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ABSTRACT
Neural Radiance Fields (NeRF) has received much attention recently due to its im-
pressive capability to represent 3D scene and synthesize novel view images. Ex-
isting works usually assume that the input images are captured by a global shutter
camera. Thus, rolling shutter (RS) images cannot be trivially applied to an off-the-
shelf NeRF algorithm for novel view synthesis. Rolling shutter effect would also
affect the accuracy of the camera pose estimation (e.g. via COLMAP), which fur-
ther prevents the success of NeRF algorithm with RS images. In this paper, we
propose Unrolling Shutter Bundle Adjusted Neural Radiance Fields (USB-NeRF).
USB-NeRF is able to correct rolling shutter distortions and recover accurate camera
motion trajectory simultaneously under the framework of NeRF, by modeling the
physical image formation process of a RS camera. Experimental results demonstrate
that USB-NeRF achieves better performance compared to prior works, in terms of
RS effect removal, novel view image synthesis as well as camera motion estimation.
Furthermore, our algorithm can also be used to recover high-fidelity high frame-rate
global shutter video from a sequence of RS images. Code and data are available at
https://github.com/WU-CVGL/USB-NeRF.

1 INTRODUCTION

Understanding and recovering 3D scenes from 2D images is a difficult but important problem in com-
puter vision. Different from a 2D image which can be naturally formulated as an array of pixel values,
there are many 3D representations to depict a 3D scene, such as the commonly used point clouds (Fu-
rukawa & Ponce, 2009), height-map (Pollefeys et al., 2008), voxel grids (Nießner et al., 2013; Seitz
& Dyer, 1997) and 3D triangular meshes (Delaunoy & Pollefeys, 2014). Each has its own advantages
and limitations. Recently, implicit neural representation by Neural Radiance Fields (NeRF) (Milden-
hall et al., 2020) has drawn great attention, due to its impressive 3D representation capability. NeRF
represents the scene with a Multi-layer Perception (MLP) network. It takes a 5D vector (i.e. the 3D
position and 2D viewing direction of a query point) as input and outputs the corresponding radiance
and volume density of the query point. The pixel intensity is then accumulated by differentiable vol-
ume rendering (Levoy, 1990; Max, 1995). The parameters of the MLP network can be estimated by
maximizing the photo-metric consistency across images captured from different viewpoints.

To obtain a good representation of the 3D scene with NeRF, both high-quality images and correspond-
ing accurate camera poses are usually necessary. However, it is usually difficult to acquire such perfect
inputs in real-world scenarios, as real images can be easily degraded by motion blur, de-focus, rolling
shutter (RS) effect etc. Different from the commonly assumed global shutter camera model by NeRF,
rolling shutter cameras capture images row by row sequentially, as illustrated in Figure 3. Differ-
ent rows of the image are thus scanned at different timestamps, which would lead to rolling shutter
distortions if it is captured by a moving camera. Neglecting these distortions usually can lead to per-
formance degradation in 3D reconstruction, motion estimation as well as camera localization etc., via
rolling shutter images. A trivial solution to mitigate the effect of the rolling shutter distortions is to
apply a state-of-the-art RS effect correction algorithm (Liu et al., 2020; Fan & Dai, 2021; Fan et al.,
2022) to pre-process the images before they are fed into downstream tasks. However, those methods
usually require to be pre-trained by a large dataset, which can be expensive to obtain in real-world sce-
narios. The generalization performance of those pre-trained networks is also limited as demonstrated
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Figure 1: Given a sequence of rolling shutter images, our method is able to simultaneously learn the undistorted
3D scene representation and recover the continuous-time camera motion trajectory. Global shutter images with
removed rolling shutter effect can then be rendered from the learned 3D representation. The third row presents
residual images (the darker the better) that are defined as the absolute difference between the corresponding
images (first row) and ground truth global shutter images.

in our experiments. Therefore, we propose unrolling shutter bundle adjusted neural radiance fields in
this paper. The proposed method is able to learn the 3D representation and recover the camera motion
trajectory simultaneously. High quality un-distorted global shutter images can be further synthesized
(i.e. with RS effect removed) from the learned 3D scene representation.

In particular, we propose to represent the 3D scene with NeRF and model the camera motion trajectory
with a differentiable continuous-time cubic B-Spline in the SE(3) space. Given a sequence of rolling
shutter images, we aim to optimize the camera motion trajectory (i.e. estimate the parameters of the cu-
bic B-Splines) and learn the implicit 3D representation simultaneously. The optimization is achieved
by formulating the real physical image formation process of an RS camera, and maximizing the pho-
tometric consistency between the rendered and captured RS images. The method thus does not require
any pre-training and would have better generalization performance compared to prior learning-based
works as demonstrated in our experiments. Given the estimated continuous-time motion trajectory
and the learned 3D scene representation, we can further recover the global shutter images in arbitrary
desired frame-rate in high quality. We dub our method as USB-NeRF, i.e., Unrolling Shutter Bundle
Adjusted Neural Radiance Fields.

Extensive experimental evaluations are conducted with both synthetic and real datasets, to evaluate the
performance of our method. The experimental results demonstrate that USB-NeRF achieves superior
performance compared to prior state-of-the-art methods (e.g. as shown in Figure 1) in terms of rolling
shutter effect removal, novel view image synthesis as well as camera motion estimation.

2 RELATED WORK

We review the related works in two main areas: neural radiance fields and rolling shutter effect cor-
rection, which are the most related to our work.

Neural Radiance Fields. NeRF has received lots of attention recently due to its impressive capability
to represent 3D scenes (Mildenhall et al. (2020)). Many extensions have been proposed to further
improve its performance. For example, Müller et al. (2022); Yu et al. (2021a); Fridovich-Keil et al.
(2022); Chen et al. (2022a); Garbin et al. (2021) proposed approaches to accelerate its training and
rendering efficiency. Other extensions also explore NeRF for dynamic scenes (Pumarola et al. (2021);
Gao et al. (2021); Park et al. (2021); Tretschk et al. (2021)) and scene editing (Li et al. (2022); Liu
et al. (2021); Sun et al. (2022); Kania et al. (2022)). Apart from this, there are also many variants
have been proposed to address the training of NeRF with imperfect inputs, such as with unknown
or inaccurate poses (Wang et al. (2021); Lin et al. (2021); Chen et al. (2022b); Meng et al. (2021)),
with degraded images (e.g. blurry images Ma et al. (2022); Wang et al. (2023), dark/noisy images
Mildenhall et al. (2022); Pearl et al. (2022), low dynamic range images Huang et al. (2022)), or with a
limited number of input images etc. (Niemeyer et al. (2022); Yu et al. (2021b); Kim et al. (2022); Xu
et al. (2022); Deng et al. (2022)).

