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Abstract
The CSGM framework (Bora-Jalal-Price-Dimakis’17) has shown that deep generative priors can

be powerful tools for solving inverse problems. However, to date this framework has been empirically
successful only on certain datasets (for example, human faces and MNIST digits), and it is known to
perform poorly on out-of-distribution samples. In this paper, we present the first successful application of
the CSGM framework on clinical MRI data. We train a generative prior on brain scans from the fastMRI
dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
Furthermore, our experiments and theory show that posterior sampling is robust to changes in the
ground-truth distribution and measurement process.

1 Introduction
Compressed sensing [12, 8] has enabled reductions to the number of measurements needed for successful
reconstruction in a variety of imaging inverse problems. In particular, it has led to shorter scan times for
magnetic resonance imaging (MRI) [25, 39], and most MRI vendors have released products leveraging this
framework to accelerate clinical workflows.

More recently, deep learning techniques have been used as powerful data-driven reconstruction methods for
inverse problems [20, 29]. There are two broad families of deep learning inversion techniques [29]: end-to-end
supervised and distribution-learning approaches. End-to-end supervised techniques use a training set of
measured images and deploy convolutional neural networks (CNNs) and other architectures to learn the
inverse mapping from measurements to image see e.g. [16, 2, 26]. End-to-end methods are trained for
specific imaging anatomy and measurement models and show excellent performance in these tasks. However,
reconstruction quality can suffer when applied out of distribution, such as under various types of natural
measurement and anatomy perturbations [3, 11].

In this paper we study deep learning inversion techniques based on distribution learning. The most
common family of such techniques, known also as Compressed Sensing with Generative Modeling (CSGM) [6]
uses pre-trained generative models as priors. These methods have only recently been applied to MRI and
have not yet been shown to be competitive with supervised end-to-end methods. The very recent work [22]
trains a StyleGAN for magnitude-only DICOM images but requires the presence of side-information and
studies simulated measurements for reconstruction. The deviation from the true MRI measurement model
and the use of magnitude images are known to be problematic when evaluating performance [31]. Untrained
and unamortized generators [17] have also been recently explored [11], showing promising results in some
cases. Further, [10] studies the harder problem of learning a generative model for a class of images using only
partial observations, as first proposed in AmbientGAN [7].
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Figure 1: Comparison of reconstruction methods for in-distribution, sampling-shift, and anatomy-shift images. All
methods and hyperparameters were optimized on T2-weighted brain scans with a vertical sampling mask, and tested
at higher accelerations, horizontal masks, and on knee & abdomen scans. Our reconstructions are competitive with
state-of-the-art methods, and introduce fewer artifacts out of distribution. All measurements are multicoil k-space
from the NYU fastMRI dataset and the supervised baselines are trained from scratch on MVUE targets for a fair
comparison.

1.1 Contributions
• We successfully train a score-based deep generative model (NCSNv2 [34]) for complex-valued, T2-weighted

brain MR images without any assumptions on the measurement scheme. When applied to multi-coil MRI
reconstruction under the CSGM framework, we achieve competitive performance compared to end-to-end
deep learning methods when the test-time data are sampled within distribution. This is shown in the top
row of Figure 1 and quantitatively in Figure 2.

• We give evidence that posterior sampling should give high-quality reconstructions. First, we show that
for any measurements (including the Fourier measurements in MRI) that posterior sampling with the
correct prior is within constant factors of the optimal recovery method; second, even if the prior is wrong
but gives α mass to the true distribution, we show that posterior sampling for Gaussian measurements is
nearly optimal with just an additive O(log(1/α)) loss. These results are in Appendix A.

• We empirically show that our approach is robust to test-time distribution shifts including different sampling
patterns and imaging anatomy. The former is unsurprising given that our model was trained without
knowledge of the measurement scheme. As a consequence, our approach provides a degree of flexibility
in choosing scan parameters – a common situation in routine clinical imaging. In contrast, in Figure 1
and 6, we empirically show that end-to-end methods do not always enjoy the same robustness guarantees,
in some cases leading to severe degradation in reconstruction quality when applied out-of-distribution.

• As shown in Figure 3, our method can be used to obtain multiple samples from the posterior by running
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Figure 2: Quantitative results for T2-weighted MRI brains. The left and right plots show PSNR and SSIM as a
function of the acceleration R. Our method is competitive with state-of-the-art baselines at low accelerations,
and is better at higher accelerations. Note that the MoDL and E2E-VarNet baselines were trained to optimize
SSIM at R=3 & 6, and hence achieve good SSIM scores, although one can see aliasing at R=6 in Row 2
of Figure 1 and Figure 10 in the Appendix. Figure 4 and 5 in the Appendix show quantitative results on
different anatomies.

Langevin dynamics with different random initializations. This allows us to get multiple reconstructions
which can be used to obtain confidence intervals for each reconstructed voxel and visualize our reconstruction
uncertainty on a voxel-by-voxel resolution. Uncertainty quantification can be incorporated into end-to-end
methods, e.g., using variational auto-encoders [13], but this requires changes to the architecture. Our
method does not require any modification and multiple reconstruction samplers can be run in parallel.

Our main results are succinctly summarized in Figure 1: we achieve equivalent reconstruction performance
using a reduced training set when evaluated in-distribution and is robust when evaluated out-of-distribution.

2 System Model and Algorithm
2.1 Multi-coil Magnetic Resonance Imaging
MRI is a medical imaging modality that makes measurements using an array of radio-frequency coils placed
around the body. Each coil is spatially sensitive to a local region, and measurements are acquired directly
in the spatial frequency, or k-space, domain. To decrease scan time, reduce operating costs, and improve
patient comfort, a reduced number of k-space measurements are acquired in clinical use and reconstructed by
incorporating explicit or implicit knowledge of the spatial sensitivity maps [32, 30, 14]. Formally, the vector
of measurements yi ∈ CL acquired by the ith coil can be characterized by the forward model [30]:

yi = PFSix
∗ + wi, i = 1, ..., Nc, (1)

where x∗ ∈ CN is the image containing N pixels, Si is an operator representing the point-wise multiplication
of the ith coil sensitivity map, F is the spatial Fourier transform operator, P represents the k-space sampling
operator, and we assume wi ∼ Nc

(
0, σ2I

)
for simplicity. Importantly, note that the same under-sampling

operator is applied to all Nc coils. The acceleration factor R denotes the degree of under-sampling in the
k-space domain, i.e., R = N/L. Note that we use the true acceleration factor R, and this does not match
the values in fastMRI [23] 1. Given multi-coil measurements y, sensitivity maps represented by S and the
sampling operator P , the goal of MR image reconstruction is to estimate the underlying image variable x∗.

