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ABSTRACT

Large language model(LLM)-based agents have demonstrated exceptional perfor-
mance across a wide range of complex interactive tasks. However, they often
struggle with long-horizon interactive tasks common in domains like embodied
Al The complexity and vast action spaces in these settings lead to compounding
errors, where a single suboptimal action can derail an entire trajectory, causing
the agent to exhaust its limited step budget on inefficient or unrecoverable paths.
To overcome this without costly fine-tuning, we draw inspiration from software
debugging, where execution logs are analyzed to preemptively catch errors. We
propose TRAJECTORY GRAPH COPILOT, a novel framework that acts as a “copi-
lot” for LLM agents by diagnosing potential action errors before they are executed.
At its core, GEBUGGER models historical trajectories as a probabilistic graph and
uses a Graph Neural Network to identify sequential action patterns that frequently
lead to failure. Functioning as a proactive diagnostic sandbox, our method pro-
vides early warnings on potentially flawed actions, prompting the agent to self-
correct. This pre-action error diagnosis prevents costly mistakes, significantly
enhancing the agent’s ability to complete long-horizon tasks successfully. The
extensive experiments on four benchmarks with three LLM agents demonstrate a
14.69% pass ratio improvement on average.

1 INTRODUCTION

Large language models (LLMs), such as ChatGPT (OpenAl, 2022), Gemini (Team et al.,|2024)), and
Llama (Touvron et al., 2023)), possess a remarkable capacity language comprehension and genera-
tion. When equipped with tools (Yang et al., 2023} [Wu et al., [2024])), these LLMs become powerful
agents capable of extraordinary performance in complex applications such as coding (Islam et al.,
2024;|Qian et al., 2023 [Zhang et al., 2024)), scientific reasoning (Wang et al., 2022b) and Embodied
Artificial Intelligence(Embodied AI) (Puig et al.,|2018;[Shridhar et al., 2020;|Ma et al.,[2024). These
tasks often require agents to plan and execute long sequences of actions while interacting with an
environment (Li et al.| 2022b} [Xiong et al.| 2024; [Li et al.| 2024b;|Yang et al., 2025)).

Despite their powerful reasoning capabilities, LLM agents often falter in complex and unfamiliar en-
vironments due to compounding errors (Wang et al.| [2024a; |Xie et al.,[2024b)). Prevailing strategies
attempt to mitigate this through post-hoc learning, using methods like environmental data explo-
ration (Xiang et al., 2023} |Xie et al.,[2024b; [Song et al., [2024) or refinement learning (Xiong et al.,
2024} Yuan et al.||2025; |Wang et al., 2025). However, these approaches share a fundamental limita-
tion. By learning primarily from the final outcomes of entire trajectories, they struggle to pinpoint
the specific, step-level actions that lead to failure. A reward for a trajectory provides a much weaker
learning signal than feedback explaining why a particular action was incorrect (e.g., targeting a non-
existent object or performing an invalid sequence). Without this granular, causal feedback, agents
learn inefficiently from sparse signals and are prone to repeating similar mistakes.

To address this gap, we shift the paradigm from post-hoc trajectory analysis to proactive, step-level
error diagnosis. We draw inspiration from software debugging. When a program fails, a developer
uses a debugger to trace the execution, inspect the context, and pinpoint the exact line of code that
caused the error. This pre-action, fine-grained analysis is far more effective than simply observing
that the program crashed. This inspires our framework, TRAJECTORY GRAPH COPILOT, which
incorporates a graph-based diagnostic module, GEBUGGER. It acts as a “debugger” for the LLM
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agent, analyzing its intended action in the context of the recent past to flag potential errors before
they are executed. This allows the agent to find potential errors early, preventing the accumulation
of costly mistakes that would otherwise doom the entire task.

By framing agent execution within the Partially Observable Markov Decision Process (POMDP)
paradigm (Xiong et al., |[2024; Wang et al., 2025)), our method @ transforms historical trajectories
into a probabilistic graph. This structure encodes domain knowledge by capturing the underly-
ing relationships between actions and observations (Bishop & Nasrabadil [2006; [Koller, [2009). In
our formulation, nodes represent actions and edges encode observations, which can be viewed as
an adaptation of the classical state—transition diagram. Unlike the traditional methods, such as the
retrieve-based methods (Zhou et al., |2024), our graph-based approach offers two key advantages: it
® provides higher performance and @ requires fewer samples to achieve the same level error detec-
tion rate. We detail these insights in Section[d] Furthermore, instead of directly suggesting correct
actions, GEBUGGER can @ serves as a diagnosis sandbox for the LLM-Agent decision making. By
providing only potential error warnings, our method encourages LLM agents to rely on their own
reasoning. This minimizes the bias introduced by fine-tuning on a fixed dataset, ultimately leading
to better generalization on new tasks.

To empirically verify the effectiveness of our framework, we conduct experiments on four bench-
marks, including embodied Al environments and planning tasks. We begin by collecting trajectory
datasets and annotating actions with corresponding labels, followed by conducting detection experi-
ments on them. Compared with traditional text classification and LLM-based methods, GEBUGGER
demonstrates a consistent advantage in step-level error detection. Moreover, we apply GEBUGGER
as a diagnosis sandbox to provide error feedback in advance. By leveraging In-Context Learn-
ing(ICL) with feedback information, our method enhances LLM agents’ pass ratio by 14.69% on
average, outperforming baselines. In summary, the contributions are as follows:

% We introduce, GEBUGGER, a novel method based on a probabilistic graph model, to address the
challenge of step-level action error detection in LLM agents.

% Our framework, TRAJECTORY GRAPH COPILOT, integrates this error detection module as a dis-
tinct entity. By serving as a graph-based diagnostic module for LLM agents, our approach en-
hances their performance by providing real-time error warnings.

% Experiments conducted across multiple environments and LLM agents confirm the superiority of
GEBUGGER in error detection and validate the effectiveness of the overall framework.

2 PRELIMINARIES

Long-Horizon Tasks as POMDPs. Following prior work, we model an LLM agent’s interaction
in a long-horizon task as a POMDP (Carta et al.,|2023; Wang et al., 2025} Song et al., 2024; Xiong
et al., [2024). A POMDRP is defined by the tuple M = (G, S, A, J, R, O, ), where G is the goal
space, S is the state space, A is the action space, J : S x A — S is the state-transition function,
R :S x Ax G — Ris the reward function, O is the observation space, and ~y is the discount
factor. In the text-based environments considered by this work, the spaces G, A, and O are subsets
of natural language.

Graphical Models for Sequential Decision Making. A Markov Decision Process can be concep-
tually viewed as a Probabilistic Graphical Model (PGM), where nodes represent states and edges
represent transitions. This graphical perspective highlights the sequential dependencies inherent in
agent trajectories. However, in a POMDP, the true state is latent, and the belief state (a probability
distribution over states) is often high-dimensional and intractable to model explicitly, especially with
language-based observations. Directly constructing and reasoning over a formal state-based PGM
is therefore impractical. This motivates our work to develop a different, more practical graphical
representation learned directly from trajectory data to diagnose action errors.