We will review those methods in detail which are the most related to our work as follows. To overcome
the effect of inaccurate camera poses, NeRF-- (Wang et al. (2021)) sets the camera poses as learnable
parameters and optimizes them with the weights of NeRF jointly by minimizing the photo-metric loss.

2



Published as a conference paper at ICLR 2024

GNeRF (Meng et al. (2021)) further integrates an additional adversarial loss into the training of the
whole pipeline to have a better camera pose estimation. BARF (Lin et al. (2021)) and L2G-NeRF
(Chen et al. (2022b)) propose to gradually apply the positional encoding to achieve a coarse-to-fine
training strategy, to better constrain the training of the network and camera pose estimation. Although
these methods have achieved impressive results with imperfect poses, images with rolling shutter
effect are still a problem for NeRF. Prior works usually assume a global shutter camera model and
use a single transformation matrix to represent the pose of each view. They are thus not suitable for
rolling shutter camera model, in which each row has different poses. We therefore parameterize the
whole motion trajectory of the RS image sequence with a differentiable continuous-time cubic B-
Spline parameterized in the SE(3) space. We then formulate the image formation process of a rolling
shutter camera into the joint training of NeRF and the parameter estimations of the cubic B-Splines.

Rolling Shutter Effect Correction. RS effect removal is a challenging problem, and many related
methods have been proposed over the last decades Forssen & Ringaby (2010); Baker et al. (2010);
Rengarajan et al. (2016); Purkait et al. (2017); Lao & Ait-Aider (2018); Vasu et al. (2018) etc. We
will detail several recent state-of-the-art methods as follows. Hedborg et al. (2012) propose to recover
the camera poses and sparse 3D geometry from a sequence of rolling shutter images. They assume
a piece-wise linear motion model for each frame and propose a sparse bundle adjustment solver for
rolling shutter cameras. Grundmann et al. (2012) present a mixture model of homographies to model
rolling shutter distortions of video streams. Zhuang et al. (2017) later develop an RS-aware differential
Structure from Motion (SfM) algorithm to estimate the relative poses of two consecutive RS images
and then rectify the distortions. As for unorganized RS images, RS effect correction has been shown
to suffer from severe degeneracy (Albl et al. (2016)). To mitigate the degeneracy of rolling-shutter
(RS) SfM, Ito & Okatani (2017) propose to add a critical camera motion constraint; Albl et al. (2020)
and Zhong et al. (2022) propose to employ dual RS images with reversed directions to avoid the
ambiguity. Deep-learning-based approaches have also been proposed to address RS effect correction
recently. Rengarajan et al. (2017) propose a convolutional neural network (CNN) to estimate the
row-wise camera motion from a single RS image. Liu et al. (2020) and Fan et al. (2021) design
special shutter unrolling networks to recover the global shutter image from two consecutive images.
Fan & Dai (2021) and Fan et al. (2022) further developed Acceleration-Net and bilateral motion field
approximation model to achieve RS temporal super-resolution. While those methods deliver state-
of-the-art performance, they usually require a large dataset for network training. Those datasets are
usually expensive to obtain in practice and further limit their generalization performance to images
with different characteristics (as shown in our experiments). In contrast, our method does not require
any pre-training with large datasets and would thus have no generalization issues.

3 METHOD

In this section, we present the details of our unrolling shutter bundle adjusted neural radiance fields
(USB-NeRF). USB-NeRF takes a sequence of rolling shutter images as input. It then learns the under-
lying 3D scene representation and recovers the continuous camera motion trajectory simultaneously,
by maximizing the photo-metric consistency between the rendered and captured RS images. The
learned 3D representation is free of rolling shutter distortions and thus able to be used for arbitrary
frame-rate global shutter image/video synthesis, provided the recovered continuous-time camera mo-
tion trajectory. The details of the method are shown in Figure 2. We will detail each component as
follows.

3.1 NEURAL RADIANCE FIELDS

We represent the 3D scene implicitly with a Multi-layer Perceptron (MLP) network. We adopt the
original architecture of NeRF proposed by Mildenhall et al. (2020). More advanced variants of NeRF,
such as voxel-based NeRF representation with improved efficiency from Yu et al. (2021a) are also
feasible to be used for our method.

Given a camera view with known pose, we can render its corresponding image from the implicit
3D representation by using volume rendering. For convenience, we present the steps to render the
intensity of a particular pixel to illustrate the concept. The rendering procedures of other pixels are
the same. To render the pixel intensity I(x) at pixel location x for a particular image with pose Tw

c , we
can query the radiance and volume density of each 3D point along the ray from camera center to the
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Figure 2: The pipeline of USB-NeRF. Given a sequence of rolling shutter images, we train NeRF to learn the
underlying undistorted 3D scene representations. We parameterize the camera motion trajectory of the image se-
quence by a continuous-time cubic B-Spline in SE(3) space. Given the capturing time for each row of the rolling
shutter image, we can interpolate its pose from the spline. Each rolling shutter image can then be synthesized
by rendering all the image rows (i.e. each with different poses) from NeRF. By maximizing the photo-metric
consistency between the synthesized and captured RS images, we can learn the underlying 3D scene representa-
tion and recover the camera motion trajectory. Global shutter images can then be rendered from the learned 3D
representation with known camera poses.

3D space passing through x. The pixel intensity (i.e. I(x)) can then be computed by accumulating the
sampled radiance and volume densities along the ray. The whole procedure can be formally defined
as follows.

Assume the sampled 3D point along the ray has depth λ, its 3D position Xw in the world coordinate
frame can be computed by (assuming the camera has a pin-hole model):

dc = K−1

[
x
1

]
, (1)

Xw = Tw
c · λdc, (2)

where dc is the ray direction defined in the camera coordinate frame, K is the camera intrinsic matrix,
x is its 2D pixel coordinate, and Tw

c is the transformation matrix used to convert a 3D vector from
the camera coordinate frame to world coordinate frame. We can then query the MLP network Fθ

parameterized by θ for the radiance c and volume density σ of the sampled 3D point Xw by:

(c, σ) = Fθ(γLx
(Xw), γLd

(dw)), (3)

where dw = Rw
c · dc is the viewing direction of the ray defined in the world coordinate frame, Rw

c
is the rotation matrix which transforms vectors from camera frame to world frame, and γ∗ represents
positional encodings for Xw and dw (Mildenhall et al., 2020). The final pixel intensity can then be
computed from N sampled 3D points along the ray via:

I(x) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (4)

where ci and σi are the predicted radiance and volume density of the ith point by Eq. 3 respectively,
δi =

∥∥Xw
i+1 −Xw

i

∥∥
2

is the distance between two adjacent points, and Ti represents the transmittance
of the ith point and can be computed by:

Ti = exp(−
i−1∑
k=1

σkδk). (5)

According to the above derivations, we can see that I(x) is also a function of the camera pose Tw
c .