1See https://github.com/facebookresearch/fastMRI/blob/main/fastmri/data/subsample.py for the fastMRI acceleration
definition
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Figure 3: Our method can be run in parallel to generate different random reconstructions, and estimate
uncertainty of our reconstructions. The top-left image shows the fully-sampled MVUE, top-middle top-right
show different random samples from Langevin dynamics at an acceleration of R = 12. The bottom-left image
shows the mean over 32 runs of Langevin dynamics, bottom-middle shows the difference between the two
furthest reconstructions, and the bottom-right shows the error between the MVUE and mean reconstruction.

2.2 Posterior Sampling
The algorithm we consider is posterior sampling [19, 33]. That is, given an observation of the form y = Ax∗+w,
where y ∈ CM , A ∈ CM×N , w ∼ Nc(0, σ2I), and x∗ ∼ µ, the posterior sampling recovery algorithm outputs
x̂ according to the posterior distribution µ(·|y).

In order to sample from the posterior, we use Langevin Dynamics [5]. Assuming we have access to
∇x logµ(x|y), we can sample from µ(x|y) by running noisy gradient ascent:

xt+1 ← xt + ηt∇xt logµ(xt|y) +
√

2ηt ζt, ζt ∼ N (0, 1). (2)

Prior work [5] has shown that as t→∞ and ηt → 0, Langevin dynamics will correctly sample from µ(x|y).
In practice, vanilla Langevin Dynamics are slow to converge. Hence, the work in [33] proposes annealed
Langevin Dynamics, where the marginal distribution of x at iteration t is modelled as µt = µ ∗ N (0, β2

t ) and
the generative model is trained to estimate the score function f(xt;βt) := ∇xt log((µ ∗ N (0, β2

t )(xt)).
Since the distribution of y|x∗ is Gaussian in Eqn (1), our final algorithm with annealed Langevin dynamics

is: for x0 ∼ Nc(0, I) and for all t = 0, · · · , T − 1,

xt+1 ← xt + ηt

(
f(xt;βt) + AH(y −Axt)

γ2
t + σ2

)
+
√

2ηt ζt, ζt ∼ N (0; I). (3)

Note that the parameters T, {βt}T−1
t=0 were fixed during training of the generative model, and hence the only

hyperparameters during inference are {ηt}T−1
t=0 and {γt}T−1

t=0 . Appendix G describes hyper-parameter values
used in our experiments.

3 Conclusions
This paper reports the first wide-scale, successful application of the CSGM framework for multi-coil MR
image reconstruction under realistic sampling conditions, and provides theoretical evidence for the robustness
of posterior sampling. Our score-based model was trained on a subset of brain MRI scans without explicit
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information about the sampling scheme (unlike end-to-end baselines) or the reconstruction task and shows a
considerable degree of generalization to out-of-distribution samples such as abdomen and knee MRI. These
scans were acquired using different MRI vendors with different pulse sequence parameters and at different
institutions. We postulate that adding a small set of diverse training samples to the generative model could
further improve robustness, and that these samples may not necessarily be restricted to MR images.

Though promising, our initial results are still limited to fast spin-echo imaging only and all data were
retrospectively under-sampled. Further study is required to demonstrate prospective performance in a larger
body of heterogeneous MRI data. Our method also currently requires a high compute cost at inference
time, as well as the need for a pre-trained generative model. Clinical use requires fast reconstruction in
addition to fast scanning. Future work should investigate whether score-based models can be trained without
a fully-sampled training set as well as investigate approaches to reducing computation time.
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A Appendix: Theoretical Results
Background and Notation. We first introduce background and notation required for our theoretical
results. ‖ · ‖ refers to the `2 norm. In this section alone, for simplicity of exposition, we will assume that all
matrices and vectors are real valued.

For two probability distributions µ, ν on some normed space Ω, and for any q ≥ 1, the Wasserstein-q [40, 4]
and Wasserstein-∞ [9] distances are defined as:

Wq(µ, ν) := inf
γ∈Π(µ,ν)

(
E

(u,v)∼γ
[‖u− v‖q]

)1/q
, W∞(µ, ν) := inf

γ∈Π(µ,ν)

(
γ- ess sup
(u,v)∈Ω2

‖u− v‖

)
.

where Π(µ, ν) denotes the set of joint distributions whose marginals are µ, ν. The above definition says that
if W∞(µ, ν) ≤ ε, and (u, v) ∼ γ, then ‖u− v‖ ≤ ε almost surely.

The (ε, δ)−approximate covering number [19], is defined as the smallest number of ε-radius balls required
to cover 1− δ mass under a distribution.

Definition A.1 ((ε, δ)-approximate covering number). Let µ be a distribution on RN . For some parameters
ε > 0, δ ∈ [0, 1] , the (ε, δ)-approximate covering number of µ is defined as

Covε,δ(µ) := min
{
k : µ

[
∪ki=1B(xi, ε)

]
≥ 1− δ, xi ∈ RN

}
,

where B(x, ε) is the `2 ball of radius ε centered at x.
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Distributional robustness under Gaussian measurements. First, we consider mismatch between the
ground-truth distribution, denoted by µ, and the generator distribution, denoted by ν. Prior work [19]
has shown that if (i) Wq(µ, ν) ≤ ε for some q ≥ 1 and (ii) we are given M ≥ O(log Covε,δ(µ)) Gaussian
measurements, then posterior sampling with respect to ν will recover x∗ ∼ µ up to an error of ε/δ1/q with
probability 1− δ. Closeness in Wasserstein distance is a reasonable assumption in certain examples, such as
when µ is the distribution of celebrity faces and ν is the distribution of a generator trained on FlickrFaces
[21]. However, this assumption is unsatisfactory when we consider distributions of abdominal and brain MR
scans, for example, since images of these anatomies look entirely different.