Problem Formulation: Step-Level Error Diagnosis. Given a particular goal ¢ € G, an LLM agent
generates a trajectory history of alternating observations and actions, (0g, ag, - -.,0¢—1, at—1,0¢)-
Before executing the next proposed action a,, our goal is to determine if this action is productive or
a potential error. To formalize what constitutes a “good” action, we move beyond simple binary
success/failure signals. We conceptualize complex tasks as requiring the completion of several
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ordered milestones. For example, in AlfWorld, the task “clean a plate and put it in countertop”
involves milestones like a plate being collected, cleaned, and placed correctly. An action’s quality
can then be judged by its progress toward the next milestone. Figure [I] visualizes this concept,
showing how an ideal “Expert Trajectory” progresses cleanly through milestone states, whereas an
“Agent Trajectory” may follow a less optimal path.

To create an informative label space ) = {1, ..., C'}, we de-
fine a set of fine-grained error categories that capture com-
mon failure modes in long-horizon tasks. These categories
are inspired by task planning principles—using milestones
to identify errors like Precondition Not Met (P.M.) or Con-
dition Met, Action Not Taken (C.M.)—but also include gen-
eral procedural errors such as Repeated Action (R.A.) and
lllegal Action (I.A.). This multi-faceted approach provides
a rich, step-level diagnostic signal. The complete set of )
six error definitions is detailed in Appendix [B.I] Our ob- . Los ;
jective is to learn a diagnostic function f that maps a tra- N '
jectory history to a label for the current proposed action: g - - (‘17/

f i (o0,a0,...,01,a¢) — y;, wherey, € ). This pro-

vides granular, step-level feedback that is far more informa- @ BeliefState /Y Initial State
tive than a sparse, trajectory-level reward. - -

'».f.’, i Observation Milestone State
3  TRAJECTORY GRAPH COPILOT ;i Goal State Expert Trajectory
LN Action » Agent Trajectory

In this section, we introduce a novel framework, TRAJEC-

TORY GRAPH COPILOT for LLM agents, which includes Figure 1: A conceptual diagram of a
a graph-based error diagnosis module, GEBUGGER. Ini- poMDP illustrating our error diagno-
tially, we transform text trajectories into graphs from the g task. An expert follows an optimal
perspective of PGM. Subsequently, we adopt the idea of trajectory from the Initial State (bo)
TextGCN (Yao et al., |2019) to regard the action error di- (4 the Goal State (by) by progressing
agnosis as a node classification task. Finally, we apply through Milestone States (bg, b3). In
GEBUGGER as a diagnosis sandbox in LLM agents for step-  ¢ontrast, the agent’s trajectory is sub-
level action debugging and providing feedback for decision optimal.

making. The overall framework is shown in Figure 2]

3.1 GRAPH CONSTRUCTION

Building an accurate graph based on PGM presents two challenges: representing the dependency
between states and actions, and accurately representing states in the graph. From Section [2| the
LLM agents’ trajectories can be expressed as paths in a state transition graph. However, represent-
ing actions as edges duplicates the graph structure, reducing the overall information content, since
different states may share the same action. To better extract the dependency between states and
actions, a heterogeneous graph (Sutton et al,[1998)), where the nodes V comprise both states 3 and
actions A4, offers a more effective and structured representation. This method enables graph reduc-
tion by merging states with highly similar neighbors into a supernode, yielding a more generalized
representation. However, due to the partial observation, it is hard to estimate the state in the graph.

To address this issue, we consider using observations instead of states. In a POMDP, observa-
tions follow the conditional probability p(o|s). Given the observation posterior probability ¢(o) and
p(ols), the state distribution can be inferred by p(s) oc > p(o|s)q(0)/ >, p(o|s’). Therefore,
states are learned as implicit knowledge through observations. However, given that the observation
results are in natural language and cannot be easily discretized, we integrate them as attributes within
the edges to form an action-centric graph.

During implementation, to obtain a robust representation of nodes, we utilize a natural language
processing tool, NLTK (Bird et al.l [2009), to remove meaningless words. We then deduplicate
actions to form a set of unique nodes and construct the PGM-based graph by linking them according
to their order in the trajectories. Finally, we reform the state-transition diagram as an action-centric
graph G = (V, ), where V C Aand £ C O.
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Figure 2: Overall pipeline of TRAJECTORY GRAPH COPILOT. We first collect the trajectories and
convert them into a PGM-based graph. With the GEBUGGER, our framework provides external
information for agent decision-making.

3.2 POTENTIAL ERROR DIAGNOSIS

To achieve a step-level action error detection, we adopt the TextGCN (Yao et al., 2019) to regard
trajectories as sentences. We use the pretrained Bert (Devlin et al., | 2019) model to initialize action
and observation embeddings. By linking the trajectory nodes with action nodes, the error probe
task is converted into a trajectory node classification task. Formally, the complete graph adjacency
matrix A is defined as:

1 v; € A, and (S T s @))

1 wv;,v; € Aand [v,0,v;] €t
Aij =
0 otherwise

where [v;, 0, v;] is a subsequence of trajectory ¢, and o is an observation. For edge attribution, we
collect all the observations {o,0 € [a;, 0, a;]} linking the same action pair and get the average of
the Bert embedding. The rest of the nodes and edges are set up with all zeros.

For potential error detection, we implement the detection mechanism outlined in the pipeline through
a Graph Neural Network(GNN) architecture. Given a trajectory ¢, our goal is to train a mapping
function f that probes if there is a potential error. This corresponds to the operation of the GNN
detector across K rounds of message passing. Each GNN layer performs one round of message
passing, defined by the following update rule:

a) = AGGY (hff_l) Tu € N(v)) )

h{) = COMBINE(" (hgl—”, ag”) ,

where ag,l) denotes the aggregated message at layer [, hg) the feature vector of node v, and NV (v)
its set of neighbors. The AGGWY is a function that aggregates information from neighboring nodes,
while COMBINE(") updates the node representations. After K rounds of updating, this process
yields the final node embeddings H . For the error detection, we apply a softmax function to the final
embeddings to obtain probabilities, Z = softmax(H'). The GNN model is trained by minimizing
the cross-entropy loss on the labeled trajectories:

=YY YulnZy, )

teTr Ley

where T represents the train set of trajectories and ) is the label space. During testing, we inject
the trajectory node into the existing graph constructed by the training set. To address potential issues



Under review as a conference paper at ICLR 2026

where an action, observation, or task falls outside the defined scope, we use embeddings to search
for and retrieve the corresponding trajectory path from the existing graph.

3.3 IN-CONTEXT LEARNING FEEDBACK

To fully leverage the corrective signals provided by our external feedback module, we design a
mechanism that integrates these signals into the agent’s reasoning loop through ICL (Liskavets et al.,
2025} |Zhang et al., [2022bj [Zhou et al.). Rather than fine-tuning the underlying language model, our
approach dynamically adapts the agent’s behavior during inference by augmenting the prompt with
structured feedback information. The detailed implementation is available in Appendix [B.T]

Without feedback, the agent’s generative behavior is modeled by the conditional distribution
Pogent(Ait1](O0o, Ao, ...O;, A;)). With the environment copilot feedback, it first evaluates the A; 1
initialized by the agent and generates the feedback signal Y;, where the signal space is defined in Sec-
tion 2| If Y; indicate there is potential error, then the agent should regenerate Aj , ; according to the
revised conditional distribution Pygen¢(Aj, 1|(Oo, Ao, ...Oi, A;), Aiy1,Y;). The revised conditional
distribution can be viewed as the agent’s posterior over actions. In practice, ICL operationalizes this
posterior update by conditioning the model on explicit feedback text in the prompt.