Since the whole rendering procedure is differentiable, Tw
c can thus also be relaxed as a free parameter

to be optimized during the training of the MLP network (i.e. Fθ) (Lin et al., 2021).

3.2 ROLLING SHUTTER CAMERA MODEL

Different from global shutter cameras, each scanline/image row of the rolling shutter camera is cap-
tured at different timestamps. Without loss of generality, we assume the readout direction of RS cam-
era is from top to bottom as shown in Figure 3 in our formulation. This process can be mathematically
modeled as (assuming infinitesimal exposure time):

[Ir(x)]i = [Igi (x)]i, (6)
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where Ir(x) is the rolling shutter image, [I(x)]i denotes an operator which extracts the ith row from
image I(x), Igi (x) is the global shutter image captured at the same pose as the ith row of Ir(x). We
denote the pose of the ith row of Ir(x) as Tw

ci . Thus, provided the 3D representation by NeRF and the
known poses Tw

ci for i = 0, 1, ..., (H − 1), where H is the height of the image, we can easily render
the corresponding rolling shutter image Ir(x).

From the above derivations, we can see that Ir(x) is a function of θ (i.e. the weight of the MLP
network), and Tw

ci for i = 0, 1, ..., (H − 1). Furthermore, we can also find that Ir(x) is differentiable
with respect to Tw

ci and θ. It thus lays the foundation for our bundle adjustment formulation with a
sequence of rolling shutter images.

3.3 CAMERA MOTION TRAJECTORY MODELING

(a) Rolling shutter (b) Global shutter
Figure 3: Image formation models of a rolling shutter
camera and a global shutter camera respectively. It
demonstrates that each row of a rolling shutter image is
captured at different timestamps, and would thus lead to
image distortions if the image is captured by a moving
camera.

To do bundle adjustment optimization with a se-
quence of rolling shutter images, we need to pa-
rameterize the pose of each row for each image
as shown in the previous section. Commonly
used parameterization is to assign a 6 DoF pose
to the first row of each image and then do lin-
ear interpolation for subsequent rows (Hedborg
et al., 2012). Instead of using such kind of sim-
ple linear motion model, we propose to use cubic
B-Splines parameterized in the SE(3) space in
this work, which can handle more realistic com-
plex camera motions (Lovegrove et al., 2013).
Experimental ablation studies also verify that
cubic B-Splines formulation delivers better per-
formance than the simple linear motion model for complex motions.

We use a sequence of control knots with poses Tw
ci

* for i = 0, 1, ..., n, to represent the spline. For
brevity, we denote Tw

ci with Ti for subsequent derivations. We assume the control knots are sampled
with a uniform time interval ∆t and the trajectory starts from t0. Spline with a smaller ∆t can
represent a smoother motion, with an expense of more parameters to optimize. Since four consecutive
control knots determine the value of the spline curve at a particular timestamp, we can thus compute
the starting index of the four control knots for time t by:

k = ⌊ t− t0
∆t

⌋, (7)

where ⌊∗⌋ is the floor operator. Then we can obtain the four control knots responsible for time t as
Tk, Tk+1, Tk+2 and Tk+3. We can further define u = t−t0

∆t − k, where u ∈ [0, 1) to transform t into
a uniform time representation. Using this time representation and based on the matrix representation
for the De Boor-Cox formula (Qin, 1998), we can write the matrix representation of a cumulative
basis B̃(u) as

B̃(u) = C

 1
u
u2

u3

 , C =
1

6

6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

 . (8)

The pose at time t can then be computed as:

T(u) = Tk ·
2∏

j=0

exp(B̃(u)j+1 ·Ωk+j), (9)

where B̃(u)j+1 denotes the (j + 1)th element of the vector B̃(u), Ωk+j = log(T−1
k+j ·Tk+j+1).

From the above derivations, we can see that the interpolated camera poses are functions of the poses
of the control knots. They are also differentiable with respect to the poses of those control knots.

*Here we abuse the same notation as the previously defined transformation matrix of the ith row of the rolling
shutter image.
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3.4 LOSS FUNCTION

Given a sequence of rolling shutter images, we can then estimate the learnable parameters θ of NeRF
as well as the camera motion trajectory parameterized by cubic B-Spline (i.e. T0,T1, ..., and Tn), by
minimizing the photo-metric loss:

L =

M−1∑
m=0

∥∥∥Irm(x)− Ĩrm(x)
∥∥∥
2
, (10)

where M is the number of input images, Irm(x) is the captured rolling shutter image, and Ĩrm(x) is
the rendered rolling shutter image from NeRF, with known camera intrinsic parameters etc. Ĩrm(x)
is a function of θ as well as part of the control knots’ poses of the whole trajectory. We implement
the above equations with PyTorch and exploit its automatic differentiation module to compute the
Jacobian for back-propagation.

4 EXPERIMENTS

4.1 DATASETS

Synthetic datasets. We use the scripts provided by Liu et al. (2020) to synthesize 4 datasets with the
Unreal game engine (i.e. Unreal-RS-BlueRoom, Unreal-RS-LivingRoom, Unreal-RS-WhiteRoom,
Unreal-RS-Adornment) and 2 datasets with Blender (i.e. Blender-RS-Factory, Blender-RS-Tanabata).
We adopt the real motion trajectories from ETH3D (Schops et al., 2019) (i.e. the challenging shaky
sequences) to synthesize the images. Since the ground truth pose of ETH3D dataset has only 100 Hz,
we further interpolate the trajectories with cubic spline to have a continuous-time representation. We
first capture GS images in the Unreal game engine and Blender at the frequency of 10,000 Hz, then
synthesize RS images by simulating the physical image formation process of an RS camera. We con-
figure the scanline readout time as 100 µs and the image resolution as 768×480 pixels. We generate
40 RS images in total for Unreal-RS-BlueRoom, Unreal-RS-LivingRoom, Unreal-RS-WhiteRoom in-
dividually and 80 RS images for Unreal-RS-Adornment, Blender-RS-Factory, Blender-RS-Tanabata.
We also evaluate our method on a public synthetic dataset (i.e. Carla-RS† (Liu et al., 2020)) for fair
comparisons against other methods.