We define the following weaker notion of divergence between distributions. Informally, this new definition
tells us that ν and µ are “close” if they can each be split into components which are close in W∞ distance,
such that the close components contain a sufficiently large fraction under ν and µ. Formally, this is defined
as:
Definition A.2 ((δ, α)-W∞ divergence). For two probability distributions ν and µ, and parameters δ, α ∈ [0, 1],
the (δ, α)-W∞ divergence is defined as

(δ, α)-W∞(µ, ν) := inf{ε ≥ 0 :
∃µ′, µ′′, ν′, ν′′ ∈M(RN ) s.t. µ = (1− δ)µ′ + δµ′′, ν = (1− α)ν′ + αν′′,W∞(µ′, ν′) = ε.}

Lemma A.3 highlights that this is a strict generalization of Wasserstein distances, in the sense that
closeness in Wasserstein distance implies closeness in this new divergence.
Lemma A.3 (Wq implies (δ, α)-W∞). If two distributions µ and ν satisfy Wq(µ, ν) ≤ ε for some q ≥ 1, then
they satisfy (δ, δ)-W∞(µ, ν) ≤ ε/δ1/q. Futhermore, there exist distributions that satisfy (δ, δ)-W∞(µ, ν) ≤ ε,
but Wq(µ, ν) =∞ for all q ≥ 1.

Since the (δ, α)-W∞ divergence is a generalization of Wasserstein distances, it is not clear that the main
Theorem in [19] holds for distributions that are close in this new divergence. The following result shows a rather
surprising fact: if (δ, α)-W∞(µ, ν) ≤ ε then posterior sampling with M = O

(
log
(

1
1−α

)
+ log Covε,δ(µ)

)
measurements will still succeed with probability ≥ 1−O(δ).
Theorem A.4. Let δ, α ∈ [0, 1], and ε > 0 be parameters. Let µ, ν be arbitrary distributions over RN
satisfying (δ, α)-W∞(µ, ν) ≤ ε. Let x∗ ∼ µ and suppose y = Ax∗ + w, where A ∈ RM×N and w ∈ RM are
i.i.d. Gaussian normalized such that Aij ∼ N (0, 1/M) and wi ∼ N (0, σ2/M), with σ & ε. Given y and the
fixed matrix A, let x̂ be the output of posterior sampling with respect to ν.

Then for M ≥ O
(

log
(

1
1−α

)
+ min(log Covσ,δ(µ), log Covσ,δ(ν))

)
, there exists a universal constant c > 0

such that with probability at least 1− e−Ω(M) over A,w,

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ c(ε+ σ)] ≤ δ + e−Ω(M).

For our running example of ν being a generator trained on brain scans, and µ the distribution of abdominal
scans, we can set ν′ to be the distribution of our generator restricted to abdominal scans, and we can let µ′
be the distribution restricted to “inliers” in µ. This shows that even if our generator places an exponentially
small probability mass(i.e., 1− α� 1) on the set of abdominal scans, we can still recover abdominal scans
with a polynomial additive increase in the number of measurements (i.e., log(1/(1− α))).

Near-optimality under arbitrary measurement processes. The previous result required Gaussian
matrices to handle the distribution shift. Our next result shows that for an arbitrary measurement process,
and assuming that there is no distribution shift between the generator and the ground truth distribution,
posterior sampling is almost the best algorithm for this fixed measurement process.
Theorem A.5. Let x∗ ∼ µ and let y = A(x∗) be measurements generated from x∗ for some arbitrary forward
operator A : RN → RM . Then if there exists an algorithm that uses y as inputs and outputs x′ such that

‖x∗ − x′‖ ≤ ε with probability 1− δ,

then posterior sampling x̂ ∼ µ(·|y) will satisfy

‖x∗ − x̂‖ ≤ 2ε with probability ≥ 1− 2δ.
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Remark on combining these results. Our theoretical results above show that posterior sampling
is (1) highly robust to distribution shift under Gaussian measurements, and (2) accurate with arbitrary
measurements without distribution shift. A natural hope would be to combine these two results and show
that it is robust to distribution shift under Fourier measurements. Unfortunately, this is not true for general
distributions: for example, if µ and ν are both random distributions over Fourier-sparse signals, then Fourier
measurements will usually give zero information about the signal, so cannot convince the sampler to sample
near µ rather than ν.

A.1 Proof of Lemma A.3
Proof. Let Γ be a coupling between µ, ν such that E(u,v)∼Γ [‖u− v‖q] ≤ εq. Then an application of Markov’s
inequality gives

Pr[‖u− v‖ ≥ ε/δ1/q] ≤ δ. (4)

Now, we can split the distribution Γ into two unnormalized components Γ′,Γ′′ defined as

Γ′(u, v) = Γ(u, v)1{‖u− v‖ < ε/δ1/q},
Γ′′(u, v) = Γ(u, v)1{‖u− v‖ ≥ ε/δ1/q}.

Using Γ′,Γ′′, we can define measures µ′, µ′′, ν′, ν′′, via

µ′(B) := Γ′(B,Ω),
µ′′(B) := Γ′′(B,Ω),
ν′(B) := Γ′(Ω, B),
ν′′(B) := Γ′′(Ω, B),

where B is any measurable set and Ω is the state-space.
Since Γ is a valid coupling between µ, ν, and Γ′,Γ′′ are disjoint distributions, for any measurable B ⊆ Ω,

we have:

µ(B) = Γ(B,Ω),
= Γ′(B,Ω) + Γ′′(B,Ω),
= µ′(B) + µ(B′′),

= µ′(Ω)µ
′(B)
µ′(Ω) + µ′′(Ω)µ

′′(B)
µ′′(Ω) .

Using Eqn (4), we can conclude that µ′(Ω) ≥ 1− δ, µ′′(Ω) ≤ δ. Setting µ′ ← µ′/µ′(Ω) and µ′′ ← µ′′/µ′′(Ω),
we can now rewrite µ as µ = (1− δ)µ′ + δµ′′. A similar argument for ν gives ν = (1− δ)ν′ + δν′′.

By construction, µ′, ν′ can be W∞ coupled via Γ′ to within a distance of ε/δ1/q. This shows that
(δ, δ)-W∞(µ, ν) ≤ ε/δ1/q.

Now we need to show that two distributions can be close in (δ, δ)-W∞, but Wq =∞ for all q. Consider
two scalar distributions µ, ν defined as

µ =
{

0 with probability 1− δ,
r with probability δ,

,

ν =
{
ε with probability 1− δ,
−r with probability δ.

Clearly, these distributions satisfy (δ, δ)-W∞(µ, ν) ≤ ε, but Wq(µ, ν) ≈ r for all q. As r → ∞, we get
Wq(µ, ν)→∞ for all q ≥ 1.
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A.2 Proof of Theorem A.4
In order to prove the Theorem, we make use of the following three Lemmas from [19].