4 THEORETICAL ANALYSIS

One goal of this work is to detect the potential error based on the trajectory. A straightforward
approach is to directly retrieve historical trajectories to determine if the current action is erroneous.
A key challenge is managing the rapidly growing size of the trajectories as the number of interactions
with the environment increases. Alternatively, because the action and observation modalities are
consistent, the problem of error detection can be formulated as a text sequence classification task.
Prior works (Taha et al.l[2024; [Li et al.,|2022a) have explored sequence-based modeling approaches
for the task, such as Bert-based detectors (Devlin et al., [2019). Though the promise, the structured
information hidden in the trajectories is not well-explored. Drawing inspiration from PGM, we
formulate the action error probe task as a node classification on a converted graph. Building upon
this foundation, we show that graph-based methods have a lower Bayes risk and sample complexity
than sequence-based methods under the same generalization error.

To better serve theory analysis, we reorganize the trajectory as a tuple X = (7,G,O1.x, A1.k),
where G is the task, 7 is the trajectory identifier, O;, A; are the i-th observation and action for
1 = 1,...k, and k is the size of the number of action/observation in trajectory. The decision target
is the ground truth class Y € Y of the final action. We consider a class of baselines, the empirical
sequence-based (ESB) method, which captures the critical characteristics of existing approaches.
The classical ESB method, such as a fine-tuned Bert classification model, contains two modules, a
sequence representation mapping U = ®.,(X) € U C R%ea and a classifier hgeq : U — V. In
this work, the graph representation is S = ®,(X) € S C R obtained by probabilistic graph-
based (PGB) approach, where S is chosen to be the Markov blanket (Pearl,[1998) of Y in the graph
induced by the connectivity rules. Similarly, a classifier h, is learned from (.S,Y") pairs. To better
compare ESB and PGB, we first make two conventional assumptions as follows.

Assumption 4.1 (Conditional Sufficiency). There exists a representation S = MBg(Y) (the
Markov blanket of Y under the graph construction) such thatY 1 X\ S | S.

This assumption indicates that the label of an action is determined in limited steps and dependent
on other steps, which is aligned with the markov decision process. In Section 2] we follow the
assumption to use the milestone states to refer to the action labels.

Assumption 4.2 (Representation Capacity Difference). The sequence representation U =
Dgeq(X) is not a deterministic function of S. In particular, U include additional spurious com-
ponents Z such that U = ¢(S, Z), with Z correlated with environment-specific artifacts and not
conditionally independent of Y given X.

The assumption &.2]suggest that the ESB could capture spurious components, such as random noise,
writing style. In practice, this assumption is reasonable because training a robust model to mitigate
the effects of random noise requires a large dataset. Based on these assumptions, we obtain two
conclusions.
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Theorem 4.3 (Bayes Risk Ordering and Sample Complexity). For any measurable classifier h
and its Bayes risk defined by R(h o ®) := P(h(®(X)) # Y), the minimal achievable risk using
representation S equals the Bayes risk using the full input X. Moreover, for any other representation
U=9o(X),
RY(S) < R*(U),

where R*(-) denotes the Bayes (irreducible) risk for classifiers that see only that representation.
If I(Y;S) > I(Y;U), then the inequality is strict. Moreover, the sample complexity required to
achieve classification error € satisfies mg < Mgeq, under the same error tolerance e.

The theorem demonstrates that the graph-based method has a lower Bayes risk and could achieve
superior performance compared to the ESB method under identical conditions. The detailed proof
is provided in Appendix [A]

5 RELATED WORK

LLM Agents. Empowered by LLMs, agents have experienced rapid growth and demonstrated re-
markable performance across a wide range of tasks, including goal reasoning and action execu-
tion (Xi et al.| [2025).For instance, LLMs have empowered embodied agents (Chen et al., 2023b))
with perception, interaction, and planning skills for versatile operation in virtual and physical en-
vironments (Londofio et al., [2024). To address the long-horizon interaction tasks, existing methods
can be divided into two categories: fine-tuning-based and fine-tuning-free methods. To obtain a
refined language model agent, fine-tuning-based methods (Wang et al.| |2025; Xiong et al., |2024;
Wang et al.| [2024a}; Song et al., 2024} [Wang et al.| [2023)) enhance decision-making capabilities by
tuning LL.Ms from expert demonstrations or exploration (Chen et al.,2023a; Yin et al., [2023} | Xiang
et al.,[2023} [Song et al.,|2024). Another line of work incroporates external tools/models to gain im-
provements, such as structure search (Yao et al.l 2023aj Besta et al.,|2024;|[Hao et al., |2023; Zhuang
et al.,[2023)) and retrieval (Xiao et al.}[2023; [Kagaya et al., [2024} [Zhou et al.| [2024)). These methods
typically guide LLM agents by incorporating external knowledge. For instance, structure search
offers feedback from the environment (Xiang et al.|[2023)), while retrieval selects optimal actions by
comparing them to offline successful trajectories (Kagaya et al., [2024)).

Graph in LLM Reasoning. To enhance the reasoning capacity of LLM, recent works (Yao et al.,
2023a; [Besta et al., [2024; [Wang et al., 2022c), such as chain-of-thoughts (Wei et al., 2022), are
proposed. These methods essentially decompose the LLM’s reasoning into nodes and edges, where
nodes represent entities and edges represent thought processes (Besta et al.l [2024)), thereby mod-
eling interactive relationships. Leveraging these relationships can enhance the LLM’s reasoning
capabilities. Alternatively, explicit graph structures like knowledge graphs (Mavromatis & Karypis}
2025) can serve as external knowledge bases to guide reasoning, such as GraphRAG (Peng et al.,
2024; Luo et al.,[2024; |Li et al., 2024a), Knowledge Graph Question Answering(KGQA) (Lan et al.}
2022; Ye et al.l 2021 Zhang et al., [2022a)). In (Wang et al.| [2024b), the authors propose that the
reasoning ability of the language model can be seen as an aggregation of the numerous indirect 'rea-
soning paths’ encountered during pretraining. Moreover, integrating graph structures with LLMs
can enhance their reasoning abilities. For instance, (Li et al., |2025) embeds knowledge graph
representations directly into LLM tokens as ’graph semantics,” enabling the model to incorporate
structural information without relying on prompt engineering or extensive fine-tuning.

6 EXPERIMENTS

To verify the effectiveness of our framework, we conduct empirical studies on two perspectives:
error detection and feedback evaluation. We first collect and build datasets on four environments,
and then we compare the performance on our framework and baselines.

Datasets. Four environments are used for dataset construction, including AlfWorld (Shridhar et al.,
2020), TextWorld (Coté et al., 2018; Jansen & Cote, 2022), ScienceWorld (Wang et al., [2022b),
and TravelPlanner (Xie et al.,[2024a). These benchmarks evaluate long-term reasoning by requiring
agents to interact with the environment, gather information, and make decisions. For instance, Sci-
enceWorld evaluates an agent’s ability to programmatically solve problems using scientific knowl-
edge, while TravelPlanner tests its capacity to use tools for information gathering and planning
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Table 1: Action error detection results(%), the metric is the accuracy(f). GPT4o. is short for
GPT40-mini. The best performances are in bold, and the second-best method is underlined.