Real datasets. We captured 5 sequences using GoPro HERO6 Black, Canon camera (EOS M3), and
iPhone 14 Pro. All rolling shutter images are captured at the frequency of 30 Hz. The scanline readout
time of aforementioned 3 cameras is approximately 13.89 µs, 18.52 µs and 3.70 µs, respectively. We
also evaluate our method on the public real-world dataset TUM-RS (Schubert et al., 2019). TUM-RS
consists of 10 real challenging indoor sequences of rolling shutter images, which are originally used
for RS visual-inertial odometry evaluations. It records RS images, groundtruth motion trajectories
at the frequency of 20 Hz and 120 Hz, respectively. The scanline readout time of the RS camera is
approximately 29.47 µs. As whole sequences are too long for NeRF to process, we choose a subset
frames from each sequence. Details are presented in the Appendix A.2. Since there are no pixel-
aligned RS-global shutter image pairs for this dataset, we only evaluate the accuracy of recovered
camera motion trajectories. We also provide additional qualitative comparisons on the RS effect
removal against its nearest neighbor global shutter images.

4.2 BASELINE METHODS AND EVALUATION METRICS

Baselines. We compare our method against learning-free method DiffSfM (Zhuang et al., 2017) and
several learning-based state-of-the-art rolling shutter effect removal methods, e.g. DSUN (Liu et al.,
2020), SUNet (Fan et al., 2021), RSSR (Fan & Dai, 2021), CVR (Fan et al., 2022). Those learning-
based methods usually take two consecutive images as input and train a deep network to recover the
corresponding global shutter image. The network training usually requires a large dataset, which
would be expensive/difficult to obtain in real scenarios. For fair comparisons, we use the official pre-
trained models (of those baseline methods) for evaluations with Carla-RS dataset. However, for the
newly synthesized datasets (e.g. Unreal-RS) as well as the real TUM-RS dataset, we are unable to

†We find that COLMAP (Schonberger & Frahm, 2016) is hardly to recover the poses of the Fastec-RS dataset
Liu et al. (2020), which is used to initialize our method. We did not evaluate on this dataset.
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Table 1: Ablation studies for motion trajectory parameterization. USB-NeRF-lin-nodep denotes the trajec-
tory is parameterized with linear interpolation and there is no dependency between neighboring frames. USB-
NeRF-cub-nodep denotes the trajectory is parameterized with cubic B-Spline and there is no dependency be-
tween neighboring frames. The experimental results demonstrate that cubic B-Spline parameterization performs
better than linear interpolation in general, and the pose dependency between frames is also necessary.

Carla Blue Room Living Room White Room
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

USB-NeRF-lin-nodep 16.78 0.551 0.2864 19.16 0.590 0.1546 16.42 0.580 0.3598 15.71 0.469 0.3327
USB-NeRF-cub-nodep 17.52 0.569 0.2501 17.77 0.544 0.2005 16.73 0.582 0.3375 15.89 0.471 0.2976

USB-NeRF-linear 32.15 0.892 0.0704 27.74 0.847 0.0928 29.01 0.858 0.1080 26.18 0.806 0.1040
USB-NeRF-cubic 31.90 0.889 0.0701 31.85 0.909 0.0573 34.89 0.939 0.0415 30.57 0.892 0.0576

fine-tune those methods due to a limited number of images. We, therefore, use the official pre-trained
models for evaluations. Additionally, we also compare against the performance of the original NeRF
(Mildenhall et al., 2020) and BARF (Lin et al., 2021) assuming the inputs are global shutter images
with poses computed by COLMAP (Schonberger & Frahm, 2016).

Evaluation metrics. We evaluate the performance regarding rolling shutter effect removal and novel
view image synthesis with the commonly used metrics, e.g. PSNR, SSIM and LPIPS (Zhang et al.,
2018), between the recovered global shutter images and the ground truth global shutter images. We
also compute the absolute trajectory error (ATE) against that estimated by COLMAP (Schonberger
& Frahm, 2016), BARF (Lin et al., 2021) RSBA (Hedborg et al., 2012) and NW-RSBA (Liao et al.,
2023), which is the most related to ours. The ATE error metric is commonly used for trajectory
estimation evaluations in the visual odometry community.

4.3 EXPERIMENTAL RESULTS

Ablation studies We evaluate four different camera pose interpolation strategies, to justify the ad-
vantage to use cubic B-Spline for whole trajectory parameterization. Besides cubic B-Spline, we also
explore the linear interpolation strategy used in Hedborg et al. (2012), which assigns the first row of
each RS image a pose parameter (i.e. Ti) and then do linear interpolations for subsequent rows by
using two neighboring poses (i.e. Ti and Ti+1). These two strategies bring in additional constraints
between neighboring frames, i.e. the pose of a particular row in the ith frame would also depends
on the pose of the (i + 1)th frame. To relax this constraint, we also experiment with two additional
strategies. We parameterize the camera trajectory for each RS image independently, i.e. assigning
four control knots for each RS image for cubic B-Spline parameterization, and two control poses (i.e.
Tstart and Tend) for the linear interpolation case.

We conduct experiments with the synthetic Carla-RS and the Unreal-RS datasets, by evaluating the
rolling shutter effect removal performance in terms of PSNR, SSIM and LPIPS metrics. The ex-
perimental results are presented in Table 1. The results demonstrate that the optimization cannot be
properly constrained if there is no pose dependency between neighboring frames. It can be explained
by the degeneracy analysis for rolling shutter structure from motion (SfM) done by Albl et al. (2016),
which states that near parallel readout directions of RS images would lead to degenerate solutions for
SfM. The pose dependency by the other two parameterizations would bring in additional constraints
to avoid the degenerate solutions, which are verified by the experimental results.

The results also reveal that cubic B-Spline interpolation performs similarly to linear interpolation if
the camera moves at a constant velocity (e.g. Carla-RS dataset). However, it performs much better
than linear interpolation, if the camera has realistic complex motions (e.g. Unreal-RS dataset). There-
fore, we present experimental results for subsequent evaluations with the cubic B-Spline interpolation
unless explicitly stated.

Quantitative evaluation results. We evaluate the performance of our method against other state-
of-the-art methods in terms of rolling shutter effect removal and the accuracy of trajectory estimation,
with both synthetic and real datasets. Table 2 presents the rolling shutter effect removal comparisons.
It demonstrates that our method performs similarly to prior learning-based methods if those methods
are trained on the respective dataset (e.g. Carla-RS dataset). However, those learning-based methods
exhibit poor generalization performance when no fine-tuning on new dataset is performed (e.g. Unreal-
RS dataset), while our method delivers good performance consistently, as our method does not rely
on pre-training. Our method also performs better than learning-free method DiffSfM (Zhuang et al.,
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Table 2: Quantitative comparisons on the synthetic datasets in terms of rolling shutter effect removal.
Experimental results demonstrate that our method performs similarly to other learning-based methods on the
Carla-RS dataset, on which those networks have been properly trained. However, our method performs much
better on the Unreal-RS dataset, due to the poor generalization performance of other methods. USB-NeRF also
performs better than the original NeRF and BARF, since they did not model the rolling shutter effect in their
formulation.