Lemma A.6. For c ∈ [0, 1], let H := (1− c)H0 + cH1 be a mixture of two absolutely continuous distributions
H0, H1 admitting densities h0, h1. Let y be a sample from the distribution H, such that y|z∗ ∼ Hz∗ where
z∗ ∼ Bernoulli(c).

Define ĉy = ch1(y)
(1−c)h0(y)+ch1(y) , and let ẑ|y ∼ Bernoulli(ĉy) be the posterior sampling of z∗ given y. Then

we have
Pr

z∗,y,ẑ

[z∗ = 0, ẑ = 1] ≤ 1− TV (H0, H1).

Lemma A.7. Let y be generated from x∗ by a Gaussian measurement process with noise rate σ. For a fixed
x̃ ∈ Rn, and parameters η > 0, c ≥ 4e2, let Pout be a distribution supported on the set

Sx̃,out := {x ∈ Rn : ‖x− x̃‖ ≥ c(η + σ)}.

Let Px̃ be a distribution which is supported within an η−radius ball centered at x̃.
For a fixed A, let Hx̃ denote the distribution of y when x∗ ∼ Px̃. Let Hout denote the corresponding

distribution of y when x∗ ∼ Pout. Then we have:

E
A

[TV (Hx̃, Hout)] ≥ 1− 4e−
m
2 log( c

4e2 ).

Lemma A.8. Let R,P, denote arbitrary distributions over Rn such that W∞(R,P ) ≤ ε.
Let x∗ ∼ R and z∗ ∼ P and let y and u be generated from x∗ and z∗ via a Gaussian measurement process

with m measurements and noise rate σ. Let x̂ ∼ P (·|y,A) and ẑ ∼ P (·|u,A). For any d > 0, we have

Pr
x∗,A,w,x̂

[‖x∗ − x̂‖ ≥ d+ ε] ≤e−Ω(m) + e

(
4ε(ε+2σ)m

2σ2

)
Pr

z∗,A,w,ẑ

[‖z∗ − ẑ‖ ≥ d] .

Theorem A.4. Let δ, α ∈ [0, 1], and ε > 0 be parameters. Let µ, ν be arbitrary distributions over RN
satisfying (δ, α)-W∞(µ, ν) ≤ ε. Let x∗ ∼ µ and suppose y = Ax∗ + w, where A ∈ RM×N and w ∈ RM are
i.i.d. Gaussian normalized such that Aij ∼ N (0, 1/M) and wi ∼ N (0, σ2/M), with σ & ε. Given y and the
fixed matrix A, let x̂ be the output of posterior sampling with respect to ν.

Then for M ≥ O
(

log
(

1
1−α

)
+ min(log Covσ,δ(µ), log Covσ,δ(ν))

)
, there exists a universal constant c > 0

such that with probability at least 1− e−Ω(M) over A,w,

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ c(ε+ σ)] ≤ δ + e−Ω(M).

Proof. We know from (δ, α)-W∞(µ, ν) ≤ ε that there exist µ′, ν′, µ′′, ν′′ and a finite distribution Q supported
on a set S such that

1. W∞(µ′, ν′) ≤ ε,

2. min{W∞(ν′, Q),W∞(µ′, Q)} ≤ σ,

3. µ = (1− δ)µ′ + δµ′′ and ν = (1− α)ν′ + αν′′.

Suppose W∞(ν′, Q) ≤ σ. If not, then W∞(µ′, Q) ≤ σ, and by (1), we see that W∞(ν′, Q) ≤ σ + ε, and
we will use this in the proof instead. By decomposing µ = (1− δ)µ′ + δµ′′, we have

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ δ + (1− δ) Pr
x∗∼µ′,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] . (5)

We now bound the second term on the right hand side of the above equation. For this term, consider the
joint distribution over x∗, A,w, x̂. By Lemma A.8, we can replace x∗ ∼ µ′ with z∗ ∼ ν′, replace y = Ax∗ +w
with u = Az∗ + w, and replace x̂ ∼ ν(·|A, y) with ẑ ∼ ν(·|A, u) to get the following bound

Pr
x∗∼µ′,A,w,x̂∼ν(·|A,y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ e−Ω(m) + e

(
2ε(ε+2σ)m

σ2

)
Pr

z∗∼ν′,A,w,ẑ∼ν(·|u,A)
[‖z∗ − ẑ‖ ≥ (2c+ 1)σ] .

(6)
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We now bound the second term in the right hand side of the above inequality. Let Γ denote an optimal
W∞−coupling between ν′ and Q.

For each z̃ ∈ S, the conditional coupling can be defined as

Γ(·|z̃) = Γ(·, z̃)
Q(z̃) .

By the W∞ condition, each Γ(·|z̃) is supported on a ball of radius σ around z̃.
Let E = {z∗, ẑ ∈ Rn : ‖z∗ − ẑ‖ ≥ (2c+ 1)σ} denote the event that z∗, ẑ are far apart. By the coupling,

we can express ν′ as

ν′ =
∑
z̃∈S

Q(z̃)Γ(·|z̃).

This gives

Pr
z∗∼ν′,A,w,ẑ∼ν(·|A,u)

[E] =
∑
z̃∗∈S

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,w,ẑ∼ν(·|A,u)

[1E ] .

For each z̃∗ ∈ S, we now bound Q(z̃∗)E
z∗∼Γ(·|z̃∗),A,w,ẑ∼ν(·|A,u) [1E ] .

For each z̃∗ ∈ S, we can write ν as ν = (1− α)Qz̃∗νz̃∗,0 + cz̃∗,1νz̃∗,1 + cz̃∗,2νz̃∗,2, where the components of
the mixture are defined in the following way. The first component νz̃∗,0 is Γ(·|z̃∗), the second component is
supported within a 2cσ radius of z̃∗, and the third component is supported outside a 2cσ radius of z̃∗.

