.3 Annealing and Filtering

Annealing improves model performance by incrementally incorporating small,
high-quality subsets into a larger training set. The objective is to improve the
proportion of higher informative examples such as those rich in visual concepts
and clinical reasoning within the overall dataset. By doing so, the model learns
more reliable patterns that might otherwise be obscured by lower-quality data.
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Evidence for annealing’s effectiveness comes from [39], where LLaMA3-8B
showed a 24% improvement on grade-school-level math questions GSM8K [§] and
a 6.4% gain on competition-level math reasoning tasks [IT]. Notably, the benefit
diminished for larger models (e.g., LLaMA3-405B) [39], suggesting that small or
mid-sized models, such as our 4B parameter VLM, are receptive to annealing.

This study uses the high-quality dataset MedPiz v2.0 [33] as the primary
enrichment dataset for annealing ROCO v2.0. While MedPix is smaller in scale,
it provides well-curated radiological cases and literature references, making it
well-suited for improving domain-specific reasoning. A key component of effective
annealing is systematic filtering, which ensures that only high-quality and domain-
relevant data is incorporated into the dataset. Figure [4 outlines our data curation
stratergy with annealing and filtering. The process begins with a medical corpus,
filtered by the pathological relevance. Unlike conventional upsampling strategies
that increase the variety of rare cases, our approach focuses on reinforcing the most
common pathologies existing in our data mix to improve model generalization.

4.4 Two-stage Fine-Tuning

1st Stage: Off-the-shelf VLMs often exhibit inconsistent performance in recog-
nizing anatomical structures occasionally producing incorrect generation when
presented with slight variations in images. This inconsistency highlights the need
for alignment between visual features and anatomical vocabulary. To address
this, we adopt the SLAKE dataset [20] as a foundation for 1st stage fine-tuning.
SLAKE offers well-annotated radiological visual concepts, making it particularly
suitable for anatomical structure recognition. In this initial phase, we fine-tune
only the projection head of the model while keeping all other parameters frozen.
We train the projection layer for 5 epochs on SLAKE and use the resulting
checkpoint as the initialization point for subsequent model training. Our method
aligns with curriculum learning principles, emphasized in [36], starting with
simpler radiological visual concepts followed by more diverse data.

2nd Stage: Using the checkpoint from the 1st stage as the model weight
initialization, we fine-tune the model on larger and more diverse instruction sets
- ROCO v2.0 [28], MedPix 2.0 [24], and PMC-VQA [23]. To perform parameter-
efficient fine-tuning, we apply LoRA [12], a low-rank adaptation method, targeting
the attention heads in both the vision tower and the language model. This
allows us to significantly reduce computational and storage overhead, deviating
from traditional fine-tuning methods that retain all or a large portion of model
parameters.
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Fig. 5: Fine Tuning Evaluation Loss

5 Experiments and Evaluation

5.1 Experiment Setting

All experiments, including fine-tuning and evaluation, were conducted on a
single NVIDIA H100 GPU. With adequate allocation, fine-tuning on the ROCO,
MedPix, and combined ROCO-+MedPix datasets each consumed approximately
2.1 TFLOP-days, PMC-VQA required about 4.2 TFLOP-days, and SLAKE
completed in under 0.15 TFLOP-days.

5.2 Fine-Tuning Experiments

We first evaluated fine-tuning performance across instruction sets with varying
token lengths and question formats. Evaluation loss curves over training epochs
are shown in Figures [5a] and [fb] For datasets where QA template is open-ended,
we observe that the evaluation loss decreases approximately quadratically as the
number of tokens in the instruction set increases (Figure . However, this trend
does not hold for datasets with close or short-ended QA templates, where the
labels contain fewer tokens as the expected loss after a few training iterations
becomes smaller and the loss plateaus earlier (Figure .
We further analyzed scaling behavior using the empirical loss model:

~ 1 1

where L is evaluation loss, X is the fine-tuning parameters, D is the token size,
and A, «, 3, E are scaling exponents. Scaling properties for fine-tuning LLMs
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are highly dependent on task type and data composition [44]. Consequently,
the optimal fine-tuning strategies and scaling behavior can vary depending on
the structure and semantics of the training data. We observed that scaling
exponents ("A”, a,”5”, ”E” in Equation [l|) differ depending on the question-
answer templates used across datasets. For example, ROCO v2.0 [28] and MedPix
2.0 [24] have open-ended instruction sets with an average label length of around
20 tokens. In this case, task dependence is less observable, and improvements in

evaluation loss (L) tend to correlate more directly with data size (Dy).