Carla Blue Room Living Room White Room
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DiffSfM(Zhuang et al., 2017) 24.20 0.775 0.1322 17.10 0.497 0.2073 18.68 0.601 0.2236 14.94 0.469 0.2218
DSUN (Liu et al., 2020) 26.46 0.807 0.0703 21.25 0.682 0.1746 23.22 0.762 0.1507 20.45 0.643 0.1852
SUNet (Fan et al., 2021) 29.18 0.850 0.0658 23.32 0.721 0.1513 26.64 0.7957 0.1167 22.37 0.6866 0.1422
RSSR (Fan & Dai, 2021) 24.78 0.867 0.0695 22.15 0.731 0.1369 22.14 0.770 0.1258 19.19 0.697 0.1392
CVR (Fan et al., 2022) 31.74 0.929 0.0368 23.25 0.745 0.1268 23.14 0.785 0.1141 20.85 0.715 0.1212

NeRF (Mildenhall et al., 2020) 20.85 0.620 0.1734 19.12 0.569 0.3289 21.44 0.682 0.3495 18.29 0.509 0.4104
BARF (Lin et al., 2021) 20.95 0.664 0.1845 19.14 0.576 0.3446 21.48 0.690 0.3341 18.43 0.545 0.3837

USB-NeRF (ours) 31.90 0.889 0.0701 31.85 0.909 0.0573 34.89 0.939 0.0415 30.57 0.892 0.0576

Table 3: Quantitative comparisons on both synthetic and real datasets in terms of the accuracy of trajectory
estimation for translation error (m). The experimental results demonstrate that rolling shutter distortions affect
the accuracy of motion trajectory estimations. Due to proper modelling, our method performs much better than
state-of-the-art methods. It also demonstrates that cubic B-Spline interpolation is superior to linear interpolation.
The ATE metrics of the TUM-RS (Schubert et al., 2019) dataset are averaged over 10 sequences and details
of every sequence are presented in the Appendix A.3 (Table 8). x denotes method failed on the corresponding
sequence.

COLMAP BARF RSBA NW-RSBA USB-NeRF-linear USB-NeRF-cubic

Carla .1931±.1090 .2245±.1293 .1923±.0959 .2720±.1404 .0570±.0335 .0530±.0342
Blue Room .1593±.0949 .1446±.0819 .0640±.0308 x .0062±.0035 .0013±.0013

Living Room .0967±.0422 .0919±.0400 .1010±.0400 x .0144±.0089 .0035±.0025
White Room .1097±.0422 .1191±.0521 .1210±.0410 x .0115±.0067 .0044±.0033
Adornment .3269±.1952 .3918±.2189 x x .0536±.0834 .0162±.0122

Factory .2443±.1003 .2149±.1326 x x .0123±.0076 .0072±.0052
Tanabata .1397±.0745 .1957±.1020 x x .0154±.0085 .0130±.0077

TUM-RS .0486±.0228 .0873±.0391 .0688±.0322 .1374±.0664 .0150±.0104 .0136±.0090

2017) for all datasets. Additional experimental results in terms of rolling shutter effect removal on
other synthetic sequences are presented in Appendix A.3 (Table 7).

The results shown in Table 2 also reveal that original NeRF (Mildenhall et al., 2020) and BARF (Lin
et al., 2021) cannot deliver satisfying results if the rolling shutter image formation process is not
explicitly considered. Even BARF (Lin et al., 2021) also optimizes the camera poses to eliminate
the effect of inaccurate poses, it still cannot learn the correct underlying 3D representations, which
delivers poor recovered global shutter images.

Table 3 presents the camera motion trajectory estimation results with both synthetic and real datasets.
The results demonstrate that both COLMAP (Schonberger & Frahm, 2016) and BARF (Lin et al.,
2021) suffer from the rolling shutter effect. The introduced distortions would affect camera pose
estimations if they are not properly handled. On the contrary, our method does not have such limi-
tations, since we formulate the physical image formation process of RS camera into the training of
NeRF. Our method also performs better than SOTA RS-aware bundle adjustment methods (i.e. RSBA
(Hedborg et al., 2012), NW-RSBA (Liao et al., 2023)) in terms of the ATE metric. The results also
reveal that cubic B-Spline interpolation performs better than linear interpolation for both synthetic and
real datasets, in terms of the accuracy of the recovered motion trajectories. Due to the limited space,
we present detailed quantitative experimental results about trajectory estimation with real datasets in
Appendix A.3 (Table 8).

More quantitative evaluation results (e.g. on novel view image synthesis, with un-ordered image
sequences) are presented in Appendix A.3 (Table 5 and Table 6). They also demonstrate the better
performance of our method over prior state-of-the-art methods.

Qualitative evaluation results. We also evaluate the qualitative performance of our method against
the other baseline methods. Figure 4 presents the comparisons for both Carla-RS and Unreal-RS
datasets. Figure 5 presents the results with the TUM-RS dataset (Schubert et al., 2019). Since the
TUM-RS dataset does not provide pixel-aligned rolling-global shutter image pairs, we choose the
nearest neighbor global shutter image (captured by another global shutter camera) for comparison.

The experimental results demonstrate that our method can better exploit multi-view information for
rolling shutter effect removal, compared to DSUN (Liu et al., 2020), RSSR (Fan & Dai, 2021) and
CVR (Fan et al., 2022) in Figure 4 (Carla-RS), even they are properly trained on the corresponding

8



Published as a conference paper at ICLR 2024

C
ar

la
-R

S
(L

iu
et

al
.,

20
20

)
B

lu
e

R
oo

m

Rolling shutter DSUN RSSR CVR BARF USB-NeRF

Figure 4: Qualitative comparisons with Carla-RS datasets (Liu et al., 2020) and Unreal-RS datasets. The
experimental results demonstrate that our method achieves better performance compared to prior works. The
darker the 3rd and the 6th rows, the performance is better.