AlfWorld TextWorld ScienceWorld TravelPlanner

Method GPT40. Qwen2.5 Gemma3 GPT4o0. Qwen2.5 Gemma3 GPT4o0. Qwen2.5 Gemma3 GPT40. Qwen2.5 Gemma3
Text Classification
TF-IDF  58.04 6698  63.75 63.68 49.82 42.09 81.02 80.66 80.52 93.35 65.23 65.22

Bert 53.09 62.07  55.85 64.17  54.12 4944 83.51 80.48 78.72 92.14  65.76 64.63
Retrieve
MiniLM  39.33 46.74  49.74 59.37 4355 4237 73.87 76.57  73.76 90.20 60.56 58.79
E5 44.82 57.51 53.14 57.05 2724 5254 76.59 7448 7298 90.88 58.22 59.23
GTR 48.10 58.41 54.00 60.20 3047  53.67 76.17 7474  74.00 90.09 59.77 59.30
RAG

GPT4o 55.18  62.73  60.38 5274 49.10  69.21 72.15 7421 68.76  79.87  56.82 55.72
Gemma3 55.74 6443  59.95 61.69 51.25 60.17  77.11 80.75 7659  34.95 39.81 39.28
Qwen2.5 50.04 57.56 5532 4312 3584 5169 6794 71.05 6630 2425 31.22 31.29
LLM Zero-Shot
GPT4o 3212 30.13  32.06 4577 4229 4831 33.33 3530 3145 421 8.68 8.03
Gemma3 31.04 28.92  33.81 4826 3459 4435 18.81 3442 20.30 242 4.48 4.03
Qwen2.5 1646  20.24 16.75 39.64 2778  31.64 19.76 19.79  20.83 2.25 10.86 11.46
LLM One-Shot
GPT4o0 2234 21.81 2822 5141 37.46  55.65 13.49 13.43 11.03 4.32 8.89 7.96
Gemma3 27.30 2099 3239 4245 32,62 37.85 9.78 21.52 14.31 2.55 4.46 4.19
Qwen2.5 17.12 17.59 17.05 4030 33.15 3898  31.12 1796  21.44 2.58 11.19 11.55
LLM Three-Shot
GPT4o 29.13 20.65  33.51 50.41 3513 49.72 15.85 15.03 11.77 3.46 2.48 4.42
Gemma3 30.21 2629 2726 3847 3477  33.33 29.23 5091 20.83 2.27 5.59 8.73
Qwen2.5 16.33 19.29 16.59 4428 2670  37.85 28.54 3197 22.63 0.95 5.50 5.57
Ours 6398 6989 66.85 67.00 62.19 66.67 87.84 8457 8339 92.75 67.43 68.15

under user constraints. We follow the React (Yao et al., [2023b) to implement an agent for the data
collection and experiments. In AlfWorld, we follow Agentboard to split the train, validation, and
test tasks. In TextWorld and ScienceWorld, we use the first 10 variants as train and validation tasks,
and 5 variants as test tasks. In TravelPlanner, we select 100 tasks for each difficult level as test tasks
and reserve the others for train and validation tasks. To remove the bias of LLMs, we use GPT4o-
mini (OpenAl, 2024), Qwen2.5-14b (Yang et al.l [2024), and Gemma3-27b (Team et al., [2025) for
all four environments. For the step-level annotation, we first employ LLM models to generate the
label, then select and filter manually. The detailed dataset information is available in Appendix[B.2]

Evaluation Metrics. For error detection, we use the classical metric, accuracy, to measure the
performance. In the feedback evaluation, we report two metrics: Pass Ratio(PR) and Ground Ra-
tio(GR). PR is used to evaluate whether an agent has successfully completed a given task, and GR
is a metric that assesses the validity of an agent’s action within a given environment state, serving
as an indicator of its grounding and understanding. In TravelPlanner, the PR indicates whether the
agents give the final plan. In practice, we are primarily concerned with the PR.

Baselines. Our baselines contain three categories of approaches. The conventional methods in-
clude TF-IDF (Salton & Buckleyl, |1988)) and fine-tuned Bert methods (Devlin et al., [2019), which
are represent the text classification approaches. We use TF-IDF to extract the feature and logis-
tic regression to predict the error probability. We also use retrieval-based (Guu et al., [2020) and
RAG (Lewis et al.,[2020) methods as representative approaches for incorporating external databases.
In retrieval-based methods, we use embedding to find the most similar trajectory. We use three lan-
guage models to obtain the embeddings, including ALL-MiniLM-L6-v2(MiniLM) (Wang et al.,
2021), ES-Large(ES) (Wang et al., [2022a)), and GTR-T5-Large(GTR) (N1 et al.} [2022). For RAG,
we select the five most similar trajectories as candidates and use LLMs to generate the answer.
We use the GTR as the embedding model to measure the similarity. Furthermore, we consider the
LLM-as-judge (Zheng et al.l |2023) methods as the LLM-based methods, including three settings:
zero-shot, one-shot, and three-shot. To avoid the model bias, we use three LLM models for RAG
and LLM-as-judge: GPT4o0 (OpenAl et al.} 2024), Qwen2.5-14b, and Gemma3-27b.

6.1 DETECTION RESULTS

In Table |1} we report the results across four benchmark datasets. Overall, our method consistently
outperforms all baselines. Specifically, the graph-based detection approach achieves over a 5%
improvement compared to text classification methods on average. The advantage is most striking
in the TextWorld environment, where the agent is built with Gemma3, and our method achieves
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Figure 3: The pass ratio and ground ratio results on four benchmarks and three LLM agents.

a 34.85% increase over the second-best approach. This observation aligns with our analysis that
graph-based methods require lower data complexity than sequence-based approaches, making them
more effective in handling sparse or noisy trajectories.

We also observe interesting differences across RAG methods. In the first three environments, RAG
methods outperform standard retrieval approaches, whereas in TravelPlanner the opposite holds. We
attribute this reversal to the much longer observation sequences in TravelPlanner, which may dilute
the benefits of RAG and make simple retrieval more effective. Meanwhile, LLM-as-judge methods
consistently perform poorly. We believe this is due to the inherent difficulty of the tasks, which
demand strong logical reasoning skills beyond the capabilities of current judgment-style approaches.

Finally, we find no consistent trend between one-shot and three-shot settings. Surprisingly, in most
cases, the zero-shot setting achieves better performance than either, likely because additional sam-
ples introduce bias that hinders the reasoning ability of the LLMs. These findings further highlight
the robustness of our graph-based detection approach across different environments and prompting
strategies.