In contrast, task dependence becomes more evident in close-ended QA, partic-
ularly when different templates are used for QA pairs (Figure . While higher
data volume generally leads to faster convergence, this trend breaks down when
comparing MIMIC-CXR-JPG [13] and PMC-VQA [46]. Despite its smaller size,
PMC-VQA yields greater learning gains in fewer epochs, likely due to the use
of multiple-choice templates. These have a lower expected loss (I~/ =—1In (i) )
than open-ended QA tasks, which typically involve more linguistic variation and
semantic ambiguity.

These observations suggest that a single scaling law may not generalize across
mixed-template datasets. As dataset mixtures grow, especially those combining
open- and close-ended QA formats, it becomes increasingly difficult to preserve a
consistent ratio of question types. Since each new addition may introduce varia-
tions in this ratio, it becomes challenging to predict the expected evaluation loss
as the number of tokens in the instruction set grows. This variability complicates
the application of scaling laws in Medical VQA, as the impact of additional
training data is not uniform across different datasets and QA templates.

5.3 VQA Evaluation

Standard n-gram metrics such as BLEU [27] and ROUGE [I8] offer limited insight
into factual correctness, particularly in clinical VQA settings [32]. We report
these scores in Table [f] in the Appendix, but propose and emphasize more robust
evaluation methods below.
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Closed-ended QA Evaluation: For multiple-choice question answering
(MCQA) such as PMC-VQA [46], we measure model accuracy across five stochas-
tic generations per test instance. Inspired by [45], we define a prediction as
non-robust if the model produces different answers in three or more out of five
inferences. In such cases, we penalize the accuracy by one point to account for
uncertainty and instability in the output.

Open-Ended QA Evaluation: For open-ended question that demands
clinical reasoning, we employ LLM-based evaluation. We design a prompt template
(Figure [10]in the Appendix) and use GPT-4.0 [26] to judge each generated answer
based on factual correctness. Examples are presented in Figure [6]

Table [I] compares accuracy across four datasets, evaluating the effect of a
two-stage fine-tuning approach. Results are reported as the mean accuracy +
standard deviation over five inference runs, with LLaVA-Med serving as a high-
capacity baseline. On SLAKE (closed-ended QA), two-stage fine-tuning achieves
79% accuracy, highlighting strong gains even without large model capacity. For
PMC-VQA, ROCO, and the ROCO+MedPix annealing set, two-stage fine-tuning
consistently outperforms single-stage fine-tuning, demonstrating its effectiveness
across different QA formats. Although the accuracy gains of 2-stage fine-tuning
are slight, it accelerated convergence, reducing the number of epochs needed to
reach target evaluation loss. Finally, comparing ROCO to the ROCO-+MedPix
annealing set shows clear performance gains from annealing, even with small
data volumes. These results indicate that modest instruction set annealing offers
a cost-effective way to improve generalization and robustness, with potentials for
further gains using larger annealing sets.

Dataset w/o Stage 1 with Stage 1 LLaVA-Med
SLAKE (Closed) - 79.00 £2.75 86.50 + 1.60
PMC-VQA (Short) 32224223 33.15£3.15 5844 +2.53
ROCO v2.0 (Open) 32.25+£3.60 34.00%+3.95 56.56 £ 3.57

ROCO + MedPix (Annealing) 39.53 £3.22 41.48+3.90 56.63 £ 3.22

Table 1: Accuracy (%) without and with Stage 1 fine-tuning across datasets. Means +
standard deviations are reported across five inference runs (each on a sample of 200).

5.4 Manual Verification via Saliency Diagnostic

Inspired from previous work [45] [32], we conduct manual verification of model-
generated responses on test samples, incorporating saliency diagnostic wherever
possible for the authors of the study. As discussed, we applied raw attention and
attention rollout methods for saliency analysis (Figure[7)). In the case of response-
to-image saliency, we select a response token (e.g., "narrowing") as the query and
visualize the average saliency over the input image (used as keys). Conversely, we
examine image-to-response saliency, where we select a specific image patch (e.g.,
the blue arrow) as the query and plot the resulting saliency over the response
tokens based on their key representations. Compared to raw attention, we found
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Prompt

What appears to be the issue given an arrow indicated at the
image?