Rolling shutter RSSR CVR BARF USB-NeRF Global shutter

Figure 5: Qualitative comparisons with real TUM-RS datasets (Schubert et al., 2019). Since the dataset does
not have pixel-aligned rolling-global shutter image pairs, we choose the nearest neighbor global shutter images
for comparisons. The experimental results demonstrate that RSSR and CVR fail to correct the RS effect due
to their poor generalization performance. BARF also fails since it does not consider the rolling shutter camera
model, while our method successfully removes the RS effect.

dataset. Figure 4 (Blue Room) and Figure 5 demonstrate that both RSSR (Fan & Dai, 2021) and CVR
(Fan et al., 2022) have a poor generalization performance if they are not fine-tuned on the respective
datasets, which is common for practical applications. On the contrary, our method does not have such
limitations and performs better than those learning-based RS effect removal methods consistently.
The results also reveal that BARF (Lin et al., 2021) fails to learn the underlying undistorted 3D scene
representation even though it optimizes the camera poses. It proves the necessity to properly model
the physical image formation process of RS camera into the training of NeRF for better 3D scene
reconstruction. More qualitative results can also be found in Appendix A.3 (e.g. novel view image
synthesis, rolling shutter effect removal, trajectory estimation etc.) and supplementary video. They
also demonstrate the superior performance of our method over prior works.

5 CONCLUSION

In this paper, we presented unrolling shutter bundle-adjusted neural radiance fields. The method takes
advantage of the powerful representation ability of NeRF and a continuous-time trajectory representa-
tion with cubic B-Spline. Given a sequence of rolling shutter images, our method successfully learns
the true underlying 3D representations and recovers the motion trajectory accurately. Experimental
results demonstrate the superior performance of our method against prior state-of-the-art works, in
terms of camera motion estimation, rolling shutter effect removal and novel view image synthesis etc.
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A APPENDIX

In the appendix, we present the details on method implementation and training, frame selections from
TUM-RS (Schubert et al., 2019) datasets, more experimental results on image quality of synthesized
novel views and visualization of estimated motion trajectories. The rendered novel view high frame-
rate global shutter video is presented in the supplementary video. We will present each part as follows.

A.1 IMPLEMENTATION AND TRAINING DETAILS

We implement our method in PyTorch. We use Adam (Kingma & Ba, 2014) optimizer to estimate the
weights of the MLP network and the pose parameters of the spline. The optimizer is configured with
β1 = 0.9 and β2 = 0.999 for NeRF and pose optimizations. We set the learning rates to be 5× 10−4

and 1 × 10−3 for the NeRF and pose optimizers respectively. Both learning rates gradually decay to
5× 10−5 and 1× 10−5 respectively. During each training step, we randomly select 7200 pixels from
all training images to minimize the loss function presented in Eq. 10 and we run a total of 200K steps
on an NVIDIA RTX 3090 GPU. We adopt the linear adjustment of the positional encoding starting
from steps 20K to 100K to achieve the coarse-to-fine training strategy as in BARF (Lin et al., 2021).
We select the pose corresponding to the first row of each image as the control knots of the spline, and
they are initialized with the poses computed via COLMAP (Schonberger & Frahm, 2016) from the
sequence of rolling shutter images.

A.2 DETAILS ON FRAME SELECTIONS FROM TUM-RS DATASETS

Since the total number of frames of each TUM-RS (Schubert et al., 2019) sequence is too long to
be processed by NeRF (Mildenhall et al., 2020) and our method, we choose sub-sequence frames to
evaluate our method. The details are listed in Table 4.
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Table 4: Selected frames from each sequence of TUM-RS datasets (Schubert et al., 2019).

Seq. Start frame timestamp End frame timestamp

1 1548685771426550686 1548685773576617686
2 1548685824354495627 1548685826504562627
3 1548685846189303526 1548685848339371526
4 1548685907331049323 1548685909481116323
5 1548686030960692141 1548686033110759141
6 1548689768046781352 1548689770196849352
7 1548689850274927799 1548689852424994799
8 1548689861503747264 1548689863653814264
9 1548689939497068095 1548689941647135095

10 1548689997870607830 1548690000020674830

Table 5: Quantitative comparisons on the synthetic datasets in terms of novel view synthesis. Experimental
results demonstrate that our method is able to synthesize high-quality novel view global shutter images.

Blue Room Living Room White Room
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF+DiffSfM(Zhuang et al., 2017) 13.87 0.420 0.7271 13.35 0.398 0.6415 14.11 0.467 0.5926
NeRF+DSUN (Liu et al., 2020) 18.08 0.550 0.4391 17.47 0.574 0.5005 18.96 0.592 0.3821
NeRF+SUNet (Fan et al., 2021) 19.52 0.641 0.3732 18.69 0.662 0.4031 14.87 0.412 0.5885
NeRF+RSSR (Fan & Dai, 2021) 17.86 0.566 0.3175 18.73 0.651 0.3628 11.83 0.296 0.6422
NeRF+CVR (Fan et al., 2022) 15.94 0.464 0.4968 15.88 0.503 0.5753 20.67 0.703 0.2506
NeRF (Mildenhall et al., 2020) 18.56 0.562 0.3820 15.62 0.446 0.6098 15.60 0.426 0.5616

BARF (Lin et al., 2021) 19.13 0.540 0.4592 16.03 0.544 0.5296 12.94 0.389 0.7600

USB-NeRF (ours) 28.99 0.886 0.0757 33.33 0.936 0.0468 29.11 0.889 0.0598

A.3 ADDITIONAL EXPERIMENTAL RESULTS

To evaluate the performance of our method for novel view image synthesis, we select 6 additional
views from each scene of Unreal-RS datasets. Since DiffSfM (Zhuang et al., 2017), DSUN (Liu
et al., 2020), SUNet (Fan et al., 2021), RSSR (Fan & Dai, 2021) and CVR(Fan et al., 2022) cannot
synthesize novel view image, we first apply these approaches to restore global shutter images, and
then train the original NeRF (Mildenhall et al., 2020). Table 5 and Figure 6 demonstrate that our
method outperforms prior methods in terms of novel view image synthesis. The poor performances
of DSUN (Liu et al., 2020), SUNet (Fan et al., 2021), RSSR (Fan & Dai, 2021) and CVR(Fan et al.,
2022), are caused by their poor generalization capabilities on domain-shifted datasets. Learning-free
method DiffSfM (Zhuang et al., 2017) similarly shows poor performance on all datasets as it could not
realize perfect rolling shutter effect removal even with bundle adjustment. The experimental results
also reveal that both NeRF (Mildenhall et al., 2020) and BARF (Lin et al., 2021) cannot perform
well either, due to their ignorance of the rolling shutter effect presented in the training images. Since
the Carla-RS (Liu et al., 2020) does not provide additional images for novel view image synthesis
evaluation, we only present the qualitative results in Figure 7. It also demonstrates that our method
could take advantage of multi-view information instead of only two views, and thus performs better
than existing methods in terms of novel view image synthesis.

To further evaluate our method, we also train USB-NeRF with un-ordered images (i.e. there is no
pose dependency among input frames). As mentioned in our main paper and proved by Albl et al.
(2016), rolling shutter bundle adjustment with un-ordered images would have degenerated solutions if

Table 6: Quantitative comparisons on the unorganized synthetic datasets. The experimental results demon-
strate that our method also performs better than prior methods with un-ordered rolling shutter images, in terms of
rolling shutter effect correction.