Formally, let Bz̃∗ denote the ball of radius cσ centered at z̃∗, and let Bcz̃∗ be its complement. The constants
are defined via the following Lebesque integrals, and the mixture components for any Borel measurable B are
defined as

cz̃∗,1 :=
∫
Bz̃∗

dν − (1− α)Qz̃∗
∫
Bz̃∗

dΓ(·|z̃∗),

cz̃∗,2 :=
∫
Bc
z̃∗

dν − (1− α)Qz̃∗
∫
Bc
z̃∗

dΓ(·|z̃∗),

νz̃∗,0(B) := Γ(B ∩Bz̃∗ |z̃∗) = Γ(B|z̃∗) since supp(Γ(·|z̃∗)) ⊂ Bz̃∗ ,

νz̃∗,1(B) :=
{

1
cz̃∗,1

ν(B ∩Bz̃∗)− 1−α
cz̃∗,1

Qz̃∗Γ(B ∩Bz̃∗ |z̃∗) if cz̃∗,1 > 0,
do not care otherwise.

,

νz̃∗,2(B) :=
{

1
cz̃∗,2

ν(B ∩Bcz̃∗)− 1−α
cz̃∗,2

Qz̃∗Γ(B ∩Bcz̃∗ |z̃∗) if cz̃∗,2 > 0,
do not care otherwise.

.

Notice that if z∗ is sampled from Γ(·|z̃∗), then by the W∞ condition, we have ‖z∗ − z̃∗‖ ≤ σ. Furthermore,
if ẑ is (2c+ 1)σ far from z∗, an application of the triangle inequality implies that it must be distributed
according to νz̃∗,2. That is,

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,w,ẑ∼ν(·|A,u)

[1E ] ≤ E
A,w,z∗

Pr [z∗ ∼ νz̃∗,0, ẑ ∼ νz̃∗,2(·|u)]

≤ 1
1− α E

A
[1− TV (Hz̃∗,0, Hz̃∗,2)] ,

where Hz̃∗,0, Hz̃∗,2 are the push-forwards of νz̃∗,0, νz̃∗,2 for A fixed and the last inequality follows from
Lemma A.6.
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Notice that if we sum over all z̃∗ ∈ S, then the LHS of the above inequality is an expectation over z∗ ∼ ν′.
This gives:

Pr
z∗∼ν′,A,w,ẑ∼ν(·|u,A)

[E] ≤ 1
1− α

∑
z̃∗∈S

E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] .

Notice that νz̃∗,0 is supported within an σ−ball around z̃∗, and νz̃∗,2 is supported outside a 2cσ−ball of
z̃∗. By Lemma A.7 we have

E
A

[TV (Hz̃∗,0, Hz̃∗,2)] ≥1− 4e−
m
2 log( c

4e2 ).

This implies

Pr
z∗∼ν′,A,w,ẑ∼ν(·|u,A)

[‖z∗ − ẑ‖ ≥ (2c+ 1)σ] ≤ 1
1− α

∑
z̃∗∈S

E
A

[(1− TV (Hz̃∗,0, Hz̃∗,2))] ,

≤ 1
1− α4|S|e−

m
2 log( c

4e2 ),

≤ 4e−
m
4 log( c

4e2 ),

where the last inequality is satisfied if m ≥ 4 log
(

1
1−α

)
+ 4 log (|S|) .

Substituting in Eqn (6), if c > 4 exp
(

2 + 8ε(ε+2σ)
σ2

)
, we have

Pr
x∗∼µ′,A,w,x̂∼ν(·|A,y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤e−Ω(m).

This implies that there exists a set SA,w over A,w satisfying PrA,w[SA,w] ≥ 1− e−Ω(m), such that for all
A,w ∈ SA,w, we have

Pr
x∗∼µ′,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ e−Ω(m).

Substituting in Eqn (5), we have

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ δ + e−Ω(m).

Rescaling c gives us our result.
At the beginning of the proof, we had assumed that W∞(ν′, Q) ≤ σ. If instead W∞(µ′, Q) ≤ σ, then

we need to replace σ in the above bound by σ + ε. Rescaling c in the above bound gives us the Theorem
statement.

A.3 Proof of Theorem A.5
Theorem A.5. Let x∗ ∼ µ and let y = A(x∗) be measurements generated from x∗ for some arbitrary forward
operator A : RN → RM . Then if there exists an algorithm that uses y as inputs and outputs x′ such that

‖x∗ − x′‖ ≤ ε with probability 1− δ,

then posterior sampling x̂ ∼ µ(·|y) will satisfy

‖x∗ − x̂‖ ≤ 2ε with probability ≥ 1− 2δ.

Proof. Without loss of generality, let the optimal algorithm output x′ that is a deterministic function of y.
Yao’s lemma tells us that this is as good as a randomized function of y.
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Then by the statement of the Lemma, we have

1− δ = Pr[‖x∗ − x′‖ ≤ ε] = E
y

(Pr[‖x∗ − x′‖ ≤ ε|y]) .

Now, the probability that ‖x∗ − x̂‖ ≤ 2ε can be expressed as

Pr[‖x∗ − x̂‖ ≤ 2ε] = E
y

(Pr[‖x∗ − x̂‖ ≤ 2ε|y]) ,

≥ E
y

(Pr[‖x∗ − x′‖ ≤ ε ∧ ‖x′ − x̂‖ ≤ ε|y]) ,

= E
y

(Pr[‖x∗ − x′‖ ≤ ε|y] · Pr[‖x′ − x̂‖ ≤ ε|y]) ,

= E
y

(
Pr[‖x∗ − x′‖ ≤ ε|y]2

)
,

≥
(
E
y

(Pr[‖x∗ − x′‖ ≤ ε|y])
)2

,

= (1− δ)2 ≥ 1− 2δ,

where the second line follows from a triangle inequality, the third line follows since x∗, x̂ are independent
conditioned on y, the fourth line follows since x̂|y is distributed according to x∗|y, and the fifth line follows
from Jensen’s inequality.

B Appendix: Experimental Results
We perform retrospective under-sampling in all experiments, i.e., given fully-sampled k-space measurements
from the NYU fastMRI [23, 42] and Stanford MRI [1] datasets, we apply sampling masks and evaluate the
performance of all considered algorithms on the reconstructed data. Depending on scan parameters (e.g., 3D
scans for the Stanford knee data in Appendix F), we appropriately slice and sample the data in the proper
dimension so as to not commit any inverse crime [15, 31].

We first highlight that an advantage of the proposed approach is the invariance to the sampling scheme
during training. In contrast, this is a design choice that must be made for supervised end-to-end methods,
which here were trained on equispaced, vertical sampling masks, following the fastMRI 2020 challenge
guidelines [42, 28]. As our results show, this affords us a significant degree of robustness across a wide
distribution of sampling masks during inference.