6.2 FEEDBACK EVALUATION RESULTS

To evaluate the effectiveness of TRAJECTORY GRAPH COPILOT, we conduct feedback eval-
uation experiments. We compare against four baselines: TF-IDF, GTR, Gemma3, and
GPT4o, representing text-classification, retrieval-based, RAG-based, and LLM-as-judge (zero-
shot) categories, respectively. The detailed experimental setup is provided in Appendix
We report the average results on

four benchmarks and three LLM  Taple 2: Graph Ablation Results. The Dir. and Undir. are

agents in Figure 3] As the results ghort for directed graph and undirected graph.
show, both our method and base-

lines outperform the vanilla results AlfWorld ScienceWorld

In most ‘cases, demonstrgtmg thE.lt the Graph GPT40. Qwen2.5 Gemma3 GPT40. Qwen2.5 Gemma3 Avg.
mechanism, feedback in the inter- O

action, consistently enhances agent i 6420 938 6560 8595 8199 8102 74.69
performance across different detec-  Undir. 6244 6783 6563 8221 8217 8171 73.67
tion strategies. Among these meth- Di 63.98 69.89 66 8? ert87 84 8457 8339 76.09
ods3 TRAJECTORY GRAPH COPILOT Ug;ﬁn 6305 7018 6122 8432 8568 8372 m
achieves the strongest performance

on average, which outperforms base-

lines on all four benchmarks. On average, our method improves the vanilla by 14.69%. Interestingly,
even for RAG and LLM-as-judge, which show weaker detection accuracy, the agents still benefit
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from performance gains. For example, in ScienceWorld, LLM-as-Judge methods have a poor de-
tection ratio but still boost the agents. A possible explanation is that LLMs may not always follow
instructions precisely, leading to incorrect prediction labels; however, they still provide useful anal-
ysis that guides the agents. Another notable observation is that the GR does not directly correlate
with the PR. For instance, in TextWorld, though the GR of all the methods is lower than vanilla, PR
ratios are still improves. This is expected, since the feedback mechanism does not modify the LLMs
directly but instead encourages them to generate diverse candidate actions, even when some contain
errors. For the detailed results, we provide in Appendix

6.3 ABLATION STUDY

To examine the graph’s variance, we conducted ablation studies on another three settings, explor-
ing combinations of two node features, Bert embedding or one-hot embedding as attribution, and
two edge types, directed and undirected edges. As shown in Table 2] our results indicate that the
performance of undirected graphs is slightly inferior to that of directed graphs. The key reason is
that POMDP dependencies are inherently directional, and representing them with undirected graphs
introduces noise, leading to a slight performance decline. Additionally, using one-hot encoding as a
feature yields poorer performance compared to using BERT, demonstrating that text information is
useful in the detection tasks.

Furthermore, we conduct ablation studies to analyze the impact of different settings of TRAJEC-
TORY GRAPH COPILOT on the TextWorld and ScienceWorld benchmarks using Qwen2.5 and
Gemma3. Specifically, we analyze two key factors: the maximum number of attempts and
the choice of confidence threshold, as detailed in Appendix [B.4 As illustrated in Figure [
PR performance improves as the number of attempts increases, before eventually stabilizing.
This behavior is intuitive; additional attempts

raise the hkehhood Of producing Valid and rea- 0On Confidence Threshold PR(%) On Confidence Threshold GR(%) .
sonable actions, thereby reducing the probabil- e —g| oo _ ]

. . ~o0—"
ity of failure at each step. However, we also ob- | ,—""*——s—u| —

serve a decline in GR, consistent with the find- = _—>—°—__ o .

ings in Section In contrast, the confidence ~ °2  °% 5 s os Tz s 050w 0s
. On Maximum Attempts PR(%) On Maximum Attempts GR(%)

threshold has only a marginal effect on overall I

performance. We attribute this to the strength of a0 S sdencaons
the detection module: when detection is highly : A/j:f'ﬁ—”f A A
accurate and robust, the threshold plays a minor o— 0 Jelp— :
role, as relatively few false alarms or misclassi-

fications propagate to the next stage. If detec- Figure 4: The ablation study on maximum attempt
tion were less reliable, the choice of threshold times and confidence threshold.

would likely have a much greater impact. Inter-

estingly, we also find that setting a higher confidence threshold slightly improves GR performance.
Additional quantitative results supporting these observations are provided in Appendix [C.3]

7 CONCLUSION

In this paper, we propose GEBUGGER, a novel PGM-based graph detection method for step-level
diagnosis of agent action decisions. Unlike traditional approaches and LLM-based methods such
as text classification, RAG, or LLM-as-judge, GEBUGGER achieves lower error rates while requir-
ing fewer samples. Beyond the detection module itself, we further introduce TRAJECTORY GRAPH
CoPILOT, a flexible pipeline that integrates the detection module as an independent sandbox to
provide actionable feedback on agent behaviors. We conduct extensive experiments on four bench-
marks and three LLM-based agents to validate the effectiveness of our approach. For action detec-
tion, GEBUGGER consistently outperforms all baseline methods, demonstrating its robustness and
efficiency. For the feedback pipeline, we observe that incorporating any detection module, whether
a baseline or GEBUGGER, can enhance agent performance, but GEBUGGER provides the largest and
most consistent improvements. These findings highlight not only the effectiveness of GEBUGGER
in detecting errors but also its potential as a general framework for improving decision-making in
LLM agents. We believe this work can inspire more reliable performance-enhancement strategies
for agent-based systems.
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A PROOFS
Proof. We prove the proofs of Theorem[4.3]in several steps.

(1) Sufficiency. Assumption states exactly that S d-separates Y from the rest of the observed
variables, i.e. Y L X \ S | S. This is equivalent to the conditional probability factorization
P(Y | X) =P(Y | S). Hence S is a sufficient statistic for Y relative to X.

(2) Bayes risk equality. Given the full input X, the Bayes classifier and its risk are:
h% (x) = arg glaxc} P(Y =c| X =z),and R*(X) = E[1{h% (X) # Y}].
ce

Because P(Y | X) = P(Y | S), the Bayes posterior and classifier can be written using S only:
hy(x) = argmgx]P’(Y =c| S =0,(x)) = h5(Dg(x)).

Therefore R*(X) = R*(S): no additional reduction in Bayes risk is possible by observing X
instead of S.

(3) Information-theoretic ordering. For any representation U = ®(X), consider the Markov
chain Y — X — U. By the data processing inequality, I(Y;U) < I(Y;X). Because S is
a (deterministic) function of X and suffices for Y, we also have I(Y;S) = I(Y;X). Hence
I(YV;U) < I(Y3S).

A standard information-theoretic lower bound relates classification error to the remaining uncer-
tainty H(Y) — I(Y;U). Therefore a representation with strictly larger mutual information with
Y yields a strictly smaller lower bound on achievable error; hence if I(Y;S) > I(Y;U) then
R*(S) < R*(U).

(4) Information-Theoretic Sample Complexity. By Fano’s inequality for C-class classification,
the minimal number of samples m required to achieve error € satisfies

(I1—¢)logC —I(Y;X)

>
~ logC ’
where X is the embedding. Substituting the assumption in Section[d], we obtain
logC —I(Y;5) logC —I(Y;U)
Mg X ——————,  Mgeq X ————————.
log C log C
Since I(Y; S) > I(Y; U), it follows that mg < mgeq, With strict inequality if I(Y; S) < I(Y; U).
This completes the proof. O

B DETAILED IMPLEMENTATION

B.1 ERROR DEFINITION

As described in Section 2} we utilize the milestone state definition to detect the errors, which is
based on the previous actions and goals. Besides, we also consider the repeated action as an error.
In this work, we define the error using the following categories:

e No Error(N.E.): The current action towards the next milestone state.
* Illegal Action(I.A.): The current action is not a valid action for the current environment.

* Repeated Action(R.A.): The current action has been done in the trajectory, and the results are the
same.

* Incorrect Target(I.T.): The current action causes the agent to grab a wrong object or move to a
wrong destination.

* Precondition Not Met(P.M.): The current action is valid, but it can only be executed when the
agent has finished a specific action.
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Table 3: Action and trajectory statistic information of datasets.