Blue Room Living Room Roof
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF (Mildenhall et al., 2020) 20.10 0.601 0.3177 24.98 0.784 0.2364 19.10 0.489 0.5200
BARF (Lin et al., 2021) 20.28 0.591 0.3608 24.58 0.776 0.2533 19.14 0.493 0.5234

USB-NeRF 31.13 0.900 0.0615 32.46 0.923 0.0364 27.26 0.747 0.1469
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Figure 6: Qualitative comparisons with synthetic datasets for novel view synthesis. The experimental results
demonstrate the ability of our approach to synthesize novel view images in good quality. The even columns
present the error residual images between the rendered and ground-truth global shutter images. The darker the
better.

NeRF+DSUN NeRF+SUNet NeRF+RSSR NeRF+CVR USB-NeRF

Figure 7: Qualitative comparisons with Carla-RS datasets for novel view synthesis. The experimental results
demonstrate the ability of our approach to synthesize novel view images in good quality, by taking advantage of
multi-view images.

the input images are not properly captured. Thus, we follow the instructions suggested by Albl et al.
(2016), i.e. the mutual angle between readout directions should be larger than 30 degrees, to generate
the training dataset. We synthesized 3 sequences of un-ordered rolling shutter images with Unreal
game engine (i.e. Unreal-RS-BlueRoom, Unreal-RS-LivingRoom, Unreal-RS-Roof) in total. During
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NeRF (Mildenhall et al., 2020) BARF (Lin et al., 2021) USB-NeRF

Figure 8: Qualitative comparisons with unordered Unreal-RS datasets. The experimental results demonstrate
that our approach could also generate high-quality global shutter images with a set of un-ordered rolling shutter
images. The even columns present the error residual images between the rendered and ground-truth global shutter
images. The darker the better.

Table 7: Quantitative comparisons on the synthetic datasets in terms of rolling shutter effect removal. Ex-
perimental results demonstrate that our method also achieves better performance compared to previous methods
on these additional sequences.

Adornment Factory Tanabata
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DiffSfM(Zhuang et al., 2017) 14.91 0.395 0.3012 15.21 0.406 0.2310 11.63 0.337 0.3174
DSUN(Liu et al., 2020) 17.84 0.534 0.2603 19.75 0.565 0.1835 16.06 0.493 0.2135
SUNet(Fan et al., 2021) 19.11 0.563 0.2273 22.84 0.647 0.1411 17.79 0.558 0.1832
RSSR(Fan & Dai, 2021) 18.56 0.602 0.1892 19.34 0.631 0.1438 16.06 0.566 0.1660
CVR(Fan et al., 2022) 19.70 0.620 0.1774 20.89 0.649 0.1292 17.68 0.581 0.1480

NeRF (Mildenhall et al., 2020) 17.28 0.473 0.6193 18.02 0.459 0.4621 15.04 0.369 0.5828
BARF (Lin et al., 2021) 17.46 0.485 0.5614 17.94 0.459 0.436 15.28 0.351 0.6742

USB-NeRF (ours) 29.97 0.876 0.0892 32.67 0.898 0.0819 23.84 0.750 0.1947

experiments, we represent the camera motion within individual frame readout time by cubic B-Spline
with 4 control knots. Table 6 and Figure 8 present the experimental results. Since prior rolling shutter
effect removal networks usually rely on two consecutive frames to restore the global shutter image,
they are not suitable for this dataset. We only evaluate our method against both NeRF (Mildenhall
et al., 2020) and BARF (Lin et al., 2021). The experimental results demonstrate that our method also
outperforms prior methods with unordered rolling shutter images.

Table 8: Quantitative comparisons on TUM-RS datasets (Schubert et al., 2019) in terms of the Absolute
Trajectory Error (ATE) metric (m). The experimental results demonstrate that our method performs much
better than prior works in terms of the accuracy of motion trajectory estimation.

COLMAP BARF RSBA NW-RSBA USB-NeRF-linear USB-NeRF-cubic

seq-1 .0237±.0233 .0345±.0176 .0136±.0074 .1162±.0340 .0047±.0029 .0038±.0021
seq-2 .1432±.0676 .1847±.0635 .3574±.1713 .4349±.2047 .0592±.0506 .0560±.0332
seq-3 .0476±.0340 .0743±.0437 .0106±.0057 .0123±.0065 .0120±.0060 .0111±.0060
seq-4 .0180±.0059 .0294±.0113 .0064±.0026 .0473±.0289 .0064±.0026 .0050±.0023
seq-5 .0662±.0275 .0999±.0394 .0144±.0048 .0366±.0554 .0119±.0043 .0114±.0041
seq-6 .0349±.0124 .0719±.0451 .0137±.0078 .0626±.0327 .0163±.0074 .0035±.0021
seq-7 .0184±.0065 .0185±.0057 .0056±.0034 .0700±.0289 .0036±.0015 .0030±.0012
seq-8 .0417±.0189 .0638±.0340 .0102±.0040 .1787±.0863 .0096±.0069 .0095±.0070
seq-9 .0512±.0191 .1509±.0835 .2432±.1061 .2780±.1186 .0128±.0130 .0150±.0166
seq-10 .0417±.0122 .1450±.0475 .0126±.0090 .1378±.0682 .0135±.0085 .0178±.0149

Avg. .0486±.0228 .0873±.0391 .0688±.0322 .1374±.0664 .0150±.0104 .0136±.0090
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Figure 9: Qualitative comparisons on synthetic datasets for rolling Shutter effect removal. The experimental
results demonstrate that our method is superior than all prior works. The even columns present the error residual
images between the rendered and ground-truth global shutter images. The darker the better.

Table 9: Quantitative comparisons on synthetic datasets in terms of the Relative Pose Error for rotation
part (°/frame). The experimental results demonstrate that rolling shutter distortions affect the accuracy of motion
trajectory estimations. Due to proper modeling, our method performs much better than state-of-the-art methods.
It also demonstrates that cubic B-Spline interpolation is superior to linear interpolation. x denotes method failed
on the corresponding sequence.