We train a score-based model, NCSNv2 [34], on a small subset of scans from the NYU fastMRI brain
dataset. Specifically, we train using T2-weighted images at a field strength of 3 Tesla for a total of 14,539
2D training slices. We calculate the MVUE from the fully sampled data and use the ESPIRiT algorithm
[37, 18] applied to the fully-sampled central portion of k-space to estimate the sensitivity maps. The backbone
network for our model is a RefineNet [24]. Since the generator’s output is expected to be complex-valued, we
treat the real and imaginary parts as separate image channels. Details about the architectures are given in
Appendix G.

We use an `1-Wavelet regularized reconstruction algorithm [25] as a parallel imaging and compressed
sensing baseline. We use the publicly available implementation from the BART toolbox [38, 36] and optimize
the regularization hyper-parameter using the same subset of samples from the brain dataset that was used to
train our method. We find that λ = 0.01 performs the best on the training data and use this value for all
experiments.

We consider three different deep learning baselines: MoDL [2], E2E-VarNet [35], and the ConvDecoder
architecture [11]. The first two methods, MoDL and E2E-VarNet, use supervised learning and belong to
the general class of unrolled optimization methods, while the ConvDecoder is a self-supervised method that
optimizes an individual model per scan.

We train the MoDL baseline using a residual network backbone on the same training dataset as our
method, at an acceleration factor R = {3, 6} and equispaced under-sampling, with a supervised SSIM loss on
the MVUE image.

14



12842
R

0.5
0.6
0.7
0.8
0.9
1.0

SS
IM

(a) Abdomens

12842
R

0.5
0.6
0.7
0.8
0.9
1.0

SS
IM

(b) Knees

Langevin (Ours)
E2E-Varnet
MoDL
L1-Wavelet
ConvDecoder

Figure 4: Average test SSIM in various scenarios, across a range of accelerations factors R. Higher R indicates a
smaller number of acquired measurements. Our approach shows the best performance and lowest reconstruction
variance both in- and out-of-distribution at test-time. Shaded regions indicate 95% confidence intervals.
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Figure 5: Average test PSNR in various scenarios, across a range of accelerations factors R. Higher R
indicates a smaller number of acquired measurements. Our approach shows the best performance and lowest
reconstruction variance both in- and out-of-distribution at test-time. Shaded regions indicate 95% confidence
intervals. Note that hyperparameters for all methods were chosen for the in-distribution setting and reused
under data shifts.

For the E2E-VarNet baseline, we train a U-Net with a depth of four stages, with 18 hidden channels
in the first stage, for a total of 29 million learnable parameters. This model also include a smaller deep
neural network that is used to estimate the sensitivity maps. This is also a U-Net, with four stages, but only
eight hidden channels after the first stage, for an additional 0.7 million parameters. The model is trained for
a number of 12 unrolls, and separate image networks are used at each unroll. We train this model for 50
epochs using an Adam optimizer with default PyTorch parameters and a learning rate of 2e−4, as well as
gradient clipping to a maximum magnitude of 1, on the fully-sampled MVUE reconstructions from the brain
T2 contrast used to train all methods. We use a batch size of 1 for training and use a supervised SSIM loss
between the absolute values of ground truth and reconstructed MVUE images at accelerations R = {3, 6},
using a vertical, equispaced sampling pattern, same as all other baselines.

For the ConvDecoder baseline, we use the architecture for brain data in [11] and optimize the number of
fitting iterations on a subset of samples from the training data. We find that 10000 iterations are sufficient to
reach a stable average performance at R = 3.

We evaluate reconstruction performance using the MVUE of the fully sampled data as a reference image
and measure the structural similarity index (SSIM) [41] between the absolute values of the reconstruction
and ground-truth MVUE images.
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Figure 6: Comparative reconstructions of a 2D abdominal scan with uniform random under-sampling in the horizontal
direction at R = 4. None of the methods were trained to reconstruct abdomen MRI. Our method uses a score-based
generative model trained on brain images (as explained), and obtains good qualitative abdomen reconstructions.

B.1 In-Distribution Performance
In this experiment, we test all models using the same forward model that matches the training conditions for
the baselines: vertical, equispaced sampling patterns. Examples of various sampling patterns are shown in
Appendix C.

Figure 1 (top row) and Figure 2 show qualitative and quantitative results, respectively, for the case when
there is no distributional mismatch between the training and inference sampling patterns. From Figure 2, we
notice that our method surpasses all baselines in the PSNR and SSIM metric at higher acceleration factors
and is competitive at lower acceleration factors. Note that at accelerations of R ≥ 6, MoDL and E2E-Varnet
attain good SSIM and PSNR scores, but Figures 1, 10, 11 show that these methods suffer from heavy aliasing.
This highlights the importance of qualitative evaluations in medical image reconstruction and the limitations
of existing image quality metrics [27].

We find that `1-Wavelet suffers both qualitatively and quantitatively at high acceleration factors, while the
ConvDecoder is also a competitive architecture, but incurs a large computational cost. When benchmarked on
an NVIDIA RTX 2080Ti GPU, our method takes 16 minutes and 0.95 GB of memory to reconstruct a high-
resolution brain scan, whereas the ConvDecoder takes longer than 80 minutes and 6.6 GB of memory. While
our method is limited by the inference time and is not in the range of end-to-end models (where reconstruction
takes at most on the order of seconds and 3.5 GB of memory), multiple scans can be reconstructed in parallel
due to the reduced memory footprint.

B.2 Out-of-Distribution Performance
Test-time anatomy shifts. We now consider the much more difficult problem of reconstructing different
anatomies than the ones seen during training. This was previously investigated in [11], which concluded
that all methods suffer a drastic shift due to the various changes in scan parameters between body parts. In
contrast to prior work, our main finding is that the proposed score-based model retains a significant degree of
robustness under these shifts, and outputs excellent qualitative reconstructions. In some cases, end-to-end
methods retain robustness as well.