Trajectory Action
Agent train  validate  test train  validate test
AlfWorld
GPT40-mini 7386 821 2881 74127 8286 28704
Qwen2.5 10297 1145 3883 63522 7288 25020
Gemma3 7437 827 3026 41432 4817 16352
TextWorld
GPT40-mini 1065 119 603 9760 1057 4706
Qwen2.5 870 97 558 10286 1161 5923
Gemma3 707 79 354 7131 721 4174
Science World
GPT40-mini 5605 623 3609 30415 3506 16497
Qwen2.5 4905 546 2249 17557 1818 5277
Gemma3 3981 443 2439 17713 1953 7659
TravelPlanner
GPT40-mini 12055 1340 4541 82691 9201 31017
Qwen2.5 12413 1380 4308 72468 7996 23604
Gemma3 12435 1382 4295 72260 8079 23547

* Condition Met, Action Not Taken(C.M.): The current action is a valid action, but not necessary
for the next milestone state or goal.

Notably, these error definitions are not specific to any particular environment. As a result, they do
not include environment-related errors, such as tool misuse, which makes them easy to extend to
other environments.

B.2 DATASET CONSTRUCTION

To build the datasets, we use three LLMs for each environment. For AlfWorld, TextWorld, and Sci-
enceWorld, we use GPT40-mini (OpenAll 2024), Qwen2.5-14b (Yang et al.| [2024), and Gemma3-
27b (Team et al., |2025)) to construct the Agent. We utilize one LLM to analysis the trajectory to
generate initial labels first, then we filter the labels manually. We use the Gemma3-27b for the ini-
tialization labels. For the detailed prompts, we provide them at the end of the Appendix. Then we
filter and map the label manually. For AlfWorld, we use the AgentBoard dataset, with 402 tasks
for training and validation, and 134 tasks for testing. The TextWorld environment comprises eight
subsets; for each, we use 10 variants for training/validation and 5 variants for testing. Similarly, Sci-
enceWorld has 30 subsets, with the first 10 variants used for training/validation and the subsequent
5 variants for testing. For all three of these environments, expert trajectories serve as “No Error”
samples. The TravelPlanner dataset contains three levels of tasks(easy, normal, and hard), with 880
tasks for training/validation and 300 tasks for testing (100 for each level). The detailed statistics
information is available in Table[3land [l

B.3 AGENT IMPLEMENTATION

In this paper, we follow the React framework (Yao et al., |2023b) to build interactive agents for
AlfWorld, TextWorld, and ScienceWorld. Each task is capped at 50 steps. At every step, we supply
the LLM with the full history of observations and actions to support decision-making, along with a
short demonstration included in the prompt to improve performance. For AlfWorld and TextWorld,
we also provide the list of available action options derived from the environment. In ScienceWorld,
however, the action space is prohibitively large, so we instead provide an action template. For
TravelPlanner, we adopt the two-stage methods from open-source implementatiorﬂ The detailed
prompts used in our experiments are provided at the end of the Appendix.

'https://github.com/OSU-NLP-Group/TravelPlanner
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Table 4: Action error statistic information of datasets.

Train and Validate Test
Agent N.E. ILA. ILT. RA. PM. CM. NE 1A LT RA. PM. CM.
AlfWorld
GPT40-mini 746 4410 410 51 403 2187 245 1546 126 14 179 771
Qwen2.5 804 5612 544 552 2825 1105 268 1838 171 173 1082
Gemma3 804 2186 583 237 3334 1120 268 932 213 96 1150 367
TextWorld
GPT40-mini 240 181 81 70 549 63 80 76 35 32 343 37
Qwen2.5 240 298 67 88 214 60 80 218 46 42 142 30
Gemma3 240 146 57 50 244 49 80 26 43 23 151 31
ScienceWorld
GPT40-mini 601 4943 57 72 369 186 288 2924 13 21 306 57
Qwen2.5 600 4332 23 59 383 54 288 1778 12 11 149 11
Gemma3 600 3399 37 263 65 60 288 1953 8 127 21 42
TravelPlanner
GPT40-mini 12441 507 41 394 41 12 4210 177 24 127 3 0
Qwen2.5 9362 3731 143 502 37 18 2826 1181 57 220 14 10
Gemma3 9341 3734 140 547 35 20 2821 1174 61 216 13 10

Table 5: Extended action error detection results(%), the metric is the average accuracy(1). GPT4o. is
short for GPT40-mini. The best performances are in bold, and the second-best method is underlined.

Method AlfWorld TextWorld ScienceWorld TravelPlanner GPT40. Qwen2.5 Gemma3
Text Classification

TF-IDF 62.92 51.86 80.73 74.60 74.02 65.67 62.90
Bert 57.00 55.91 80.90 74.18 73.23 65.61 62.16
Retrieve
MiniLM 45.27 48.43 74.73 69.85 65.69 56.86 56.17
E5 51.82 45.61 74.68 69.44 67.34 54.36 59.47
GTR 53.50 48.11 74.97 69.72 68.64 55.85 60.24
RAG
GPT40 59.43 57.02 71.71 64.14 64.99 60.72 63.52
Gemma3 60.04 57.70 78.15 38.01 57.37 59.06 59.00
Qwen2.5 54.31 43.55 68.43 28.92 46.34 48.92 51.15
LLM Zero-Shot
GPT40 31.44 45.46 33.36 6.97 28.86 29.10 29.96
Gemma3 31.26 42.40 24.51 3.64 25.13 25.60 25.62
Qwen2.5 17.82 33.02 20.13 8.19 19.53 19.67 20.17
LLM One-Shot
GPT4o0 24.12 48.17 12.65 7.06 22.89 20.40 25.72
Gemma3 26.89 37.64 15.20 3.73 20.52 19.90 22.19
Qwen2.5 17.25 37.48 23.51 8.44 22.78 19.97 22.26
LLM Three-Shot
GPT4o0 27.76 45.09 14.22 345 24.71 18.32 24.86
Gemma3 27.92 35.52 33.66 5.53 25.05 29.39 22.54
Qwen2.5 17.40 36.28 27.71 4.01 22.53 20.87 20.66
Ours 66.91 65.29 85.27 76.11 77.89 71.02 71.27

B.4 TRAJECTORY GRAPH COPILOT IMPLEMENTATION

In this paper, we implement the TRAJECTORY GRAPH COPILOT using in-context learning with
prompts. At each step, the agent is allowed up to three attempts to pass GEBUGGER. If a step
fails, we provide additional feedback, including the error type, definition, and failure examples, to
guide the regeneration of actions. In our experiments, we provide three failure samples by default.
To reduce false alarms, we apply a confidence threshold of 0.6 by default to filter out unreliable
detection results. For the baseline methods, we adopt the same three-attempt strategy for error
detection. However, since methods such as retrieval-based approaches and LLM-as-judge do not
produce confidence scores, the threshold cannot be applied. Within this feedback loop, we integrate
potential error information directly into the prompt. The detailed prompts are provided at the end
of the Appendix, excluding the overlapping parts already described in the agent implementation
section.
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Table 6: Action error feedback evaluation results. The metric is PR(1). GPT4o. is short for GPT4o0-
mini. The best performances are in bold, and the second-best method is underlined.