COLMAP BARF RSBA NW-RSBA USB-NeRF-linear USB-NeRF-cubic

Carla 2.357 ± 1.647 2.762 ± 2.041 1.844 ± 1.080 2.090 ± 1.492 0.586 ± 0.174 0.528 ± 0.157
BlueRoom 2.594 ± 1.411 8.123 ± 3.585 7.257 ± 3.413 x 0.127 ± 0.074 0.046 ± 0.041

LivingRoom 2.145 ± 1.320 9.016 ± 6.243 7.405 ± 4.383 x 0.381 ± 0.140 0.108 ± 0.053
WhiteRoom 1.810 ± 0.771 4.702 ± 2.077 4.212 ± 1.631 x 0.194 ± 0.127 0.089 ± 0.039
Adornment 2.723 ± 1.438 10.390 ± 4.659 x x 0.581 ± 1.273 0.234 ± 0.147

Factory 2.194 ± 1.187 8.523 ± 4.028 x x 0.209 ± 0.112 0.135 ± 0.080
Tanabata 2.744 ± 1.662 15.187 ± 13.197 x x 1.042 ± 0.459 1.008 ± 0.463

Avg. 2.367± 1.348 8.386± 5.119 5.179± 2.627 2.090± 1.492 0.446± 0.337 0.307± 0.140

Additional experimental results on more synthetic datasets in terms of the rolling shutter effect re-
moval are also presented in Table 7 and Figure 9. It demonstrates that our method also performs better
than prior state-of-the-art methods. Additional results on real-world datasets captured using GoPro
HERO6 Black, Canon camera (EOS M3), and iPhone 14 Pro are presented in Figure 10, Figure 11
and Figure 12. The results on real-world dataset demonstrate that both NeRF(Mildenhall et al., 2020)
and BARF(Lin et al., 2021) fail to correct the RS distortion, while our method renders correct global
shutter images with no artifact.
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Table 10: Quantitative comparisons on real datasets in terms of the Relative Pose Error for rotation part
(°/frame). The experimental results demonstrate that rolling shutter distortions affect the accuracy of motion
trajectory estimations. Due to proper modeling, our method performs much better than state-of-the-art methods.
It also demonstrates that cubic B-Spline interpolation is superior to linear interpolation. x denotes method failed
on the corresponding sequence.

COLMAP BARF RSBA NW-RSBA USB-NeRF-linear USB-NeRF-cubic

seq1 0.278 ± 0.284 0.283 ± 0.152 0.578 ± 0.470 0.671 ± 0.545 0.114 ± 0.072 0.108 ± 0.071
seq2 0.794 ± 0.428 0.737 ± 0.432 9.789 ± 14.344 28.325 ± 40.662 1.365 ± 1.733 0.777 ± 0.838
seq3 0.271 ± 0.145 0.272 ± 0.176 0.397 ± 0.208 0.250 ± 0.116 0.159 ± 0.115 0.145 ± 0.108
seq4 0.225 ± 0.100 0.211 ± 0.110 0.247 ± 0.126 1.049 ± 0.571 0.160 ± 0.093 0.155 ± 0.093
seq5 0.607 ± 0.286 0.545 ± 0.199 2.245 ± 1.784 3.131 ± 2.316 0.168 ± 0.087 0.166 ± 0.082
seq6 0.345 ± 0.163 0.322 ± 0.247 0.575 ± 0.257 0.851 ± 0.874 0.180 ± 0.089 0.149 ± 0.080
seq7 0.219 ± 0.123 0.224 ± 0.143 0.324 ± 0.201 1.063 ± 0.700 0.146 ± 0.100 0.128 ± 0.097
seq8 0.520 ± 0.325 0.249 ± 0.103 0.502 ± 0.251 1.718 ± 1.011 0.151 ± 0.069 0.135 ± 0.066
seq9 0.322 ± 0.165 0.445 ± 0.276 4.400 ± 7.312 41.983 ± 47.732 0.193 ± 0.211 0.263 ± 0.524
seq10 0.351 ± 0.165 1.006 ± 2.460 1.889 ± 1.117 4.752 ± 4.748 0.193 ± 0.277 0.250 ± 0.499

Avg. 0.393 ± 0.218 0.429 ± 0.430 2.095 ± 2.607 8.379 ± 9.928 0.283 ± 0.285 0.227 ± 0.246

Table 8 presents the details on trajectory estimation in terms of the ATE metric for translation error
with the TUM-RS dataset. Table 9 and Table 10 presents the details of RPE metric for rotation error.
The results show that our method performs consistently better than both COLMAP and BARF. It also
demonstrates that our method is able to perform on-par against prior rolling shutter bundle adjustment
methods, i.e. RSBA and NW-RSBA, and achieves better performance in terms of average ATE and
RPE metrics over all sequences.

NeRF (Mildenhall et al., 2020) BARF (Lin et al., 2021) USB-NeRF Input RS image

Figure 10: Qualitative comparisons on real-world datasets captured by a Canon camera. The camera ex-
hibits forward and backward motion, which challenges both NeRF and BARF to recover the true underlying 3D
scene representation. Our method recovers the correct global shutter images. Note the camera is not parallel to
the ground during capture.
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NeRF (Mildenhall et al., 2020) BARF (Lin et al., 2021) USB-NeRF Input RS image

Figure 11: Qualitative comparisons on real-world datasets captured by GoPro HERO6. The images are
captured on a moving tram in constant direction. It demonstrates that even both NeRF and BARF can render
clear images, the recovered scene is distorted. Our method can correctly un-distort it.

NeRF (Mildenhall et al., 2020) BARF (Lin et al., 2021) USB-NeRF Input RS image

Figure 12: Qualitative comparisons on real-world datasets captured by iPhone 14 Pro. The images are
captured on a moving bus in constant direction. It demonstrates that both NeRF and BARF fail to correct the
distortion and produce additional artifacts, while our method successfully restores the true underlying 3D scene
representation.

A.4 TRAJECTORY VISUALIZATION

We also present additional qualitative results in terms of motion trajectory estimations. The experi-
ments are conducted via the real TUM-RS datasets (Schubert et al., 2019). The experimental results
shown in Figure 13 and Figure 14 demonstrate that USB-NeRF is able to recover the motion trajecto-
ries on TUM-RS (Schubert et al., 2019) datasets.

A.5 HIGH-FRAME GLOBAL SHUTTER VIDEOS

To further demonstrate the advantage of our method, we also present a supplementary video which
demonstrates the ability of our method to recover high quality high frame-rate global shutter images
from a single rolling shutter image, which encodes rich temporal information. The video is attached
as a separate file. The results also demonstrate the superior performance of our method against prior
state-of-the-art methods.
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Figure 13: Comparisons of estimated trajectories for sequence 1-6 of real TUM-RS datasets (Schubert
et al., 2019). The experimental results demonstrate that our method is able to estimate the motion trajectories
with a sequence of rolling shutter images.
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Figure 14: Comparisons of estimated trajectories for sequence 7-10 of real TUM-RS datasets (Schubert
et al., 2019). The experimental results demonstrate that our method is able to estimate the motion trajectories
with a sequence of rolling shutter images.
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