Figure 4c shows SSIM scores obtained on reconstructed abdominal scans obtained from [1] at an acceleration
factor of R = 4. This represents both an anatomy and sampling pattern shift, and it can be seen that our
method, MoDL and the `1-Wavelet algorithm retain their competitive advantage, while the ConvDecoder
and E2E-VarNet suffer severe performance losses. Figure 6 further shows a qualitative comparison of a
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Figure 7: Our method successfully recovers fine details and can provide an estimate of the reconstruction error. The
left column shows a knee from the fastMRI dataset, along with an annotated meniscus tear (indicated by red arrow in
zoomed inset). Given measurements at an acceleration factor of R = 4, we obtain 48 independent reconstructions via
posterior sampling. The second column shows the pixel-wise average of reconstructions, the third column shows the
pixel-wise standard deviation, and the fourth column shows the magnitude of the error between the ground truth
and the mean reconstruction. Note that our generative prior has never seen such pathology, as it was trained on
T2-weighted brain scans.

reconstructed abdominal scan, with highlighted artifacts. Appendix E shows another abdomen scan.
Finally, Figure 4d shows SSIM scores obtained on fastMRI knee reconstructions, while Figure 1 (bottom

row) shows the accompanying qualitative plots. This anatomy is challenging especially because of the poor
signal-to-noise ratio conditions, which can be seen even in the ground-truth image. It can be noticed that this
is the most severe shift for all methods, but our approach still shows the best performance at R = 2, 4 and a
significantly lower variance. Appendix D shows more examples of knee reconstructions with and without fat
suppression.

B.3 Uncertainty Estimation
Our method can also provide uncertainty estimates for each reconstructed pixel by running multiple recon-
struction samplers. For a given observation y, we can obtain independent samples x̂1, · · · , x̂K ∼ µ(·|y), for K
sufficiently large. Now, using the conditional mean estimate x̄ =

∑K
i=1 x̂i/K, we can compute the pixel-wise

standard deviation
√∑K

i=1 |x̂i − x̄|2/K, and this gives an estimate of the error in each pixel. As shown in
Fig 7, the pixel-wise standard deviation is a good estimate of the ground truth error |x∗ − x̄|. Additionally,
notice that the reconstructions are able to recover fine details such as the annotated meniscus tear2 in Fig 7
and predict low uncertainty for these features. We again emphasize that our model was not trained on knee
scans.

Figure 15 in Appendix D shows another example of an annotated meniscus tear.

C Appendix: fastMRI Brain
C.1 Examples of Sampling Masks
Figure 8 shows example of some of the masks used throughout the experiments in the paper and their
corresponding reconstructions. Note that the type of mask used is coupled with the scan parameters (e.g.,
two-dimensional slices from a three-dimensional scan will use a 2D grid of points).

We also highlight that, in all cases, a central region of the k-space is kept fully sampled and is used to
estimate the coil sensitivity maps for all methods. The bottom row of Figure 8 shows naive reconstructions of
a single coil image using the zero-filled k-space. This shows that different types of masks lead to different types
of aliasing patterns in the image domain, motivating the need for robust image reconstruction algorithms.

2https://discuss.fastmri.org/t/219
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Figure 8: Examples of sampling patterns used throughout the experiments (top) and naive reconstructions (bottom).
Top: The leftmost image shows the log-magnitude of the fully sampled k-space measurements corresponding to a single
coil. The remaining images show three possible sampling masks, all with acceleration factor R = 4 but drastically
different patterns. Bottom: Each image shows the magnitude of the reconstruction obtained by a two-dimensional
IFFT applied to the sampled k-space.

C.2 More Exemplar Reconstructions
Figures 9 throughout 13 show detailed qualitative reconstructions on different brain scans from the fastMRI
dataset. We highlight Figures 12 and 13, which represent a contrast shift from the in-distribution data (T1
and FLAIR vs. T2, respectively). Our method still produces excellent qualitative reconstructions.
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Ground truth MVUE L1-Wavelet MoDL-MVUE E2E-Varnet Langevin Dynamics (Ours)

Figure 9: In-distribution brain reconstructions, at an acceleration factor of R = 3 and an equispaced vertical
mask in k-space. Our model was trained on T2-weighted brain images from the fastMRI dataset. These
results show that our method is competitive with state-of-the-art methods such as E2E-VarNet.
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Figure 10: In-distribution brain reconstructions, at an acceleration factor of R = 6 and an equispaced vertical
mask in k-space. Our model was trained on T2-weighted brain images from the fastMRI dataset. These
results show that our method is competitive with state-of-the-art methods such as E2E-VarNet, and retains
its performance at higher acceleration factors, unlike L1-Wavelet and MoDL.
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Figure 11: In-distribution brain reconstructions, at an acceleration factor of R = 12 and an equispaced
vertical mask in k-space. Our model was trained on T2-weighted brain images from the fastMRI dataset.
These results show that our method retains its performance at higher acceleration factors.
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Figure 12: Brain reconstructions under a contrast shift, at an acceleration of R = 3. Our method was trained
on T2-weighted brains, while these are T1-weighted brains, and our method is clearly robust to this contrast
shift.
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Figure 13: Brain reconstructions under a contrast shift, at an acceleration of R = 3. Our method was trained
on T2-weighted brains, while these are FLAIR brains, and our method is clearly robust to this contrast shift.
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Figure 14: fastMRI knee reconstructions at an acceleration factor of R = 4 and a random vertical mask in
k-space. All methods were trained on fastMRI brains, and this shows that our method is more robust than
other methods with respect to anatomy shift. We highlight that the rows alternate between a fat suppressed
(FS) and non-fat suppressed (NFS) contrast scan. The FS scans are difficult to reconstruct for the baselines,
since they also exhibit a much lower signal-to-noise ratio than the brain training data, whereas our approach
is robust to this type of shift as well.

D Appendix: fastMRI Knee
Figure 14 shows further examples of knee reconstructions for the fastMRI dataset. We highlight that the
rows alternate between a fat suppressed (FS) and non-fat suppressed (NFS) contrast scan. The FS scans are
difficult to reconstruct for the baselines, since they also exhibit a much lower signal-to-noise ratio than the
brain training data, whereas our approach is robust to this type of shift as well.
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Figure 15: Our method successfully recovers fine details and can provide an estimate of the reconstruction
error. The left column shows a knee from the fastMRI dataset, along with an annotated meniscus tear
(indicated by red arrow in zoomed inset). Given measurements at an acceleration factor of R = 4, we obtain
48 independent reconstructions via posterior sampling. The second column shows the pixel-wise average of
reconstructions, the third column shows the pixel-wise standard deviation, and the fourth column shows the
magnitude of the error between the ground truth and the mean reconstruction. Note that our generative
prior has never seen such a pathology, as it was trained on T2-weighted brain scans.