Response Tokens

Postoperative upper gastrointestinal tract image showing slight
NAarrowing of the gastro epigastrium.

Saliency Diagnostics Output

Image to Response Saliency Response to Image Saliency

Query : Arrow on the image Query:“narrowing” Response Token

Postoperative
gastrointestinal tract showing
slight narrowing of the gastro
epigastrium

o 100%

Fig.7: An example saliency analysis with Raw Attention and Attention Rollout for a
patient with a Post-Operative UGI with slight narrowing at mid-body of stomach.

the resulting saliency of attention rollout highlights more abstract features such
as the passage of the gastrointestinal tract that are semantically relevant to the
given example. More details and examples are presented in Appendix

Using the saliency tool, we evaluate the factuality of the generated responses
from our model against the corresponding ground-truth labels. Furthermore,
we report a broad per-class accuracy (Table [2) at the organ level to highlight
variability in model performance, as certain anatomical regions exhibit greater
nuance and complexity than others.

Organ-level Pathologies Accuracy (%)

Chest 15/50 (19/50)
Gastrointestinal 28/50 (32/50)
Musculoskeletal 39/50 (41/50)
Brain and Neuro 14/50 (22/50)

Table 2: Manual Verification over a single inference (LLava-Med [17] as a baseline).

6 Conclusion

This study shows that a compact 3B VLM, when fine-tuned with an end-to-
end pipeline, can achieve strong performance on radiological VQA tasks. Our
framework, including synthetic QA generation, instruction annealing, and two-
stage fine-tuning, enables low-resource specialization for medical VLMs. We
further introduce a lightweight saliency tool for cross-modal interpretability and
validate our approach on both open- and closed-ended QA pairs.
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Our study has several limitations that highlight directions for future work.
First, our ablation analysis focused primarily on LLM scaling, with a limited
investigation into the vision encoder. Second, saliency analysis was conducted
without expert involvement, limiting interpretability to broad organ-level patterns.
Future work should involve clinicians to evaluate fine-grained anatomical and
pathological relevance. Last, our evaluation framework focused only on single-turn
QA, whereas real-world clinical workflows involve multi-turn interactions. Ex-
panding the evaluation to multi-turn dialogues would offer a more comprehensive
assessment of model reasoning and consistency.

Code and Data Availability

The code is publicly available at: https://github.com/adishourya/MedM. The
dataset derived from MedPix v2.0 [33] and used for our annealing experi-
ments can be accessed at: https://huggingface.co/datasets/adishourya/
MEDPIX-ShortQA

Synthetically generated question-answer pairs based on the ROCO V2.0
dataset [28] are available at the following locations: Training split: https://
huggingface.co/datasets/adishourya/ROC0-QA-Train; Validation and test
splits: https://huggingface.co/datasets/adishourya/ROCO-QA


https://github.com/adishourya/MedM
https://huggingface.co/datasets/adishourya/MEDPIX-ShortQA
https://huggingface.co/datasets/adishourya/MEDPIX-ShortQA
https://huggingface.co/datasets/adishourya/ROCO-QA-Train
https://huggingface.co/datasets/adishourya/ROCO-QA-Train
https://huggingface.co/datasets/adishourya/ROCO-QA
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Appendix

A Generating Question Answer Pairs

def generate_qapairs(caption):

# Construct the prompt for ollama for mcq based questions

prompt = f"""

Based on the following medical image captions generate appropriate and insightful
question for the caption. Treat this caption as the ground truth to generate your
question: {caption}

response = ollama.chat(model="11ama3.1",

messages=[ {
'role': 'user',
‘content': prompt } 1)

# Return the generated text from the response
return response('message’]['content'].strip()

Fig. 8: Generate Case Based Questions Prompt

def generate_qgapairs_lit(caption,case_topic):
prompt = """
Generate a relevant,short and insightful literature-based question for the given

case topic. Treat the caption as ground truth: {caption}, with associated
literature: {case_topic}.

response = ollama.chat(model="1lama3.1",
messages=[ {
‘'role': 'user',
'content': prompt } ])

# Return the generated text from the response
return response('message’]['content’].strip()

Fig. 9: Generate Literature Based Questions Prompt

B Evaluation and Saliency Diagnostics
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def evaluate_generation(generation,ground):
prompt = f"""
Assign a score of O if the generated response is not both factually correct and
aligned in meaning with the ground truth else reward 1.
Generation : {generation}
Ground Truth : {ground}

response = ollama.chat(model="gpt-4",
messages=[ {
‘'role': 'user’,
‘content': prompt } ])

# Return the generated text from the response
return response|'message’]['content'].strip()

Fig. 10: Evaluation prompt for GPT-4 as a judge.