AlfWorld TextWorld ScienceWorld TravelPlanner

Method GPT40. Qwen2.5 Gemma3 GPT4o. Qwen2.5 Gemma3 GPT4o0. Qwen2.5 Gemma3 GPT4o0. Qwen2.5 Gemma3
Vanilla 18.66  40.30 6.72 4500 65.00 6500 7726 75.69  86.81 79.33 54.67 55.00
Text Classification
+TF-IDF 2222 3134 12.69 65.00 5750 65.00 71.03 7793 8639  80.67  60.67 97.00
Retrieve
+GTR 15.67 32.09 8.96 3750 7250 6750 6732 79.86  83.33 80.00  59.33 95.33
RAG
+Gemma3 20.71 37.31 2.99 50.00 72,50 70.00 70.08  86.11 87.50 82.67  59.67 96.33
LLM Zero-Shot
+GPT4o0 18.66  33.58 17.16 5250  65.00 72.50  71.35 80.41 8542  80.67 57.33 92.67
+Ours 26.12 44.78 1269  46.51 65.00 75.00 9444 82.64 9444 80.67 67.67 97.00

Table 7: Action error feedback evaluation results. The metric is GR(T). GPT4o. is short for GPT4o0-
mini. The best performances are in bold, and the second-best method is underlined.

AlfWorld TextWorld ScienceWorld TravelPlanner

Method GPT40. Qwen2.5 Gemma3 GPT4o. Qwen2.5 Gemma3 GPT4o0. Qwen2.5 Gemma3 GPT4o0. Qwen2.5 Gemma3
Vanilla 73.87 68.02  62.49 95.66  86.79  91.07 7735 49.62 7022  97.71 74.14 74.20
Text Classification
+TF-IDF 7422  58.12 63.04 5333 4607 48.02 71.03 58.69  75.03 97.83  75.58 99.58
Retrieve
+GTR 74.73 54.89  64.66  58.11 43.84  52.58 6732 5542 7216 97773 7648 99.21
RAG
+Gemma3 75.78  61.88  91.19 57.35 4424 5233 70.08  57.58  71.41 97.83  76.04 99.53
LLM Zero-Shot
+GPT4o0 75.84 5755  65.88 5520 4657 5282 7135 5212 74.12 9776  75.36 98.52
+Ours 71.19 6233  66.97 67.89 6278 89.79 69.09 57.26  73.55 98.07 81.23 99.81

C DETAILED RESULTS

C.1 ERROR DETECTION

In Section [6.1] we provide the detection results on four benchmarks. To better compare the perfor-
mance in each benchmark and LLM, we provide the extended results. In Table 9] we observe that
our method outperforms other baselines in four benchmarks and three LLM Agents. The results
demonstrate the effectiveness of our method.

C.2 FEEDBACK EVALUATION

In Section we provide the average on four benchmarks and three LLM agents. In this sub-
section, we provide detailed results. As PR shows in Table [6] our method achieves 7 best and 4
second-best results, demonstrating the advantage of TRAJECTORY GRAPH COPILOT. In addition,
most cases outperform the vanilla method, showing that the feedback information boosts the agent’s
performance. In Table [/, we observe that our method achieves the second-best GR. A potential
reason is that our method has a lower false alarm, resulting in less action exploration comparing to
the vanilla results.

C.3 ABLATION STUDY

In Section[6.3] we examine the impact of two key hyperparameters in TRAJECTORY GRAPH COPI-
LOT: the maximum number of attempts and the confidence threshold. We provide the detailed results
in Table[8] In this section, we further investigate the role of error samples in enhancing performance.
Table 9 summarizes the results under two settings: with and without error samples. Our findings
show that, without error samples, increasing the number of attempts leads to consistent improve-
ments in PR performance, while GR remains largely unchanged. When error samples are included,
PR performance also improves; however, adding more samples does not yield further gains and, in
fact, leads to a decline in GR. This suggests a trade-off: while error samples provide useful informa-
tion for correction, an excessive number of them may introduce noise or bias, ultimately hindering
generalization.
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Table 8: Ablation study on confidence threshold and maximum attempts of feedback evaluation.

TextWorld(PR) ScienceWorld(PR) TextWorld(GR) ScienceWorld(GR)
Hyperparameter =~ Qwen2.5 Gemma3 Qwen2.5 Gemma3 Qwen2.5 Gemma3 Qwen2.5 Gemma3
Vanilla 65.00 65.00 75.69 86.81 86.79 91.07 49.62 70.22
Threshold-0.6
+ 1 Attempts 65.00 65.00 75.69 86.81 86.79 91.07 49.62 70.22
+ 2 Attempts 67.50 72.50 96.81 94.44 65.05 93.09 60.59 71.67
+ 3 Attempts 65.00 75.00 82.64 94.44 62.78 89.79 57.26 73.55
+ 5 Attempts 62.50 70.00 82.64 95.92 58.02 90.56 57.51 73.71
+ 7 Attempts 70.00 72.50 86.11 93.75 64.71 91.71 59.91 73.47
3 Attempts
+ Threshold-0.20 62.50 67.50 77.78 96.53 60.10 90.80 56.59 75.32
+ Threshold-0.35 65.00 75.00 88.36 96.53 58.16 92.46 57.91 7291
+ Threshold-0.50 62.50 77.50 87.50 93.06 55.16 92.20 58.82 73.36
+ Threshold-0.65 57.50 75.00 86.11 94.44 58.31 89.11 61.28 74.72
+ Threshold-0.80 65.00 72.50 88.19 86.11 63.36 92.43 58.74 7491

Table 9: Ablation study on error samples of feedback evaluation.

TextWorld(PR) ScienceWorld(PR) TextWorld(GR) ScienceWorld(GR)
Hyperparameter Qwen2.5 Gemma3 Qwen2.5 Gemma3 Qwen2.5 Gemma3 Qwen2.5 Gemma3
Vanilla 65.00 65.00 75.69 86.81 86.79 91.07 49.62 70.22
Zero-Shot + Threshold-0.6
+ 2 Attempts 60.00 72.50 88.19 93.06 71.07 90.50 66.28 72.51
+ 3 Attempts 50.00 77.50 87.50 94.44 69.20 89.28 63.64 73.86
+ 5 Attempts 50.00 70.00 91.67 91.67 67.97 92.16 66.28 74.49
3 Attempts + Threshold-0.6
+ One Shot 60.00 72.50 94.44 97.22 71.19 88.55 65.87 74.20
+ Three Shots 65.00 75.00 82.64 94.44 62.78 89.79 57.26 73.55
+ Five Shots 65.00 77.50 82.64 93.06 55.82 92.01 56.21 73.29

D LLM USAGE

In this paper, we leverage LLMs, including ChatGPT and Gemini 2.5 Pro, to refine sentence-level
writing.
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LLM Prompt for AlfWorld, TextWorld, ScienceWorld Action Error Label

You are an top-level expert AI agent trajectory analyst. Your
primary task is to analyze the 'CURRENT STEP’ of an agent’s
trajectory and identify the single most likely error.

**xCrucial Constraintsx: The agent is unfamiliar with the
environment, so it might take some time to explore and find
destinations and objects. Therefore, its actions should be judged
based on the xxOverall Task Goalxx, not by strictly following

the expert plan. The expert plan is only a reference for a possible
successful path. You can know how much the agent has inferred the
environment from the observation and extract the best possible
action from the observation.

**Output Formatx+: Your entire response MUST be a single, valid JSON
object. Do not include any text, explanations, or markdown
formatting before or after the JSON object.

The JSON object must contain exactly three keys:

— "has_error": (boolean) true if there 1s an error (No Error 1is not
an error), otherwise false.

- "error_type": (string) One of the specified error types below.