E Appendix: Abdomen
Figure 16 shows an additional example of a reconstructed abdominal scan. This is obtained from the same
volume as the figure in the main text, and has a resolution of 164× 320 voxels, but a much larger field of
view, leading to a resolution shift for all models.
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Figure 16: Comparative reconstructions of a 2D abdominal scan with uniform random under-sampling in the
horizontal direction at an acceleration factor of R = 4. None of the methods were trained to reconstruct
abdomen MRI. Our method uses a score-based generative model trained on brain images (as explained), and
obtains excellent qualitative abdomen reconstructions.

F Appendix: Stanford Knee
Figures 17 and 18 show quantitative and qualitative reconstruction under an anatomy shift induced by testing
axial knee scans. In this case, we first obtain a complete three-dimensional fast spin echo (3D-FSE) knee scan
from the publicly available repository at mridata.org. To obtain two-dimensional slices, we apply an IFFT
operator on the readout axis and select 24 equally spaced slices for evaluation. Each slice has a resolution of
320× 256 pixels.

G Appendix: Implementation
G.1 Score-Based Generative Model
Training the model We use the implementation from https://github.com/ermongroup/ncsnv2. As
MRI data are complex valued, we changed the generator such that the output and input have two channels,
one each for the real and imaginary components. We did not change the architecture otherwise.

We used the FlickrFaces (FFHQ) configs file from the NCSNv2 repo, except we set sigma_begin = 232,
and sigma_end = 0.0066. This is because of the smaller number of channels in MRI when compared to
FFHQ.

Dynamic range of the data. MRI data exhibits a lot of variation in the dynamic range. For example,
the fastMRI dataset has max pixel value on the order of 10−4, while the abdomen and Stanford knee data has
max pixels on the order of 105. In order to deal with this variation, during training, we normalize each image
by the 99 percentile pixel value. During inference time, when we do not have access to the ground-truth
image, we normalize the reconstruction using the 99 percentile pixel value of the pseudo-inverse. We observe
that this heuristic is sufficient to get good results.

Invariance to image shapes. Due to the convolutional nature of NCSNv2, although we trained on
384× 384 images, we can still apply them to knees, T1-weighted & FLAIR brains, and abdomens, although
all of these have different dimension shapes.
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Figure 17: Reconstruction SSIM and PSNR on Stanford Knees as a function of the acceleration R. This
dataset is considerably different from the others, as they are 3D scans. We sample k-space measurements
according to Poisson masks, which gives improved incoherence, and hence we find no statistical difference
between L1-Wavelet, MoDL, and our method. Note that all hyper-parameter selection and model training
was done on brains from the fastMRI dataset.

Hyperparameters for inference We run annealed Langevin dynamics given in Eqn (3) for T = 6933
steps.

The γ0 and γT hyperparameters in Eqn (3) were set to γ0 = 232, γT = 0.00066. The γt values vary
geometrically after every three steps, i.e.,

γt = γ0r
bt/3c, t = 0, · · · , 6932,

where r :=
(
γT
γ0

)1/(T/3−1)
=
( 0.00066

232
)1/2310 = 0.994487.

The learning rate ηt in Eqn (3) also varies geometrically, as

ηt = 9 · 10−6 ·
(
γt
γT

)2
.

We use these hyperparameters for all datasets, all accelerations, and all sampling patterns.

G.2 E2E-VarNet Baseline
The backbone for the image reconstruction network is a U-Net with a depth of four stages, and 18 hidden
channels in the first stage, for a total of 29 million learnable parameters. This model also include a smaller
deep neural network that is used to estimate the sensitivity maps. This is also a U-Net, with four stages,
but only eight hidden channels after the first stage, for an additional 0.7 million parameters. The model is
trained for a number of 12 unrolls, and separate image networks are used at each unroll.

We train this model for 50 epochs using an Adam optimizer with default PyTorch parameters and a
learning rate of 2e−4, as well as gradient clipping to a maximum magnitude of 1, on the fully-sampled MVUE
reconstructions from the brain T2 contrast used to train all methods. We use a batch size of 1 for training
and use a supervised SSIM loss between the absolute values of ground truth and reconstructed MVUE images
at accelerations R = {4, 8}, using a vertical, equispaced sampling pattern, same as all other baselines.

Finally, it is worth mentioning that the network used to estimate the sensitivity maps explicitly uses the
fully-sampled, vertical ACS region, as shown in Figure 8, both during training and inference. This makes
testing with other mask patterns non-trivial for this baseline. To alleviate this, we always feed the image
obtained from the vertical ACS region (for example, in the case of horizontal masks, we intentionally zero out
other sampled lines that would fall in this region), to not introduce incoherent aliasing in this image.
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Figure 18: Qualitative reconstructions obtained by all methods on the Stanford Knees dataset at an
acceleration of R = 5.62. This dataset is considerably different from the others, as they are 3D scans. We
sample k-space measurements according to Poisson masks, which gives improved incoherence, and hence we
find no statistical difference between L1-Wavelet, MoDL, and our method. Note that all hyper-parameter
selection and model training was done on brains from the fastMRI dataset.
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G.3 MoDL Baseline
We train a MoDL model that uses a backbone residual network with a depth of six layers, three equispaced
residual connections (that feed from the first three layers to the last three layers) and 64 hidden channels,
with a total of 220000 trainable parameters. Unlike E2E-VarNet, the same backbone network is used across
all unrolls, and the data consistency term is given by a Conjugate Gradient (CG) operator, truncated to six
steps.

We train MoDL for a number of six unrolls, leading to a total of 36 CG steps and six network applications
in the unroll. We use the Adam optimizer with default PyTorch parameters and learning rate 2e−4, as well
as gradient clipping to a maximum magnitude of 1. We train for five epochs, using a batch size of 1 on
exactly the same T2 brain scans as all methods and a supervised SSIM loss at accelerations R = {4, 8} using
a vertical, equispaced sampling pattern and find that this is sufficient to achieve excellent in-distribution
reconstruction, due to the large dataset and small network size.

Since MoDL and all other methods, except E2E-VarNet, require external sensitivity map estimates to be
provided to them, we use the ESPIRiT algorithm without any eigenvalue cropping to estimate a single set of
sensitivity maps, one for each coil.

H Additional Results
Figure 5 shows the test PSNR evaluated in the same conditions as Figure 4 in the main text. This highlights
that our model is also robust in this metric, but also the shortcomings of PSNR in evaluating reconstruction
performance, since for some methods the metric does not improve when more samples are available (R is
lower).
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