Training Args Value
learning_rate 1x107°
Ir _schedule constant
label _smoothing 0.0
weight decay 0.0

fpl6 True
gradient accumulation 16
batch_ size 6

Table 3: First and second stage training hyperparameters.

B.1 Saliency Diagnostic Examples

Note that we examine attention across modalities (Image to Response and

Response to Image) as given by Equation

query from selected response token

KT KT
Attention = softmax | ———— | V  or softmax

?s-||

q @
Vdy, Vd

keys from image patches

V(2

keys from response
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Prompt

can you spot any abnomralities in the kindneys of the
patient?

Response Tokens

Yes, I can spot a 1€810N jn the patient’s right kidney.

Saliency Diagnostics Output

Image to Response Saliency Response to Image Saliency
Query:“lesion” Response Token

Yes I can spot a lesion in the
patient's right kindey

[ -
0% 100%

Fig.11: A Patient suffering from lesion on their right kidney [Notice High Rollout
Saliency in the right kidney of the patient]

Prompt

Is the bone broken?

Response Tokens

Yes, I can spot a [PACtUre on the bone.

Saliency Diagnostics Output

Image to Response Saliency Response to Image Saliency
Query:Fracture” Response Token

Yes, I can spot a fracture on
the bone.

it Attention

Minimum

[ -
0% 100%

100%

Fig. 12: An X-ray of a patient with Bone Fracture[High Saliency on the fractured region]
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Metrics MedPix v2.0 ROCO v2.0 ROCO + MedPix v2.0 PMC-VQA

ROUGE-S  0.3114+0.255  0.325 = 0.132 0.334 4 0.122 -
ROUGE-M 0.167+0.082  0.179 + 0.124 0.181 4+ 0.124 -
ROUGE-L 0.308+0.125  0.278 +0.120 0.304 % 0.180 -
BLEU 0.055+0.111  0.059 = 0.090 0.077 + 0.065 -
Accuracy 34/200 (82/200) 63/200 (113/200)  71/200 (113/200) 0.3002

Table 4: Results with no first-stage fine-tuning (£ 1 standard deviation). LLava-Med [I7]
used as baseline.

Metrics SLAKE (Stage 1) MedPix v2.0 (Stage 2) ROCO v2.0 (Stage 2) ROCO + MedPix v2.0 (Stage 2) PMC-VQA (Stage 2)

ROUGE-S - 0.322 + 0.240 0.325 4 0.182 0.380 % 0.077 -
ROUGE-M - 0.165 + 0.088 0.196 + 0.122 0.219 4 0.111 -
ROUGE-L - 0.318 £0.125 0.266 + 0.080 0.412+0.109 -
BLEU 0.024 +0.212 0.008 + 0.121 0.430 4 0.086

Accuracy 0.26 (0.59) 33/200 (82/200) 68/200 (113/200) 74/200 (113/200) 0.31046

Table 5: Results £+ 1 standard deviation

Prompt

can you spot any abnomralities given a CT-scan of a lung?

Response Tokens

Yes, there is an abnormality in the CT scan of the lung. The lung
appears to show atypical features, which may be concerning and

could indicate 1€UKeMiC jnfiltration or other lung-related
issues. The presence of this abnormality suggests the patient
might need further medical evaluation

Saliency Diagnostics Output

Image to Response Saliency Response to Image Saliency

Ouery:leukemic’ Response Token
Yes, is an dbnormality in R tention

the CT scan of the lung. The Lager:11 , Head:1
lung appears to show atypical
features, which may be
concerning and could indicate
leukemic infiltration or other
lung-related issues. The
presence of this abnormality
suggests the patient might need
further medical evaluation

[ - —
0% 100%

Fig.13: A patient suffering from Leukemia [In such examples the authors of the study
refrain from performing saliency diagnostics|
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