— "analysis": (string) A concise, one-sentence explanation for the

error.For example, for a "Precondition Not Met" error, a good
analysis would be "The agent tried to place an object that it was
not holding in its inventory."

*xTypes*x:

— "No Error": The action is logical and contributes to the task
goal.

— "Precondition Not Met": The action is valid but cannot be gain
progress because a necessary prior condition is not met (e.g.,
trying to ’‘put’ an object that is not currently held).

- "Condition Met, Action Not Taken": A critical step was available,
necessary to progress and the agent already observed the condition,
but the agent performed an irrelevant or less optimal action
instead (e.g., finding the target object but not picking it up).

— "Incorrect Target": The action is performed on the wrong object or
at the wrong location (e.g., picking up a ’"cloth’ instead of the
required ’soapbottle’).

— "Repeated Action": The action is part of a sequence that was
already performed and without any progress.

——— CONTEXT —---—

1. xxOverall Task Goalxx:
"{task_goal}l"

2. xxExpert’s Suggested Plan (for reference only, may be flawed) xx:
{expert_plan}

3. =xxTrajectory History (Recent Steps) xx*:

{trajectory_history}
4. **CURRENT STEP TO ANALYZEx*=*:
— Action: "{current_action}"

——— YOUR RESPONSE (JSON ONLY) —-—-

LLM Prompt for TravelPlanner Action Error Label

prompt = f"""Please analyze the following action in a travel
planning trajectory and classify it into one of these error
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categories. Before giving a conclusion, please read the Agent
thought (indicate the next step) and observation, reason the
state of the agent. In general, the action should be consistent
with the thought.

ERROR CATEGORIES:

1. No error: There is no error during the trajectory

2. Illegal Action: The action is not a valid action

3. Repeated Action: The action has been done in the trajectory, and
there is nothing updated. It is not necessary.

4. Incorrect Target: The action is not aligned with the goal, for
example the thought would go to place A, but the action searches
place B.

5. Precondition Not Met: The action is valid, but it can’t be done
right now, because some condition is not met. For example, the
current information does not contain the hotel information, so it
is not a good time to make final plan. Or the current information
does not have a valid plan due to the constraints, such as money.
6. Precondition Met, Action Not Taken: The information needed is
collected. The agent can have a valid plan according to the
information, but it did not make the final plan immediately.

TASK DESCRIPTION:
{current_step.get (' task_description’, 'N/A’)}

TRAJECTORY CONTEXT:
{context_str}

CURRENT STEP TO ANALYZE:
Agent Thought: {current_step.get ('thought’, ’'N/A’)}
Action: {current_step.get (’action’, ’'N/A’)}

Based on the context and current step, return strict JSON with
two keys: label and reason. The label must be exactly one of the
categories above (e.g., "No error", "Illegal Action", etc.). The
reason should be a brief phrase explaining why.

Attention: Only the raw json."""

Agent Prompt for AlfWorld environment

messages = [{
"role": "system",
"content": f"""You are an agent in a text-based ALFWorld environment,

performing a household task.\n

For each step, generate one action based on the task description,
action Options, current observation, and the plan.\n

Please think about the environmental state from the historical
trajectories before you give the answer.\n

Do not generate other text except the action itself.

One action per step.\n

The action output format must be ##Action: XXX ##,

where XXX is the action.\n\n

Example:\n> Observation: You are in the middle of a room.

Looking quickly around you, you see a bathtubbasin 1, a cabinet 2,
a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 1,
a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and

a towelholder 1.\n

Your task is to: put a toiletpaper in toiletpaperhanger.\n

> Action: go to toiletpaperhanger 1\n

> Observation: On the toiletpaperhanger 1, you see nothing.\n
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1188
1189 > Action: go to toilet 1\n> Observation: On the toilet 1, you see a
1190 soapbottle 1, and a toiletpaper 1.\n
1191 > Action: take toiletpaper 1 from toilet 1\n> Observation: You pick
up the toiletpaper 1 from the toilet 1.\n
1192 > Action: go to toiletpaperhanger 1\n> Observation: On the
1193 toiletpaperhanger 1, you see nothing.\n
1194 > Action: put toiletpaper 1 in/on toiletpaperhanger 1\n"""},
1195 {"role": "user",
1196 "COI’ltth": f" nn
> Task Description: {task_description}
1197 > Action Options: {’,’.join(action_lists)}
1198 > Trajectory History: {’ ’.Jjoin(history)}
1199 > Action:"""} ]
1200
1201
1202 Agent Prompt for TextWorld environment
1203
1204 messages = [{
1205 "role": "system",
1206 "content": f"""You are an agent in a text-based TextWorld
environment, performing a task.\n
1207 For each step, generate one action based on the task description,
1208 action Options, current observation, and the plan.\n
1209 Please think the environment state from the history trajectories
1210 before you give the answer.\n
1211 Do not generate other text except the action itself. One action
oo per step.\n
The action output format must be ##Action: XXX ##, where XXX is the
1213 action.\n\n
1214 Example:\n
1215 > Observation: You are in a room. You see a coin, a table,
1216 and a door to the north (open).\n
Your task is to: find and collect a coin.\n
1217 > Action: look\n
1218 > Observation: You see a coin.\n
1219 > Action: take coin\n
1220 > Observation: You take the coin.\n"""},
n n". n Al
2t renens g’
1222 > Task Description: {task_description}
1223 > Action Options: {’,’.join(action_list)}
1224 > Trajectory History: {’ ’.join(history)}
1225 > Action:""" }]
1226
1227
1228 Agent Prompt for ScienceWorld environment
1229
1230 messages = [ {
1231 role="system",
1232 content=( "You are an agent in a text-based ScienceWorld
environment, performing a task.\n"
1233 "For each step, generate one action based on the task description,
1234 action Options, current observation, and the plan.\n"
1235 "Please think the environment state from the history trajectories
1236 before you give the answer.\n"
1237 "Possible Available Actions contains the OBJ, which can be replace
by object in environment.\n"
1238 "Do not generate other text except the action itself. One action
1239 per step.\n"
1240 "The action output format must be ##Action: XXX ##, where XXX is
1241 the action.\n\n"
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1242

1243 "Example:\n

1244 > Observation: This room is called the hallway. In it, you see: a

1245 picture, a substance called air, the agent.\n"
"You also see: doors to other rooms.\nYour task is to: boil water.\n

1246 > Action: look around\n

1247 > Observation: The door is already open.\n

1248 > Action: open door to kitchen\n" ) 1},

1249 { role="user",

1250 content=(
f"> Task Description: {task_description}\n"

1251 f"> Action Options: {’,’.join(action_lists) }\n"

1252 f"> Trajectory History: {’ ’.join(history) }\n"

1253 f"> Action:\n" ) } ]

1254

1255

1256 LLM Prompt with the Error Feedback

1257

1258 feedback_section = f£"\n\nIMPORTANT: We have analyzed

1259 your last time action {action} for the same trajectory and provided
this feedback: {gnn_feedback}\n Do not generate the same action,

1260 {action}, again.\n"

1261

1262 messages = [{...},

1263 {"role": "user",

1264 "content": f"""

1265 > Task Descr%ption: {tagkfdescr%ptiop}
> Action Options: {’,’.join(action_lists)}

1266 > Trajectory History: {’ ’.Jjoin(history)}

1267 > Action:

1268 {feedback_section} """}]

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295
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